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Random Neural Network based Cognitive Engines for Adaptive Modulation and
Coding in LTE Downlink Systems

Ahsan Adeel, Hadi Larijani∗, Ali Ahmadinia

School of Engineering & Built Environment, Glasgow Caledonian University, UK
Computer Science and Information Systems Department, California State University San Marcos, US

Abstract

This paper presents two random neural network (RNN) based context-aware decision making frameworks to improve
adaptive modulation and coding (AMC) in long-term evolution (LTE) downlink systems. In the first framework, AMC
is modelled as a traditional classification problem with the aim to maximize the probability of correct classification.
The second framework seeks to optimize the throughput as opposed to simply maximizing the probability of the
correct classification. To model the second framework, we developed a hybrid cognitive engine (CE) architecture by
integrating an RNN based learning algorithm with genetic algorithm (GA) based reasoning. RNN features help CE to
concurrently acquire long-term-learning, fast decision making, and less computational complexity, which are essential
for the development of any real-time cognitive communication system. The performance of RNN is compared with
artificial neural networks (ANN) and state-of-the-art effective exponential SINR mapping (EESM) algorithm. A
comprehensive analysis of the proposed RNN based AMC scheme is presented by jointly incorporating the effect
of different schedulers, feedback delays, and multi-antenna diversity on the throughput of an orthogonal frequency-
division multiple access (OFDMA) system. The critical analysis of the first framework revealed that RNN based
CE can achieve comparable results with faster adaptation, even in severe environment changes without the need of
retraining compared to ANN. The analysis of the second approach demonstrated RNNs faster adaptation as compared
to ANN with up-to 100% improvement in both system capacity and fairness as compared to EESM algorithm.

Keywords: Random neural network, context-aware decision making, adaptive modulation and coding, long-term
evolution, hybrid cognitive engine, genetic algorithm

1. Introduction

To achieve the desired spectral efficiency, the 3G, 4G, and beyond have employed adaptive approaches to dynami-
cally adapt radio configuration parameters. These techniques are generally known as link adaptation or channel-aware
scheduling. One important method for doing so is AMC. AMC aims to maximize the data rate by selecting an op-
timal modulation and coding scheme (MCS) under block-error-rate (BLER) reliability constraint. According to the
3rd generation partnership project (3GPP) specification [1], user equipment (UE) periodically reports its channel state
information (CSI) to the base station (BS). Based on this feedback, BS performs the process of AMC.

In an orthogonal-frequency-division multiplexing (OFDM) system, a transport block (TP) is encoded over several
sub-carriers. Therefore, AMC can’t be done for individual sub-carriers, because it proportionally increases the control
and signalling overhead. This difficulty motivates the extensive use of EESM technique. The EESM technique
translates signal-to-interference-and-noise ratios (SINR) of multiple sub-carriers into an effective one-dimensional
SINR (γe f f ). Based on γe f f , same MCS for all assigned sub-carriers (sub-band) to each UE is selected [2][3]. The
γe f f can be calculated by performing a following non-liner averaging over several sub-carriers SINRs:
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γe f f = EES M(γi, β) = −β. ln(
1
N
.

N∑
i=1

exp−
S INRi
β ) (1)

where N is the total number of subcarriers to be averaged and β is calibrated to fit the compression function to
the Additive White Gaussian Noise BLER results [4]. The UE uses EESM to compute the γe f f , which represents the
channel quality. However, the reduction of N subcarriers SINRs to a single effective SINR is not information lossless
that needs to be dealt with the rate adaptation and scheduling.

It is to be noted that (1) is a non-linear function and no exact closed-form expression for its statistics is known
[5][6]. The difficulty in constructing an exact closed-form expression is due to the high dimensions of transmission
parameters (e.g. frequency, time, spatial domain) and environmental parameters (e.g. signal energy, nose variance,
channel variations per subcarrier, time tap etc.) These multi-dimensions makes it almost impossible to come up with a
closed form mapping of environmental measurements to transmission parameters. Moreover, the factors such as non-
linearities of system, quantization errors, and non-Gaussian noise adds more to this difficulty and correspondingly
the selection of optimal or even near optimal MCS. Therefore, for effective link adaptation, a flexible framework is
desired to enable AMC using as few assumptions on the mathematical model of the physical layer as possible.

