

University for the Common Good

Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (VI)

Wang, Hongyu; Liu, Yibing; Jiang, Jia-Qian

Published in: Chemosphere

DOI: 10.1016/j.chemosphere.2016.04.088

Publication date: 2016

Document Version Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard): Wang, H, Liu, Y & Jiang, J-Q 2016, 'Reaction kinetics and oxidation product formation in the degradation of acetaminophen by ferrate (VI)', *Chemosphere*, vol. 155, pp. 583-590. https://doi.org/10.1016/j.chemosphere.2016.04.088

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details of how to contact us.

1	Reaction kinetics and oxidation product formation in the degradation of
2	acetaminophen by ferrate (VI)
3	Hongyu Wang ^{1,*} , Yibing Liu ¹ , Jia-Qian Jiang ^{2,*}
4	¹ School of Civil Engineering and Architecture, Zhejiang University of Technology,
5	Hangzhou 310014, People's Republic of China
6	² School of Engineering and Built Environment, Glasgow Caledonian University,
7	Glasgow G4 0BA, Scotland, United Kingdom
8	
9	
10	
11	
12	
13	
14	
15	
16	*Corresponding authors:
17	Hongyu Wang, Tel.: +86 571 8887 1516; Fax: (+86) 571-88320180.
18	E-mail address: hywang@zjut.edu.cn
19	Jia-Qian Jiang, Tel.: +44(0) 141 331 8850
20	E-mail address: jiaqian.jiang@gcu.ac.uk
21	

- 1 -

22 Abstract

This paper investigates the degradation of acetaminophen (AAP) in aqueous solutions 23 by ferrate (VI), aiming to propose the kinetics, pathways and the oxidation products' 24 formation in the AAP degradation. A series of jar tests were undertaken over ferrate 25 (VI) dosages (molar ratios of ferrate (VI):AAP, 5:1 to 25:1) and pH values (4~11). 26 The effects of co-existing ions (0.2~5 mM) and humic acid (10~50 mg \cdot l⁻¹) on the 27 AAP removal were investigated. Ferrate (VI) can remove 99.6 % AAP (from 1000 28 μ g·l⁻¹) in 60 minutes under study conditions when majority of the AAP reduction 29 occurred in the first 5 minutes. The treatment performance depended on the 30 31 ferrate(VI) dosage, pH and the type and strength of co-existing ions and humic acid. Raising ferrate (VI) dosage with optimal pH 7 improved the AAP degradation. In the 32 33 presence of humic acid, the AAP degradation by ferrate (VI) was promoted in a short period (< 30 min) but then inhibited with increasing in humic acid contents. The 34 presence of Al^{3+} , CO_3^{2-} and PO_4^{3-} ions declined but the existence of K⁺, Na⁺, Mg²⁺ and 35 Ca^{2+} ions can improve the AAP removal. The catalytic function of Al^{3+} on the 36 decomposition of ferrate (VI) in aqueous solution was found. 37 The kinetics of the reaction between ferrate (VI) and AAP was pseudo first-order 38 for ferrete (VI) and pseudo second-order for AAP. The pseudo rate constant of ferrate 39 (VI) with AAP was $1.4 \times 10^{-5} L^2 \cdot mg^{-2} \cdot min^{-1}$. Three oxidation products (OPs) were 40 identified and the AAP degradation pathways were proposed. 41 Keywords: Potassium ferrate (VI); Acetaminophen; Reaction mechanism; Influence 42 factors; Oxidation products 43

```
- 2 -
```

