
Glowworm swarm optimisation algorithm for virtual machine placement in cloud
computing
Alboaneen, Dabiah Ahmed; Tianfield, Huaglory; Zhang, Yan

Published in:
Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress
(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 Intl IEEE Conferences
DOI:
10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0129

Publication date:
2017

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
Alboaneen, DA, Tianfield, H & Zhang, Y 2017, Glowworm swarm optimisation algorithm for virtual machine
placement in cloud computing. in Ubiquitous Intelligence & Computing, Advanced and Trusted Computing,
Scalable Computing and Communications, Cloud and Big Data Computing, Internet of People, and Smart World
Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), 2016 Intl IEEE Conferences. IEEE, pp. 808-814.
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0129

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ResearchOnline@GCU

https://core.ac.uk/display/293882643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0129
https://researchonline.gcu.ac.uk/en/publications/764fa974-e708-4a7d-ab27-4e083a3f3b81
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0129

Glowworm Swarm Optimisation Algorithm for
Virtual Machine Placement in Cloud Computing

Dabiah Ahmed Alboaneen∗†, Huaglory Tianfield∗, and Yan Zhang∗
∗School of Engineering and Built Environment, Glasgow Caledonian University, Glasgow, G4 0BA, United Kingdom

†College of Education, University of Dammam, Jubail, Kingdom of Saudi Arabia
Email: {dabiah.alboaneen; h.tianfield; yan.zhang}@gcu.ac.uk

Abstract—Virtual machine placement (VMP) is the assignment
of virtual machines (VMs) to physical hosts (PHs). In this paper,
we apply a glowworm swarm optimisation (GSO) algorithm to
solve the VMP problem so that the energy consumption and the
service level agreement (SLA) violation are minimised. Simula-
tion results show that GSO based VMP algorithm outperforms
many of the common VMP algorithms.

Index Terms—cloud computing; resource management; energy
efficiency; glowworm swarm optimisation (GSO); virtual ma-
chine placement.

I. INTRODUCTION

The process of placing virtual machines (VMs) on physical
hosts (PHs) is referred to as the virtual machine placement
(VMP). There are two types of initial conditions for VMP
problems: (1) fresh VM placement where a new VM is placed
on PH, and (2) VM re-placement which is the optimisation of
the existing placement of VMs. The main difference is that in
VM re-placement, live VM migration is used to move a VM
from one PH to another without noticeable service interruption
[1].

The need for re-placing VMs is due to the change in the
data centre (DC) environment, such as workload variations
or hardware failures. Generally, applications located in VMs
are usually associated with service level agreements (SLA).
After a period of time, violations of SLA may occur due to
factors such as high CPU utilisation or high memory usage
of the PH. Hence, some VMs need to be migrated to avoid
over-utilisation that causes VM performance degradation. On
the other hand, some PHs may be switched off or turned
to low-power modes to reduce the energy consumed by the
underutilised PHs. Therefore, the optimal placement plays an
important role in improving energy efficiency and resource
utilisation in a cloud environment.

The VMP problem in cloud computing is a kind of a
bin-packing problem and a non-deterministic polynomial-time
hard (NP-hard) problem [1]. Generally, it is difficult to develop
algorithms for producing optimal solutions within a short time.
Metaheuristic techniques such as genetic algorithm (GA), ant
colony optimisation (ACO) and particle swarm optimisation
(PSO) can deal with these problems by providing near-optimal
solutions within a reasonable time.

In this paper, we apply a glowworm swarm optimisation
(GSO) to VMP. The proposed GSO based VMP (GSOVMP)
algorithm takes into account the dynamic requirements of

users in a cloud environment include live migration as an
option in order to utilise resources more efficiently.

To evaluate the performance of GSOVMP, we undertake
comparative simulation study of the proposed algorithm with
a power aware best fit decreasing (PABFD) algorithm [2].
Simulation results show that GSOVMP outperforms PABFD
in terms of energy, SLA violations and the number of VM
migrations.

The main contribution of this paper lies at exploring GSO
algorithm to solve energy and SLA aware VMP problem.
CloudSim [3] is used to evaluate the performance of the
GSOVMP algorithm.

