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Abstract

Selected mapping (SLM) is a well-known method for reducing peak-to-average power ra-

tio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. However, as

a consequence of implementing SLM, OFDM receivers often require estimation of some

side information (SI) in order to achieve successful data recovery. Existing SI estimation

schemes have very high computational complexities that put additional constraints on lim-

ited resources and increase system complexity. To address this problem, an alternative

SLM approach that facilitates estimation of SI in the form of phase detection is presented.

Simulations show that this modified SLM approach produces similar PAPR reduction per-

formance when compared to conventional SLM. With no amplifier distortion and in the

presence of non-linear power amplifier distortion, the proposed SI estimation approach

achieves similar data recovery performance as both standard SLM-OFDM (with perfect

SI estimation) and also when SI estimation is implemented through the use of an existing

frequency-domain correlation (FDC) decision metric. In addition, the proposed method

significantly reduces computational complexity compared with the FDC scheme and an

ML estimation scheme.
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1. Introduction

O
rthogonal frequency division multiplexing (OFDM) is now the preferred layer-1 tech-

nology in various high speed communication system standards including 4G-Long

Term Evolution (4G-LTE) because it offers high spectral efficiency, immunity to multipath

fading and provides a means to achieve very high data rate transmission. These are all

attractive attributes of any high speed communication system [1, 2]. However, OFDM has

a characteristic high peak-to-average power ratio (PAPR) [2–4], which may increase power

consumption, degrade system performance and put additional constraints on the design

and implementation of Power Amplifiers (PAs), Digital-to-Analogue (D/A) and Analogue-

to-Digital (A/D) converters [3]. In addition, high PAPR signal levels often drive a PA to

operate in its non-linear region, causing signal distortion in the form of increased bit-error-

rate (BER). In theory, non-linear PA distortion can be avoided using a PA with a large

linear region i.e. large input back off (IBO). Unfortunately, this approach is difficult to

achieve in practice and it often results in poor PA efficiency, which reduces battery life span

of mobile terminals and increases design costs [4, 5]. Therefore, for practical purposes, low

PAPR signals are desirable in OFDM systems.

An in-depth review of various PAPR reduction techniques has been presented in [6].

Amongst these, is the selected mapping (SLM) scheme. SLM [7] is a well established

method for reducing PAPR in OFDM. SLM creates alternative copies of the same OFDM

signal by using a number of phase rotation sequences to modify phases of individual OFDM

subcarriers within the original OFDM signal, then selecting and transmitting the time-

domain signal that has the lowest PAPR value. Unfortunately, SLM introduces additional

constraints in that it requires transmission and detection of some side information (SI),

which contains vital information on how the transmitted OFDM signal was constructed

at the transmitter. The transmission of SI reduces data throughput and the need for SI

detection increases the receiver’s computational requirements.

In pilot-aided OFDM systems, some SI estimation techniques that require no SI trans-
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mission are discussed in [8] and [9]. Assuming all possible SLM phase rotation sequence

vectors are known at the receiver, SI estimation is achieved in [8] using pilot-assisted

Maximum Likelihood (PAML) and in [9] based on frequency-domain correlation (FDC)

decision metrics. However, computational complexities associated with these schemes are

high and are proportional to the number of alternative SLM phase rotation sequence vec-

tors, U . These are unattractive when a larger value of U is used to improve the PAPR

reduction performance. Also, since these pilot-assisted SI estimation schemes require the

re-construction or storage of all U phase rotation sequence vectors at the receiver, there is

a considerable level of system overhead associated with the implementation of both PAML

and FDC SI estimation schemes.

To further reduce the computational complexity associated with SI estimation in pilot-

assisted SLM-OFDM systems, this paper presents a pilot-assisted SI estimation method,

which requires no SI transmission at the transmitter and no reconstruction of all candidate

SLM phase rotation sequences at the receiver. The proposed method is also based on an

extension of the work carried out in [10]. The proposed scheme in this paper differs from

the work studied in [10] in that it uses a different SI estimation criterion based on a hard

decision rule while the method in [10] applied a Maximum Likelihood (ML) detection cri-

terion. For comparisons with the proposed method, the FDC based SI estimation scheme,

presented in [9] is selected because it is based on the use of conventional SLM sequences

and also gives slightly improved PAPR reduction performance over [8]. Simulations show

that the modified SLM presented in this paper produces nearly similar PAPR reduction

performance as conventional SLM. In addition, the proposed method achieves similar data

recovery performance compared with existing SI estimation scheme presented in [9] and

also when perfect knowledge of SI was assumed, with and without the presence of non-linear

