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Abstract

Partial discharge (PD) is an electrical discharge phenomenon that occurs when the
insulation material of high voltage equipment is subjected to high electric field stress.
Its occurrence can be an indication of incipient failure within power equipment such as
power transformers, underground transmission cable or switchgear. Radio frequency
measurement methods can be used to detect and locate discharge sources by measuring
the propagated electromagnetic wave arising as a result of ionic charge acceleration. An
array of at least four receiving antennas may be employed to detect any radiated
discharge signals, then the three dimensional position of the discharge source can be
calculated using different algorithms. These algorithms fall into two categories; iterative
or non-iterative.

This paper evaluates, through simulation, the location performance of an iterative
method (the standard least squares method) and a non-iterative method (the Bancroft
algorithm). Simulations were carried out using (i) a “’Y” shaped antenna array and (ii) a
square shaped antenna array, each consisting of a four-antennas. The results show that
PD location accuracy is influenced by the algorithm’s error bound, the number of
iterations and the initial values for the iterative algorithms, as well as the antenna

arrangement for both the non-iterative and iterative algorithms. Furthermore, this
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research proposes a novel approach for selecting adequate error bounds and number of
iterations using results of the non-iterative method, thus solving some of the iterative
method dependencies.

Keywords: Partial discharges; Iterative algorithms; Non-lterative algorithms; Radio

Frequency; Fault location; Time difference of arrival.
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1 Introduction

Radio frequency (RF) measurement technique using receiving antennas can be used to
detect the radiated energy from PD sources or any other electrical discharge activities,
subsequently facilitating the discharge source triangulation. Using a receiving antenna
array, which may be arranged in various forms, the time differences of arrival (TDOA)
between received signals on each of the respective antennas allows the 3 dimensional
position of the electrical discharge source to be deduced by processing of the TDOA
values through iterative or non-iterative location algorithms. The location of partial
discharges using emitted RF techniques in HV equipment has been widely investigated
[1-5]. Research in this area has been carried out on cables [6-9], gas and air insulated
switchgears [10-14] and transformers [15-17]. PD location in cables, and to a degree in
gas-insulated substation (GIS), is a two-dimensional problem, while internal localisation
within power transformers and localisation in three dimensions in wide-area HV
substations requires robust computation algorithms [1].

There are two types of computational algorithm which can be used to locate partial
discharges in three dimensions; (i) iterative methods and (ii) non-iterative methods. In
this study, a non-iterative method was selected due to the large success of these methods
in Global Positioning System (GPS) applications such as navigation and location
systems. The choice of an iterative method was mainly due their efficiency in solving
nonlinear problems involving large number of variables.

The iterative methods give an approximate solution to nonlinear equations based on a
number of iterations and starting with an initial value, which is improved at each
iteration by an error bound until a converged solution is found or until a maximum
number of iterations is reached. Taylor expansion and Newton-Raphson techniques are

common iterative methods that can be used to solve the equations of nonlinear systems.
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These methods have been used in different studies to locate PD [1, 18-19]. The study in
[18] highlighted that the performance of the Taylor expansion method depends on the
accuracy of the initial values and the number of sensors, whereas the study by [1]
showed that the Newton-Raphson method successfully locates PD and that the location
accuracy depends on the arrangement of antennas. Study [19] also used the Newton-
Raphson method to locate PD and found that in some cases the algorithm did not
provide a converged solution. It indicated that a solution called the “grid search
method” which consists of using a range of values within a grid as initial values to
determine a converged solution helped improve accuracy. Despite the fact that these
studies highlighted the success of these iterative methods to locate discharges activities
within a reasonable margin of error, a limited number of published studies have
attempted to evaluate fully the performance of non-iterative and iterative methods in
their ability to locate accurately the position of electrical discharge sources.

In order to evaluate the performance of iterative and non-iterative algorithms, the
present study investigates through simulation the location performance of a well-
established iterative method; the standard least squares (SLS) method, and a non-
iterative method; the Bancroft algorithm [22]. Two antenna array configurations (Y and
square shape), both consisting of 4 antenna positions were chosen for the investigations
reported herein evaluating the performance of the respective location algorithms. The
square and ‘Y’ array configurations are commonly used and were selected since they
have been used in previous studies [1, 4] to investigate electromagnetic (EM) wave
propagation PD sources.