Recently, machine learning (ML) based link adaptation approaches have been extensively studied in literature.
ML translates AMC in to a decision making process, because for ML AMC is nothing more than a transfer between
data observation and system state [7]. ML algorithms makes no mathematical assumptions and learn the input-output
relationship using the training process. Therefore, ML based AMC approaches have better ability to capture the
environmental effects as compared to the classical EESM method. In addition, ML based AMC approaches are
capable to address the limitations of analytical modelling such as lack of ability to deal with non-ideal communication
behaviours, poor scalability, limited modelling assumptions etc.

Application of machine learning to AMC has been studied widely using both supervised and unsupervised learning
approaches such as ANN [8], k-nearest neighbours (k-nn) [7], support vector machine (SVM) [9], reinforcement
learning (RL) [10] etc. However, none of the existing ML based CE design fully complies with the CE design
requirement i.e. the concurrent achievement of long-term learning, fast decision making, and less computational
complexity. In addition, most of the proposed ML based approaches have translated AMC as a classification problem.

In this paper, we utilize advanced artificial intelligence (AI)/ML techniques such as RNN to address the limitations
of existing ML based AMC approaches. In our previous work [11], [12], and [13], we addressed LTE uplink power
control problem using RNN. The use of RNN in [11][12][13] helped CEs to comply fully with the essential CE design
requirements. Consequently, it was proved that RNNs inherent properties such as: (a) easy and efficient computation
(b) low complexity of standard learning algorithm (c) energy-efficient hardware implementation (d) less dependence
on network structure (e) strong generalization capability even with small training dataset, makes RNN a better choice
for CE design [14]. Therefore, this paper extends our previous research by presenting RNNs first application to the
problem of link adaptation in LTE downlink.

In the rest of the paper, Section 2, 3, and 4 briefly describes the related work, motivations, and contributions
respectively. Section 5 presents an overview of RNN, its mathematical modelling, and advantages. Section 6 describes
the system model. Section 7 has presented the proposed CE design 1 and its evaluation. Similarly, Section 8 presents
the proposed CE design 2 and its evaluation. Finally, Section 9 has concluded this work.

2. Related Work

Motivated by the goal of analysing the channel quality information (CQI) feedback, the authors in [5] proposed
the use of an analytically traceable logarithmic distribution to characterize the probability distribution function of γe f f

in a Rayleigh channel distribution. Similarly, the authors in [6] proposed a novel statistical model for EESM based
on the Beta distribution. However, these solutions are based on sound theoretical principles and their implementation
require large amount of calculations, which supposed to be calculated at very fine-grained time intervals. In addition,
these schemes suffers from the limitations of analytical modelling as highlighted in Section 1 [7].

The authors in [8] presented an ANN based AMC process for multi-input-multi-output (MIMO)-OFDM wireless
system using Levenberg-Marquardt (LM) training algorithm. However, ANNs suffers from training and local-minima
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problems, high computational complexity, limited generalization, slow calculation rate during run-time, and sensi-
tivity to the number of hidden neurons/available training samples. The authors in [7] proposed a k-NN based AMC
approach to exploit the past observation of CSI and predict the best MCS. This approach provided accurate mapping
from features to MCS and outperformed other compared link adaptation algorithms. However, the practical appli-
cation of this approach is limited by excessive processing and memory requirement. Moreover, the k-nn algorithm
requires all previous samples to be stored in order to predict future MCS, which is simply too expensive.

The authors in [9] and [15] extended the work of [7] and developed two new AMC processes based on SVMs. The
approach outperformed k-NN based adaptation algorithm in terms of better spectral efficiency, less time-overhead,
and significant reduction in memory requirement. However, SVM based approaches have some important practical
questions such as the selection of kernel function and its parameters, training of multi-class SVM, high algorithmic
complexity, extensive memory requirement, and slow speed during run-time [16].

