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Abstract 

Particle breakage is a common problem in the conveying and handling of particulate solids. 

The phenomenon of particle breakage has been studied by experiments by a number of 

researchers in order to describe the process of breakage by mathematical functions. The 

development of comminution functions that can suitably describe the breakage behaviour of 

granular materials can lead to a significant improvement in the design and efficiency of 

particulate solids handling equipment. The present study focuses on developing the strength 

distribution and the breakage functions of particles of four different materials subjected to 

uniaxial compressive loading. Single particles were compressed until fracture in order to 

determine their strength distribution and the fragments were investigated to determine their 

size distribution.  The parameters of logistic function and breakage function were obtained by 

curve-fitting of the functions to the strength distribution and size distribution of the fragments 

respectively. These functions were then implemented in the BGU-DEM code which was used 

to carry out Discrete Element Method (DEM) simulations on single particle breakage by 

compression. The simulations produced a similar mass distribution of fragments to the 

breakage function obtained from the experimental data.  

Keywords: Particle breakage, DEM, Strength distribution, Breakage function, Compression 
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Introduction 

In the recent years, research on particle breakage has attracted a lot of interest in the 

particulate solids handling industry, where it is a common issue. Particle breakage can be 

desirable or undesirable depending upon the application, i.e. it is desirable in rock 

crushing/milling applications whereas it is undesirable in the chemical and pharmaceutical 

industries during the handling and transportation of granules or agglomerates as it degrades 

the quality of the product. In both cases, it is essential to study the process of particle 

breakage in order to improve the efficiency of particulate solids handling equipment.  

A number of researchers have investigated the phenomenon of particle breakage by using 

mathematical comminution functions. Some researchers have used compression tests 

(Subero-Couroyer et al. 2003; Pitchumani et al. 2004; Rozenblat et al. 2011) whereas others 

have used impact tests (Vogel and Peukert 2002; Wu et al. 2004) to determine these 

comminution functions. Kalman et al. (2009) presented a new method to implement five 

comminution functions into Discrete Element Method (DEM) simulations to simulate the 

process of particle breakage: strength distribution, selection, breakage, equivalence and 

fatigue functions. The present study focuses on determining the strength distribution and 

breakage functions of four different materials by using uniaxial compression tests. These 

functions are important because the strength distribution function determines whether a 

particle will break under an applied force whilst the breakage function determines the size 

distribution of the fragments produced as a result of particle breakage.  

Strength distribution function 

In the compression tests, as discussed in this work, a single particle was subjected to uniaxial 

compression between two platens until fracture, and the force required to break the particle 

was recorded as the crushing force. Due to the presence of pores and existing cracks, the 
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strength of individual particles is not identical (Subero-Couroyer et al. 2003), so a large 

number of particles was tested in order to determine a statistically reliable strength 

distribution which can then be described by a statistical function. Table 1 shows the number 

of particles tested and the statistical functions used by some previous researchers. In this 

table, P is the probability of particle breakage, F is the crushing force and, a and b are 

empirical model parameters. The logistic function was used to describe the strength 

distribution in the present study because it gives a good fit to the experimental data and is 

mathematically simple (Rozenblat et al. 2011). 

Breakage function 

According to Kalman et al. (2009), the cumulative mass or volumetric function B can be 

expressed by: 

𝐵 =  (
𝑑𝑓

𝑑𝑚𝑎𝑥
)

𝑐

 (4) 

where, df  is the fragment size, dmax is the largest particle size in the population of fragments 

and c is an empirical parameter. This function is based on Vogel and Peukert’s (2002) 

breakage function. 