45 **1. Introduction**

46	In recent years, pharmaceutical and personal care products (PPCPs) have been
47	detected in numerous water resources (Boyd et al., 2003; Kim et al., 2009; Liu and
48	Wong, 2013). The potential hazard toward aquatic organisms and public health (Fent
49	et al., 2006; Crane et al., 2006; Witorsch and Thomas, 2010) resulting from increasing
50	PPCPs concentrations, and the incomplete removal of PPCPs has been found in
51	various conventional wastewater treatment plants (Boyd et al., 2003; Khetan and
52	Collins, 2007). As a typical anti-inflammatory and analgesic medication,
53	acetaminophen (AAP) is produced and consumed about 1.45×10^5 tons per year
54	worldwide (Kasprzyk-Horderna et al., 2008). AAP has high solubility up to 12.78
55	$g \cdot kg^{-1}$ in aqueous solutions at 20 °C, and has been detected frequently in water courses
56	(Granberg and Rasmuson, 1999). More than 65 μ g/L of acetaminophen has been
57	detected in surface water and the concentration of acetaminophen might be much
58	higher in pharmaceutical industry wastewater (Roberts and Thomas, 2006). Research
59	has shown that AAP had toxicity on bivalve Dreissena polymorpha (Parolini et al.,
60	2013).
61	Due to the possession of dual functions of oxidation and coagulation, ferrate (VI)
62	has been studied widely and demonstrated to be a very promising chemical for both
63	water and waste water treatment (Jiang and Lloyd, 2002; Lee et al., 2004; Jiang et al.,
64	2006). The elimination of PPCPs by ferrate (VI) has been conducted by many
65	researchers (e.g., Yang et al., 2012; Jiang et al., 2013; Jiang, 2014; Sharma et al.,
66	2015). So far, the degradation of AAP has been reported by anodic oxidation with a

- 3 -

67	boron-doped diamond electrode (Brillas et al., 2005), subsurface flow constructed
68	wetlands (Ranieri et al., 2011), ozonation and H ₂ O ₂ /UV system (Andreozzi et al.,
69	2003), Photo-Fenton process (Trovo et al., 2008) and TiO_2 photocatalysis (Yang et al.,
70	2008). However, to the best of our knowledge, the study on the degradation of AAP
71	using ferrate (VI) has not been reported so far.
72	And thus, this study focused on the removal of AAP in aqueous solutions by
73	ferrate (VI). Conditions of the degradation of AAP were investigated with respect to
74	ferrate (VI) dosage, pH value, and the presence of humic acid and various co-existing
75	ions (K ⁺ , Na ⁺ , Mg ²⁺ , Ca ²⁺ , Al ³⁺ , CO ₃ ²⁻ , SO ₄ ²⁻ , PO ₄ ³⁻). The study also aimed to reveal
76	oxidation products (OPs) and kinetics for the degradation of AAP by ferrate (VI).
77	
78	2. Experimental section

79 2.1 Chemicals and reagents

80	Acetaminophen (AAP) was purchased from aladdin (Shanghai, China); Sodium
81	hydroxide, methanol (LC) and potassium hydroxide (AR) were purchased from
82	Hangzhou Xiaoshan Chemical Reagent Factory (Hangzhou, China); Humic acid (HA)
83	was obtained from Nanjing Chemical Reagent Factory (Nanjing, China). Ferrate (VI)
84	solution of high concentration was synthesized by the electro-chemical way (Wang et
85	al., 2015), and then transferred to solid potassium ferrate (VI) after various
86	purification steps (Li et al., 2005). The ferrate(VI) strength of the resulting dry
87	product was measured by chromite method and direct spectrophotometric method

88	using a wavelength of 505 nm and an absorbance coefficient of 1100 $M^{-1} \cdot cm^{-1}$ (Jiang
89	et al., 2009). The purity of ferrate (VI) was continuously monitored on the daily basis.
90	The other reagents were supplied by Sinopharm Chemical Reagent Co. Ltd.
91	(Shanghai, China). Experimental water was generated by ultra pure water supplier
92	(UPHW1-90T, Sichuan europtronic ultra pure Technology Co. Ltd., China). Stock
93	solutions of AAP were prepared in pure water at 100 mg \cdot l ⁻¹ for the use of jar test
94	experiments, identification of oxidation products and kinetic analysis.
95	2.2 Jar test experiment
96	The oxidation of AAP by ferrate (VI) was studied using a magnetic stirrer (Color
97	squid, IKA (Guangzhou) equipment Co. Ltd, China) with a mixing speed of 600 rpm.
98	Pipette (Shanghai Kangmin inspection equipment Co. Ltd, China) was used for
99	sampling at given reaction time intervals; 1, 2, 5, 10, 20, 40 and 60 min, respectively,
100	and sodium hyposulfite was used as a quencher.
101	In order to examine the formation of AAP oxidation product as well as to assess
102	the degradation performance readily, two initial AAP concentrations, 500 and 1000
103	$\mu g \cdot l^{\cdot l}$ respectively, were used for the study. The selected AAP concentrations were
104	also in line with that used by other researchers (e.g., Yang et al., 2008). The influence
105	of operating conditions were investigated using 100 mL test solutions with initial AAP
106	concentrations of 1000 μ g·l ⁻¹ and by adjusting a number of ferrate (VI) dosages, pH
107	values and HA concentrations. Ferrate (VI) was dosed into the test solution as dried
108	powder and the dosage applied was in the molar ratio of ferrate (VI):AAP from 5:1 to
109	25:1. The pH of test solutions was adjusted by 0.01 M hydrochloric acid and 0.01 M