PA distortions.
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Fig. 1: SLM in pilot-aided OFDM i.e. SLM-OFDM

2. Conventional SLM-OFDM System and FDC Scheme

This section gives an overview of the conventional SLM method of reducing PAPR and

SI estimation based on the FDC scheme studied in [9]. Fig. 1 shows a block diagram

representation of a pilot-assisted SLM-OFDM system.

Conventional Pilot-assisted SLM-OFDM

Consider a pilot-aided OFDM symbol block X of length Nv, which consists of Np pilot

Xp, and Nd data Xd symbols. For 0 ≤ k ≤ Nv − 1 where k is a subarrier index, each

subcarrier symbol denoted by X[k] in X is mapped to a subcarrier index k through

X[k] = X[mL + l], 0 ≤ m ≤ Np − 1

=

⎧⎪⎨
⎪⎩

Xp[mL], l = 0

Xd[mL + l], otherwise
(1)
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where Nv = Nd +Np, L represents the pilot spacing i.e. the number of subcarriers between

two successive pilot symbols, l and m are arbitrary indices.

Using phase rotation sequence vectors denoted by Bu for 0 ≤ u ≤ U − 1, U alternative

OFDM signals are constructed through SLM. One of the modified OFDM signals, denoted

by xū, will have the lowest PAPR value. Thus, the selected and transmitted signal xū is

therefore given by

xū = IFFT{Bū · X}

=
1√
N

Nv−1∑
k=0

(
Bū[k] · X[k]

)
exp(−j2πnk/N) (2)

where 0 ≤ n ≤ N − 1.

The value of ū is obtained from

ū = arg min
u∈0,1, ... U−1

max{|xu|2}
E{|xu|2} , where xu = IFFT{Bu · X} (3)

where E{·} is the expectation function for evaluating the mean power of signal xu.

The value of ū must be known at the receiver in order to achieve successful data recov-

ery since it contains the critical information on how xū was formed. The value of ū or Bū

is commonly referred to as SI.

After transmission over a fading channel with frequency response H, the received

OFDM symbol Ȳ can be expressed as

Ȳ = HXū + V , where Xū = X · Bū (4)

where V represents complex-valued additive white Gaussian noise (AWGN) sequences.

Similar to X in (1), data components of Ȳ , H and V can be denoted by Ȳd, Hd and Vd

respectively and their pilot components as Ȳp, Hp and Vp respectively. Since the SI is

unknown at the receiver, it must be estimated.
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FDC SI Estimation

Let û represent an estimate of the SI. Using the FDC based SI estimation studied in

[9], û is obtained from

û = arg max
u ∈ 0,1, ... U−1

Re{Ru} (5)

where Ru is the FDC function, defined by

Ru =
1

Np − 1

Np−1∑
m=1

Ĥu
p [m] · Ĥu

p [m − 1]∗, (6)

and

Ĥu
p [m] =

Ȳp[m]Bu
p [m]∗

Xp[m]
(7)

where ∗ represents a complex conjugate operator.

In terms of computational complexity based on number of complex multiplications

(CMs) and additions (CAs), the calculation of the FDC function Ru in (6) requires

U(Np−1) CMs and U(Np−2) CAs while the computation of Ĥu
p [m] in (7) requires UNp

CMs. In total, the FDC based SI estimation scheme requires U(2Np−1) CMs and U(Np−2)

CAs. It can be noted that these evaluations assume that Bu
p [m] ∈ ±1. In addition, since

most implementations will involve real-valued operations, each complex-valued operation

i.e. CMs and CAs are re-expressed in terms of real multiplications (RMs) and additions

(RAs). From the definition in [9],

1 CM � 4 RM + 2 RA and 1 CA � 2 RA. (8)

Thus, the FDC scheme will require an estimated total number of 4(2UNp − U) RMs and

6U(Np−1) RAs.