Objectives 

The objectives of our research were: 

i. to apply the logistic function and the breakage function to describe the particle 

strength distribution and fragment size distribution respectively, and so to determine 

empirical parameters for four specific particulate materials, namely mustard seeds, 

black peppercorns, unrefined cane sugar and cake decorations; and  

ii. to implement these in a DEM code to simulate breakage of single particles.  
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BGU-DEM (Brosh and Levy 2010; Brosh et al. 2011b) was chosen for simulations as it 

includes the breakage model of Kalman et al (2009).The BGU-DEM code was linked to 

ANSYS FLUENT 13.0. Initially the particles are assigned a strength from the strength 

distribution found from the experiments. The particle breaks once the force acting on the 

particle exceeds its strength and fragments are created in place of the mother particle. The 

sizes of the daughter particles are determined from the breakage function. 

Experiments 

In order to investigate particle breakage, experiments were conducted using a TA XTPlus 

Texture Analyser (Stable Micro Systems Ltd, Godalming, UK) which is shown in Fig. 1. It is 

capable of measuring physical characteristics of materials such as breakage strength, 

hardness, cohesion, adhesion, stiffness, etc. by compression, tension, bending or shearing 

tests. It is equipped with a load cell capable of measuring loads up to 30 kg (294.3 N) with a 

resolution of 0.1 g. The Texture Analyser is connected to a computer system which is used 

for control and to record the force and displacement as a function of time. A cylindrical probe 

of 6 mm diameter was used to compress each particle at a constant rate of 1 mm/s. As the 

probe moves downwards, the software records the force and displacement values, and 

generates a graph which can be used to determine the breakage force. When the pre-set 

maximum value of the force is reached the probe retracts to its original position. 

The first set of experiments for finding the strength distribution function were conducted 

using 100 particles each of the four different materials. The particle size was measured with a 

Vernier calliper before testing each particle. The particle was then placed on the platform and 

Texture Component 32 software was used to control the compression test. Table 2 lists the 

materials used and their sizes, whilst Fig. 2 illustrates the particles used. All the particles 

tested were approximately spherical apart from the unrefined cane sugar particles which were 
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roughly cuboidal. It was found that the mustard particles do not break into fragments, but are 

grossly deformed.   

A second set of experiments was conducted to study the size distribution of the fragments 

resulting from particle breakage. These involved testing 10 particles of each material except 

the mustard seeds, which did not fragment. For these experiments, each test was stopped after 

the particle broke. The fragments formed were then carefully collected on glass slides, to be 

examined by optical microscopy using a Leica DM500 microscope.  

Results and Discussion 

A typical force-displacement curve obtained for a black peppercorn particle of size 4.14 mm 

is shown in Fig. 3. The graph has been divided into four regions. In Region A, the probe is 

moving towards the particle so the force is zero. When the probe comes in contact with the 

particle at the start of Region B, the force starts to rise as the particle is being compressed. 

The force continues to rise until the particle breaks at which point the force drops suddenly. 

The probe continues to compress the fragments of the particle. These fragments get 

rearranged under the probe and get broken into smaller fragments, the force response to 

which appears as peaks in Region C. When the fragments are completely compressed, the 

force begins to rise at a higher rate as can be seen in Region D after which the probe returns 

to its original position and it is ready to test the next particle. It should be noted that for the 

second set of experiments, in order to investigate the fragments formed after primary 

breakage, the test was stopped at the end of Region B.  

The region B and region C in Fig. 3 appear to be similar to force-displacement graph 

obtained by Khanal et al (2005) however towards the end of Region C, the force response is 

higher on their graph. This could be due to the larger size and the higher strength of the 

particles tested by them. 
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Strength Distribution Function 

We have expressed the strength of the particles in terms of crushing force, which was 

obtained from the peak in the Region B of Fig. 3. The crushing force was recorded for all the 

particles and the results are shown in Table 3. The table shows the maximum, minimum, 

mean, median and standard deviation of crushing force found for material. As mentioned 

earlier, it can be seen that there is wide variation in the strength for each of the materials. 

 As mentioned previously, in order to describe the particle strength distribution, a statistical 

function is needed. Rozenblat et al. (2011) reported that all the functions mentioned in Table 

1 can describe the strength distribution satisfactorily but they chose the logistic function (Eq. 