The remainder of this paper is organised as follows. Section
II presents a review on VMP in a cloud environment. The
VMP problem is formulated in Section III. The GSO algorithm
is described and discussed in Section IV. Simulations setup
and the results are examined in detail in sections V and VI.
Finally, in Section VII, the paper is concluded and future work
is mentioned.

II. LITERATURE REVIEW

The most common VMP algorithm may be PABFD algo-
rithm [2]. The idea of PABFD is to sort all VMs in decreasing
order of current CPU utilisations and then to allocate the new
VM to the PH that provides the smallest increase in the power
consumption caused by allocation.

Metaheuristics approaches have been studied for solving the
VMP problem. Kaaouache et al. proposed a GA algorithm for
VMP [4]. Wu et al. used simulated annealing (SA) [5], Ali
and Lee used biogeography-based optimisation (BBO) [6] and
Wang et al. used PSO [7] for energy-efficient VMP.

However, the existing work did not take use of the live VMs
migration to re-optimise the VMP and was mostly focused
on the VMP with fresh initial conditions. Single-objective
problem VMP of minimising the energy consumption is solved
by using ACO [8] and [9], PSO [10], SA [11] and GA [12],
respectively.

Multi-objective VMP problem is also studied. Xiong et
al. [10] addressed the efficient usage of multi-dimensional
resources to minimise the energy consumption via PSO. In
[13], [14] and [15] a multi-objective VMP problem is solved
by using GA to minimise the number of active PHs and
the communication traffic and to balance multi-dimensional
resources used simultaneously within the DC. Moreover, GA

TABLE I: Power consumption by two types of PHs at different load level in Watts

Server 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
HP ProLiant G4 86 89.4 92.6 96 99.5 102 106 108 112 114 117
HP ProLiant G5 93.7 97 101 105 110 116 121 125 129 133 135

was used for VMP to reduce the power consumption by
minimising the number of active PHs and maximising the
efficiency of resource usage [16]. In addition, ACO was also
used to minimise the power consumption and resource wastage
[17], [18] and [19]. The ACO was used by Liu et al. for
VM re-placement to reduce the energy consumption and load
balancing for resources [20]. In [21], multi-objective VMP
problem is solved by using BBO to decrease power consump-
tion, resource wastage, server unevenness, inter-VM traffic,
storage traffic and migration time simultaneously. In [22],
multi-objective VMP problem is solved by using memetic
algorithm to minimise the energy consumption, network traffic
and to maximise the economical revenue.

However, the trade-off between energy and performance
is an important issue and needs to be addressed in VMP
problem. In [23], SA algorithm achieves a balance between
the energy consumption and the number of VMs migration.
Gao and Tang used the PSO algorithm for VMP to improve
the resource utilisation of the PH and minimise the number
of VM migrations [24]. In [25], PSO based VMP algorithm
achieves trade-off between energy and performance. In [26],
the authors used ACO to find a near-optimal solution for the
re-placement of VMs to improve the resource utilisation of
PHs and to reduce the energy consumption.

Our work aims at minimising energy consumption and num-
ber of VM migrations. Moreover, minimising SLA violations
is included in our VMP objectives.

III. VMP PROBLEM FORMULATION

For convenience and clarity, notations are listed in Table II.

A. Assumptions

We assume a single DC with heterogeneous PHs is pro-
visioning multiple VMs. Compared with other physical re-
sources such as memory and bandwidth, the main fraction
of the energy is consumed by the CPU rather than by the
memory and bandwidth [27]. In [28] it is found that there
exists a strong relationship between CPU utilisation and total
power consumption by a PH. The power consumption by a
PH increases linearly with the increase of CPU utilisation
from the power consumption at the idle status up to the power
consumption at the PH’s is full utilisation. Hence, in this paper
we assume that the power consumption of a PH is linear to
its resource utilisation (i.e., CPU utilisation).

B. Power Consumption Model

The real power consumption data provided in SPECpower
benchmark is used for calculating the power consumption. Two
different PHs are used in our simulations: HP ProLiant ML110
G4 and HP ProLiant ML110 G5. The power consumption by
PHs at different load levels is presented in Table I.