- 5 -

sodium hydroxide to pH 4~11. The HA concentration in testing solutions was $10\sim50$ mg·l⁻¹.

112	Test solutions of 200 mL with AAP initial concentration of 500 μ g·l ⁻¹ were used
113	to study the impact of the presence of 0.2~5 mM co-existing ions (K ⁺ , Na ⁺ , Mg ²⁺ ,
114	Ca^{2+} , Al^{3+} , CO_3^{2-} , SO_4^{2-} , PO_4^{3-}) on the AAP degradation performance by ferrate(VI).
115	The AAP solutions were mixed with given amount of NaCl, KCl, MgCl ₂ , CaCl ₂ ,
116	Al ₂ (SO ₄) ₃ , Na ₂ CO ₃ , Na ₂ SO ₄ and Na ₃ PO ₄ , respectively, to achieve the required ion
117	concentrations. The ferrate (VI) with dosage of the molar ratio of 28:1(ferrate
118	(VI):AAP) was mixed with the test solution and the sampling time was 0, 1, 2, 3, 5, 7
119	and 15 min. All samples in jar test experiments were filtered by 0.45 μm glass
120	membrane filters (Shanghai Xingya purifying material factory, China) before
121	analyzing the residual AAP concentrations. The AAP concentration and removal
122	percentage of each sample were detected by liquid chromatography (LC) (see sub-
123	section 2.5).

124 2.3 Identification of degradation products

125 Test solutions of 1000 μ g·l⁻¹ AAP were prepared in pure water. Ferrate (VI) was 126 added to the solution of AAP with the molar ratio of 40:1. The samples were obtained

127 after determined intervals, 0, 1, 5, 15, 30, 45 and 60 min. Detailed procedures of

identification of AAP degradation products can be seen in sub-section 2.5.

129 2.4 Kinetic analysis

130 Kinetic analysis of AAP with ferrate (VI) was performed at room temperature

- 6 -

131	$(20\pm2^{0}C)$ under pseudo-first-order conditions with ferrate (VI) in excess. The test
132	solutions of AAP were prepared in pure water. A given ferrate (VI) dose of 32.5 mg·l ⁻
133	1 was added into test solutions with AAP concentrations of 300, 500, 700, 900 $\mu g \cdot l^{-1}$
134	respectively. On the other hand, several ferrate (VI) doses, 13, 19.5, 26, 32.5 mg $\cdot l^{-1}$
135	respectively, were dosed into the test solutions with a given AAP concentration of
136	1000 μ g·l ⁻¹ . For the given time intervals as stated above, the reacting solutions were
137	quenched with sodium hyposulfite solution.
138	2.5 Analytical methods
139	The concentration of chemical oxygen demand (COD) of test solutions before
140	and after ferrate (VI) treatment was measured by potassium dichromate method
141	(APHA et al., 1998).
142	Ion chromatograph (ICS-900, Dionex, US), coupled with an anion column
143	(IonPac AS19, 4×250 mm) and a flow rate of 0.8 mL·min ⁻¹ of 20 mM KOH solution,
144	was used for the measurement of inorganic ions' concentrations.
145	The measurement of AAP was conducted by an Agilent 1200 LC system
146	(Agilent, US) with diode array detector (DAD). The column utilised for the separation
147	of compounds was a 5 $\mu m,$ 4.6×150 mm reversed phase Eclipse XDB-C18 column
148	(Agilent, US). The column was kept at 30 0 C and eluted by 15% methanol and 85%
149	pure water at a flow rate of 0.8 mL·min ⁻¹ . The injection volume was 10 μ l and the
150	DAD detection wavelength for AAP was 257 nm.
151	The oxidation products of AAP treated by ferrate (VI) were analyzed by a GC-
152	MS system (Saturn, USA) equipped with an SE-54 capillary column (Chromse, UK).