The paper is structured as follows: The mathematical formulation of the SLS and
Bancroft location algorithms are presented in Section II; Section Il presents the

methodologies used in the present study; Section IV presents the results of PD location
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studies using the SLS and Bancroft algorithms respectively (in each case two different
antenna arrangements were investigated). For simplification, the simulated PD location
data points refer to any electrical discharge source emitting EM wave radiation; Section
V compares the characteristics of both the iterative and non-iterative algorithms used;
Section VI proposes a new approach to select adequate error bounds and number of
iterations using results of the non-iterative methods; Section VII summarises the

findings of the study.

2 Formulation of the SLS and Bancroft Algorithms

A minimum of four spatially separated antennas may be used to triangulate the location
of a PD event in 3 dimensions using RF methods (Figure 1). Knowing the grid
coordinates of each antenna in the array then allows the propagation time from the PD
source to the respective antennas to be calculated using the basic formula D = v.t,
Where D is distance, v is propagation velocity and t is propagation time. This technique,

commonly referred to as ‘triangulation’, is described by Equation (1):

(c-xi)? +(y-vi P+ -2 = (ve -4;)° 1)

/ PDor RFI

Antenna 1 / ‘ A
g Antenna 3

Antenna 2 - Antenna 4

Figure 1: Basic configuration of a typical RF PD location setup.

Where (xi, Vi, zi) are the coordinates of the i antenna in Cartesian space, (x, Y, z)

represent the true coordinates of the PD event, v, is the speed of light (3 x10® m/s) and t;
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represents the ‘time-of-flight’ of the propagating PD signal from its source to the i"
antenna. It should be noted that since the study is a simulation based investigation, the
speed of light was considered to be in a vacuum and that this value changes depending
on the insulating material.

Let the time-of-flight from the PD source to antenna A; be T and the time-difference-of-
arrival between antennas A; and A, (n = 2, 3, 4) be n,. Equation (1) now expands into

the following four formulae [20]:

(x0)” + (1) + (- 2)” = e - 7)°
(x— Xy )2 + (y— Yo )2 + (Z_ Z )2 = (Ve (T+ ‘1 )>2

(o O G = o of @
2.1 Standard Least Squares (SLS) algorithm

Using on the non-linear equations in (2), the position of a PD source (X, y, z) can be

computed using the least squares method given in Equation (3).
s(X)= 2 (Y, (X )Y 3)

In least squares, the standard definition of Y;(X) is given in Equation (4). Based on the
definition of Y;(X), the least squares method minimises the sum of the square of the

residuals.

Y (X)= =% F +(y=y f +(z-2f —@*(T+z,)) ©)
Since the aim is to compute the values of x, y and z which minimise S(X), the partial
derivative of S(X) with respect to x, y and z is calculated with the equation set equal to 0

as shown in Equation (5):

oS -0, 95_ ﬁ_o and 25 _ (5)
ox oy o1 oT
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Substituting p to represent X, y or z, the iterative solution for each coordinate and for T

becomes:

13 (p— p, )T +175 )V, (6)

N,

p:

ZlH
'MZ

Il
[aN

) +(y=y,) +(z-2)

1 N
N _Wgrli (7)

i=1

3 x

T = i=1

Where N is the number of antennae and z;; is the TDOA between a signal measured by
the i™ antenna and by antenna 1. For chosen initial conditions, the formulae derived
above may be applied iteratively until solutions for x, y and z are converged upon, given

a defined error bound and an upper limit on the number of iterations [4, 21].

2.2 Bancroft algorithm

Developed by Bancroft [22], this algorithm was derived for application to global
positioning system (GPS) location. Bancroft's algorithm makes use of the Lorenz inner

product for time-space vectors, which is defined considering u and w vectors of the

form:
X, X,
U= Yu W= Yw (8)
ZU ZW
v*t, v*t,

Where x, y and z are the coordinates of the two vectors u and w, v is a constant which
represent the speed of light, and t is time. The Lorenz inner product of u and w is

defined as:

(u,w) =

XaXwt YuYut 4y ZW_V2 tutw (9)
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Assuming there are four antennas located at (x;, Vi, zi), with the associated time of arrival
(TOA) as tj, where i =1, 2, 3, 4 and the PD source is located at (X, y, z) and has a time

of emission (TOE) t. This can presented as:

X; X
Si = yi ) S = y (10)
Z, YA
v*t v*t

Each TOA measurement may be expressed as:

(= P+ (y=y, P+ (22 F =v? (-1, )" (11)
Which is equivalent to:

2(x><i Y, + 22, —vztit): X2+ y?+ 22 V2 4+ x2 +y + 27 —VviE (12)

or, in vector-matrix form:

2As = Al+Db (13)
Where
X
S = Z , are the coordinates of interest
v*t
X, Yy, 7, -V 1
Aol Y2 B VR , A=(s,8)=x>+y*+2° -V’ and 1= !
Xs Y3 Zz; —Vi 1
X, Y. Z, -Vt 1

2 2 2 2. 2]
X, +y, +2, —V tl

(%]
N

(%]
N

NN T~ N~
(%)
w
w
w
~ N S

2 2 2 2
X,” +Y, +2,° Vi,
2 2 2 2
Xs" + Y, +2,° — Vi,

2 2 2 24 2
| X"+ Y, +Z, -Vt

Based on equation (13), which relates s to its Lorenzian norm 4, this can be rewritten as:

s :i/lA‘11+%A‘lb or s=Ad +e (14)

2
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Where

d=%All=[Xd Yo 4 th]T’ e:%Albz[Xe Ye Ze Vte]T

Taking the Lorenzian norm of both sides of equation (14) results in a quadratic equation
in4,i.e.

A=(d,d)A* +2(d,e)1+(e,e) or >+ Pr+y=0 (15)
Where

a={(d,d)=x+y,’+2z,° -V’

LB =2(d,e) —1=2x,X, +2yyY, +22,Z, —2vtt, —1

y=(e.e)=x"+y° +2z,° -V’

Solving the quadratic equation (15) results in two solutions of A when

a # 0 and the possible PD solutions are located either at:

X X
s, =,d+e= )z/ o s, =aAd+e= Z (16)
vt vt

In GPS technology, the selection of a valid solution is based on clock synchronisation
and thus the solution with the lowest time offset (presented by vt in both s; and s;

vector) is considered to be a correct solution.

3 Methodology

The authors have developed a software platform in MATLAB that performs simulation
and localisation for an array of PD source positions (a grid of 64 PD positions were
simulated, as depicted in Figure 2). The positions were selected arbitrarily on a
Cartesian grid as PD sources can occur anywhere within the insulation system of HV
assets. Figure 2 also shows the configuration of the antenna arrays (triangular symbols).

Simulations have been performed on both the Y shaped (Figure 2a) and the square
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shaped array (Figure 2b). Table 1 presents the grid coordinates of each antenna. These
antenna arrangement arrays were considered in a way to enable an easy setting of these
equipment when measurements are carried out in a real site environment, although
antenna arrays will generally be placed away from substation equipment to respect

distance clearances.

2 Axis (m)
e = b w
1
°
°
-
>
o o o o
o o
o o
Z Axis (m)
w o N
¥ o & o
°
o o000
°
°
°

\\ ° 5 & & A’ il
25 \\ / 3 25
A \ ° 1 3, <
TN : 2 2 S A 7 2
15 ° 15 N ° ° 1
e ° 2 1 S 2}/
TR s ; fle 3 ° i
S\\ ° ) i /\\\ ® 0
0. % X
s S /_' ) > //1
0 N\ N
Yidstm) FHE N //z X Axis (m) Yiaxin(m) 05"\ //'/»2 X Axis (m)
e S
-1

3 13

@ ®
Figure 2: Simulation geometry showing PD locations (green spheres) and antenna locations (triangles) for
the two array configurations (a) Y shaped array and (b) Square shaped array

Table 1: Coordinates of the antenna arrays within the simulation grid

Antenna Y shaped array Square shaped array
wmREr T ) ym) z(m) x (m) ym zm)
1 0 0 1 0 0 1
2 0 -1 0 0 -1 0
3 12 1N\2 0 1 1 1
4 112 112 0 1 0 0

In the case of the Y shaped array, the respective antennae were mutually separated by a
distance of 1 m, with 3 of the antennas positioned on the horizontal plane and a single
central antenna elevated by 1m in the vertical plane. In the case of the square array,
antenna positions were spaced apart by 1m horizontally. Diametrically opposite
antennas were offset by 1 m in the z axis. The number of 3D PD locations was chosen

based on processing time considerations. Simulated PD locations fill a defined volume
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that surrounds the antenna arrays. PD positions lie along the x-axis from 3 m to 3 m at
intervals of 2 m, along the y-axis from 0 m to 3 m at intervals of 1 m and along the z-
axis from 0 m to 3 m also at intervals of 1 m. The range of the simulated PD positions
was selected so that precise appreciation of the location performance of the iterative and
non-iterative algorithms was provided.