Using the estimated SI value û, SLM de-mapping is performed to remove the applied

SLM phase rotation sequence value Bū[k] from each of the received subcarriers Ȳ [k] through
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an SLM de-mapping procedure, which gives

Y [k] = Ȳ [k]Bû[k]∗. (9)

Similarly, using the value of û, the pilot sub-channel estimate Ĥp[m] is obtained from

Ĥu
p [m] as

Ĥp[m] = Ĥ û
p [m]. (10)

The next stage of data decoding involves finding an estimate of the received subcarrier

symbol from

X̂d[k] = min
D[q]∈Q

∣∣∣Yd[k] − Ĥd[k]D[q]
∣∣∣2 (11)

where Q is the set of Q constellation points D[q] of the chosen data modulation scheme for

0 ≤ q ≤ Q − 1, X̂d[k] ∈ Q is the estimated data symbol, and Ĥd[k] is an estimate of data

sub-channel, obtained by linear interpolation between values of Ĥp[m].

Fig. 2: Cluster representation showing data and pilots
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3. Proposed Method

An alternative SI estimation method based on a binary phase detection approach is

now proposed in an attempt to reduce the SI estimation computational complexity when

compared with the methods in [9] and [10]. The proposed SI estimation method in this

paper uses similar modified SLM method, which is referred to as clustered SLM (C-SLM),

and is described in [10]. However, the proposed SI estimation is different compared with

the approach in [10].

Similar to [10], the proposed method involves partitioning of OFDM symbol block X

into Np/2 consecutive clusters, each having two consecutive pilot symbols and W − 2 data

symbols where W = 2L.

Fig. 2 shows a block diagram representation of the considered clustering. For 0 ≤ c <

(Np/2) − 1, the cluster form of X[k] can be represented by

Xc[w] = X[cW + w] = X[k], 0 ≤ w ≤ W − 1

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xc[we] = Xp[cW + we], we = 0, we ∈ w

Xc[wo] = Xp[cW + wo], wo = L, wo ∈ w

Xc[wd] = Xd[cW + wd], otherwise

(12)

where wd = 1, 2 . . . L − 1, L + 1 . . . W − 1, we and wo represents w indices for every

first and second pilot symbol in each cluster respectively. Henceforth, the first and second

pilots in each cluster will be referred to as the ‘even-indexed pilot’ and ‘odd-indexed pilot’

respectively.

Similar to SLM, the C-SLM method produces alternative copies of the original OFDM

symbol, then selects and transmits the one that has the lowest PAPR value. In contrast to

SLM, which performs phase rotation on each of the subcarrier symbols (data and pilots)

with different phase values, C-SLM phase rotates all data subcarrier symbol and the odd-

index pilot in each cluster with a common phase value while the even-index pilot remains

unchanged.
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Let Ju represent C-SLM phase rotation sequences where Ju ∈ ±1, elements of Ju are

defined as

Ju
c [w] = Ju[cW + w] = Ju[k]

=

⎧⎪⎨
⎪⎩

Ju
c [we] = 1

Ju
c [wo] = Ju

c [wd] = Ju
c = ±1.

(13)

Thus, application of Ju to X produces Xu as expressed through

Xu
c [w] = Xu[cW + w] = Xu[k]

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xu
c [we] = Xc[we]

Xu
c [wo] = Xc[wo]Ju

c

Xu
c [wd] = Xc[wd]Ju

c .

(14)

The lowest PAPR signal xū, obtained through C-SLM is given by

xū
n =

1√
N

Nv−1∑
k=0

X ū[k]e
j2πnk

N , 0 ≤ n ≤ N − 1 (15)

where Xū = X·J ū and J ū = ejαū
denotes the optimum C-SLM sequence vector.

At the receiver, let Z represent the received OFDM sequences where Z is expressed by

Z = HXū + V . (16)
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Thus, each of the received subcarrier (in clustered form) Zc[w] is represented by

Zc[w] = Hc[w]Xc[w]J ū
c + Vc[w],

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Hc[we]Xc[we] + Vc[we], w = we,

Hc[wo]Xc[wo]J ū
c + Vc[wo], w = wo,

Hc[wd]Xc[wd]J ū
c + Vc[wd], w = wd.

(17)

Unlike the FDC based SI estimation method previously described in (5), an estimate of

the SI term J ū
c can also be achieved from the odd-indexed pilot since J ū

c [wd] = J ū
c [wo] = J ū

c

[10].

