
Glowworm swarm optimisation based task scheduling for cloud computing

Alboaneen, Dabiah Ahmed; Tianfield, Huaglory; Zhang, Yan

Published in:
Proceedings of the 2nd International Conference on Internet of things and Cloud Computing

DOI:
10.1145/3018896.3036395

Publication date:
2017

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
Alboaneen, DA, Tianfield, H & Zhang, Y 2017, Glowworm swarm optimisation based task scheduling for cloud
computing. in Proceedings of the 2nd International Conference on Internet of things and Cloud Computing., 152,
ACM. https://doi.org/10.1145/3018896.3036395

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchOnline@GCU

https://core.ac.uk/display/293882207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3018896.3036395
https://researchonline.gcu.ac.uk/en/publications/481c07d5-359c-4500-b789-7b1fc239a14c
https://doi.org/10.1145/3018896.3036395

Glowworm Swarm Optimisation Based Task Scheduling for
Cloud Computing

Dabiah Ahmed
Alboaneen

Department of Computer,
Communications and
Interactive Systems
Glasgow Caledonian

University
Glasgow, UK

dabiah.alboaneen@gcu.ac.uk

Huaglory Tianfield
Department of Computer,

Communications and
Interactive Systems
Glasgow Caledonian

University
Glasgow, UK

h.tianfield@gcu.ac.uk

Yan Zhang
Department of Computer,

Communications and
Interactive Systems
Glasgow Caledonian

University
Glasgow, UK

yan.zhang@gcu.ac.uk

ABSTRACT
Task scheduling is a non-deterministic polynomial-time hard
(NP-hard) optimisation problem, thus applying metaheuris-
tics is important. In this paper, we employ glowworm swarm
optimisation (GSO) to solve the task scheduling problem
in cloud computing to minimise the total execution cost of
tasks while keeping the total completion time within the
deadline. Simulation results show that GSO based task
scheduling (GSOTS) algorithm outperforms shortest task
first (STF), largest task first (LTF) and particle swarm opti-
misation (PSO) algorithms in reducing the total completion
time and the cost of executing tasks.

CCS Concepts
•Computer systems organization → Cloud comput-
ing;

Keywords
Cloud computing; resource management; glowworm swarm
optimisation (GSO); task scheduling

1. INTRODUCTION
Task scheduling is crucial in cloud computing, which is a

process that maps users’ tasks to suitable resources in the
form of virtual machines (VMs) to execute.

There are two types of task scheduling in cloud computing,
i.e., (i) Static task scheduling where all tasks arrive at the
same time and they are known a priori to scheduling. In
this case, tasks are assigned to VMs in a static way. (ii)
Dynamic task scheduling where all the tasks are scheduled
instantly once they arrive.

When users’ tasks need to be scheduled, users usually sign
a service level agreement (SLA) with cloud providers. In

this SLA, the quality of service (QoS) requirements of the
task scheduling should be clearly defined such as, the dead-
line of each task, task scheduling budget and service secu-
rity. Each cloud user has to decide which and how many
VMs need to be provisioned before actually requesting and
paying for them. Moreover, as cloud resources are pay-per-
use, the cost of task execution has to be taken into account.
So, task scheduling directly affects the performance of cloud
computing.

Task scheduling in cloud computing can be modelled as a
bin-packing problem and is a non-deterministic polynomial-
time hard (NP-hard) problem [1]. This problem becomes
more challenging with the increase of the complexity of cloud
computing. Generally, it is difficult to develop algorithms for
producing optimal solutions within a short time. Recently,
using metaheuristic algorithms such as genetic algorithm
(GA) and particle swarm optimisation (PSO) to deal with
cloud resource scheduling has received increasing attention
due to the ability of the algorithms to provide near-optimal
solutions within a reasonable time [2].