The TDOAs of the simulated PD positions were obtained using Equation 8, where (X, v,
z) represent the coordinates of the simulated PD position and (x; Vi, zi) the coordinates
of the four antennas (1, 2, 3 and 4). The iterative algorithm (SLS) was applied and its
performance evaluated, with the initial values for (x, y, z) set to (0, 0, 0). Within the
iteration method, error bounds were varied from 10 down to 10™** with an additional
error bound defined for the time iteration and having a value of 10®. The error bound
can be defined as the incremental limit between consecutive iterations of the algorithm
that produces a converged solution, thus determining the accuracy of the iterative
solutions. The accuracy of the iterative method has been evaluated in terms of accuracy
by comparing the difference in distance d between the iterated solution to the PD

location and the actual PD location. Four categories of location accuracy were defined:

e Verygood accuracy: d <1cm

e Good accuracy: 1 cm<d <50cm

e Pooraccuracy: 50cm<d<1m

e Very poor accuracy:d>1m
Moreover, the computational efficiencies of the algorithms were assessed by calculating
the total number of iterations used to achieve converge on the stipulated error bound
accuracy. This was repeated for both antenna array configurations.
Regarding the non-iterative methods, these are well known for providing precise

estimates of the location when they are provided with accurate TDOASs [23]. In GPS,
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there are always uncertainties in TDOA measurements and satellite positions. These
inaccuracies give rise to random errors of the emitter location. However, the location
accuracy can be improved by solving the clock error of the receiver [24], by using
pseudo-range observations [22] or by limiting the TOA range based on the altitude of
the GPS satellites [25].
Determining the location of PD using non-iterative methods is a more difficult process,
as PD sources do not provide a time of emission to establish synchronisation with the
receiving sensors. In this context, results sections of the non-iterative algorithms
evaluate the output of the two solutions provided by these algorithms as the simulated
PD have accurate theoretical TOAs based on equation (1). The accuracy of the non-
iterative algorithms have been evaluated in terms of PD location by determining the
difference between the calculated PD solutions (i.e. two roots solutions provided by the
quadratic equations of the algorithms) and the simulated positions. Two categories were
defined:

e Correct location: difference between calculated PD solution and simulated PD

position equal to 0.
e Incorrect location: difference between calculated PD solution and simulated PD

position not equal to 0.

4 Location Performance of the Algorithms

The following sections present the location results of the SLS and Bancroft algorithms
using the two different antenna arrangements. The location results will be discussed in
terms of location accuracy for both iterative and non-iterative methods and also the

number of iterations for the SLS algorithm.
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4.1 Standard Least Squares (SLS) algorithm
4.1.1 Y-shaped array

To ensure converged solutions for all 64 simulated PD locations, sufficient iterations
were applied to the SLS algorithm for various error bounds. For the specified error
bounds, Figure 3 plots the number of converged PD location solutions within each of
the four accuracy categories defined above. It can be seen that the number of PD
sources located with very poor accuracy (greater than 1m from the simulated locations)
saw a marked decrease as the error bound reduced, allowing improvement in the
intermediate distances and convergence towards highly accurate positions (i.e 34
solutions less than 1 cm from the true PD source position). As the error bound was
reduced further, no additional improvement was seen. This result demonstrates that
location accuracy is influenced not only by the physical arrangement of the antennas,
the TDOA of the signals and the accuracy of the digital sampling hardware, but also on

the error bound set within the location algorithm.

MDistance s1cm  ©1cm < Distance 50 cm M50 cm < Distance s1m ®Distance > 1 m

o
o

48

&
o

34
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32
28
24 24 24 24
22 22 22
16 16
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6 6 6
2 2 2 2 2
0

Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound Error Bound
1E-13 1E-08 1E-07 1E-06 1E-05 1E-04 1E-03

n w
o o

Number of converged positions

o

Figure 3: Number of converged PD position solutions as a function of location accuracy and error bound

for simulations on the Y-shaped antenna array (SLS)



246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

1.00E+09

1.00E+08

1.00E+07

1ons

1.00E+08

1.00E+05

1.00E+04

A A A
A A

A

1,00E+03 et
Lir _,,.-/M
1008402 | B

1.00E+01

Number of iterat

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Number of converged positions

Error bound 1E-13 —+—Error bound 1E-08 —=—Error bound 1E-07 —+—Error bound 1E-06
~==Error bound 1E-05 ~=Error bound 1E-04 Error bound 1E-03

Figure 4: Results of simulations on the Y-shaped antenna array showing number of iterations vs. number

of converged PD positions for various error bounds (SLS).