First, an odd-indexed H̄c[wo] and an even-indexed Ĥc[we] terms are computed from

Ĥc[we] =
Zc[we]
Xc[we]

=
Hc[we]Xc[we] + Vc[we]

Xc[we]

= Hc[we] +
Vc[we]
Xc[we]

(18a)

H̄c[wo] =
Zc[wo]
Xc[wo]

=
Hc[wo]Xc[wo]J ū

c + Vc[wo]
Xc[wo]

= Hc[wo]J ū
c +

Vc[wo]
Xc[wo]

. (18b)

At high signal-to-noise ratio (SNR) where the effects of the additive noise terms are negli-

gible, a simplified expression for H̄c[wo] becomes

H̄c[wo] ≈ Hc[wo]J ū
c (19)

From (18a) and (18b), it can be seen that the term Ĥc[we] differs from H̄c[wo] because
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Ĥc[we] has no associated phase rotation value (since J ū
c [we] = 1, see (13)) while H̄c[wo] has

an associated phase rotation term J ū
c . Therefore, Ĥc[we] represent the even-indexed pilot

sub-channel estimate while H̄c[wo] represent an odd-indexed channel term.

It can be seen from the expression in (19) that an estimate of the SI term J ū
c can be

obtained from H̄c[wo]. However, since H̄c[wo] has an associated channel term Hc[wo], some

form of channel cancellation is required to mitigate the channel fading effects. To achieve

this, a ‘normalised’ (with respect to Ĥc[we]) complex-valued term Rc is first obtained

through

Rc = H̄c[wo]
/

Ĥc[we]

=
Hc[wo]J ū

c + Vc[wo]
Xc[wo]

Hc[we] + Vc[we]
Xc[we]

. (20)

By omitting the additive noise terms for simplicity, Rc can be re-expressed as

Rc ≈ Hc[wo]J ū
c

Hc[we]
. (21)

By letting ᾱc represent the phase component of Rc, a polar coordinate representation of

Rc is given as

Rc = |Rc| exp(jᾱc). (22)

From the expression in (21), it can be noted that by assuming a slow channel fading

condition where Hc[wo] ≈ Hc[we], an estimate Ĵc of the applied C-SLM sequence value J ū
c

can be calculated from Rc.

The method in [10]

For each c index, let Ĵc denotes the estimate of J ū
c where Ĵc ∈ ±1. Using the ML

estimation approach described in [10], the SI estimate Ĵc is computed from

Ĵc = min
λi∈±1

∣∣∣ exp(jᾱc) − λi

∣∣∣2 (23)
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where λi is an arbitrary variable used to determine whether Ĵc is +1 or −1 [10]. It can be

seen that the implementation of (23) requires a total of Np | · |2 operations and Np CAs.

However, the need for several | · |2 computations can increase the computational complexity

of the method in [10].

An alternative SI estimation method is now proposed in an attempt to further reduce

the computational complexity of computing Ĵc. The proposed method is based on a hard

decision criterion and is now described.

Proposed: Hard Decision Estimation

Since J ū
c ∈ ±1, then its estimate Ĵc ∈ ±1. Let Ĵc = exp(jα̂c) where the value of α̂c is

either 0 or π. Unlike the ML method, Ĵc is indirectly determined from an estimate of the

phase term α̂c.

In the proposed method, an estimate of the phase term α̂c is calculated from a hard

decision criterion given by

α̂c =

⎧⎪⎨
⎪⎩

0, if |ᾱc| ≤ π/2

π, otherwise
(24)

where ᾱc is the phase component of Rc as previously defined in (22). Note that since ᾱc is

a real-valued number, then the computational complexity of obtaining an absolute value

of ᾱc in (24) is negligible and is ignored.

