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Abstract  

Partial discharge (PD) is an electrical discharge phenomenon that occurs when the 1 

insulation material of high voltage equipment is subjected to high electric field stress. 2 

Its occurrence can be an indication of incipient failure within power equipment such as 3 

power transformers, underground transmission cable or switchgear. Radio frequency 4 

measurement methods can be used to detect and locate discharge sources by measuring 5 

the propagated electromagnetic wave arising as a result of ionic charge acceleration. An 6 

array of at least four receiving antennas may be employed to detect any radiated 7 

discharge signals, then the three dimensional position of the discharge source can be 8 

calculated using different algorithms. These algorithms fall into two categories; iterative 9 

or non-iterative. 10 

This paper evaluates, through simulation, the location performance of an iterative 11 

method (the standard least squares method) and a non-iterative method (the Bancroft 12 

algorithm). Simulations were carried out using (i) a “Y” shaped antenna array and (ii) a 13 

square shaped antenna array, each consisting of a four-antennas. The results show that 14 

PD location accuracy is influenced by the algorithm’s error bound, the number of 15 

iterations and the initial values for the iterative algorithms, as well as the antenna 16 

arrangement for both the non-iterative and iterative algorithms. Furthermore, this 17 

*Manuscript
Click here to view linked References

http://ees.elsevier.com/epsr/viewRCResults.aspx?pdf=1&docID=20403&rev=3&fileID=408784&msid={2FCFA9DA-745F-4F0A-983E-DBC637595B58}


research proposes a novel approach for selecting adequate error bounds and number of 18 

iterations using results of the non-iterative method, thus solving some of the iterative 19 

method dependencies. 20 

Keywords: Partial discharges; Iterative algorithms; Non-Iterative algorithms; Radio 21 

Frequency; Fault location; Time difference of arrival.  22 



1 Introduction 23 

Radio frequency (RF) measurement technique using receiving antennas can be used to 24 

detect the radiated energy from PD sources or any other electrical discharge activities, 25 

subsequently facilitating the discharge source triangulation. Using a receiving antenna 26 

array, which may be arranged in various forms, the time differences of arrival (TDOA) 27 

between received signals on each of the respective antennas allows the 3 dimensional 28 

position of the electrical discharge source to be deduced by processing of the TDOA 29 

values through iterative or non-iterative location algorithms. The location of partial 30 

discharges using emitted RF techniques in HV equipment has been widely investigated 31 

[1-5]. Research in this area has been carried out on cables [6-9], gas and air insulated 32 

switchgears [10-14] and transformers [15-17]. PD location in cables, and to a degree in 33 

gas-insulated substation (GIS), is a two-dimensional problem, while internal localisation 34 

within power transformers and localisation in three dimensions in wide-area HV 35 

substations requires robust computation algorithms [1]. 36 

There are two types of computational algorithm which can be used to locate partial 37 

discharges in three dimensions; (i) iterative methods and (ii) non-iterative methods. In 38 

this study, a non-iterative method was selected due to the large success of these methods 39 

in Global Positioning System (GPS) applications such as navigation and location 40 

systems. The choice of an iterative method was mainly due their efficiency in solving 41 

nonlinear problems involving large number of variables.  42 

The iterative methods give an approximate solution to nonlinear equations based on a 43 

number of iterations and starting with an initial value, which is improved at each 44 

iteration by an error bound until a converged solution is found or until a maximum 45 

number of iterations is reached. Taylor expansion and Newton-Raphson techniques are 46 

common iterative methods that can be used to solve the equations of nonlinear systems. 47 



These methods have been used in different studies to locate PD [1, 18-19]. The study in 48 

[18] highlighted that the performance of the Taylor expansion method depends on the 49 

accuracy of the initial values and the number of sensors, whereas the study by [1] 50 

showed that the Newton-Raphson method successfully locates PD and that the location 51 

accuracy depends on the arrangement of antennas. Study [19] also used the Newton-52 