Figure 4 plots the total number of iterations needed for solutions to converge on all 64
PD locations for the seven error bounds under consideration. This result demonstrates
the relationship between the number of iterations and the error bound, with the former
increasing significantly from a few hundred to hundreds of millions as the error bound
decreases. Such a large number of iterations has the consequence of increasing
computational time from a few seconds to several hours using a standard desktop
machine (computation of these results were carried out using an Intel Q6600 Core2
Quad 2.4 GHz Processor). Extended computing times would be impractical if location
were required in real-time or close to real-time.

The percentage of PD sources pinpointed within the defined accuracy limits is shown in
Table 2 together with the number of iterations performed for each respective error
bound. It is clear from Table 2 that the location accuracy improves as the error bound
decreases. Consequently, the iterative steps accumulate in number. Additionally, using
the lowest error bound i.e. 103, which was found to be the best possible accuracy for
this arrangement, the number of PDs located at more than 1 m from the simulated
positions was found to be slightly high. This is due to the spatial separation between the
different antennas and the antenna arrangement as further results using the square

antenna arrangement shows improved location accuracy.



264

265

266

267

268

269

270

271

272

273

274

275

Table 2: Results of SLS algorithm showing percentage of solutions converging within the defined

location accuracy limits for the Y-shaped antenna array.

Error Bound d<1cm 1cecm<d<50cm 50cm<d<lm d>1m No. of Iterations

10 53.1% 9.4% 3.1% 34.4% 275740268
1008 50.0% 12.5% 3.1% 34.4% 5371396
107 37.5% 25% 3.1% 34.4% 1104646
10% 21.9% 37.5% 3.1% 37.5% 194065
10% 9.4% 37.5% 9.4% 43.8% 27325
10% 3.1% 25% 18.8% 53.1% 3164
100 0.0% 12.5% 12.5% 75.0% 315

Table 3: Results of SLS algorithm showing percentage of solutions converging within the defined

location accuracy limits for the square-shaped antenna array.

Error Bound d<1cm 1em<d<50cm 50 cm<d<lm d>1m No. of Iterations

105 95.3% 0% 0% 4.7% 2212354990
108 84.4% 10.9% 0% 4.7% 11755016
10 67.2% 26.6% 1.6% 4.7% 1727533
10% 29.7% 57.8% 6.3% 6.3% 243296
10% 7.8% 60.9% 15.6% 15.6% 55905
10% 1.6% 34.4% 15.6% 48.4% 4140
10 0% 18.8% 15.6% 65.5% 263

4.1.2 Square-shaped array

The results obtained using SLS with the square antenna array proved similar to those
obtained previously with regards to the accuracy and number of iterations (See Figure 5
and Figure 6). With an error bound of 10, 42 PD positions were located with very
poor accuracy (metres from their true position). The number of PD located > 1 m from
the simulated positions was reduced significantly as the error bound became smaller,
allowing the intermediate distances to improve and solutions to converge towards very
accurate locations of less than 1 cm from the true PD source position. However, Table 3
shows a considerable improvement of the location accuracy. At an error bound of 107,
95.3% of iterated PD positions were to within an accuracy of less than 1 cm. Whereas,
in the case of the Y-shaped array configuration, only 53.1% of PD were located to

within the same accuracy at the same error bound. The 3 remaining PD positions
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located at a distance of > 1 m did not show any further improvement despite further
reduction in the error bound. The non-location of these PD positions was mainly due to
the applied initial value (0, 0, 0) since, after replacing those initial values by the actual

true value of the PD locations, calculation provided a correct solution.
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Figure 5: Number of converged positions as a function of both location accuracy and error bound for

square shaped arrangement (SLS)
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Figure 6: Results of simulations on the square-shaped antenna array showing number of iterations vs.

number of converged PD positions for various error bounds (SLS).