- 7 -

153	For each GC-MS injection, samples were pretreated by hydrochloric acid of 1 M to
154	pH<1 and then extracted with chloroform (10 times concentrated). The GC conditions
155	were given as follows: a sample volume of 1 μ l injected in the splitless mode at 280
156	0 C and the oven temperature programmed from 50 0 C (5 min) to 250 0 C at 10 0 C min ⁻¹
157	followed by a 5 min hold at 250 0 C, and helium used as the carrier gas at a flow rate
158	of 0.8 ml min ⁻¹ . Mass spectrometer was operated under electron ionization mode at 70
159	eV with mass scan range of 40~500.

3. Results and discussion

3.1. Effect of reaction time and ferrate (VI) dosage

164 Fig. 1. Effect of reaction time and ferrate (VI) dosage on AAP degradation

165	Fig.1 shows the variation of AAP degradation efficiency vs. reaction time and
166	ferrate (VI) dosages. The removal of AAP by ferrate (VI) mainly occurred within the
167	first 5 min reactions, followed by a more gradual further removal over the next 10 \sim
168	55 min. Increasing in the ferrate (VI) dose (as molar ratio of ferrate (VI): AAP) from
169	5:1 to 25:1, the removal efficiency of AAP increased sharply for the given time of 60
170	min; that the AAP removal percentage was 50.5, 76.7, 96.9 and 99.6% for the molar
171	ratio of 5:1, 10:1, 15:1 and 25:1, respectively. On the other hand, for a 10 min
172	reaction and high ferrate(VI) dose (molar ratio of 25:1), approximate 90% AAP was
173	removed. In general, ferrate (VI) could remove AAP readily under these conditions.

- 8 -

Additionally, COD concentration of the test solution with 10 mg AAP l⁻¹ was 31 mg l⁻¹ and after ferrate(VI) treatment (ferrate (VI) dose of 0.325 g/L) the COD was reduced to 24 mg l⁻¹ which gives 23% COD reduction, representing the optimal COD reduction performance.

178

179 *3.2. Effect of pH*

Fig.2 shows the variation of AAP degradation efficiency vs. pH value and 180 reaction time. It can be observed that for a given ferrate(VI) dose (25:1 as molar ratio, 181 182 ferrate (VI):AAP) and pH 4, AAP removal was about 85% and irrelevant to the reaction time. For other pHs, AAP removal was less than 70% and pH 11 was not 183 favorable to the APP removal especially for short reaction time; only 11.3% AAP was 184 185 removed for the reaction time of 2 min at pH 11. On the other hand, increasing in reaction time was favorable to the AAP removal for pH 6-9; 60 min reaction gave the 186 greatest AAP removal (99.95%) for pH 7. Moreover for pH 4 and 9, the degradation 187 rate of AAP by ferrate (VI) increased rapidly at the initial reaction period (2 min) but 188 approached to slight variations after 10 min. 189 190 191 Fig. 2. Effect of different pH values on AAP degradation 192 pH of test solution affects on the oxidation capacity and stability of ferrate (VI). 193 194 As shown in Fig. 2, degradation rate of AAP by ferrate(VI) at pH 4 was superior to

- 9 -

195 that at pH 11, since ferrate (VI) possesses higher redox potential (2.2 ev) under acidic conditions than that for alkaline conditions. Moreover, ferrate (VI) has been reported 196 to be dissociated to form different species in terms of solution pH as shown in 197 equations 1-3 (Sharma, 2002) and in Fig. S1 of the supplementary material. 198 199 $H_3FeO_4^+ \longleftrightarrow H^+ + H_2FeO_4, PK_a = 1.6 \pm 0.2$ (1)200 $H_2FeO_4 \longleftrightarrow H^+ + HFeO_4^-, PK_a = 3.5$ 201 (2) $HFeO_4^{-} \longleftrightarrow H^+ + FeO_4^{-2-}, PK_a = 7.3 \pm 0.1$ 202 (3)

203

For pH 4 or less, major ferrate (VI) species are $H_3FeO_4^+$, H_2FeO_4 and $HFeO_4^-$, which are readily self-decomposed, resulting in rapid oxidation of APP which has been demonstrated in Fig. 2 where the AAP removal was about 85% and irrelevant to the reaction time. Relatively for pH 7, ferrate (VI) was stable and still had high oxidizing ability and then the best AAP removal performance was achieved for a long reaction duration (60 min).