Raphson method to locate PD and found that in some cases the algorithm did not 53 

provide a converged solution. It indicated that a solution called the “grid search 54 

method” which consists of using a range of values within a grid as initial values to 55 

determine a converged solution helped improve accuracy. Despite the fact that these 56 

studies highlighted the success of these iterative methods to locate discharges activities 57 

within a reasonable margin of error, a limited number of published studies have 58 

attempted to evaluate fully the performance of non-iterative and iterative methods in 59 

their ability to locate accurately the position of electrical discharge sources. 60 

In order to evaluate the performance of iterative and non-iterative algorithms, the 61 

present study investigates through simulation the location performance of a well-62 

established iterative method; the standard least squares (SLS) method, and a non-63 

iterative method; the Bancroft algorithm [22]. Two antenna array configurations (Y and 64 

square shape), both consisting of 4 antenna positions were chosen for the investigations 65 

reported herein evaluating the performance of the respective location algorithms. The 66 

square and ‘Y’ array configurations are commonly used and were selected since they 67 

have been used in previous studies [1, 4] to investigate electromagnetic (EM) wave 68 

propagation PD sources. 69 

The paper is structured as follows: The mathematical formulation of the SLS and 70 

Bancroft location algorithms are presented in Section II; Section III presents the 71 

methodologies used in the present study; Section IV presents the results of PD location 72 



studies using the SLS and Bancroft algorithms respectively (in each case two different 73 

antenna arrangements were investigated). For simplification, the simulated PD location 74 

data points refer to any electrical discharge source emitting EM wave radiation; Section 75 

V compares the characteristics of both the iterative and non-iterative algorithms used; 76 

Section VI proposes a new approach to select adequate error bounds and number of 77 

iterations using results of the non-iterative methods; Section VII summarises the 78 

findings of the study. 79 

2 Formulation of the SLS and Bancroft Algorithms 80 

A minimum of four spatially separated antennas may be used to triangulate the location 81 

of a PD event in 3 dimensions using RF methods (Figure 1). Knowing the grid 82 

coordinates of each antenna in the array then allows the propagation time from the PD 83 

source to the respective antennas to be calculated using the basic formula D = v.t, 84 

Where D is distance, v is propagation velocity and t is propagation time. This technique, 85 

commonly referred to as ‘triangulation’, is described by Equation (1): 86 
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Figure 1: Basic configuration of a typical RF PD location setup. 88 

Where (xi, yi, zi) are the coordinates of the i
th

 antenna in Cartesian space, (x, y, z) 89 

represent the true coordinates of the PD event, ve is the speed of light (3 x10
8
 m/s) and ti 90 



represents the ‘time-of-flight’ of the propagating PD signal from its source to the i
th

 91 

antenna. It should be noted that since the study is a simulation based investigation, the 92 

speed of light was considered to be in a vacuum and that this value changes depending 93 

on the insulating material.  94 

Let the time-of-flight from the PD source to antenna A1 be T and the time-difference-of-95 

arrival between antennas A1 and An (n = 2, 3, 4) be 1n. Equation (1) now expands into 96 

the following four formulae [20]: 97 
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2.1 Standard Least Squares (SLS) algorithm 102 

Using on the non-linear equations in (2), the position of a PD source (x, y, z) can be 103 

computed using the least squares method given in Equation (3).  104 
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In least squares, the standard definition of Yi(X) is given in Equation (4). Based on the 106 

definition of Yi(X), the least squares method minimises the sum of the square of the 107 

residuals.  108 
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Since the aim is to compute the values of x, y and z which minimise S(X), the partial 110 

derivative of S(X) with respect to x, y and z is calculated with the equation set equal to 0 111 

as shown in Equation (5): 112 
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Substituting p to represent x, y or z, the iterative solution for each coordinate and for T 114 

becomes: 115 
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Where N is the number of antennae and τ1i is the TDOA between a signal measured by 118 

the i
th

 antenna and by antenna 1. For chosen initial conditions, the formulae derived 119 

above may be applied iteratively until solutions for x, y and z are converged upon, given 120 

a defined error bound and an upper limit on the number of iterations [4, 21]. 121 