TABLE II: Indices and notations

j Index for PHs.
M Total number of PHs.
Ej Energy consumption of PH j.
Pcpuj CPU capacity of PH j.
Pmemj Memory capacity of PH j.
Pnetj Network bandwidth capacity of PH j.
i Index for VMs.
N Total number of VMs.
V cpui CPU demand of VM i.
V memi Memory demand of VM i.
V neti Network bandwidth demand of VM i.
`j(t) Luciferin value of PH j.
pjn(t) Probability of VM in PH j to select PH n.
xj(t) CPU utilisation of PH j.
xj(t+ 1) New CPU utilisation of PH j.
γjd(t) Local radial range j.
γs Max sensor range of the γjd(t).
Nj(t) Neighbours set of PH j.
|Nj(t)| Actual number of neighbours.
nt Number of desired neighbours.
||x|| Euclidean norm of x.
β Change rate of the neighbourhood range.
s Step size of moving.
γ Luciferin enhancement coefficient.
p Luciferin decay coefficient (0 < p < 1).

C. Objective Function

The objective function of the GSOVMP algorithm focuses
on minimising the energy consumption E. The objective
function f is written as follows:

f =
∑M

j=1
Ej (1)

where j is index of PH and Ej is the energy consumption of
PH j.

D. Constraints

• Constraint 1: A VM must be assigned to a PH, i.e.,

∀i,
∑M

j=1
V pij = 1 (2)

where i is index of VM, j is index of PH and V pij is a
binary value representing whether VM i is assigned to PH j.
• Constraint 2: The total resources of a VM cannot exceed

the capacity of the PH resources, i.e.,

∀j,
∑N

i=1
V cpui ∗ V pij ≤ Pcpuj (3)

∀j,
∑N

i=1
V memi ∗ V pij ≤ Pmemj (4)

∀j,
∑N

i=1
V neti ∗ V pij ≤ Pnetj (5)

where V cpui, V memi and V neti are CPU, memory and
network bandwidth demands of VM i, respectively. Pcpuj ,
Pmemj and Pnetj are CPU, memory and network bandwidth
capacities of PH j , respectively.

Algorithm 1 GSO

1: Initialise parameters β , p, s, nt
2: ∀j , set `j(0) = `0
3: ∀j , set γjd(0) = γ0
4: while termination condition not meet do
5: for j = 1 to m do
6: `j(t+ 1) = (1− p)lj(t) + γf(xj(t+ 1))
7: Nj(t) = {n : ||xn(t)− xj(t)|| ≤ γjd(t); `j ≤ `n(t)}
8: for each n ∈ Nj(t) do
9: pjn(t) =

`n(t)−`j(t)∑
k∈Nj(t)

`k(t)−`j(t)
10: end for
11: xj(t+ 1) = xj(t) + s

(
xn(t)−xj(t)
||xn(t)−xj(t)||

)
12: γjd(t + 1) = min{γs,max{0, γjd(t) + β(nt −

|Nj(t)|)}}
13: t ← t+ 1
14: end for
15: end while

IV. GLOWWORM SWARM OPTIMISATION-BASED VIRTUAL
MACHINE PLACEMENT (GSOVMP) ALGORITHM

GSO algorithm is a swarm intelligence algorithm developed
by Krishnan and Ghose. GSO is a population-based algorithm.
As control is not centralised at a single point, thus it is more
scalable [29].

GSO is based on the behaviour of glowworms. A glowworm
that produces more light (high luciferin) means that it is closer
to an actual position and has a high objective function value.
Each glowworm selects a neighbour that has a higher luciferin
value than its own, according to a probabilistic mechanism,
and moves towards it. These movements are based only on
local information. Therefore, it enables the glowworms to
divide into subgroups leading to the detection of multiple
optima of the given objective function.

GSO algorithm starts by positioning glowworms randomly
in the workspace and all the glowworms contain an equal
quantity of luciferin. A GSO algorithm comprises four phases,
i.e., glowworm initialisation, luciferin updating, glowworm
moving and local radial range updating. The pseudocode of
GSO algorithm is presented in Algorithm 1.

GSO algorithm will be applied to search for the placement
of VMs that minimises the energy and SLA violations. Then
we have the four phases of the process of GSOVMP as follows.

A. Glowworm Initialisation Phase

The initial population consists of a number of glowworms,
which are considered as candidate solutions to the problem. A
glowworm is a vector of elements, and an element represents
a VM; the value of an element is the ID of the PH to which
the VM is assigned. Here, the initial population is generated
based on the least loaded PH.