To address the aforementioned problem, this paper pro-
poses a solution by employing glowworm swarm optimisa-
tion (GSO) for improving the execution cost of scheduled
independent tasks. The execution cost of a task considers
completion time and the price of using the VM. Completion
time includes waiting time and execution time of the task
and it should be within the user defined deadline to meet the
user requirements. To evaluate the performance of the pro-
posed GSO based task scheduling (GSOTS) algorithm, we
undertake a comparative simulation study of the proposed
algorithm with shortest task first (STF), largest task first
(LTF) and PSO algorithms.

The remainder of this paper is arranged as follows. Sec-
tion 2 gives the task scheduling problem formulation. The
GSOTS algorithm is put forward in Section 4. Simulations
setup and the results are presented in Section 5. Section 6
discusses the work related to the scheduling algorithms in a
cloud environment. Finally, Section 7 draws the conclusion
and points out the future work.

2. PROBLEM FORMULATION
The general system is depicted in Figure 1. Assume that

a cloud platform is supported by physical machines (PMs)
PM1, .., PMP , each of which hosts a set of VMs via the

Figure 1. Task and VM scheduling in cloud computing

corresponding virtual machine monitor (VMM) and each
PM runs resource manager (RM) which is responsible for
monitoring the resource utilisation of PMs and collecting
run-time statistics of each PM, including PM availability,
resource utilisation and VM status.

There are M independent tasks to be scheduled. User re-
quests (tasks) are submitted to the computing system (1).
The task scheduler collects the feedback information from
the RMs to maintain an overall view of the system resource
utilisation as marked by information (2). Based on the in-
formation of user requests received from the service provider
and the feedback received from RMs, the task scheduler ini-
tiates the task scheduling algorithm to schedule tasks on
VMs (3) and VM scheduler aims to allocate VMs on PMs
as marked by information (4).

In our task scheduling algorithm, the task scheduler first
calculates the completion time to execute the task which
is based on the execution time and waiting time of task in
VM queuing. The execution time is calculated based on the
number of instructions in each task which is received from
the user side and the VM capacity which is received from the
RM side. If the completion time of executing task is within
the user defined deadline, then the task can be executed
on the VM. After that, the task scheduler calculates the
execution cost of task in each available VM. To minimise
the execution cost of the task, task scheduler decides which
VM is suitable to be provisioned to each task to meet the
requirements of each task. Finally, the task scheduler will
return the result of execution to user when all tasks are done.

Assumptions

(i) Each task is allowed to be processed on any given avail-
able VM that meets the constraints.

(ii) The execution time of each task is VM-dependent.

(iii) Each task must be completed without interruption once
started (non-preemptable).

(iv) Each VM can be provisioned to more than one task.

Table 1. Amazon EC2 instance types and prices

VM type MIPS Pe Price ($/Hour)
Type1 500 4 $0.34
Type2 1000 7 $0.5
Type3 1500 20 $0.6

Figure 2. Task scheduling lifetime

Inputs:

• Set of tasks is defined as T = {T1, T2, ..., Ti, , ..., TM},
where i ∈ [1,M] and M is the total number of tasks.
Each task i is described as Ti(inst, deadline, arv), where
inst, deadline and arv represent the number of task
instructions, task deadline and task arrival time, re-
spectively.

• Set of VMs is defined as VM = {VM1, .., V Mj , .., V MV },
where j ∈ [1, V] and V is the total number of VMs. Each
VMj is described as VMj(C,Price), where C is the VM
capacity which is the processing speed and expressed in
terms of million instructions per second (MIPS). Price is
the amount spent for using a VM in an hour.

Output: Selected VM for each task.
Objective: The aim of the GSOTS algorithm is to sched-

ule tasks to appropriate VMs in order to minimise the exe-
cution cost (EC) as below.

f = minimise[EC1, EC2, ..., ECi, ECM] (1)

Execution Cost: The execution cost (EC) of task i is
defined as multiplication of the price of VMj and the com-
pletion time of task i, that is,

ECi = Pricej ∗ CTij (2)

where Pricej is the price of VMj (Table 1 shows Amazon
EC2 pricing model1) and CTij is the completion time of
executing task i on VMj .