(3)) for its mathematical simplicity. It does not consist of any complex mathematical 

expressions such as an exponent function (in Weibull) or an error function (in lognormal). By 

the same reasoning, the logistic model was chosen to represent the strength distribution of the 

particles in this study. The parameters also have statistical meanings: parameter a is the 

median, and parameter b is the dispersion of the distribution. If b is larger, the distribution 

would be narrower and if it is smaller, the distribution would be wider. The logistic function 

was then fitted to the experimental data using the Least Mean Squares method. The values of 

parameters a and b and coefficient of determination R
2
 were determined and are shown in 

Table 4. It can be seen that the values of parameter a are quite close to the median crushing 

force values determined from the experiments. Fig. 4 shows the logistic function fit for all the 

materials, from which it is clear that the logistic function describes the experimental data 

well. 

Breakage function 

This section describes the size distributions of fragments formed from the particles and how 

the breakage functions were determined. It was found that peppercorn particles fragmented 
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into 3 to 5 fragments. Cake decorations were found to break into 8 to 111 fragments and 

unrefined cane sugar into 21 to 65 fragments out of which 3 to 10 fragments accounted for 

90% of the mass of the parent particle, the remaining fragments being very small. 

The mass of a fragment relative to the parent particle can be determined using the following 

relation: 

𝑚𝑟𝑒𝑙 =
𝑚𝑓

𝑚𝑇
 (5) 

where, mf is the mass of the fragment and mT is the total mass of the fragments, which is also 

equal to the mass of the parent particle.  

The breakage functions determined in this study were subsequently used in BGU-DEM code 

which can simulate only spherical fragments after breakage (Brosh et al. 2011a). Thus, for a 

fragment of size df and the parent size dp (assuming constant density), Eq. (5) was re-written 

as: 

𝑚𝑟𝑒𝑙 =
𝑉𝑓𝜌

𝑉𝑝𝜌
 =  

1
6 𝜋𝑑𝑓

3

1
6 𝜋𝑑𝑝

3
=  (

𝑑𝑓

𝑑𝑝
)

3

 (6) 

As the actual fragments are non-spherical, the sum total of relative mass of all the fragments 

found by Eq. (6) will be greater than unity. Therefore, the relative mass of the fragments was 

normalised dividing it by the sum of the relative mass of all the fragments as shown in Eq. 

(7).  

𝑚𝑛𝑜𝑟𝑚 =  
𝑚𝑟𝑒𝑙

∑ 𝑚𝑟𝑒𝑙
 (7) 

The fragment sizes measured by microscope (Feret diameter) were used to calculate the 

relative mass of fragments using Eq. 6 which was then normalised using Eq. 7. Fig. 5 shows 

the typical size distributions of fragments obtained using this method for a particle of each 

material. The horizontal axis shows the cumulative normalised mass while the vertical axis 

shows the cumulative ratio of number of fragments to total fragments. From the 5 fragments 
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of the peppercorn particle shown here, 4 were found to be nearly the same size and 1 a 

smaller size whereas the cake decoration and the unrefined cane sugar particles produced a 

large variety of fragment sizes. From a total of 111 fragments of the cake decoration particle, 

only 6 fragments make up the 90% of the mass of the parent particle. The remaining 10 % of 

the mass is split into the rest of the 105 fragments. A similar pattern can be seen for the 

unrefined cane sugar particle where the mass of just 3 fragments (from a total of 28) is equal 

to 90% of the parent particle and the remaining 25 fragments form just 10% of the mass of 

parent particle.  

The breakage function (Eq. (4)) was then fitted to the cumulative normalised mass 

distribution of the fragments using the Least Mean Squares method and the parameter c was 

determined. The curve fitting is shown in Fig. 6.  The graphs show cumulative normalised 

mass on the vertical axis and the particle size on the horizontal axis. It can be seen that there 

is a good agreement between the breakage function and the experimental data. Table 5 shows 

the values of parameter c obtained from the curve fitting procedure. 