From the expressions in (23) and (24), it can be noted that both methods (ML scheme

and the proposed method) differ in their estimation of Ĵc. It can also be seen that both

methods require the computation of Ĥc[we] in (18a), H̄c[wo] in (18b), Rc in(20) and ᾱc

from Rc. The phase ᾱc of a complex-valued variable (like Rc) can be evaluated through

the use of the well-known Taylors series expansion described in [11, ch. 16]. It is estimated

that using the Taylors expansion, 5Np RMs and 2Np RAs are required to evaluate the

phase term ᾱc from Rc (see the Appendix). Table 1 shows the computational complexity

12



  

Table 1: Computational complexity of computing Ĥc[we], H̄c[wo], ᾱc, and Rc

Variables Computational Complexity

Ĥc[we] in (18a) Np/2 CMs ≡ 2Np RMs + Np RAs

H̄c[wo] in (18b) Np/2 CMs ≡ 2Np RMs + Np RAs

Rc in (20) Np/2 CMs ≡ 2Np RMs + Np RAs

ᾱc from Rc 5Np RMs + 2Np RAs

of computing Ĥc[we], H̄c[wo], ᾱc and Rc. As before, these evaluations (in Table 1) are re-

expressed in terms of RAs and RMs computations using (8). Using the Taylors expansion

method, computing the magnitude | · | of a complex-valued number requires 19 RMs and

8 RAs (see Appendix). Hence, computing Np | · |2 operations in (23) requires 20Np RMs

+ 8Np RAs. Note that an additional RM operation is required to compute | · |2 compared

with | · |. Hence, the combined computational complexity of computing Ĥc[we], H̄c[wo], ᾱc

and Rc is 11Np RMs + 5Np RAs.

Using Ĵc, data sub-channel estimates Ĥc[wd] are obtained by linear interpolation be-

tween values of Ĥc[we] and Ĥc[wo] where

Ĥc[wo] = H̄c[wo]Ĵc
∗. (25)

Using the channel estimates Ĥc[wd] and Ĥc[wo], channel equalization is achieved through

13



  

Ŷc[wd] =
Zc[wd]
H̄c[wo]

× Ĥc[wo]
Ĥc[wd]

=
Hc[wd]Xc[wd]J ū

c

Hc[wo]J ū
c

× Ĥc[wo]
Ĥc[wd]

=
Hc[wd]Xc[wd]

Hc[wo]
× Ĥc[wo]

Ĥc[wd]
. (26)

In a similar to (11), the final data decoding stage determines an estimate of the nearest

constellation point to Ŷc[wd].
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4. Simulation Results and Comparisons of Computational Complexity

This section presents comparisons of computational complexity of considered methods

and discusses the Matlab simulation results on PAPR reduction and BER performance.

4.1. Simulation Results

With values of [Np and L] set to [100 and 6] respectively, simulations consider OFDM

transmission over three different channel models namely: (1) the extended pedestrian chan-

nel (EPA), defined in [12]; (2) 6-tap COST-207 rural-area channel (RA6), defined in [13]

and (3) the 3GPP rural-area channel (3gppRA), defined in [14]. As defined for LTE sys-

tems, pilots are obtained from Gold codes sequences, OFDM subcarrier spacing is 15 KHz,

guard interval is 5.21 μs and sampling frequency is set to 15.36 MHz (when N = 1024

and Nv = 600). Data symbols are obtained using a 64-QAM modulation scheme. SLM is

performed using chaotic-binary sequences studied in [15] and PAPR reduction performance

is measured by evaluating the well known complementary cumulative distribution function

(CCDF). The CCDF gives the probability that a calculated PAPR of an OFDM signal

exceeds a certain threshold denoted by γ. Thus, the CCDF of γ is defined as

CCDF{γ} = Prob(PAPR ≥ γ). (27)

Fig. 3 shows comparisons of CCDF curves of the OFDM signal before PAPR reduction

(labelled as ‘original OFDM’), with PAPR reduction using conventional SLM and the pro-

posed C-SLM method for U set to 2 and 8. Results in Fig. 3 show that the proposed

method produces nearly similar PAPR reduction performance as conventional SLM for

each value of U .