2.2 Bancroft algorithm 122 

Developed by Bancroft [22], this algorithm was derived for application to global 123 

positioning system (GPS) location. Bancroft's algorithm makes use of the Lorenz inner 124 

product for time-space vectors, which is defined considering u and w vectors of the 125 

form: 126 
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Where x, y and z are the coordinates of the two vectors u and w, v is a constant which 128 

represent the speed of light, and t is time. The Lorenz inner product of u and w is 129 

defined as: 130 

wu
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Assuming there are four antennas located at (xi, yi, zi), with the associated time of arrival 132 

(TOA) as ti, where i = 1, 2, 3, 4 and the PD source is located at (x, y, z) and has a time 133 

of emission (TOE) t. This can presented as: 134 





















i

i

i

i

i

tv*

z

y

x

s  ,   





















tv*

z

y

x

s        (10) 135 

Each TOA measurement may be expressed as: 136 
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Which is equivalent to: 138 
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or, in vector-matrix form: 140 
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Based on equation (13), which relates s to its Lorenzian norm λ, this can be rewritten as: 146 
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Taking the Lorenzian norm of both sides of equation (14) results in a quadratic equation 150 

in λ, i.e. 151 
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Solving the quadratic equation (15) results in two solutions of λ when  157 

 α ≠ 0 and the possible PD solutions are located either at: 158 
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In GPS technology, the selection of a valid solution is based on clock synchronisation 160 

and thus the solution with the lowest time offset (presented by vt in both s1 and s2 161 

vector) is considered to be a correct solution. 162 

3 Methodology 163 

The authors have developed a software platform in MATLAB that performs simulation 164 

and localisation for an array of PD source positions (a grid of 64 PD positions were 165 

simulated, as depicted in Figure 2). The positions were selected arbitrarily on a 166 

Cartesian grid as PD sources can occur anywhere within the insulation system of HV 167 

assets. Figure 2 also shows the configuration of the antenna arrays (triangular symbols). 168 

Simulations have been performed on both the Y shaped (Figure 2a) and the square 169 



shaped array (Figure 2b). Table 1 presents the grid coordinates of each antenna. These 170 

antenna arrangement arrays were considered in a way to enable an easy setting of these 171 

equipment when measurements are carried out in a real site environment, although 172 

antenna arrays will generally be placed away from substation equipment to respect 173 

distance clearances. 174 

 175 

Figure 2: Simulation geometry showing PD locations (green spheres) and antenna locations (triangles) for 176 

the two array configurations (a) Y shaped array and (b) Square shaped array 177 

Table 1: Coordinates of the antenna arrays within the simulation grid 

Antenna 

number 

Y shaped array Square  shaped array 

x (m) y (m) z (m) x (m) y (m)  z (m) 

1 0 0 1 0 0 1 

2 0 -1 0 0 -1 0 

3 -1/√2 1/√2 0 1 -1 1 

4 1/√2 1/√2 0 1 0 0 

 

In the case of the Y shaped array, the respective antennae were mutually separated by a 178 

distance of 1 m, with 3 of the antennas positioned on the horizontal plane and a single 179 

central antenna elevated by 1m in the vertical plane. In the case of the square array, 180 

antenna positions were spaced apart by 1m horizontally. Diametrically opposite 181 

antennas were offset by 1 m in the z axis. The number of 3D PD locations was chosen 182 

based on processing time considerations. Simulated PD locations fill a defined volume 183 



that surrounds the antenna arrays.  PD positions lie along the x-axis from 3 m to 3 m at 184 

intervals of 2 m, along the y-axis from 0 m to 3 m at intervals of 1 m and along the z-185 

axis from 0 m to 3 m also at intervals of 1 m. The range of the simulated PD positions 186 

was selected so that precise appreciation of the location performance of the iterative and 187 

non-iterative algorithms was provided. 188 

The TDOAs of the simulated PD positions were obtained using Equation 8, where (x, y, 189 

z) represent the coordinates of the simulated PD position and (xi, yi, zi) the coordinates 190 