Simulation of particle breakage using DEM 

A cylindrical domain was created as shown in Fig. 7. The bottom surface was modelled as a 

stationary wall on which the particle (as a sphere) was placed. A moving wall was created 

above the particle which moves downwards to compress the particle. The strength 

distribution and breakage functions were implemented in DEM according to the procedure 

described by Kalman et al (2009). The DEM code has been used in the past to simulate 

breakage by impact (Brosh et al. 2011b; Brosh et al. 2014) in which the impact velocity 

needed to be converted to an equivalent force. Therefore, the code was modified to simulate 

compression based breakage by making the equivalent force to be equal to the magnitude of 
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the force acting on the particle. A similar breakage mechanism has also been used recently by 

Cleary and Sinnott (2015) to simulate particle breakage in compression crushers.  

The contact force F acting on the particle was modelled by a spring-dashpot model which is 

calculated by: 

𝐹 = 𝑘𝛿1.5 − 𝐶𝑣 (8) 

where, 𝛿 is the displacement of the particle (due to compression), C is the damping 

coefficient, 𝑣 is the relative velocity of particle to the wall, k is the spring stiffness between 

the particle and the wall which is calculated as: 

𝑘 =  
4

3
[

√𝑟

(1 − 𝜐𝑝
2)/𝐸𝑝 + (1 − 𝜐𝑤

2 )/𝐸𝑤
] (9) 

where, r is the radius of the particle, υ is the Poisson’s ratio and E is the Young’s Modulus. 

The subscripts p and w stand for particle and wall respectively. The particle and wall 

properties used in the simulations are shown in Table 6.  The Young’s Modulus of the 

particles was determined by single particle compression experiments based on the method 

used by Couroyer et al. (2000). Single particles were loaded and unloaded twice in the force 

range of 2-5 N. The Young’s Modulus of the particles was obtained from the second 

unloading curve based on the Hertz force-displacement relation. 

The particle breaks when the force acting on it exceeds its strength, and daughter particles are 

created in its place based on the breakage function. Fig. 8 shows an example of how the 

fragments are formed after breakage for each kind of particle. The particles are coloured 

according to their size. The peppercorn particle fragmented into 2, the unrefined cane sugar 

particle into 12 and the cake decoration particle into 5 daughter particles. 

Fig. 9 shows the comparison of the fragment size distribution of five particles of each kind 

obtained after breakage and the breakage function used in the DEM code. The parent 

particles were of different sizes, so the mass distribution is shown as a function of the ratio of 
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fragment size to the size of the largest fragment. It can be seen the mass distribution of the 

fragments of all the materials closely resembles the distribution expected by the breakage 

function obtained from the experimental data which demonstrates the suitability of the DEM 

code and the functions used to simulate the particle breakage.  

Predictive simulation 

The DEM code was then used for predicting breakage in the bulk crushing of peppercorns. 

The results were compared to experimental data for these tests. In the experiments, about 300 

particles were taken in a cylindrical container with an internal diameter of 40 mm. The 

particle bed was compressed by 5 mm at a rate of 1 mm/min using an Instron compression 

machine. The size distribution of the particles was measured using sieves before and after the 

compression experiment. The schematic of the experimental set up is shown in Fig. 10.  

For the simulations, a cylindrical domain of 40 mm diameter and 40 mm height was created. 

Then 300 particles were dropped into the domain from the top. The particle size range was 

from 3.34 mm to 5.15 mm. This gave a similar size distribution as the experiments as shown 

in Fig. 11. The particles settled in the bottom part of the cylinder under gravity and form a 

particle bed. The coefficient of restitution between the particles was 0.3 and between the 

particles and the walls was 0.5. A moving wall then starts to compress the particle bed. The 

simulation was stopped after a compression of 5 mm after first contact. The time-step for the 

simulation was 2 s. Fig. 12 shows the visualisation of the particle assembly before 

compression and at the end of 5 mm compression. The broken particles are shown in black 

whereas the particles in white are the unbroken particles. It was found that after a 

compression of 5 mm, 43 particles were broken in the assembly.   