The authors in [10] addressed the time complexity and offline training issues of their previous work [15] by
using RL. The RL based online AMC approach showed comparable performance as compared to the existing online
approaches such as [9] but with minimal time and storage requirement. However, for realistic applications, the size
of state-space could be so large that learning may take a long time and even become impossible in a reasonable time
frame. As a result, the generalization over the state-space is necessary, which is insufficient in RL.

3. Motivation

The key required feature for the development of ML based systems is to have an effective learning capability.
ML based systems learn the desired system behaviour through the process of training and the choice of any training
algorithm exhibits a trade-off among available training samples, accurate learning, training speed, and computational
complexity. In literature, several methods are proposed to train CE in a reasonable amount of time and effort [17].
However, very little effort has been made to reduce the need of retraining upon severe wireless environment changes,
which are essential, because retraining consumes valuable time and energy. Moreover, when CE is working on a
critical mission without any time to retrain, then, retraining is definitely not an option. There are two possible ways
to avoid retraining: one is to put the CE through all expected operating conditions during training phase and second
is to attain long-term learning capability. The first solution is practically impossible to explore all possible wireless
conditions as a priori. Therefore, it is reasonable to assume that CE might face an unknown condition, which requires
retraining [17]. Therefore, the capability of long-term learning is of great importance which enable CEs to adapt
themselves with respect to severe change in environment without the need of retraining. Insufficiency of long-term
learning along with the concurrent achievement of fast decision making and less complexity are the major limiting
factors of existing ML based AMC approaches. The concurrent achievement of these three features is essential for the
development of any successful cognitive communication system. In addition, for capacity optimization, AMC process
should be modelled as an optimization problem.

4. Contributions

The main contributions of this paper are:

1. Development of an RNN based CE for AMC in LTE multi-cell/multi-user scenario. The framework translated
AMC into a traditional classification problem with the focus to maximize the probability of correct classifica-
tion. The developed CE complies with the essential CE design requirement and avoids the need of retraining
upon sever electromagnetic environment change.

2. Extended contribution number 1 and previously proposed ML based AMC approaches such as [7][9]. The
MCS selection is modeled as an optimization problem with the aim to maximize the throughput as opposed
to maximize the probability of correct classification. To achieve optimization, we developed a hybrid CE
architecture based on RNN based learning and GA based reasoning.

3. Comprehensive and critical analysis of the proposed scheme by jointly incorporating the effect of scheduler,
feedback delay, multi-antenna diversity, and EESM on the throughput of an OFDMA system, which covers a
wide range of coverage and capacity tradeoff.
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5. Random Neural Network

RNN, a machine learning technique, made up of highly interconnected processing elements called as neurons,
processes the information by their state response and learn from examples. The main objective of the RNN model
is to transform the inputs into meaningful outputs, learn the input-output relationship, and offer viable solutions to
unseen problems (a generalization capability). RNNs were first developed by Gelenbe in [18] as a new modified class
of ANNs, representing the transmission of signals in a very similar form to biological neural networks, but offers
more benefits and cope the limitations of ANNs. In RNN, a neuron can be seen as a queue with an exponential server
having (service) rate µ and exciting/inhibition signals as positive/negative customers. In case of no inhibition signal,
RNN behaves as a classic M/M/1 queue.

5.1. Mathematical Modelling

In RNN, the neuron exchanges the signal in the form of spikes. The potential (k) of each neuron represents
its state that increases/decreases with respect to an incoming signal. A neuron u can receive exogenous signals
positive/negative, modelled as Poisson arrival streams of rates Λu, λu, respectively. If a neuron receives an excitatory
signal (+1), its potential increases and correspondingly decreases upon receiving inhibitory signal (-1). When the
potential of neuron is equal to zero (ki = 0), it is in idle state and when (ki > 0), the neuron is excited. In the state of
excitation, the neuron fires an excitatory spike that goes from neuron u to v of the network or to the outside world. In
that case, the potential of neuron u decreases by one, whereas potential of neuon v increases by one. When neuron
fires inhibitory spike, the potential of both neuron decreases by one. This firing is according to the Poisson process
represented by the synaptic weights w+

i j = rP+
i j and w−i j = rP−i j, where P+

i j and P−i j are the probabilities of excitatory
and inhibitory signals and r is the spikes firing rate. The w+

i j and w−i j can be seen as the positive and negative rates of
signal transmissions and these are the typical interconnections weights of a neural network that RNN learns through
the process of learning or training. The average rate of +ive signals at neuron i (λ+

i
), average rate of -ive signals at

neuron i (λ−
i

), and the probability that neuron i is excited (qi), are calculated using the following equations:

λ+

i
= Λi +

n∑
j=1

q jw+

i j
(2)

λ−i = λi +

n∑
j=1

q jw−i j (3)

qi =
λ+

i

ri + λ−
i

(4)

5.1.1. Network Behaviour in Steady State
if 0≤qi≤1 for i=1,2,3...,n then the stationary joint probability of network p(k, t) = pr = [k(t) = k] can be written

as:
p(k) = Πn

i=1
(1 − qi)qk

i (5)

5.1.2. Network Stability
In [19], Gelenbe presented the mathematical usability and stability of RNN model. The author showed that

network is stable if the potential of the signal increases with bounds, which can be guaranteed if a unique solution to
non-linear equations (2-4) exists. However, existence of the solution implies its uniqueness and in feed-forward RNN,
the solution always exists. A general RNN model in depicted in Figure 1. Further in-depth details are comprehensively
presented in [19].
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Figure 1: A feed-forward random neural network architecture

5.2. RNN Training Algorithms
The capacity to learn from examples is one of the most desirable features of neural network models. The goal

of training is to learn desired system behaviour and adjust the network parameters (interconnections weights) to
map (learn) the input-output relationship and minimize the mean squared error (MSE). In [20], Gelenbe presented a
learning algorithm for the recurrent random network model using gradient descent (GD) of a quadratic error function.
The learning algorithm introduced in [20] for recurrent RNN can also be applied to feed-forward RNN, which has been
used in this paper. In [21][22], we also implemented adaptive inertia weight particle swarm optimization, differential
evolution, and GA based learning algorithms. However, in general, there is a trade-off among learning accuracy,
convergence time, calculation time, and computational complexity. Further details and procedures are presented in
[20][21][22].

5.3. Random neural network distinguished features
• Easy and Highly Energy-Efficient Implementation: RNNs can be easily implemented in both hardware and

software as its neurons can be represented by simple counters. A highly energy-efficient implementation of
RNNs is demonstrated in [23] using the complementary metal-oxide semiconductor (CMOS) or Probabilistic
CMOS (PCMOS) technology. The investigation showed RNNs 226-300 times more efficiency in terms of
energy performance product as compared to ANNs. Furthermore, authors in [24] introduced a simplified RNN
with 2N weights instead of 2N2 weights for the implementation of smart packet processing.

• Low Complexity of Standard Learning Algorithm: GD is a standard learning algorithm for RNN. GD has less
computational complexity (i.e. O(N×I×H×O)) as compared to the non-standard training algorithms such as
particle swarm optimization or differential evolution (O(N.I2.H)), where N, I, H, and O represents the number
of training patterns, input, hidden, and output nodes respectively.

• Easy and Efficient Computation: The steady state probability distribution of RNNs can be described as analyti-
cal equations and can be efficiently computed without the use of Monte Carlo methods.

• Strong Generalization Capability: The authors in [25] compared the generalization capability of ANN and
RNN for unseen patterns, which were not covered in the training dataset. The authors reported that RNN
accurately classified the patterns while ANN failed to predict accurate output. In addition, RNNs showed better
generalization even when they were trained with the small number of training data samples.