With U set to 8, BER is evaluated by considering some pre-defined levels of PA linearity
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using the IBO parameter. The IBO of a PA is defined as

IBO (dB) = 10 log10

(
Psat

Pavg

)
(28)

where Psat and Pavg respectively denote PA input saturation power and mean power of

the input signal. In this paper, the amplitude modulation (AM) effects of PA is modelled

using the well known Rapp’s model [16]. Simulations consider a solid state PA (SSPA),

commonly used in mobile communications systems [17]. The output AM/AM conversion

of a SSPA, with unity gain, is described by Rapp’s model through

y(t) =
x(t)[

1 +
( |x(t)|

Asat

)2ρ
]1/2ρ

(29)

where x(t) represents the input signal into the SSPA, y(t) is the output signal from the

SSPA, Asat is the SSPA output saturation magnitude and ρ is the smoothing factor which

controls the PA’s transition from linear to saturation region i.e. the higher the value of

ρ, the sharper the transition from linear to non-linear operating region of the SSPA. For

accurate modelling of an SSPA, ρ is set to 3 [18, ch. 2].

The data recovery performance of the proposed method is compared with that of a

standard SLM-OFDM (when perfect SI knowledge is assumed) and with SI estimation

based on the FDC scheme for IBO values: ∞ dB, 2 dB, and 6 dB. Note that the case when

IBO = ∞ dB represent an SLM-OFDM system with no non-linear PA distortion i.e. linear

PA.

Figs. 4 to 6 compare BER curves between the proposed method, standard SLM-OFDM

(which assumes perfect SI estimation) and the FDC method over EPA, RA6 and 3gppRA

channel fading conditions respectively. Results show that for each of the considered channel
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environments and IBO levels, the proposed method produces the same BER performance

as both the FDC based SI estimation scheme and standard SLM-OFDM, which assumes

perfect knowledge of SI. This is partly because of the inherent phase cancellation (SLM

de-mapping) within the proposed method, and also because of the slow fading channel

conditions.

It can be noted the BER performance of the ML estimation method described in [10]

is not presented to avoid duplicity of previous results in [10]. The key advantage of the

proposed method over the FDC based SI estimation scheme and the ML method is now

demonstrated through the comparison of their computational complexity.

4.2. Computational Complexity

From the previous descriptions in Table 1, Table 2 shows summary of the computational

requirements of computing expressions in (23) and (24) for the ML estimation method in

[10] and the proposed method respectively. From Table 2, it can be seen that the proposed

scheme requires a total of 11Np RM and 5Np RA computations while the ML estimation

method in [10] requires 31Np RMs and 15Np RAs. Note that these evaluations ignores

the complexity of real-valued compare operations because it is negligible relative to the

complexity of RMs and RAs. Table 3 shows comparisons of the number of RM and RA op-

erations required by the FDC, the ML estimation method in [10] and the proposed method.

It can be noted (in Table 3) that the computational complexity of both the proposed

method and the method in [10] is independent of the value of U . In addition, unlike the

FDC scheme, both the ML estimation approach and the proposed method require no knowl-

edge of all candidate SLM sequences during data decoding. Therefore, it is expected that

the proposed method has a significant computational advantage (over the FDC scheme) as

the value of U is increased.

Using Table 3, the computational complexity advantage of the proposed method is

numerically evaluated using the well known Computational Complexity Reduction Ratio

(CCRR) metric relative to the FDC scheme and the ML estimation method (based on RAs
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  Table 2: Computation requirements of the ML estimation method in [10] and the proposed SI estimation

method

ML method [10] Proposed

Ĵc is directly computed from (23)
Ĵc is computed as exp(jα̂c) where α̂c

is derived from (24)

Complexity of computing Ĥc[we], H̄c[wo],

ᾱc and Rc is 11Np RMs + 5Np RAs
Same as the ML method.

The expression in (23) requires Np |·|2 and

Np CAs. Note that Np CAs ≡ 2Np RAs

and each | · |2 requires 20Np RMs plus 8Np

RAs.

To compute α̂c, Np/2 real-valued

compare operations are required.

Total: 31Np RMs + 15Np RAs Total: 11Np RMs + 5Np RAs
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and RMs). The CCRR is defined as [9]

Table 3: Comparisons of computational complexity in terms of RMs and RAs

Computational Complexity FDC Method in [10] Proposed

RMs 4(2UNp − U) 31Np 11Np

RAs 6U(Np − 1) 15Np 5Np

CCRR =
(

1 − complexity of the proposed method
complexity of other scheme

)
× 100%. (30)

The CCRR value represents the amount (expressed as a %) of reduction in computational

complexity offered by the proposed method relative to either the FDC scheme or the ML

approach [19]. Table 4 shows comparisons of estimated CCRR values for RMs and RAs

when U is set to: 4, 8 and 16. High CCRR values for the proposed method as highlighted

in Table 4 suggest that the proposed method requires significantly reduced computational

complexity compared with the existing FDC scheme in [9] and the ML method in [10].