If the completion time CTij is within the user defined
deadline (in our case is 1800 sec), task i can be executed.
Otherwise, it cannot be executed.

Completion Time: As seen in Figure 2, the execution
time is the time that VM takes to execute the task. Waiting
time is the time difference between task arrival time and
task execution time. Hence, the completion time that VMj

will take to execute task i can be calculated as below.

CTij = arvi + ETij (3)

1http://aws.amazon.com/ec2/instance-types/

where arvi is the arrival time of task i and ETij is the exe-
cution time of task i. The execution time ETij is calculated
as below.

ETij =
insti
Cj

(4)

where insti is the number of instructions that task i will
need to execute on VMj and Cj is the capacity of VMj ,
which can be calculated below.

Cj = (Pej ∗MIPSj) (5)

where Pej is the number of processors in VMj , MIPSj is
million instructions per second of each processor in VMj .

3. STANDARD GSO ALGORITHM
GSO algorithm is a swarm intelligence algorithm devel-

oped by Krishnan and Ghose. GSO is a population-based
algorithm. As control is not centralised at a single point,
it is more scalable [3]. In our earlier work [4], GSO algo-
rithm has been applied for dynamic VMs allocation in cloud
computing.

GSO is based on the behaviour of glowworms. A glow-
worm that produces more light (high luciferin) means that
it is closer to an actual position and has a high objective
function value. Each glowworm selects a neighbour that has
a higher luciferin value than its own, according to a proba-
bilistic estimation, and moves towards it. These movements
are based only on local information. Therefore, it enables
the glowworms to divide into subgroups leading to the de-
tection of multiple optima of the given objective function.

GSO algorithm starts by positioning glowworms randomly
in the workspace and all the glowworms contain an equal
quantity of luciferin. A GSO algorithm comprises four phases,
i.e., initialisation, luciferin updating, moving and local radial
range updating. The GSO algorithm is shown in Algorithm
1.

4. GSO BASED TASK SCHEDULING (GSOTS)
ALGORITHM

GSO algorithm is applied to search for VM that minimises
the execution cost. Each glowworm represents a VM and
the luciferin of VM is the execution cost. According to the
nature of glowworms, they always move towards their neigh-
bours having higher luciferin than its own. But in our algo-
rithm, a VM is attracted towards its neighbour which has
lowest execution cost, which is reverse of the characteristics
of the glowworm. We have the four phases of the process of
GSOTS as follows. For convenience and clarity, notations
are listed in Table 2.

4.1 Initialisation
The initial population consists of number of glowworms,

which are considered as candidate solutions to the problem.
The initial population is generated randomly. Each VMj has
a location xj(t), that is defined by the completion time that
VM takes it to execute the task, a luciferin value `j(t), a local
radial range γj

d(t), max sensor range γs, the size of moving
step s, the number of desired neighbours nt, the luciferin
decay coefficient p (0 < p < 1), the luciferin enhancement
coefficient γ and the change rate of the neighbourhood range
β.

Algorithm 1 GSO

1: Initialise parameters β , p, s, nt

2: ∀j , set `j(0) = `0
3: ∀j , set γj

d(0) = γ0
4: while termination condition not meet do
5: for j = 1 to m do
6: `j(t+ 1) = (1− p)`j(t) + γf(xj(t+ 1))
7: Nj(t) = {n : ||xn(t)− xj(t)|| ≤ γj

d(t); `j(t) ≤ `n(t)}
8: for each n ∈ Nj(t) do

9: pjn(t) =
`n(t)−`j(t)∑

k∈Nj(t)
`k(t)−`j(t)

10: end for

11: xj(t+ 1) = xj(t) + s

(
xn(t)−xj(t)

||xn(t)−xj(t)||

)
12: γj

d(t+1) = min{γs,max{0, γj
d(t)+β(nt−|Nj(t)|)}}

13: end for
14: t ← t+ 1
15: end while

Table 2. Notations

i Index for tasks
M Total number of tasks
j Index for VMs
V Total number of VMs
`j(t) Luciferin value of VMj

pjn(t) Probability of task in VMj to select VMn

γj
d(t) Local radial range of VMj

γs Max sensor range of γj
d(t)

Nj(t) Neighbours set of VMj

|Nj(t)| Actual number of neighbours
nt Number of desired neighbours
||x|| Euclidean norm of x
β Change rate of the neighbourhood range
s Step size of moving
γ Luciferin enhancement coefficient
p Luciferin decay coefficient (0 < p < 1)

4.2 Luciferin Update
Initially, each VMj converts the objective function value

f(xj(t+1)) to a luciferin value `j(t+1) by using the formula
below.