• Less dependency on network structure: Pedro Casas et al. in [26] showed that ANN performance is highly
dependent on the number of neurons but RNNs dependency is not at the same degree. In addition, RNNs are
more stable and accurate.
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6. System Model

A schematic class diagram of the considered LTE system is depicted in Figure 2 [27][28]. The diagram is il-
lustrating the whole LTE downlink and uplink operation. In addition, the diagram highlights the replaced EESM
algorithm. The considered MIMO transmission mode is an open loop spatial multiplexing (OSLM) with Nt=Nr=2
and the receiver design is simple zero forcing (ZF). At the transmitter side, each eNodeB constitutes three sectors and
each sector consists a scheduler. The scheduler forms a resource grid and assigns precoding matrix, PHY resources,
and MCS to each attached UE based on the received feedback. At the receiver side, the UE estimates the sub-carriers
SINRs and calculate the CQI using EESM. The CQI is fed back to the scheduler via an uplink feedback channel with
adjustable delay. Based on the CQI feedback, the scheduler performs the process of link adaptation by selecting an
appropriate MCS. The CQI depends on the cell layout, shadow fading, large-scale macroscopic path-loss, and small
scale microscopic fading. The system model has incorporated the effects of cell planning, schedulers, feedback de-
lays, interference, and multi-antenna diversity. Implementation wise, the simulation is performed by defining a region
of interest (ROI), where eNodeBs and UEs are positioned in a specified transmission time interval (TTI). Simulation
parameters are presented in Table 1 and further modelling assumptions are discussed in the following sub-sections.

6.1. Modelling assumptions and calculations

To abstract the link quality for each eNodeB-UE pair, a per-subcarrier post equalization symbol SINR is used.
The post equalization symbol SINR has taken into account three different propagation losses: (i) eNodeB dependent
large-scale path-loss (macroscopic path-loss), (ii) site dependent shadow fading, and (iii) time dependent small-scale
fading.

6.1.1. Large-Scale Path-Loss and Shadow Fading
The large-scale path-loss is calculated according to [1], which has jointly modelled both the propagation path-loss

and antenna gain. For the modelling of shadow fading, a low complexity 2D Gaussian process with appropriate spatial
correlation is used, which is a variant of Cholesky decomposition [27][28].

6.1.2. Time Dependent Small-Scale Fading
The calculation of time dependent small-scale fading depends on the precoding, MIMO channel matrix, and the

receiver filter. The precoding for considered spatial multiplexing and receiver design with large-delay cyclic delay
diversity (CDD) or large-delay CDD is given as [27][28]:

y0(i)
.
.
.

y(Nt−1)(i)

 = W(i).D(i)U


x0(i)
.
.
.

x(v−1)(i)

 (6)

Where Nt and v are the number of transmit antennas and number of layers respectively. D and U specifies the large-
delay cyclic and delay diversity.

The received symbol is given as:

X̂ = (Ĥ0F)+(H0F)X0 + (Ĥ0F+n)+
Nint∑
i=1

(ĤF)+(HiF)Xi
(7)

Where F,H0, Hi, and Ĥ represents the WDU matrix, intended signals’ channel, interfering eNodeBs’ channel,
and estimated channel respectively. In addition, ’+’ denotes the pseudoinverse.

By denoting A = (ĤF)+(HF), B = (ĤF)+, Ci = (Ĥ0F)+(HiF), and ai j = A[i, j], the SINRi for the received
symbol i can be expressed as:
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Figure 2: LTE system operation and replaced EESM averaging algorithm.
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Table 1: Simulation Parameters

Parameters Values
Network Topology 3 cells, 9 sectors
Frequency 2e9 Hz
Bandwidth 5e6 Hz
Number of antennas at transmitter 2
Number of antennas at receiver 2
Transmission mode Open loop spatial multiplexing
Simulation time 100 TTIs
Number of TTIs used to calculate the aver-
age throughput (exponential filtering)

10

Inter eNodeB distance 500 meters
Minimum coupling loss 70 dB
Macroscopic path-loss model TS25.814
eNodeB max transmission power 20 watts
Shadow fading type Claussen
Receiver noise figure 9 dB
Receiver thermal noise density -174 dBm/Hz
Total number of UEs 15
UE speed 15/3.6 Km/h
Antenna gain pattern TS36.942
Antenna gain 15
Scheduler Round robin, proportional fair, best CQI
Power allocation Homogeneous
Uplink feedback channel delay 0, 1, 2, 3 TTIs
SINR averaging algorithm EESM
RB bandwidth 180e3 Hz
TTI length 1e−3 seconds
Cyclic prefix Normal
Maximum number of code words per TTI 2