Each PH j has a location xj(t) that is defined by CPU
utilisation, a luciferin value `j(t) as calculated in Eq. (6),
which represents the available CPU utilisation, a local radial

range γjd(t) , max sensor range γs , the size of moving step
s, the number of desired neighbours nt, the luciferin decay
coefficient (0<p<1), the luciferin enhancement coefficient γ
and the change rate of the neighbourhood range β.

`j(t) = Pmaxj − Pj (6)

where Pmaxj is the maximum power of the PH j according
to the power model and Pj is the current power of the PH j
based on CPU utilisation.

B. Luciferin Update Phase

Initially, each PH has its own luciferin value. Each PH
j converts the objective function value f(xj(t + 1)) at its
current location xj(t) to a luciferin value `j(t + 1) by using
the formula below.

`j(t+ 1) = (1− p)lj(t) + γf(xj(t+ 1)) (7)

where `j(t) is the luciferin value of PH j at time t. p is the
luciferin decay coefficient (0 < p < 1), γ is the luciferin
enhancement coefficient, and f(xj(t+1)) represents the value
of the objective function of PH j’s location at time t.

Therefore, the luciferin values of PHs are changed according
to the objective function values. Whenever a VM is placed to
a PH, luciferin value of this PH is updated. A higher luciferin
value means a better result as the goal is to minimise the
energy consumption. Also, the luciferin value is decreased
along the time to simulate the decay.

C. Movement Phase

In the movement phase, a VM in PH j chooses to move
toward one of its neighbours n that has a higher luciferin
value (more available CPU utilisation) and within the local
radial range γd. The movement consists of three further steps.
• Step 1. Find Neighbours: The set of neighbour in the

local radial range can de written as below.
Nj(t) = {n : ||xn(t)− xj(t)|| ≤ γjd(t); `j ≤ `n(t)} (8)

where Nj(t) is the neighbour set, n is the index of PH close
to PH j, xn(t) and xj(t) are locations of PH n and PH j,
respectively, `j(t) and `n(t) are luciferin values for PH j and
PH n, respectively. ||x|| is the Euclidean norm of x, and γjd(t)
represents the local radial range.
• Step 2. Calculate Probabilities: For each PH j, the

probability to figure out the movement direction toward
the neighbour with a higher luciferin value is calculated
by using the formula below.

pjn(t) =
`n(t)− `j(t)∑

k∈Nj(t)
`k(t)− `j(t)

(9)

where pjn(t) is the probability of VM in PH j to move to PH
n.

The VM located in PH j selects a PH n from the neighbour
set that has the highest probability over others in the neighbour
set.
• Step 3. Movement: At the end of the movement phase, the

location of the VM is changed based on the location of

Fig. 1: The GSOVMP flowchart

the selected PH. The new location of the VM is calculated
using the formula below.

xj(t+ 1) = xj(t) + s

(
xn(t)− xj(t)
||xn(t)− xj(t)||

)
(10)

where xj(t + 1) and xj(t) are the new and current locations
for VM j, respectively, s is the step size of moving.

D. Local Radial Range Update Phase

The local radial range γjd is updated using Eq. (11) in order
to formulate the neighbour set in the next VMP for adding
more flexibility to the PH.

γjd(t+1) = min{γs,max{0, γjd(t)+β(nt− |Nj(t)|)}} (11)

where β is a coefficient and nt is the number of desired
neighbours. |Nj(t)| is the actual number of neighbours.

The flowchart and pseudocode of the GSOVMP algorithm
are shown in Fig 1 and Algorithm 2, respectively. GSO

Algorithm 2 GSOVMP

1: Input: PhList, VM, set of parameters
2: Output: Allocation of VMs
3: Initialise parameters β , p, s, nt, γ

j
d

4: g = newGlowworm(vm, PhList)
5: PhId = luciferin.getPh()
6: currentluc=g.calculateLuc(PhId) by Eq.(1)
7: while i < N do
8: for j = 1 to M do
9: newluc=g.calculateNewLuc(PhId) by Eq.(7)

10: neighbours = g.getNeighbours(PhId,neighbourSize)
by Eq.(8)