Fig. 13 shows the comparison of the mass distribution of the particles at the end of 

compression for the experiments and simulation. It can be seen that the mass distribution 
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predicted by the simulations was similar to the experimental data. However, there is some 

noticeable difference in the mass percentage of particles in the <1.7 mm and 2.36-3.35 mm 

size ranges which shows some underestimation of breakage. This can be attributed to the 

following reasons:  

(i) It can be seen in Fig. 12 that the top surface of the particle assembly is not level at the start 

of compression whereas in the experiments the surface was levelled before starting 

compression.  

(ii) The smallest fragment size was set to 1 mm in order to ensure the simulation time would 

not become excessive because a smaller size would require a smaller time-step which would 

in turn increase simulation time.  

(iii) The arrangement of particles in the assembly in the simulation is different than the 

experiment which affects the contact forces acting between the particles. 

Conclusion 

The focus of this study was to determine the strength distribution and breakage functions of 

mustard seeds, peppercorns, unrefined cane sugar and cake decorations by subjecting them to 

uniaxial compression. It was found that the mustard seeds do not fragment, while all the other 

materials tested do. A logistic function was fitted to the strength distribution of the materials 

and its empirical parameters were determined. The fragments formed from breakage of 

peppercorns, unrefined cane sugar and cake decoration particles were investigated to 

determine their breakage function. These functions were then implemented in DEM 

simulations to simulate single particle breakage and it was found that the simulations resulted 

in a qualitatively similar mass distribution of the daughter particles to the experiments. The 

BGU-DEM code was then applied to predict the simulation of bulk crushing of peppercorns. 

The mass distribution of the particles after compression in simulations appeared to be similar 
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to the experimental data however there was some underprediction of the fragments in the 

smallest size range. 
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List of symbols 

Symbol Description     SI Units 

a  Strength distribution function parameter N 

b  Strength distribution function parameter - 

c  Breakage function parameter   - 

df  Size of the fragment    m 

dmax  Size of the largest fragment   m 

dp  Size of the parent particle   m 

k  Stiffness     N/m
1.5

 

mf  Mass of the fragment    kg 

mrel  Relative mass      - 

mnorm  Normalised mass    - 

mT  Total mass of fragments   kg 

r   Particle radius     m 

𝑣  Relative velocity    m/s 

B  Breakage function    - 
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C  Damping coefficient    Ns/m 

Ep  Young’s Modulus of particle   Pa
 

Ew  Young’s Modulus of wall   Pa
 

F  Force      N 

P  Breakage probability    - 

Vf  Volume of fragment    m
3
 

Vp  Volume of parent particle   m
3
 

𝛿  Displacement     m 

 𝜌     Particle density    kg/m
3
  

υp  Poisson’s ratio  of particle   - 

υw  Poisson’s ratio  of wall   - 
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Fig. 1:  TA XTPlus Texture Analyser 
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Fig. 2: (a) Mustard seeds (b) Peppercorns (c) Unrefined cane sugar (d) Cake decorations 
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Fig. 3: Typical force vs displacement curve for a 4.14 mm peppercorn particle 
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Fig. 4: Logistic function fit: (a) mustard seeds (b) peppercorns (c) unrefined cane sugar (d) cake 

decorations  
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(a) (b) 

 

(c) 

Fig. 5: Typical size distributions in terms of cumulative normalised mass (a) 4.3 mm peppercorn 

particle (b) 1.6 mm unrefined cane sugar particle (c) 2.02 mm cake decoration particle 
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(a)  (b) 

 

(c) 