The second effect of pH on the AAP degradation is attributed to the dissociating products of AAP. The PK_a of AAP was 9.5, and dissociating and/or protonated species could be dominant when pH was 9 (see equation 4). Fig. 2 shows that for pH 9, the AAP removal efficiency was high and it was close to that at pH 7. Hence, the results observed from this study demonstrated that high protonated AAP species were readily degraded by ferrate (VI), which is consistent with that from the reported work where solutions containing phenol and chlorinated phenols were treated by ozone and ferrate

- 10 -

217 (VI) (e.g., Graham et al., 2004).

221 3.3. Kinetics

239	Table 1 shows the initial concentrations of AAP, ferrate (VI) dosage, fitting
240	equations and initial reaction rate of AAP. It can be seen that the plot of the reciprocal
241	of AAP concentrations versus reaction time were linear with good coefficient of
242	correlation (R^2 >0.90) at various concentrations of ferrate (VI), indicating the reaction
243	was second-order with respect to ferrate (VI). Moreover, the plot of the natural
244	logarithm of AAP concentrations versus reaction time were linear with good
245	correlation coefficient (R^2 >0.90) at various concentrations of AAP, indicating the
246	reaction was first-order with respect to AAP. Although ferrate (VI) was unstable,
247	ferrate (VI) was always in excess in comparison to AAP within the studied reaction
248	time. The value <i>a</i> could be obtained as the slope of ln r versus ln[AAP] with linear
249	fitting and the <i>b</i> is to be determined as the slope of $\ln k_1$ versus $\ln[Ferrat(VI)]$ with
250	linear fitting, and this can be seen in Figure 3. Thus, the values of a and b are 1.2
251	(R^2 =0.999) and 0.38 (R^2 =0.939), respectively. The apparent third-order rate constant
252	(k) for the reaction was calculated through the intercept in vertical axis. The value of
253	k is 0.000014 $L^2 \cdot mg^{-2} \cdot min^{-1}$. The observed rate law can be written in terms of both
254	ferrate (VI) and AAP as
255	$r = -d[AAP]d_{T}^{-1} = -0.000014 \cdot [Ferrate(VI)]^{1.20} \cdot [AAP]^{0.38} $ (10)
256	
257	Fig. 3. Kinetic analysis of AAP degradation by ferrate (VI)
258	
259	3.4. Oxidation products

260	Based on the measured m/z values and prior literature (Andreozzi et al., 2003;
261	Yang et al., 2009; Moctezuma et al., 2012), the best-fit chemical structures of
262	oxidation products (OPs) were tentatively proposed by considering the molecule
263	pattern of target compounds and the mechanism of ferrate (VI) oxidation; and the
264	probable structures of OPs (AAP-1-3)are presented in Fig. 4. AAP would be attacked
265	by ferrate (VI) which leads to the cleavage of imino group and the transformation of
266	acetyl amino group, forming AAP-1 and AAP-2 respectively. The formation of AAP-3
267	might attribute to further oxidation of intermediate OPs by ferrate (VI). Besides, the
268	NO_3^- was detected in the reaction solution which is consistent with previous studies
269	(Skoumal et al., 2006; Yang et al., 2009), and suggests that the possibility of the
270	broken of C-N bonds.
271	
272	Fig. 4. Detection of oxidation products $(a - c)$ and original compound, AAP (d)
273	Fig. 5. Evolution of OPs and nitrate with decreasing of AAP concentration
274	
275	Fig.5 shows the evolution of OPs and nitrate during the AAP degradation by
276	ferrate (VI). As it can be observed, AAP-1-2 were formed from the first 1 min
277	reaction, but almost disappeared, together with the AAP, after 60 min reactions. AAP-
278	3 was detected after 15 min and trace nitrate (C_{max} =0.038 mg l ⁻¹) was detected in the
279	degradation process. These results also indicate that further oxidation of intermediate
280	OPs by ferrate(VI) occurred.
281	Fig. 6 shows probable pathways of AAP degradation during the treatment by