11: while j < neighbours.size() do
12: neighbourId = neighbours.get(j)
13: neighbourluc=g.calculateLuc(neighbourId)
14: if neighbourluc = 0 then
15: currentluc = neighbourluc
16: neighbourPhId = neighbours.get(j)
17: j= neighbours.size()
18: end if
19: luc = currentluc − neighbourluc
20: if luc > luciferin then
21: if neighbourPhId < γjd then
22: luciferin = luc
23: currentluc = neighbourluc
24: neighbourPhId = neighbours.get(j)
25: end if
26: end if
27: end while
28: allocatedPh = PhList.get(neighbourPhId)
29: Update radial range by Eq.(11)
30: end for
31: end while

parameters are initialised (lines 3-4). When a user requests
a VM, a PH is initialised based on the least loaded PH
through getPh() method (line 5) and each PH gets a location
as per its utilisation by calculating the luciferin through the
calculateLuc(PhId) method (line 6). For each VM i that
needs to be migrated (line 7), the algorithm will search for a
suitable PH j (line 8): The luciferin of PH will be updated (line
9). The neighbour set will be calculated (line 10), it contains
PHs which have a higher luciferin value than the original one
and are within the local radial range. The size of the neighbour
set is predefined by the user. The luciferin of a neighbour PH
will be calculated (line 13). If a neighbour PH is not suitable
for hosting the migrated VM, then this neighbour PH will
not be taken into consideration (lines 14-18). The luciferin
is calculated as the available utilisation difference between
the original PH j and its other neighbour PHs (line 19). If
any of the neighbouring PHs is less utilised than the original
PH and is within the local radial range, then this PH will
be the selected neighbour of PH (lines 20-24). The selected
neighbour will be the allocated PH to place the VM (line 26).

Fig. 2: The system architecture

After that, the radial range which defines the neighbour set will
be updated (line 27). Finally, the algorithm will be terminated
when suitable PHs for placing all the migrated VMs are found
(line 29).

V. SIMULATION ENVIRONMENT

A. System Context of Resource Management

Suppose a large-scale DC consists of 800 heterogeneous
PHs and four VM types are modelled based on Amazon EC2
instance types. A PH is characterised by the amount of CPU,
memory and network bandwidth. The system architecture is
shown in Fig 2. Users submit requests for the provisioning of
N VMs, as marked by information (1), which are allocated to
PHs by executing a VMP algorithm. The length of each request
is specified in millions of instructions (MI). Initially, VMs are
allocated according to the requested characteristics assuming
100% CPU utilisation. Afterwards, the proposed VMP algo-
rithm optimises VMP to reduce the power consumption, SLA
violations and VM migrations of the DC. One or more VMs
can run in one PH, and each PH runs a hypervisor. Monitoring
of the CPU utilisation of PHs and detection of overloaded and
underloaded PHs are fed back, as marked by information (2).
The VM scheduler and allocator (VSA) collects the feedback
information from the PHs to maintain an overall view of
the system resource utilisation. Based on the information of
user requests and the feedback from PHs, the VSA initiates
the VMP algorithm to optimise the allocation of VMs and
hypervisors perform actual migration and placement of VMs
and changes in power modes of PHs.

To sum up, the resource management system works as
follows.

(i) Initialise a placement for each VM based on least loaded
PHs.

(ii) Monitor CPU utilisation of PHs by applying a PH
load classification algorithm. In our simulation, local
regression (LR) is used to classify PHs into different
states based on the following rules:
• If the current CPU utilisation exceeds the PH capac-

ity, the PH is regarded as overloaded.
• If the current CPU utilisation is less than a threshold

of the total CPU utilisation, the PH is treated as
underloaded.

(iii) Determine which VMs should be migrated by applying a
VM selection algorithm. In our simulation, we use min-
imum migration time (MMT) to select VMs to migrate.

(iv) Re-place the migrated VMs in new PHs by applying the
proposed GSOVMP algorithm.

(v) Switch off inactive (idle) PHs if the CPU utilisation is
0%.

B. Simulation Setup

CloudSim toolkit 3.0.3 simulator [3] was used to evaluate
the proposed algorithm. CloudSim is widely used to simulate
cloud system components such as DCs and VMs. It supports
policies for VM placement and selection, power models for
DC resources, and provides different types of workloads.