`j(t+ 1) = (1− p) ∗ lj(t) + γf(xj(t+ 1)) (6)

where `j(t) is the luciferin value of VMj at iteration t and
f(xj(t+1)) represents the value of the objective function at
iteration t+ 1 as calculated below.

f(xj(t+ 1)) = Pricej ∗ CTij (7)

Therefore, the luciferin values of VMs are updated accord-
ing to the objective function values. A lower luciferin value
means a better result as the goal is to minimise the execu-
tion cost. Also, the luciferin value is decreased along the
time to simulate the decay.

4.3 Movement
In the movement phase, a task in VMj chooses to move

toward one of its neighbours n that has a lower luciferin
value (lower EC) and within the local radial range γd which
represents the task deadline. The movement phase consists

of four further steps.
Step 1. Find Neighbours: The set of VMs neighbours

which meets the deadline of executing tasks can be written
as below.

Nj(t) = {n : ||xn(t)− xj(t)|| ≤ γj
d(t); `j(t) ≥ `n(t)} (8)

where n is the index of neighbour VM, xn(t) and xj(t) are
completion time of VMn and VMj , respectively and `j(t)
and `n(t) are luciferin values for VMj and VMn, respec-
tively.

Step 2. Calculate Probabilities: For each VMj , the
probability to figure out the movement direction toward the
neighbour with a lower luciferin value is calculated by using
the formula below.

pjn(t) =
`n(t)− `j(t)∑

k∈Nj(t)
{`k(t)− `j(t)}

(9)

where pjn(t) is the probability of task in VMj to move to
VMn.

Step 3. Selection: The task located in VMj selects a
VMn from the neighbour set that has the highest probability
over others in the neighbour set.

Step 4. Movement: The new completion time of the
VM after allocating the task is calculated using the formula
below.

xj(t+ 1) = xj(t) + s

(
xn(t)− xj(t)
||xn(t)− xj(t)||

)
(10)

where xj(t + 1) and xj(t) are the new and current com-
pletion times of VMj , respectively.

4.4 Local Radial Range Update
The local radial range γj

d is updated as below in order to
formulate the neighbour set in the next task scheduling for
adding more flexibility to the VM.

γj
d(t+ 1) = min{γs,max{0, γj

d(t) + β(nt − |Nj(t)|)}} (11)

The pseudocode of the GSOTS algorithm is shown in
Algorithm 2. The input parameters of the GSOTS algo-
rithm include VMs list and tasks details. The main steps of
GSOTS are as follows.

GSO parameters and VMs are initialised (lines 3-6). The
algorithm finds a VM in the list which can complete the
execution of the task in the lowest cost if a task were assigned
to it. This ensures that the overall execution cost is as low
as possible. For each task i in the taskList that needs to be
scheduled (line 7), the algorithm will search for a suitable
VMj from the vmList (line 10), the luciferin of VMj will be
updated (line 11). The neighbour set will be calculated (lines
12-18), if any of the neighbouring VM has less execution cost
than the original VM and is within the local radial range γd,
then this VM will be added to the neighbour set nt. The
size of the neighbour set nt is predefined by the user.

The selectedV m is one of the neighbouring VMs which
has the highest probability to move task i to it (lines 19-
21). After that, the radial range which defines the neighbour
set will be updated (line 22). Finally, the algorithm will
be terminated when suitable VM for scheduling the task is
found (line 29).