4.1.3 Discussion

As shown in Table 2 and Table 3, which present respectively the effectiveness of the Y
and square shape arrays to locate PD occurring at each of the 64 grid positions, it can be
seen that in the case of the square array, 95.3% of the converged solutions locate PD to

within 1 cm of their true position at an error bound of 10™. In contrast, the Y shaped
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array, is only capable of locating 53.1% of the PDs to within than 1 cm of their true
position at the same error bound, which represents the best possible accuracy for this
arrangement in the present study. These results show that in addition to the influence of
the algorithms’ error bound and the number of iteration on the location accuracy,
antenna arrangement are also key for enhanced location results. This is mostly due to
the square antenna arrangement having a better spatial separation and better coverage
area than the Y shaped antenna arrangement.

In Figure 7 which shows the number of PD positions located with an accuracy of 1 cm
or less as a function of error bound, one may conclude that, while requiring more
iterations, the SLS algorithm as applied to PD location using the square array, generally

produces more accurate results than with the Y shaped array (see Figure 8).
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Figure 7: Number of accurate PD location solutions (< 1 cm from the PD source) for the two array

configurations as a function of error bound (SLS)
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Figure 8: Number of iterations required to achieve converged solutions for each antenna configuration as

a function of error bound (SLS)

4.2 Bancroft algorithm

Bancroft [21] determined a closed form expression for global positioning system
pseudo-range equations. In his derivation of the formula, Bancroft made use of the
Lorentz inner product and demonstrated that pseudo-range equations are hyperbolic in
nature and may have two solutions. Although he did explicitly discuss the GPS
navigation solution which determines the coordinates (x, y, z) and the clock offset of a
GPS receiver, the understanding of the two solutions provided by the algorithm with
regard to partial discharge location using RF technique is investigated in the following

paragraphs.

4.2.1 Y shaped antenna array

To evaluate the performance of the two solutions provided by the Bancroft algorithm,
the 64 PD positions defined on the simulation grid were computed by the Bancroft
algorithm as described in Section 3. Figure 9 presents the number of correct and

incorrect location solutions provided by both the positive and negative root.
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Figure 9: Location results of Bancroft algorithm using Y shaped antenna arrangement
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Figure 10: Position of located and non-located PD using Y shaped antenna arrangement and positive root

of the Bancroft algorithm

Based on results of the positive root of the Bancroft algorithm, it can be seen that the
algorithm provided accurate positioning to 30 PD locations and 34 incorrect solutions to
the remaining PD positions. This demonstrates that the algorithm can only provide
partial results to the 64 simulated PD using one of the roots and that the location of
these simulated PD require the investigation of both solutions.

The exact position of the located and non-located PD is presented in Figure 10, where
the green points represent the located positions and the blue points the incorrect
solutions. It can be seen from the figure that the positioning results of located and non-
located PD positions are symmetrical around the antenna central point. This is due to
the topology of the Y shaped array, of which the y and z coordinates of antennas 3 and 4
are identical.

Regarding the location results of the Bancroft algorithm using the negative root, it can
be seen from Figure 9 that the algorithm provided 34 accurate PD locations and 30
inaccurate PD locations. It should be noted that inaccurate locations using the positive
root are found to be located accurately using the negative root and vice versa. This

demonstrates that the algorithm can provide accurate locations to the 64 simulated PD
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positions if valid solutions are selected between both roots. This demonstrates that the 2
solutions provided by the algorithm complement each other to provide accurate
positioning to the simulated PD. This is because the two hyperbolas intersect at two
locations, one that corresponds to the TDOA with correct sign and the other to the

TDOA with reversed sign.

4.2.2 Square shaped antenna arrangement

Using the square antenna arrangement and the positive root, the Bancroft algorithm
provided 17 correct locations and 47 incorrect locations (see Figure 11). On the other
hand, positioning results using the negative root provided more accurate locations than
the positive root, where 52 out of the 64 simulated PD positions located accurately and
only 12 PD were located incorrectly. The difference between the correct PD locations
using the positive root and the non-located PD using the negative root results from 5 PD

positions being located accurately by both roots.
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Figure 11: Location results of Bancroft algorithm using square shaped antenna arrangement

4.2.3 Discussion

Based on the results of the Bancroft algorithm using both positive and negative roots, it
can be seen that the algorithm can provide very accurate location results on the 64
simulated PD positions. Results also show that the algorithm provided more successful

location results when using the negative root instead of the positive root. In addition,
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location results using the square antenna arrangement were found to be better than the
location results when using the Y shaped antenna arrangement. Although location
results using the different antenna arrangements differ in terms of the number of
successfully located PD using each root, the discrimination between correct and
incorrect solutions of the positive and negative root can be carried out using the clock
offset parameter. Based on the simulated PD, it was found that the Bancroft algorithm
can provide 100% accurate solutions to the simulated PD positions when selecting the
cartesian coordinates (X, Y, z) corresponding to the lowest clock offset when comparing
results of both roots. Validation of this selection process may change when considering
noise effects and measurement errors as time offset adjustments cannot be established
due to the stochastic nature of the physical PD emission process.