The results are based on real workload which is provided
as part of the CoMon project, a monitoring infrastructure for
PlanetLab [30]. Five workload traces collected by Beloglazov
and Buyya in March 2011 [2] are used. During the simulations,
each VM is randomly assigned a workload trace from one of
the VMs from the corresponding day. The number of VMs in
each day is shown in Table III.

TABLE III: The number of VMs in each workload day

Workload No. 1 2 3 4 5
Date 03/03 06/03 09/03 22/03 25/03

No. of VMs 1052 898 1061 1516 1078

As mentioned in Krishnanand and Ghose [29], the choice
of GSO parameters has some influence on the performance of
the algorithm. In terms of the total number of peaks captured,
Krishnanand and Ghose suggested the parameter selection as
tabulated in Table IV. Thus, only nt and γs need to be selected.

The implementation of the proposed algorithm in CloudSim
is carried out using the optimizeAllocation method to optimise
the current VMP. This method takes VMs list as a parameter
and returns a map of the best placement found. Specifically,
the GSO algorithm will run in the findHostForVm method
for both the getNewVmPlacementFromUnderUtilizedHost and
getNewVmPlacement methods.

VI. RESULTS AND DISCUSSION

To evaluate GSOVMP algorithm, we compare it with the
PABFD algorithm in [2]. In addition, we consider the LR
algorithm to monitor CPU utilisation and decide whether a
VM needs to be migrated or not. The main idea of LR is to set
upper and lower utilisation thresholds and keep the total CPU
utilisation of a PH between them. When the utilisation of a PH
exceeds the limit, VMs are re-placed. Furthermore, to select
the migrated VMs, we choose the MMT algorithm. The reason
for choosing LR and MMT is that these algorithms outperform
other existing algorithms in CloudSim as demonstrated in [2].

TABLE IV: The GSO algorithm parameters selection

Parameter p r β nt s l0
Value 0.4 0.6 0.08 5 0.03 0.05

A. Energy Consumption

This metric represents the total energy consumed by the
physical DC resources. As illustrated in Fig 3a, the energy
consumption for GSOVMP in all workloads is less than that
with PABFD by 21.30%− 27.18%. This is because that GSO
algorithm is able to search the solution space more efficiently.
GSO algorithm searches for the PHs to place VMs within local
range and defined number of neighbours PHs and thus can find
the solutions with a smaller number of PHs.

B. Number of VM Migrations

This metric represents the total number of migrated VMs.
The fewest number of VM migrations is the best for decreasing
performance degradation. The total number of migrations is
based on the required CPU utilisation of VMs. In Fig 3b,
the proposed algorithm GSOVMP has fewer VM migrations
than PABFD in all workloads. This is due to the fact that
PABFD leads to an increase in the number of overloaded
and underloaded PHs which result in more VM migrations. In
addition, it can be observed that increasing the number VM
migrations caused an increase in energy consumption because
VM migration consumes some of the CPU on the migrating
PH.

C. SLA Violations

We consider two types of SLA violations in the infrastruc-
ture as a service (IaaS) layer: SLA violation per active host
(SLAVH) and SLA violation due to migration (SLAVM). The
SLAV is calculated as below.

SLAV = SLAV H ∗ SLAVM (12)

SLAVH is the ratio of SLAV time of PH and the active
time of this PH and is calculated as below.

SLAV H =
1

M

∑M

j=1

Tsj
Taj

(13)

where M is the number of PHs; Tsj is the total time that PH
j has experienced the utilisation of 100% leading to an SLA
violation. Taj

is the total duration of PH j being in the active
state.

SLAVM is the ratio of the performance degradation of VM
caused by migrations and the overall CPU capacity requested
by this VM. It is calculated as below.

SLAVM =
1

N

∑N

i=1

Cdi

Cri

(14)

where N is the number of VMs, Cdi
is the estimate of the

performance degradation of VM i caused by migrations and
Cri is the total CPU capacity requested by VM i during its
lifetime. We estimated Cdi as 10% of CPU utilisation in MIPS
during all migrations of VM i. It can be seen from Fig 3c
that GSOVMP has a fewer SLA violations than PABFD in
all workloads and the reason of this is that in the proposed
algorithm, the number of VM migrations is fewer than with
PABFD and the GSOVMP algorithm avoids PHs being 100%
utilised.