SINRi =
|ai j|Pi∑

j,i
P j + α2

v∑
i=1
|bik|2 +

Nint∑
i=1

v∑
m=1
|c1,im|2 Pl,m

(8)

where Pi is the received power at ith layer after macro and shadow fading losses and α2 is the receiver noise. By
assuming homogeneous power distribution (Pi)=PTx/v, channel estimation errors (ζ, ξ): ζ=|aii|

2, ξ =
∑
j,1
|ai j|

2, ZF

receiver noise enhancement (ψ)=
v∑

k=1
|bik|

2, and the interference (θ)=
v∑

m=1
|cl,im|

2, the SINR for UE u can be expression
as:

SINRi,u =
ζiLM,0,U LS,0,U Pl

ξPl + ψα2 +
Nint∑
l=1

θi,l LM,l,u Pl,m

(9)

Where LM,l,u and LS,o,u are the macro and shadow fading path-losses between UE u and the attached eNodeB
respectively.
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(a) ANN

(b) RNN

Figure 3: Training for zero feedback delay (Framework 1)

7. Cognitive Engine Design 1: AMC as a Classification Problem

The CE design 1 is depicted in Figure 2, which has replaced the state-of-the-art EESM method. The CE is working
as a classifier with the aim to select a correct CQI or MCSi with respect to different channel state realisations. There
are 15 different MCS combinations which can be used to inform eNodeB about the highest MCS that a UE can decode,
under the TB error rate constraint. A sample 4-bit CQI table is highlighted in Figure 2, whereas a full CQI index table
is presented in [1]. Depending on different channel realizations, the CE selects an accurate CQI indicator.

Prior to the above functioning, a process of training or learning is required. For that, the feeded inputs and outputs
to the CE are channel realization matrix (X) and ideal MCS matrix (Y) respectively. With the feature set X, label set
Y, and n training samples T = ((x1, y1),., (xn, yn)) ε (XY)n, the CE creates a mapping A: X→Y from features to labels
and predicts the labels for new samples.

To obtain the training dataset, the simulation was run for 1000 TTIs using round robin scheduling and feedback
delay of 0 TTI. The CE was trained with RNN-gradient descent and ANN-Levenberg Marquardt. Matlab was used
for training and validation of neural networks, where the learning rate for both training algorithms was set to 0.01.

7.1. CE Training

For training, different number of neurons, hidden layers and epochs were tried. The best performed RNN and
ANN structures were 1 hidden layer with 10 neurons and 1 hidden layer with 20 neurons. Figure 3 depicts the training
performance of both ANN and RNN. The least MSE achieved by ANN was 4.41E-03 in 9 iterations and 2s and RNN
achieved the MSE of 1.9E-02 in 4 iterations and 15 sec.

7.2. CE Testing

7.2.1. Case-1: Throughput Performance in Trained Scenario
In Case-1, the CEs were tested in the environment for which they were trained. Figure 4 illustrates the system

throughput comparison among EESM, ANN, and RNN. It can be seen that the performance of ANN is slightly
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Figure 4: System throughput comparison in trained scenario

Figure 5: System throughput comparison in untrained scenario

better than RNN and EESM. However, ANN could only perform well for the trained case, which is illustrated in the
subsequent section.

7.2.2. Case-2: Throughput Performance in Untrained Scenario (Test for Long-Term Learning)
In this case, the CEs were assumed to be working on a critical mission, where they do not have a privilege of

retraining upon extreme propagation environment change. For such cases, long-term learning capability is essential
which enables radio to adapt optimal radio parameters in a completely unknown scenario. To investigate the long-term
learning, both ANN and RNN models were trained on zero TTI feedback delay dataset but tested in 3 TTIs feedback
delay environment. Figure 5 shows the comparison of ANN and RNN with EESM in terms of achieved system
throughput in untrained scenario. Figure 6 illustrates the experienced BLER by individual UEs and their achieved
throughput respectively. It is to be noted that for 50 TTIs, RNN based UEs consistently experienced the low BLER as
compared to high BLER experienced by the ANN based UEs. Moreover, the throughput improvement in RNN based
AMC over ANN is also apparent.