As expected, it can be seen that the computational complexity of the ML approach is

independent on the value of U .

5. Conclusions

An alternative SI estimation technique is proposed for an SLM-OFDM receiver. The

proposed method used a modified SLM scheme known as C-SLM to reduce PAPR and

performed SI estimation through the use of a hard binary decision rule. In terms of PAPR

reduction, the C-SLM method offered nearly similar PAPR reduction capability to conven-

tional SLM. Also, unlike the FDC scheme, the proposed SI estimation method obtains SI
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Table 4: CCRR of the proposed method relative to both the FDC scheme and the ML method

Parameters Operations FDC scheme ML method

U = 4

RM 77% 64%

RA 84% 66%

U = 8

RM 88% 64%

RA 92% 66%

U = 16

RM 94% 64%

RA 96% 66%

estimates without the knowledge of all possible phase rotation sequences and produced sim-

ilar data recovery performance to both standard SLM-OFDM (with perfect knowledge of

SI) and the FDC based SI estimation scheme. The proposed method is an attractive choice

over other methods because it required significantly reduced computational complexity.

Appendix

Computing Amplitude and Phase of a Complex Number

For a complex number C, let |C| and θ respectively be the magnitude and phase of C.

The real and imaginary components of C is respectively represented by Cre and Cim. Then,

from Euler’s formula, the complex number C is given by

C = Cre ± jCim = |C| exp(±jθ)

= |C| cos(θ) ± j|C| sin(θ). (31)

Given C, θ can be computed from

θ = tan−1
(
Cim

/
Cre

)
. (32)
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From the expression in (31), the magnitude |C| is obtained as

|C| = Cre

/
cos(θ) OR |C| = Cim

/
sin(θ). (33)

Using numerical computational methods, the arctangent function tan−1 (x) in (32) is com-

puted using Taylor series expansion described in [20]

tan−1 (x) = x − x3

3
+

x5

5
− x7

7
+

x9

9
− . . . (34)

Note that x is a real-valued number. Using a Matlab tool called taylortool, it was verified

that the first 5 terms in a Taylor series approximation is sufficient to produce identical

results as that from actual Matlab implementation of trigonometric functions.

Computational Complexity of Computing θ = tan−1 (x)

To compute tan−1 (x) using the expression in (34), the x2 term is first computed so as

to enable the subsequent computation of x3, x5, x7 and x9 terms.

The computation of x2 requires 1 real multiplication (RM), and the computation of x3,

x5, x7 and x9 each require 1 RM according to the following:

x3 = x2 · x ; x5 = x3 · x2

x7 = x5 · x2 ; x9 = x7 · x2 (35)

Here, it is assumed that the computation of, for example, x7 will use the results from the

initial computation of x5 and the pre-computed x2. Similarly, the computation of x9 will

use initial results of x7 and x2.

The four divisions and additions in (34) require equivalent of 4 RMs and 4 real additions

(RAs). Hence, a total number of 9 RMs and 4 RAs are required to compute tan−1 (x).

Therefore, to compute the phase of a complex number, 10 RMs and 4 RAs operations are

required (the additional RM is from the division in (32)).
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Computational Complexity of Computing θ

= 10 RMs plus 4 RAs

Computational Complexity of Computing |C|
From the expression in (33), the cosine function cos(θ) can also be derived using the

Taylor series expansion [20]

cos(θ) = 1 − θ2

2!
+

θ4

4!
− θ6

6!
+

θ8

8!
− . . . (36)

Note that θ is also a real-valued number and the evaluations in (36) assume that the

factorial of a number is pre-computed and known. Similar to the arctan function, the

first 5 terms of Taylor series implementation of a cosine function is found to give a good

approximation.

In a similar manner to tan−1 (x), computing cos(θ) also requires 8 RMs and 4 RAs.

Hence, to compute the magnitude |C| of a complex number, a total number of 19 RMs and

8 RAs is required. Note that the additional RM is from the division operation in (33).

Computational Complexity of Computing |C|

= 19 RMs plus 8 RAs
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