- 13 -

282	ferrate (VI). The oxidation product, AAP-1, was formed with loss of a C_2H_4NO group
283	from the benzene ring, and the pathway was different with the formation of
284	hydroquinone (Skoumal et al., 2006; Tao et al., 2015) in other AAP degradation.
285	AAP-2 was generated by replacing the hydroxyl group with a quinonyl group and the
286	further loss of a C ₂ H ₃ O group from the imino group. In accordance with previous
287	literature (Skoumal et al., 2006; Yang et al., 2008; Moctezuma et al., 2012), AAP-3
288	was also detected, which was a further oxidation product from AAP-1 (phenol).
289	Reference to the prior knowledge (Santos, et al., 2002; Andreozzi et al., 2003; Wang
290	et al., 2014), phenol would be oxidized into para-benzoquinone, which was then
291	converted into maleic acid (AAP-3). The further degradation of AAP-3 could produce
292	oxalic acid and formic acid (Santos, et al., 2002; Skoumal, et al., 2006). Besides, the
293	formation of NO_3^- is due to the deamination of AAP and AAP-2. The attack by
294	ferrate(VI) on the hydroxyl and acetamido groups is consistent with the conclusions
295	made by Zhou and Jiang (2015), that electron-rich moieties were prone to react with
296	ferrate (VI).
297	Fig. 6. Possible pathways of AAP degradation by ferrate (VI)
298	
299	3.5. The presence of humic acid
300	
301	Fig. 7. Effect of different HA dosage on AAP degradation

303	The influence of the strength of humic acid (HA) on the removal of AAP by
304	ferrate (VI) treatment was investigated. Fig. 7 shows the changes in residual
305	concentrations of AAP corresponding to HA doses and for the reaction time. As it can
306	be observed, the removal of AAP increased during the intervals between 2 and 10 min
307	after the addition of HA in AAP solutions. However, for 30 and 60 min, the removal
308	efficiency of AAP with HA was less than that of AAP without HA. This suggests that
309	the presence of HA could accelerate the reaction rate of ferrate (VI) and AAP. The
310	observed phenomena might be related to that in the presence of HA, ferrate (VI) could
311	be dissociated to form ferrate (IV) and ferrate (V) which have even greater oxidation
312	capacity (Sharma, 2010) and then assists to the removal of AAP. With increasing in
313	the strength of HA, the removal efficiency of AAP first increased and then decreased,
314	and finally tended to be constant. The high contents of HA could consume more
315	ferrate (VI) in a long reaction time and this might cause the reduction of the removal
316	of PAA for the reaction time of 30 and 60 min.

318 3.6. Effect of coexisting ions

 K^+ , Na^+ , Mg^{2+} , Ca^{2+} , CO_3^{2-} , SO_4^{2-} and PO_4^{3-} ions are common ions in natural water. Aluminum based coagulant is also widely used in water treatment. The effects of above five cations and three anions on the removal percentage of AAP were studied. In the presence of K^+ , Na^+ , Mg^{2+} , Ca^{2+} , Al^{3+} , CO_3^{2-} , SO_4^{2-} , PO_4^{3-} ions, the AAP removal efficiencies vs. reaction time are shown in Fig. 8(a) for the ion concentrations of 0.2 mM, in Fig. 8(c) for 1 mM and Fig. 8(e) for 5 mM, respectively.

325	As it can be seen, K^+ , Na^+ , Mg^{2+} , Ca^{2+} and SO_4^{2-} ions can enhance the AAP removal,
326	however, Al^{3+} , CO_3^{2-} and PO_4^{3-} ions had the opposite effect. The higher the
327	concentration of Mg^{2+} , the greater the removal rate of AAP. The performance of K^+ ,
328	Na^+ , Ca^{2+} and SO_4^{2-} mainly remained constant with the increasing concentration from
329	0.2 to 5 mM.
330	
331 332	Table 2. Kinetic parameters of the AAP degradation in the presence of eight co- existing ions
333	
334	Fig. 8(b), Fig. 8(d) and Fig. 8(f) show the linear fitting curve of the reciprocal of
335	ferrate (VI) concentration and reaction time in the presence of the above ions. Table 2
336	shows the pseudo reaction rate constant (K_{obs}) and correlation coefficient of the linear
337	fitting curves for Fig. 8(b), Fig. 8(d) and Fig. 8(f). The good correlation coefficients
338	$(R^2>0.90$, except Al ³⁺) indicate that the reactions were pseudo second-order with
339	respect to ferrate (VI), which is consistent with that shown in the previous section.
340	When raising the ions' concentration from 0.2 to 5 mM, the K_{obs} of CO_3^{2-} and PO_4^{3-}
341	ions decreased, from 4×10^{-4} to 6.8×10^{-5} min ⁻¹ and 5×10^{-4} to 2.2×10^{-5} min ⁻¹ ,
342	respectively, but the K_{obs} of Mg^{2^+} increased, from 3.8×10^{-3} to 8.4×10^{-3} min^{-1} . The
343	resulting rate constants are theoretically evident to the observed effect of co-existing
344	ions on the AAP removal by ferrate(VI); that CO_3^{2-} and PO_4^{3-} ions inhabited while
345	Mg^{2+} ions were beneficial to the reaction between AAP and ferrate(VI).
346	In the presence of metal cations, deprotonation of acid-base functional groups in
347	AAP molecules can be accelerated due to the metal-AAP binding and this might also