7.2.3. Decision Making Speed at Run-Time
In real-time CE applications, fast decision making means that CE can respond quickly upon severe wireless envi-

ronment change. As a core optimization algorithm, we not only require the decision accuracy but also the response
speed. In training phase, the performance of ANN was found to be faster but during run-time the RNN-GD outper-
formed ANN-LM in total calculation time (decision making speed). For 50 TTIs, ANN took 85.17212 sec to finish the
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Figure 6: Users experienced BLER in untrained scenario (ANN vs. RNN (framework 1))

11



Figure 7: Optimization framework: the data is first collected for learning which helps GA based reasoning process to make optimal decisions

Figure 8: Cognitive engine operation

simulation i.e. 1.70 sec per TTI. In contrast, RNN took just 3.93 sec at the rate of 0.07 sec. RNNs fast decision making
during rum-time is mainly because of its 3-level architecture in which the computation of output during run-time is
extremely fast. The RNNs non-linear system equations computes the output values of input neurons directly from its
input and similarly for hidden neurons output. Moreover, in RNN model, the neurons are represented as an integer
rather than as a binary variable, which provides more detailed state representation [20]. In contrast, in ANN, the use
of non-linear transfer function or activation function such as hyperbolic tangent and sigmoid takes more calculation
time as compared to RNN. Furthermore, the hardware/software implementation of ANN is difficult as compared to
RNN. For more details and mathematical proofs, see [29].

8. Cognitive Engine Design 2: AMC as an Optimization Problem

This section presents an RNN+GA based hybrid CE design. The proposed framework has modelled the MCS
selection process as an optimization problem with the aim to maximize the throughput as opposed to maximize the
probability of correct classification.

Figures 7 and 8 illustrates the integration of RNN based learning with GA based reasoning. The optimization
framework is summarized in Figure 7 where the data is first collected for learning which helps GA based reasoning
process to make optimal decisions. A simplified cognitive operation is illustrated in Figure 8, where the decision is
to be made based on given environment conditions and current radio objective. The learning module observes the
channel X and estimates the performance S given radio configuration Y. The vectors X, Y, and S are the training
parameters coming from the radio. The radio communicates with optimizer the required objectives and current CQI.
The optimizer then queries the learning module with considered X and Y. The learning section returns the approximate
performance of considered X and Y i.e. P(S|X, Y). Based on this report, the optimization section decides the optimal
parameters. In this particular case, the RNN based learning agent is able to characterize the performances of different
possible modulation and coding combinations in different channel conditions.

The information which is available to the cognitive controller can be classified into three categories: environmen-
tal measurements (external factors effecting the reliability of communication), configuration parameters (tuning knobs
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Figure 9: Cognitive Engine Design 2: Learning model

(a) ANN

(b) RNN

Figure 10: ANN vs. RNN training for zero feedback delay (Framework 2)

which can be changed in an optimal way to achieve desired performance), and the performance metric. Based on how
different configuration parameters and environmental measurements are affecting the system performance, we fed
channel realizations and MCSs as an input to RNN black-box and throughput as an output. Figure 9 depicts the de-
signed learning model where the considered environmental measurements, configuration parameter, and performance
metric are also apparent.

8.1. Training and testing for different feedback delays
The CQI feedback delay occurs due to the signalling and computation time. This delay directly affects the com-

munication performance in terms of throughput loss, especially in high mobility scenarios. It is desirable to reduce
this delay as much as possible, because the channel state significantly changes over the short period of time. In this
sub-section, the performance of developed optimization framework is investigated under different feedback delays,
ranging from 0 to 3 TTIs.