of the four antennas (1, 2, 3 and 4). The iterative algorithm (SLS) was applied and its 191 

performance evaluated, with the initial values for (x, y, z) set to (0, 0, 0). Within the 192 

iteration method, error bounds were varied from 10
-3

 down to 10
-13

 with an additional 193 

error bound defined for the time iteration and having a value of 10
-8

. The error bound 194 

can be defined as the incremental limit between consecutive iterations of the algorithm 195 

that produces a converged solution, thus determining the accuracy of the iterative 196 

solutions. The accuracy of the iterative method has been evaluated in terms of accuracy 197 

by comparing the difference in distance d between the iterated solution to the PD 198 

location and the actual PD location. Four categories of location accuracy were defined: 199 

 Very good accuracy: d ≤ 1 cm 200 

 Good accuracy: 1 cm < d ≤ 50 cm 201 

 Poor accuracy: 50 cm < d ≤ 1 m  202 

 Very poor accuracy: d > 1 m  203 

Moreover, the computational efficiencies of the algorithms were assessed by calculating 204 

the total number of iterations used to achieve converge on the stipulated error bound 205 

accuracy. This was repeated for both antenna array configurations. 206 

Regarding the non-iterative methods, these are well known for providing precise 207 

estimates of the location when they are provided with accurate TDOAs [23]. In GPS, 208 



there are always uncertainties in TDOA measurements and satellite positions. These 209 

inaccuracies give rise to random errors of the emitter location. However, the location 210 

accuracy can be improved by solving the clock error of the receiver [24], by using 211 

pseudo-range observations [22] or by limiting the TOA range based on the altitude of 212 

the GPS satellites [25].  213 

Determining the location of PD using non-iterative methods is a more difficult process, 214 

as PD sources do not provide a time of emission to establish synchronisation with the 215 

receiving sensors. In this context, results sections of the non-iterative algorithms 216 

evaluate the output of the two solutions provided by these algorithms as the simulated 217 

PD have accurate theoretical TOAs based on equation (1). The accuracy of the non-218 

iterative algorithms have been evaluated in terms of PD location by determining the 219 

difference between the calculated PD solutions (i.e. two roots solutions provided by the 220 

quadratic equations of the algorithms) and the simulated positions. Two categories were 221 

defined: 222 

 Correct location: difference between calculated PD solution and simulated PD 223 

position equal to 0. 224 

 Incorrect location: difference between calculated PD solution and simulated PD 225 

position not equal to 0. 226 

4 Location Performance of the Algorithms 227 

The following sections present the location results of the SLS and Bancroft algorithms 228 

using the two different antenna arrangements. The location results will be discussed in 229 

terms of location accuracy for both iterative and non-iterative methods and also the 230 

number of iterations for the SLS algorithm. 231 



4.1 Standard Least Squares (SLS) algorithm 232 

4.1.1 Y-shaped array 233 

To ensure converged solutions for all 64 simulated PD locations, sufficient iterations 234 

were applied to the SLS algorithm for various error bounds. For the specified error 235 

bounds, Figure 3 plots the number of converged PD location solutions within each of 236 

the four accuracy categories defined above. It can be seen that the number of PD 237 

sources located with very poor accuracy (greater than 1m from the simulated locations) 238 

saw a marked decrease as the error bound reduced, allowing improvement in the 239 

intermediate distances and convergence towards highly accurate positions (i.e 34 240 

solutions less than 1 cm from the true PD source position). As the error bound was 241 

reduced further, no additional improvement was seen. This result demonstrates that 242 

location accuracy is influenced not only by the physical arrangement of the antennas, 243 

the TDOA of the signals and the accuracy of the digital sampling hardware, but also on 244 

the error bound set within the location algorithm. 245 

   

Figure 3: Number of converged PD position solutions as a function of location accuracy and error bound 

for simulations on the Y-shaped antenna array (SLS) 



 

Figure 4: Results of simulations on the Y-shaped antenna array showing number of iterations vs. number 

of converged PD positions for various error bounds (SLS). 