Algorithm 2 GSOTS

1: Input: vmList, taskList
2: Output: selectedV m
3: Initialise parameters β , p, s, nt, γ

j
d

4: Set t = 1
5: Initialise tasks on VMs randomly
6: g = Glowworm(Vm)
7: for i ∈ taskList do
8: selectedV m ← NULL
9: while termination condition not meet do

10: for j ∈ vmList do
11: `j(t) = g.updateLuc(Vm) by Eq.(6)
12: for n = 1 to nt do
13: if `n(t) < `j(t) then
14: if ||xn(t)− xj(t)|| < γj

d then
15: nt = n
16: end if
17: end if
18: end for
19: pjn(t) = g.calcProb(j) by Eq.(9)
20: Select the highest pjn(t)
21: selectedV m = V mList.get(n)
22: Update γj

d by Eq.(11)
23: end for
24: t = t+ 1
25: end while
26: if selectedV m 6= NULL then
27: Return selectedV m
28: end if
29: end for

Termination Condition: Iterations are indexed by t.
The algorithm will be terminated if there is no improvement
in reducing the execution cost from the last iteration.

5. SIMULATION
CloudSim 3.0.3 simulator [5] is used to evaluate the pro-

posed algorithm. CloudSim is widely used to simulate cloud
system components such as data centres and VMs. It sup-
ports policies for task scheduling, VM placement and selec-
tion, power models for data centre resources, and provides
different types of workloads.

In CloudSim, task scheduling algorithms are deployed on
the Broker, which has all the details relating to the VM
creation and task scheduling to these VMs. The Broker is a
Java object responsible for accepting and scheduling users’
requests.

One data centre is created with two types of PMs. The
characteristics of data centre and PMs are shown in Tables
3 and 4, respectively. Tasks are generated from a standard
formatted workload of a NASA Ames Research Centre [6].

As mentioned in Krishnanand and Ghose [3], the choice
of GSO parameters will impact on the performance of the
algorithm. In terms of the total number of peaks captured,
Krishnanand and Ghose suggested the parameter selection
as in Table 5. Thus, only nt and γs need to be selected.

We conduct experiments using GSOTS and three other
scheduling algorithms: (i) STF, i.e., the shortest task is ex-
ecuted first, (ii) LTF, i.e., the largest task is executed first
and (iii) PSO, i.e., task scheduling is based on PSO algo-
rithm under the same condition, and compare performances

Table 3. Settings of data centre

Parameter RAM Storage BW VM scheduler VMM
Value 2 GB 1 TB 10 GB Time-shared Xen

Table 4. Settings of PMs

PM Processor Pe MIPS
PM1 Intel Core 2 Extreme X6800 2 27079
PM2 Intel Core i7 Extreme 3960X 6 177730

Table 5. Settings of GSO algorithm

Parameter p r β nt s l0
Value 0.4 0.6 0.08 5 0.03 0.05

of these four algorithms.
The simulations are done in the static and real workloads

with time-shared policy. The performances of GSO, PSO,
STF and LTF algorithms are compared in terms of total
completion time, resource utilisation and execution cost.

5.1 Total Completion Time
In this section, we present two different scenarios. The

first one uses fixed number of VMs with varying numbers
of tasks while the second one uses varying numbers of VMs
with fixed number of tasks.

Scenario 1: Fixed Number of VMs with Varying
Numbers of Tasks

The number of VMs is fixed as 5 VMs and the number of
tasks is gradually increased from 200 to 700 tasks. The y
axis shows the effect on total completion time of increasing
the number of tasks as shown in Figures 3a and 3b. It can
be seen from Figures 3a and 3b that the total completion
time increases over increasing number of tasks. Moreover,
when the number of tasks is small, the differences between
PSO and GSO is not obvious. Nevertheless, with the in-
creasing number of tasks, the disparity of total completion
time between the algorithms and GSO becomes larger. GSO
outperforms PSO, STF and LTF in minimising the total
completion time in both types of workload. PSO and STF
come in second and third level respectively while LTF has
the highest total completion time in both types of workload.