D. ESV

As our goal is the trade-off between energy and SLA
violation, it is important to consider a combined metric, e.g.,
a product of energy consumption and SLA violation as below.

ESV = Energy consumption ∗ SLAV (15)

In general, the ESV in GSOVMP is better than that in PABFD,
as seen in Fig 3d.

VII. CONCLUSION AND FUTURE WORK

We have applied GSO algorithm to solve the VMP prob-
lem and to find a near-optimal solution. We have proposed
GSOVMP as a new VMP algorithm to improve energy ef-
ficiency and reduce SLA violations in cloud computing. The
simulation results show that GSOVMP outperforms PABFD in
terms of energy, SLA violation, the combination of energy and
SLA violation and the number of VM migrations. Apparently
it is interesting in the future work to evaluate the GSOVMP
algorithm by comparing it with other metaheuristic algorithms
and extending to more objective functions.

REFERENCES

[1] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic placement of virtual
machines for managing sla violations,” in Integrated Network Manage-
ment, 10th IFIP/IEEE Int. Symp. on, pp. 119–128, IEEE, 2007.

[2] A. Beloglazov and R. Buyya, “Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient dynamic
consolidation of virtual machines in Cloud data centers,” Concurrency
Computation Practice and Experience, vol. 22, no. 6, pp. 1397–1420,
2011.

[3] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya,
“Cloudsim: a toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms,” Soft-
ware: Practice and Experience, vol. 41, no. 1, pp. 23–50, 2011.

[4] M. A. Kaaouache and S. Bouamama, “Solving bin Packing Problem
with a Hybrid Genetic Algorithm for VM Placement in Cloud,” Procedia
Computer Science, vol. 60, pp. 1061–1069, 2015.

[5] Y. Wu, M. Tang, and W. Fraser, “A simulated annealing algorithm for
energy efficient virtual machine placement,” IEEE Intl. Conf. on Sys.,
Man, and Cybernetics, pp. 1245–1250, 2012.

[6] H. M. Ali and D. C. Lee, “A biogeography-based optimization algorithm
for energy efficient virtual machine placement,” IEEE Symp. on Swarm
Intelligence, pp. 1–6, 2014.

[7] S. Wang, Z. Liu, Z. Zheng, Q. Sun, and F. Yang, “Particle swarm
optimization for energy-aware virtual machine placement optimization in
virtualized data centers,” Intl. Conf. on Parallel and Dist. Sys., pp. 102–
109, 2013.

[8] E. Feller, L. Rilling, and C. Morin, “Energy-Aware Ant Colony Based
Workload Placement in Clouds,” Grid Computing, 12th IEEE/ACM Intl.
Conf. on, pp. 26–33, 2011.

[9] X.-F. Liu, Z.-H. Zhan, K.-J. Du, and W.-N. Chen, “Energy aware virtual
machine placement scheduling in cloud computing based on ant colony
optimization approach,” in Proc. of the conf. on Genetic and evolutionary
computation, pp. 41–48, ACM, 2014.

[10] A.-p. Xiong and C.-x. Xu, “Energy Efficient Multiresource Allocation
of Virtual Machine Based on PSO in Cloud Data Center,” Mathematical
Problems in Eng., vol. 2014, pp. 1–8, 2014.

[11] N. Khalilzad, H. R. Faragardi, and T. Nolte, “Towards energy-aware
placement of real-time virtual machines in a cloud data center,” in High
Performance Computing and Communications, IEEE 7th Int. Symp. on
CSS, IEEE 12th Int. Conf. on ICESS, IEEE 17th Int. Conf. on, pp. 1657–
1662, IEEE, 2015.

[12] N. K. Sharma and G. Reddy, “Novel energy efficient virtual machine
allocation at data center using genetic algorithm,” in Signal Processing,
Communication and Networking, 3rd Int. Conf. on, pp. 1–6, IEEE, 2015.

(a) Energy consumption (b) Number of VM migrations

(c) SLA violation (d) Product of energy consumption and SLAV

Fig. 3: Comparisons of simulations. (a) energy consumption, (b) number of VM migrations, (c) SLA violation metric and (d)
ESV metric.

[13] J. Xu and J. A. Fortes, “Multi-objective virtual machine placement
in virtualized data center environments,” in Green Computing and
Communications, IEEE/ACM Int. Conf. on & Int. Conf. on Cyber,
Physical and Social Computing, pp. 179–188, IEEE, 2010.