- 16 -

348	reduce the AAP pK _a value (Jeffrey et al., 2006). In this work, the addition of K^+ , Na^+ ,
349	Mg^{2+} , Ca^{2+} could enhance the deprotonation of AAP and then to accelerate the
350	removal rate. Besides, hydrogen ion could be generated through the hydrolysis
351	reaction of magnesium ion in aqueous solution. The accumulation of hydrogen ions
352	helped the increase of oxidation potential of ferrate (VI) (Jiang, 2014). It may be the
353	reason that the addition of Mg^{2+} has a greater removal rate of AAP than Ca^{2+} .
354	In the presence of Al^{3+} , CO_3^{2-} and PO_4^{3-} ions and when the concentration of each
355	ion increased from 0.2 to 5 mM, the removal of AAP decreased from 66.7 to 22.4%
356	for Al^{3+} , 74.2 to 36.5% for CO_3^{2-} , and 79.9 to 13.1% for PO_4^{3-} , respectively. The
357	hydrolysis of CO_3^{2-} and PO_4^{3-} in the aqueous solution could raise the alkalinity and
358	then decreases the oxidation potential of ferrate (VI) and causes the reduction of AAP
359	removal efficiency. This phenomenon was even clearly to observe when
360	concentrations of phosphate and carbonate ions were greater.
361	
362	Table 3. Effect of aluminum ions on ferrate (VI) concentration
363	
364	In this work, the decomposition of ferrate (VI) caused by aluminium ions was
365	found (Table 3). As can be seen when 500 μ l of aluminium ions solution was added,
366	the ferrate (VI) concentration decreased by 79%. This might be related to the
367	hydrolysis of Al ³⁺ to produce hydrogen ions into solution, (Eq. 11), which then
368	accelerates the decomposition of ferrate (VI) and could lower the AAP removal
369	efficiency.

370
$$Al^{3+} + 3H_2O = Al(OH)_3 + 3H^+$$
 (11)

372 Fig. 8. Effect of different ions on AAP degradation

373

4. Conclusions

375	The treatment of AAP in aqueous solutions by ferrate (VI) was investigated.
376	Results demonstrated that AAP can be removed effectively under the experimental
377	conditions. More ferrate (VI) dosage and a neutral solution environment could bring a
378	better performance on the AAP degradation. Besides, the pseudo rate constant of
379	ferrate (VI) with AAP is 0.000014 $l^2 \cdot mg^{-2} \cdot min^{-1}$. Three oxidation products (OPs) were
380	identified. The attack on hydroxyl and acetamido groups of the AAP by ferrate (VI)
381	was proposed to be the main pathway of the AAP degradation scheme. Moreover, in
382	the presence of HA, a short time interval (< 30 min) would favour to but longer
383	reaction time (30-60 min) decreased the degradation of AAP. The presence of K^+ ,
384	Na^+ , Mg^{2+} and Ca^{2+} ions in aqueous solutions can improve the AAP removal
385	efficiency by ferrate(VI), and the most promoting effect of Mg^{2+} was observed. The
386	presence of Al^{3+} , CO_3^{2-} and PO_4^{3-} would decline the AAP degradation performance
387	significantly. The catalytic function of Al^{3+} to the ferrate (VI) decomposition in
388	aqueous solution was found in this work, which explains the negative effect of Al^{3+} on
389	the AAP reduction by ferrate (VI).