Scenario 2: Varying Numbers of VMs with Fixed
Number of Tasks

The number of tasks is fixed as 100 tasks and the number
of VMs is gradually increased from 5 to 20 VMs. The y axis
shows the effect on total completion time over increasing
number of VMs as shown in Figure 4.

It can be seen from Figure 4 that with the increasing num-
ber of VMs, the total completion time of PSO and GSO
scheduling algorithms shows different performance while the
total completion time of LTF and STF algorithms remain
stable, almost unchanging. In addition, when increasing the
number of VMs, the total completion time of all algorithms
are stabilised without linear reduction, which indicates that
more VMs do not mean shorter the completion time given
the set of tasks.

5.2 Resource Utilisation
The load of all VMs can be calculated by using the infor-

(a) Total completion time in the static workload

(b) Total completion time in the real workload

Figure 3. Comparisons of all algorithms in static and real
workload with varying numbers of tasks.

Figure 4. Total completion time in the static workload with
varying numbers of VMs

Table 6. Mean and standard deviation of the completion
time

Algorithm µ σ
GSO 41.20 23.04
PSO 41.20 33.33
STF 41.20 55.88
LTF 41.20 91.41

mation that is received from the data centre. Thus, stan-
dard deviation (SD) is calculated to measure the deviations
of tasks’ load on VMs. SD of load can be defined as below.

σj =

√∑V
j=0(CTij − µ)2

V
(12)

where σj is the standard deviation of load, V is number of
all VMs. CTij is completion time of executing task i which
can be calculated as in Eq.3 and µj is mean completion time
of V VMs which can be calculated as below.

µj =

∑V
j=1 CTij

V
(13)

If σj of the VM is less than or equal to µj , then the system
is in a balance state. On the other hand, if σj is higher than
µj , then the system is in an imbalance state. As we can see
from Table 6, σ in GSO and PSO is lower than µ, which
means that using GSO and PSO for scheduling tasks not
only minimises the total completion time but also keeps the
load of VMs in a balance state. On the other hand, STF
and LTF fail to balance the load of VMs.

5.3 Execution Cost
According to the type of the VM used to run a task and

the time required to complete the task, the execution cost
of task can be calculated using Eq.2. The number of VMs
is fixed as 5 VMs and the number of tasks is gradually
increased from 200 to 700 tasks. The y axis in Figure 5
shows the effect on execution cost of increasing the number
of tasks. From Figure 5, it is found that GSOTS outper-
forms PSO algorithm with respect to the execution cost by
12.8% - 37.13%.

6. RELATED WORK
As task scheduling is known to be a NP-hard problem,

metaheuristic algorithms are efficient to solve it. Task schedul-
ing based on GAs has been studied widely such as [7], [8],
[9], [10]. Zhu et al. used hybrid GA algorithm to solve only
load balancing when scheduling tasks in cloud computing
[8].

Task scheduling based on ant colony optimisation (ACO)
algorithm for load balancing and minimising the average ex-
ecution time was studied in [11]. Simulation results showed
that the proposed algorithm outperformed first come first
serve (FCFS) and the basic ACO algorithms. A similar
study by Tawfeek et al. also used ACO to minimise the
execution time of tasks and the simulation results showed
that the ACO outperformed FCFS and round robin (RR)
algorithms [12]. Sun et al. improved the ACO algorithm to
get a better performance when scheduling tasks in the cloud

Figure 5. Execution cost in the static workload with varying
numbers of tasks

computing. The simulation results showed that the pro-
posed algorithm had a good performance in minimising the
execution time and balancing the load [13]. Task schedul-
ing in view of both the task execution time and the system
resource utilisation based on an improved PSO algorithm
was proposed in [14]. In [15] and [16], a hybrid of PSO and
simulated annealing (SA) was implemented on CloudSim to
schedule tasks in the cloud. The results showed that the
proposed algorithms can reduce the average execution time
of task and increase resource utilisation.