Additionally, given only the difference in arrival times of the antennas’ signals, it is
difficult to know which solution is correct. The separation between the algorithm's
correct and incorrect solutions will depend on the environment where measurements
took place. For example, in the case where measurements are carried out in a high
voltage power transformer using acoustic sensors attached to the transformer’s housing,
discrimination between the different solutions can use the equipment's area spatial
volume to limit the search of valid solutions. In the case of open space areas such as
electrical substations, if the reference point is at the ground height and the locations of
interest are in front of the antenna arrangements, one can limit the search of valid

solutions within the positive interval of y and z coordinates.

5 Comparison between Iterative and Non-Iterative Algorithms
Nonlinear equations of location algorithms which are presented by hyperbolas and
distance formulas are commonly solved with iterative algorithms [26]. Results of the

iterative algorithm showed that these methods have strong dependencies on different
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parameters such as the error bound, number of iterations and also initial values which
must be provided by the user. On the other hand, non-iterative methods, which do not
require iterations and therefore make a fast computation tool, showed that they provide
very accurate location results when provided by accurate TDOAs (in this case,
theoretical TDOAs were provided). However the selection of correct locations among
the two available solutions will depend on the user's experience and ability to
discriminate between the different positioning solutions by using for example time
restrictions based on the equipment's spatial volume. Table 4 presents some of the

advantages and disadvantages of the different location algorithms when applied to PD

location.
Table 4: Characteristics of the location algorithms
Algorithm Advantages Disadvantages
e Accurate if provided with well e Depends on number of iterations

e Accurate if provided with well
selected number of iterations

e Accurate if provided with accurate
time of arrival

e Depends on initial values
e Depends on antenna arrangement

Iterative
(SLS)

e Direct solution ¢ No indication of converged solutions
e Fast and very accurate e Depends on time of arrival accuracy
_GZ) — e Do not depend on initial values e No way of discriminating between
IS dé e Possibility of discriminating between the two solutions
2 e the two solutions (Bancroft method e Provide two different solutions
< B only) o Depends on antennas arrangement
CZD -

Using iterative methods, the question which is still raised is: how can the user define a
valid error bound and also a valid number of iterations sufficient to provide accurate
location results assuming there is no initial values issue (see example of SLS

performance at 10™** error bound in Figure 5)?
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6 New Approach

Based on simulations, it was found that when the error bound is high (e.g. 10° error
bound), solutions of the location coordinates are often underestimated and the number
of iterations required is also low. When the location coordinates of some TDOAS using
the iterative results are compared to the location coordinates of the same TDOASs using
non-iterative methods, this may show a location mismatch in the case of a non-valid
error bound selection and which indicates that the error bound should be decreased.
This process should be repeated until matching results are found by both iterative and
non-iterative methods. Regarding the selection of a valid number of iterations, this is
determined by providing enough iteration values which allow a converged solution
based on the matching solutions of both iterative and non-iterative methods to be
obtained. Figure 12 summarises the selection process of valid error bounds and number
of iterations used by the iterative methods based on the non-iterative method solutions.
It should be noted that the iterative methods may sometimes provide a non-converged

solutions which may be due to initial values issue or measurement errors.
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Figure 12: Selection of error bound and number of iterations

7 Conclusions

As a study evaluating the location accuracy of an iterative and non-iterative algorithms
as applied to partial discharge measurement, simulations of a range of PD using two
different antenna configurations have been presented.

By varying the error bounds, it has been shown that the performance of the iterative
algorithms as a function of location accuracy can be quantified, despite the nonlinear
nature of the location equations. A decrease in the error bound produces more accurate
location results while requiring more iterations. The results presented will be useful for
a practitioner of condition monitoring of in-service power equipment since it will allow
judgement of appropriate levels of required accuracy based on the dimensions of the
equipment under surveillance. It will also facilitate estimation of the required
computi