8.1.1. CQI Feedback Delay=0
In this subsection, the feedback delay was assumed to be zero. The training performance for zero delay is illus-

trated in Figure 10, where the achieved MSE for both ANN and RNN is approximately same. However, in terms
of system throughput, RNN slightly outperformed ANN in achieving more system throughput, as shown in Figure
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Figure 11: System throughput comparison for zero feedback delay (Framework 2)

Table 2: CQI feedback delay=0: 5%-tile, 25%-tile, and 50%-tile user throughput (Mbps)

Methods 5%-tile 25%-tile 50%-tile
EESM 80.5 kbps 1.560 Mbps 2.221 Mbps
ANN 74.5 kbps 1.328 Mbps 2.221 Mbps
RNN 80.5 kbps 1.560 Mbps 2.221 Mbps

11. Table 2 illustrates the 5th, 25th, and 50th%-tile user throughput in order to compare the achieved coverage and
capacity. It is to be noted that RNN has achieved exactly same performance as compared to EESM, whereas ANN
achieved 7% less coverage and 15% less user throughput (25%-tile).

8.2. Decision Making Speed At Run-Time
The decision making speed of ANN+GA based optimization framework found to be extremely slow. The ANN+GA

based optimization framework took 18.65s per decision. In comparison, RNN+GA based optimization framework
took 0.61s per decision. It is to be noted that GA with ANN took much longer time to converge than with RNN,
which is unreasonable. Therefore, RNN is the optimal choice for the proposed optimization approach. Hence, in rest
of the paper, we have only compared the performance of RNN with EESM.

8.2.1. CQI Feedback Delay = 1/2/3 TTI
For 1/2/3 TTI feedback delays, the training performance of RNN was found to be appropriately same as in sub-

section 8.1.1. Therefore, in this sub-section, only testing performance is reported. Tables 3, 4, and 5 are illustrating
the 5th, 25th, and 50th%-tile user throughput. Figure 12 illustrates the system throughput comparison between RNN
and EESM for different feedback delays. It can be seen that RNN has significantly outperformed EESM in both
coverage and capacity. It is also to be noted that, as the delay increased to 1, 2, and 3 TTIs, the capacity and coverage
decreased proportionally. However, RNN handled the delay in a much better way as compared to EESM, which is
apparent in Tables 3, 4, 5 and Figure 12. In addition, Figure 13 depicts the average system throughput comparison
between RNN and EESM for three different scheduling algorithms at CQI feedback delay of 3 TTIs. It can be seen
that the RNN+GA based proportional fair scheduling achieved the highest mean throughput.

Table 3: CQI feedback delay=1 TTI: 5%-tile, 25%-tile, and 50%-tile user throughput (bps)

Methods 5%-tile 25%-tile 50%-tile
EESM 0 0.236 Mbps 2.046 Mbps
RNN 60 Kbps 1.560 Mbps 2.221 Mbps
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Table 4: CQI feedback delay=2 TTIs: 5%-tile, 25%-tile, and 50%-tile user throughput

Methods 5%-tile 25%-tile 50%-tile
EESM 0 15 Kbps 1.684 Mbps
RNN 60 kbps 1.56 Mbps 2.221 Mbps

Table 5: CQI feedback delay=3 TTIs: 5%-tile, 25%-tile, and 50%-tile user throughput

Methods 5%-tile 25%-tile 50%-tile
EESM 0 0 0.309 Mbps
RNN 0 0.150 Mbps 1.092 Mbps

Figure 12: RNN vs. EESM system throughput for 1, 2, and 3 TTIs feedback delay

Figure 13: RNN vs. EESM average system throughput for different scheduling algorithms
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9. Conclusion

In this paper, a novel AMC scheme based on RNN was presented to improve link adaptation in LTE downlink
systems. The performance of RNN was compared with ANN and state-of-the-art EESM method, in terms of essential
CE design requirements and capacity and coverage optimization. The simulation results revealed that the RNN based
CE is capable to concurrently achieve long-term learning, fast decision making, and less computational complexity as
compared to ANN. Moreover, RNN+GA based optimization framework can provide significant improvement up-to
100% in both capacity and coverage as compared to EESM. In future, the proposed approach will be used with the
mutual information based exponential SNR mapping algorithm under different MIMO transmission modes such as
transmit diversity and closed loop spatial multiplexing.
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