[14] C. Liu, C. Shen, S. Li, and S. Wang, “A new evolutionary multi-objective
algorithm to virtual machine placement in virtualized data center,” in
Software Eng. and Service Science, 5th IEEE Int. Conf. on, pp. 272–
275, IEEE, 2014.

[15] S. Jamali and S. Malektaji, “Improving grouping genetic algorithm for
virtual machine placement in cloud data centers,” 4th Intl. Conf. on
Computer and Knowledge Eng., pp. 328–333, 2014.

[16] C. T. Joseph, K. Chandrasekaran, and R. Cyriac, “Improving the
efficiency of genetic algorithm approach to virtual machine allocation,”
in Computer and Communication Tech., Int. Conf. on, pp. 111–116,
IEEE, 2014.

[17] M. H. Ferdaus, M. Murshed, R. N. Calheiros, and R. Buyya, “Virtual
machine consolidation in cloud data centers using aco metaheuristic,”
in Euro-Par Parallel Processing, pp. 306–317, Springer, 2014.

[18] Y. Gao, H. Guan, Z. Qi, Y. Hou, and L. Liu, “A multi-objective
ant colony system algorithm for virtual machine placement in cloud
computing,” Journal of Computer and Sys. Sciences, vol. 79, no. 8,
pp. 1230–1242, 2013.

[19] M. a. Tawfeek, a. B. El-Sisi, a. E. Keshk, and F. a. Torkey, “Virtual
machine placement based on ant colony optimization for minimizing
resource wastage,” Communications in Computer and Information Sci-
ence, vol. 488, pp. 153–164, 2014.

[20] Z. Liu, Y. Xiang, and X. Qu, “Towards optimal cpu frequency and
different workload for multi-objective vm allocation,” in Consumer
Communications and Networking Conf., 12th Annual IEEE, pp. 367–
372, IEEE, 2015.

[21] Q. Zheng, R. Li, X. Li, and J. Wu, “A Multi-objective Biogeography-
Based Optimization for Virtual Machine Placement,” 15th IEEE/ACM
Intl. Symp. on Cluster, Cloud and Grid Computing, pp. 687–696, 2015.

[22] F. L. Pires and B. Baran, “Multi-objective Virtual Machine Placement
with Service Level Agreement: A Memetic Algorithm Approach,”
IEEE/ACM 6th Intl. Conf. on Utility and Cloud Computing, pp. 203–210,
2013.

[23] A. Marotta and S. Avallone, “A simulated annealing based approach for
power efficient virtual machines consolidation,” in Cloud Computing,
IEEE 8th Int. Conf. on, pp. 445–452, IEEE, 2015.

[24] J. Gao and G. Tang, “Virtual Machine Placement Strategy Research,”
Intl. Conf. on Cyber-Enabled Dist. Computing and Knowledge Discov-
ery, no. 2, pp. 294–297, 2013.

[25] S. E. Dashti and A. M. Rahmani, “Dynamic VMs placement for energy
efficiency by PSO in cloud computing,” Journal of Experimental &
Theoretical Artificial Intelligence, vol. 0, no. 0, pp. 1–16, 2015.

[26] F. Farahnakian, A. Ashraf, and T. Pahikkala, “Using Ant Colony System
to Consolidate VMs for Green Cloud Computing,” IEEE Trans. on
Services Computing, vol. 8, no. 2, pp. 187–198, 2015.

[27] L. Minas and B. Ellison, Energy efficiency for information technology:
How to reduce power consumption in servers and data centers. Intel
Press, 2009.

[28] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a
warehouse-sized computer,” in ACM SIGARCH Computer Architecture
News, vol. 35, pp. 13–23, ACM, 2007.

[29] K. Krishnanand and D. Ghose, “Glowworm swarm based optimization
algorithm for multimodal functions with collective robotics applica-
tions,” Multiagent and Grid Systems, vol. 2, no. 3, pp. 209–222, 2006.

[30] K. Park and V. S. Pai, “Comon: a mostly-scalable monitoring system
for planetlab,” ACM SIGOPS Operating Sys. Review, vol. 40, no. 1,
pp. 65–74, 2006.