In [17], a stochastic hill climbing algorithm was used to
schedule tasks to VMs. Simulation results based on Cloud-
Analyst simulator showed the efficiency of the proposed al-
gorithm when compared to RR and FCFS algorithms.

In [18], three different metaheuristics approaches (i.e., ar-
tificial bee colony (ABC), PSO and ACO) had been eval-
uated for cloud task scheduling. The proposed algorithms
were better in minimising the total execution time compared
to LTF, random and FCFS algorithms. Moreover, ABC al-
gorithm outperformed other algorithms. The PSO and ACO
came in second level and third level, respectively. Moreover,
integrating ACO algorithm with GA for scheduling tasks
was proposed by Dai et al. This algorithm considered mul-
tiple QoS constraints in the scheduling process and it had
superior performance in balancing resources and minimising
execution time [19].

However, these algorithms mainly focused on improving
the execution time and resource utilisation when scheduling
tasks to VMs. Moreover, the execution time did not include
the waiting time of tasks while in our algorithm we consider
the execution time and waiting time of tasks.

In [20], PSO was used to schedule workflow applications
to cloud resources to minimise both computation and data
transmission cost. PSO can achieve three times better cost
saving compared to best resource selection (BRS) algorithm.

Zhang et al. considered the task scheduling across clouds
and used GA to minimise the completion time and cost [10].
The total cost includes transmission cost and usage charges
of the VMs, while the total completion time includes the
transmission time and execution time of tasks. In our work,
we do not consider any data transmission.

This paper proposes a solution for improving the execu-
tion cost of scheduled tasks while keeping the total comple-

tion time is minimised through the use of GSO algorithm.
Completion time includes the execution and waiting time of
tasks in VMs.

7. CONCLUSION
We have applied GSO algorithm to solve the task schedul-

ing problem in cloud computing. The proposed algorithm
aims to minimise the execution cost of task using Amazon
EC2 pricing model under deadline constraint. The simu-
lation results have shown that GSOTS outperforms PSO,
STF and LTF algorithms in terms of minimising the total
completion time when scheduling different number of tasks
and VMs in cloud. In addition, GSOTS can utilise the re-
sources more efficiently than other algorithms. Regarding
the cost, GSOTS is able to reduce the execution cost more
than PSO algorithm. Extending the GSOTS algorithm to
consider dynamic task scheduling is one of our future work.

8. REFERENCES
[1] T. A. Genez, L. F. Bittencourt, and E. R. Madeira.

Workflow scheduling for saas/paas cloud providers
considering two sla levels. In IEEE Network Operations
and Management Symp.,(Maui,16-20 Apr.), pages
906-912. IEEE, 2012.

[2] B. Jennings and R. Stadler. Resource management in
clouds: Survey and research challenges. Journal of
Network and Sys. Management, 23(3):567-619, 2015.

[3] K. Krishnanand and D. Ghose. Glowworm swarm based
optimization algorithm for multimodal functions with
collective robotics applications. Multiagent and Grid
Sys., 2(3):209-222, 2006.

[4] D. Alboaneen, H. Tianfield, and Y. Zhang. Glowworm
swarm optimisation algorithm for virtual machine
placement in cloud computing. In Int. IEEE Conf. on
Ubiquitous Intelligence Comp., Advanced and Trusted
Comp., Scalable Comp. and Communications, Cloud
and Big Data Comp., Internet of People, and Smart
World Congress,(Toulouse, 18-21 July), pages 1-7,
2016.

[5] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De
Rose, and R. Buyya. Cloudsim: a toolkit for modeling
and simulation of cloud computing environments and
evaluation of resource provisioning algorithms.
Software: Practice and Experience, 41(1):23-50, 2011.

[6] D. G. Feitelson, D. Tsafrir, and D. Krakov. Experience
with using the parallel workloads archive. Journal of
Parallel and Dist. Comp., 74(10):2967-2982, 2014.

[7] C. Zhao, S. Zhang, Q. Liu, J. Xie, and J. Hu.
Independent tasks scheduling based on genetic
algorithm in cloud computing. In 5th Int. Conf. on
Wireless Communications, Networking and Mobile
Comp.,(Beijing, 24-26 Sep), pages 1-4. IEEE, 2009.