Figure 4 plots the total number of iterations needed for solutions to converge on all 64 246 

PD locations for the seven error bounds under consideration. This result demonstrates 247 

the relationship between the number of iterations and the error bound, with the former 248 

increasing significantly from a few hundred to hundreds of millions as the error bound 249 

decreases. Such a large number of iterations has the consequence of increasing 250 

computational time from a few seconds to several hours using a standard desktop 251 

machine (computation of these results were carried out using an Intel Q6600 Core2 252 

Quad 2.4 GHz Processor). Extended computing times would be impractical if location 253 

were required in real-time or close to real-time. 254 

The percentage of PD sources pinpointed within the defined accuracy limits is shown in 255 

Table 2 together with the number of iterations performed for each respective error 256 

bound. It is clear from Table 2 that the location accuracy improves as the error bound 257 

decreases. Consequently, the iterative steps accumulate in number. Additionally, using 258 

the lowest error bound i.e. 10
-13

, which was found to be the best possible accuracy for 259 

this arrangement, the number of PDs located at more than 1 m from the simulated 260 

positions was found to be slightly high. This is due to the spatial separation between the 261 

different antennas and the antenna arrangement as further results using the square 262 

antenna arrangement shows improved location accuracy. 263 



Table 2: Results of SLS algorithm showing percentage of solutions converging within the defined 

location accuracy limits for the Y-shaped antenna array.  

Error Bound d ≤ 1 cm  1 cm < d ≤50 cm  50 cm < d ≤1 m  d > 1 m  No. of Iterations 

10
-13

 53.1%  9.4%  3.1%  34.4%  275740268  

10
-08 50.0%  12.5%  3.1%  34.4%  5371396  

10
-07

 37.5%  25%  3.1%  34.4%  1104646  

10
-06

 21.9%  37.5%  3.1%  37.5%  194065  

10
-05

 9.4%  37.5%  9.4%  43.8%  27325  

10
-04

 3.1%  25%  18.8%  53.1%  3164  

10
-03

 0.0%  12.5%  12.5%  75.0%  315  

Table 3: Results of SLS algorithm showing percentage of solutions converging within the defined 

location accuracy limits for the square-shaped antenna array. 

Error Bound d ≤ 1 cm  1 cm < d ≤50 cm  50 cm < d ≤1 m  d > 1 m  No. of Iterations 

10
-13

 95.3%  0%  0%  4.7%  2212354990  

10
-08 84.4%  10.9%  0%  4.7%  11755016  

10
-07

 67.2%  26.6%  1.6%  4.7%  1727533  

10
-06

 29.7%  57.8%  6.3%  6.3%  243296  

10
-05

 7.8%  60.9%  15.6%  15.6%  55905 

10
-04

 1.6%  34.4%  15.6%  48.4%  4140  

10
-03

 0%  18.8%  15.6%  65.5%  263  

4.1.2 Square-shaped array 264 

The results obtained using SLS with the square antenna array proved similar to those 265 

obtained previously with regards to the accuracy and number of iterations (See Figure 5 266 

and Figure 6). With an error bound of 10
-03

, 42 PD positions were located with very 267 

poor accuracy (metres from their true position). The number of PD located > 1 m from 268 

the simulated positions was reduced significantly as the error bound became smaller, 269 

allowing the intermediate distances to improve and solutions to converge towards very 270 

accurate locations of less than 1 cm from the true PD source position. However, Table 3 271 

shows a considerable improvement of the location accuracy. At an error bound of 10
-13

, 272 

95.3% of iterated PD positions were to within an accuracy of less than 1 cm. Whereas, 273 

in the case of the Y-shaped array configuration, only 53.1% of PD were located to 274 

within the same accuracy at the same error bound. The 3 remaining PD positions 275 



located at a distance of > 1 m did not show any further improvement despite further 276 

reduction in the error bound. The non-location of these PD positions was mainly due to 277 

the applied initial value (0, 0, 0) since, after replacing those initial values by the actual 278 

true value of the PD locations, calculation provided a correct solution. 279 

 

Figure 5: Number of converged positions as a function of both location accuracy and error bound for 

square shaped arrangement (SLS) 

 

Figure 6: Results of simulations on the square-shaped antenna array showing number of iterations vs. 

number of converged PD positions for various error bounds (SLS). 