 

Fig. 6: Curve fitting of breakage function to normalised mass  (a) 4.3 mm peppercorn particle  

(b) 1.6 mm unrefined cane sugar particle (c) 2.02 mm cake decoration particle. The solid line 

represents the breakage function and the points represent experimental data. 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 2.5 3 3.5

C
u

m
u

la
ti

ve
  n

o
rm

al
is

e
d

 m
as

s  

Size (mm) 

c = 13.99 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500

C
u

m
u

la
ti

ve
  n

o
rm

al
is

e
d

 m
as

s  

Size (m) 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000

C
u

m
u

la
ti

ve
 n

o
rm

al
is

e
d

 m
as

s 

Size (m) 

c = 3.02 

c = 2.49 



19 

 

 

Fig. 7: Cylindrical domain with the particle placed on the bottom wall 

 

 

(a) Peppercorn particle 

 

(b) Unrefined cane sugar particle 

 

(c) Cake decoration particle 

Fig. 8: Fragments formed after breakage in DEM simulations 

 

Bottom wall 

Moving wall 
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(a)  (b) 

 

 

 

(c)   

 

Fig. 9: Cumulative mass distribution after breakage in DEM simulations (a) peppercorns (b) 

unrefined cane sugar (c) cake decorations 
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Fig. 10: Schematic of bulk crushing experiments (not to scale) 

 

 

Fig. 11: Initial Size distribution of particles used in experiments and simulations 
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(a) 

 

(b) 

Fig. 12: Visualisation of particle assembly (a) before compression (b) after 5 mm 

compression 

 

Fig. 13: Comparison of size distribution of particles after a compression of 5 mm in 

experiments and simulation 
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Table 1: Number of particles tested and statistical functions for strength distribution used by some 

previous researchers 

Reference No. of particles 

tested 

Statistical 

function 

Model  

Suber-Couroyer 

et al. (2003) 

200 Weibull 𝑃 = 1 − exp [− (
𝐹

𝑎
)

𝑏

] 
(1) 

   

Aman et al. 

(2010) 

 

100 Lognormal 𝑃 =  
1

2
[1 + 𝑒𝑟𝑓 (

ln(𝐹) − 𝑎

𝑏√2
)] (2) 

    

Petukhov and 

Kalman (2004) 

100 Logistic 𝑃 = 1 −
1

1 + (𝐹
𝑎⁄ )

𝑏 
(3) 

   

 

 

Table 2: Materials 

Material Size (mm) 

Mustard Seeds  1.6-2.6 

Black peppercorns 3.4-5.4 

Unrefined cane sugar 0.8-2.2 

Cake decorations 1.2-2.0 

 

 

Table 3: Summary of crushing force results 

Force (N) Mustard Seeds Peppercorns Unrefined cane  

sugar 

Cake 

decorations 

Maximum 36.11 123.56 57.25 40.82 

Minimum 5.91 12.31 1.13 5.23 

Mean 21.68 61.10 15.16 22.45 

Median 20.83 56.45 14.09 22.29 

Standard deviation 4.47 26.36 9.11 6.73 
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Table 4: Logistic function fitting summary 

 
Mustard Seeds Peppercorns 

Unrefined cane 

sugar 
Cake decorations 

a 21.19 56.44 13.42 21.77 

b 8.99 3.57 2.75 5.71 

R
2
 0.9919 0.9962 0.9904 0.9971 

 

 

Table 5: Parameter c 

 

c Peppercorns Cake decorations Cane sugar 

Range 4.05-13.99 2.81-9.06  1.82-4.03 

Mean 6.38 4.54 2.71 

 

 

Table 6: Material and wall properties 

 Young’s modulus 

(GPa) 

Poisson’s ratio 

Peppercorns 0.54 0.252 

Unrefined cane sugar 4.99 0.252 

Cake decorations 2.66 0.252 

Wall 200 0.3 

 

 