[8] K. Zhu, H. Song, L. Liu, J. Gao, and G. Cheng. Hybrid
genetic algorithm for cloud computing applications. In
Services Comp. Conf., IEEE Asia-Pacific,(Jeju Island,
12-15 Dec), pages 182-187. IEEE, 2011.

[9] S. H. Jang, T. Y. Kim, J. K. Kim, and J. S. Lee. The
study of genetic algorithm-based task scheduling for
cloud computing. Int. Journal of Control and
Automation, 5(4):157-162, 2012.

[10] M. Zhang, Y. Yang, Z. Mi, and Z. Xiong. An improved
genetic-based approach to task scheduling in

inter-cloud environment. In Ubiquitous Intelligence and
Comp. and IEEE 12th Intl. Conf. on Autonomic and
Trusted Comp. and IEEE 15th Intl. Conf. on Scalable
Comp. and Communications and Its Associated
Workshops, IEEE 12th Intl. Conf. on,(Beijing, 10-14
Aug), pages 997-1003. IEEE, 2015.

[11] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang. Cloud
task scheduling based on load balancing ant colony
optimization. In 6th Annual ChinaGrid
Conf.,(Liaoning, 22-23 Aug), pages 3-9. IEEE, 2011.

[12] M. A. Tawfeek, A. El-Sisi, A. E. Keshk, and F. A.
Torkey. Cloud task scheduling based on ant colony
optimization. In Comp. Engineering & Sys., 8th Int.
Conf. on,(Cairo, 26-28 Nov), pages 64-69. IEEE, 2013.

[13] W. Sun, N. Zhang, H. Wang, W. Yin, and T. Qiu.
Paco: A period aco based scheduling algorithm in cloud
computing. In Cloud Comp. and Big Data
(CloudCom-Asia), Int. Conf. on,(Fuzhou,16-19 Dec),
pages 482-486. IEEE, 2013.

[14] Z. Liu and X. Wang. A pso-based algorithm for load
balancing in virtual machines of cloud computing
environment. In Int. Conf. in Swarm
Intelligence,(Berlin, 17 June), pages 142-147. Springer,
2012.

[15] S. Zhan and H. Huo. Improved pso-based task
scheduling algorithm in cloud computing. Journal of
Info. & Computational Science, 9(13):3821-3829, 2012.

[16] H. S. Al-Olimat, M. Alam, R. Green, and J. K. Lee.
Cloudlet scheduling with particle swarm optimization.
InCommunication Sys. and Network Tech., 5th Int.
Conf. on,(Gwalior, 4-6 Apr.), pages 991-995. IEEE,
2015.

[17] B. Mondal, K. Dasgupta, and P. Dutta. Load
balancing in cloud computing using stochastic hill
climbing-a soft computing approach. Procedia Tech.,
4:783-789, 2012.

[18] G. F. Elhady and M. A. Tawfeek. A comparative
study into swarm intelligence algorithms for dynamic
tasks scheduling in cloud computing. In IEEE 7th Int.
Conf. on Intelligent Comp. and Info. Sys.,(Cairo, 12-14
Dec), pages 362-369. IEEE, 2015.

[19] Y. Dai, Y. Lou, and X. Lu. A task scheduling
algorithm based on genetic algorithm and ant colony
optimization algorithm with multi-qos constraints in
cloud computing. In Intelligent Human-Machine Sys.
and Cybernetics, 7th Int. Conf. on,(Hangzhou, 26-27
Aug.), volume 2, pages 428-431. IEEE, 2015.

[20] S. Pandey, L. Wu, S. M. Guru, and R. Buyya. A
particle swarm optimization-based heuristic for
scheduling workflow applications in cloud computing
environments. In 24th IEEE int. conf. on advanced
info. networking and applications,(Perth, 20-23 Apr.),
pages 400-407. IEEE, 2010.