4.1.3 Discussion 280 

As shown in Table 2 and Table 3, which present respectively the effectiveness of the Y 281 

and square shape arrays to locate PD occurring at each of the 64 grid positions, it can be 282 

seen that in the case of the square array, 95.3% of the converged solutions locate PD to 283 

within 1 cm of their true position at an error bound of 10
-13

. In contrast, the Y shaped 284 



array, is only capable of locating 53.1% of the PDs to within than 1 cm of their true 285 

position at the same error bound, which represents the best possible accuracy for this 286 

arrangement in the present study. These results show that in addition to the influence of 287 

the algorithms’ error bound and the number of iteration on the location accuracy, 288 

antenna arrangement are also key for enhanced location results. This is mostly due to 289 

the square antenna arrangement having a better spatial separation and better coverage 290 

area than the Y shaped antenna arrangement.  291 

In Figure 7 which shows the number of PD positions located with an accuracy of 1 cm 292 

or less as a function of error bound, one may conclude that, while requiring more 293 

iterations, the SLS algorithm as applied to PD location using the square array, generally 294 

produces more accurate results than with the Y shaped array (see Figure 8).  295 

 

Figure 7: Number of accurate PD location solutions (< 1 cm from the PD source) for the two array 

configurations as a function of error bound (SLS) 

 



Figure 8: Number of iterations required to achieve converged solutions for each antenna configuration as 

a function of error bound (SLS) 

4.2 Bancroft algorithm 296 

Bancroft [21] determined a closed form expression for global positioning system 297 

pseudo-range equations. In his derivation of the formula, Bancroft made use of the 298 

Lorentz inner product and demonstrated that pseudo-range equations are hyperbolic in 299 

nature and may have two solutions. Although he did explicitly discuss the GPS 300 

navigation solution which determines the coordinates (x, y, z) and the clock offset of a 301 

GPS receiver, the understanding of the two solutions provided by the algorithm with 302 

regard to partial discharge location using RF technique is investigated in the following 303 

paragraphs. 304 

4.2.1 Y shaped antenna array 305 

To evaluate the performance of the two solutions provided by the Bancroft algorithm, 306 

the 64 PD positions defined on the simulation grid were computed by the Bancroft 307 

algorithm as described in Section 3. Figure 9 presents the number of correct and 308 

incorrect location solutions provided by both the positive and negative root. 309 

 

Figure 9: Location results of Bancroft algorithm using Y shaped antenna arrangement 



 

Figure 10: Position of located and non-located PD using Y shaped antenna arrangement and positive root 

of the Bancroft algorithm 

Based on results of the positive root of the Bancroft algorithm, it can be seen that the 310 

algorithm provided accurate positioning to 30 PD locations and 34 incorrect solutions to 311 

the remaining PD positions. This demonstrates that the algorithm can only provide 312 

partial results to the 64 simulated PD using one of the roots and that the location of 313 

these simulated PD require the investigation of both solutions. 314 

The exact position of the located and non-located PD is presented in Figure 10, where 315 

the green points represent the located positions and the blue points the incorrect 316 

solutions. It can be seen from the figure that the positioning results of located and non-317 

located PD positions are symmetrical around the antenna central point. This is due to 318 

the topology of the Y shaped array, of which the y and z coordinates of antennas 3 and 4 319 

are identical. 320 

Regarding the location results of the Bancroft algorithm using the negative root, it can 321 

be seen from Figure 9 that the algorithm provided 34 accurate PD locations and 30 322 

inaccurate PD locations. It should be noted that inaccurate locations using the positive 323 

root are found to be located accurately using the negative root and vice versa. This 324 

demonstrates that the algorithm can provide accurate locations to the 64 simulated PD 325 



positions if valid solutions are selected between both roots. This demonstrates that the 2 326 

solutions provided by the algorithm complement each other to provide accurate 327 

positioning to the simulated PD. This is because the two hyperbolas intersect at two 328 

locations, one that corresponds to the TDOA with correct sign and the other to the 329 

TDOA with reversed sign. 330 

4.2.2 Square shaped antenna arrangement 331 

Using the square antenna arrangement and the positive root, the Bancroft algorithm 332 

provided 17 correct locations and 47 incorrect locations (see Figure 11). On the other 333 

hand, positioning results using the negative root provided more accurate locations than 334 

the positive root, where 52 out of the 64 simulated PD positions located accurately and 335 

only 12 PD were located incorrectly. The difference between the correct PD locations 336 

using the positive root and the non-located PD using the negative root results from 5 PD 337 

positions being located accurately by both roots. 338 

 

Figure 11: Location results of Bancroft algorithm using square shaped antenna arrangement 

4.2.3 Discussion 339 

Based on the results of the Bancroft algorithm using both positive and negative roots, it 340 

can be seen that the algorithm can provide very accurate location results on the 64 341 

simulated PD positions. Results also show that the algorithm provided more successful 342 

location results when using the negative root instead of the positive root. In addition, 343 



location results using the square antenna arrangement were found to be better than the 344 

location results when using the Y shaped antenna arrangement. Although location 345 

results using the different antenna arrangements differ in terms of the number of 346 

successfully located PD using each root, the discrimination between correct and 347 

incorrect solutions of the positive and negative root can be carried out using the clock 348 

offset parameter. Based on the simulated PD, it was found that the Bancroft algorithm 349 

can provide 100% accurate solutions to the simulated PD positions when selecting the 350 

cartesian coordinates (x, y, z) corresponding to the lowest clock offset when comparing 351 

results of both roots. Validation of this selection process may change when considering 352 

noise effects and measurement errors as time offset adjustments cannot be established 353 

due to the stochastic nature of the physical PD emission process. 354 

Additionally, given only the difference in arrival times of the antennas’ signals, it is 355 

difficult to know which solution is correct. The separation between the algorithm's 356 

correct and incorrect solutions will depend on the environment where measurements 357 

took place. For example, in the case where measurements are carried out in a high 358 

voltage power transformer using acoustic sensors attached to the transformer’s housing, 359 

discrimination between the different solutions can use the equipment's area spatial 360 

volume to limit the search of valid solutions. In the case of open space areas such as 361 

electrical substations, if the reference point is at the ground height and the locations of 362 

interest are in front of the antenna arrangements, one can limit the search of valid 363 

solutions within the positive interval of y and z coordinates. 364 

5 Comparison between Iterative and Non-Iterative Algorithms 365 

Nonlinear equations of location algorithms which are presented by hyperbolas and 366 

distance formulas are commonly solved with iterative algorithms [26]. Results of the 367 

iterative algorithm showed that these methods have strong dependencies on different 368 



parameters such as the error bound, number of iterations and also initial values which 369 

must be provided by the user. On the other hand, non-iterative methods, which do not 370 

require iterations and therefore make a fast computation tool, showed that they provide 371 

very accurate location results when provided by accurate TDOAs (in this case, 372 

theoretical TDOAs were provided). However the selection of correct locations among 373 

the two available solutions will depend on the user's experience and ability to 374 

discriminate between the different positioning solutions by using for example time 375 

restrictions based on the equipment's spatial volume. Table 4 presents some of the 376 

advantages and disadvantages of the different location algorithms when applied to PD 377 

location. 378 

Table 4: Characteristics of the location algorithms 

Algorithm Advantages Disadvantages 

It
er

at
iv

e 
 

(S
L

S
) 

 Accurate if provided with well 

selected error bound 

 Accurate if provided with well 

selected number of iterations 

 Accurate if provided with accurate 

time of arrival 

 Depends on number of iterations 

 Depends on error bound 

 Depends on initial values 

 Depends on antenna arrangement 

N
o
n

-I
te

ra
ti

v
e 

(B
an

cr
o
ft

) 

 Direct solution 

 Fast and very accurate 

 Do not depend on initial values 

 Possibility of discriminating between 

the two solutions (Bancroft method 

only) 

 No indication of converged solutions 

 Depends on time of arrival accuracy 

 No way of discriminating between 

the two solutions 

 Provide two different solutions 

 Depends on antennas arrangement 

 

Using iterative methods, the question which is still raised is: how can the user define a 379 

valid error bound and also a valid number of iterations sufficient to provide accurate 380 

location results assuming there is no initial values issue (see example of SLS 381 

performance at 10
-13

 error bound in Figure 5)? 382 



6 New Approach 383 

Based on simulations, it was found that when the error bound is high (e.g. 10
-3

 error 384 

bound), solutions of the location coordinates are often underestimated and the number 385 

of iterations required is also low. When the location coordinates of some TDOAs using 386 

the iterative results are compared to the location coordinates of the same TDOAs using 387 

non-iterative methods, this may show a location mismatch in the case of a non-valid 388 

error bound selection and which indicates that the error bound should be decreased. 389 

This process should be repeated until matching results are found by both iterative and 390 

non-iterative methods. Regarding the selection of a valid number of iterations, this is 391 

determined by providing enough iteration values which allow a converged solution 392 

based on the matching solutions of both iterative and non-iterative methods to be 393 

obtained. Figure 12 summarises the selection process of valid error bounds and number 394 

of iterations used by the iterative methods based on the non-iterative method solutions. 395 

It should be noted that the iterative methods may sometimes provide a non-converged 396 

solutions which may be due to initial values issue or measurement errors. 397 



 398 

Figure 12: Selection of error bound and number of iterations 399 

7 Conclusions 400 

As a study evaluating the location accuracy of an iterative and non-iterative algorithms 401 

as applied to partial discharge measurement, simulations of a range of PD using two 402 

different antenna configurations have been presented.  403 

By varying the error bounds, it has been shown that the performance of the iterative 404 

algorithms as a function of location accuracy can be quantified, despite the nonlinear 405 

nature of the location equations. A decrease in the error bound produces more accurate 406 

location results while requiring more iterations. The results presented will be useful for 407 

a practitioner of condition monitoring of in-service power equipment since it will allow 408 

judgement of appropriate levels of required accuracy based on the dimensions of the 409 

equipment under surveillance. It will also facilitate estimation of the required 410 

computing time to achieve the desired level of location accuracy. The required spatial 411 

location accuracy depends on the application. For example, general surveying of 412 



equipment on a substation-wide scale may only require a poor to good level of accuracy 413 

(1 cm ≤ d ≤ 1 m). This range may also accurately facilitate the location of faults along 414 

large equipment sections such as busbars, bushings or power transformers (i.e. larger 415 

equipment). 416 

Regarding the non-iterative algorithms, it was found that these techniques provide very 417 

accurate positioning when provided with precise TDOAs. The accuracy of the non-418 

iterative algorithms also depends on the antenna arrangements which influence the 419 

number of accurate positions located by the two different roots. The discrimination 420 

process between the two different solutions of the non-iterative solutions can be 421 

difficult and will depend on the user experience to separate between the two solutions 422 

using, for example, time restrictions based on the equipment's spatial volume. 423 

A novel approach to select adequate error bounds and number of iterations using results 424 

of the non-iterative methods has been established and will contribute considerably to 425 

solve some of the iterative method dependencies. 426 

In this work, simulations provided an evaluation of the performance of different types 427 

of location algorithms based on determined PD locations. This evaluation method gives 428 

indications of the essential characteristics of iterative methods and also an insight on the 429 

behaviour of non-iterative methods to provide different solutions. The study presented 430 

in this paper can benefit electrical utilities, network operators and designers of PD 431 

locations systems, as it can be used as a guide to the selection of specific algorithm 432 

based on its operation requirements (i.e. computation time, discrimination between 433 

solutions, accuracy parameters and their selection process), facilitating more accurate 434 

location and diagnosis of incipient faults in high value electrical power equipment.  435 
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