391 Acknowledgments

392	The authors gratefully acknowledge the funding of this collaborative research by
393	The Natural Science Foundation of P. R. China (NO.21376219). The authors are also
394	wish to appreciate the assistance received from the staff of Biological and
395	Environmental Engineering College at Zhejiang University of Technology for the
396	sample analysis by mass spectroscopy.
397	
398	Supplementary material
399	Supplementary material associated with this article can be found in the online
400	version.
401	
402	References
403	Andreozzi, R., Caprio, V., Marotta, R., Vogna, D., 2003. Paracetamol oxidation from
404	aqueous solutions by means of ozonation and H_2O_2/UV system. Water Research
405	37, 993-1004.
406	APHA-AWWA-WEF, 1998. Standard methods for the examination of water and
407	wastewater, 20th ed. Washington, DC.
408	Boyd, G.R., Reemtsma, H., Grimm, D.A., Mitra, S., 2003. Pharmaceuticals and
409	personal care products (PPCPs) in surface and treated waters of Louisiana, USA
410	and Ontario, Canada. Sci. Total Environ. 311, 135-149.

- 19 -

- 411 Brillas, E., Sires, I., Arias, C., Cabot, P.L., Centellas, F., Rodriguez, R.M., Garrido,
- 412 J.A., 2005. Mineralization of paracetamol in aqueous medium by anodic oxidation
- 413 with a boron-doped diamond electrode. Chemosphere 58, 399-406.
- 414 Crane, M., Watts, C., Boucard, T., 2006. Chronic aquatic environmental risks from
- 415 exposure to human pharmaceuticals. Sci. Total Environ. 367, 23-41.
- 416 Fent, K., Weston, A.A., Caminada, D., 2006. Ecotoxicology of human
- 417 pharmaceuticals. Aquat. Toxicol. 76, 122-159.
- 418 Granberg, R.A., Rasmuson, A.C., 1999. Solubility of paracetamol in pure solvents. J.
- 419 Chem. Eng. Data 44, 1391-1395.
- 420 Graham, N., Jiang, C.C., Li, X.Z., Jiang, J.Q., Ma, J., 2004. The influence of pH on
- the degradation of phenol and chlorophenols by potassium ferrate. Chemosphere
 56, 949 956.
- 423 Huang, H., Sommerfeld, D., Dunn, B.C., Eyring, E.M., Lloyd, C.R., 2001. Ferrate(VI)
- 424 oxidation of aqueous phenol: Kinetics and mechanism. J. Phys. Chem. A 105,
- 425 3536-3541.
- 426 Jeffrey J. Werner, William A. Arnold, McNeill, K., 2006. Water Hardness as a
- 427 Photochemical Parameter: Tetracycline Photolysis as a Function of Calcium
- 428 Concentration, Magnesium Concentration, and pH⁺. Environ. Sci. Technol. 40,
- 429 7236-7241.
- 430 Jia, H.D., Yang, X.L., Yang, Y., Gao, Y.F., 1999. Direct spectrophotometric
- 431 determination of ferrate(VI). Chin. J. Anal. Chem. 27, 617-617.
- 432 Jiang, J.Q., Lloyd, B., 2002. Progress in the development and use of ferrate(VI) salt as

- an oxidant and coagulant for water and wastewater treatment. Water Research 36,1397-1408.
- 435 Jiang, J.Q., Wang, S., Panagoulopoulos, A., 2006. The exploration of potassium
- 436 ferrate(VI) as a disinfectant/coagulant in water and wastewater treatment.
- 437 Chemosphere 63, 212-219.
- 438 Jiang, J.Q., 2007. Research progress in the use of ferrate(VI) for the environmental
- 439 remediation. J. Hazard. Mater. 146, 617-623.
- 440 Jiang, J.Q., Stanford, C., Alsheyab, M., 2009. The online generation and application
- of ferrate(VI) for sewage treatment—A pilot scale trial. Sep. Purif. Technol. 68,
 227-231.
- Jiang, J.Q., Zhou, Z.W., Patibandla, S., Shu, X.H., 2013. Pharmaceutical removal
- 444 from wastewater by ferrate(VI) and preliminary effluent toxicity assessments by

the zebrafish embryo model. Microchem J. 110, 239-245.

- Jiang, J. Q., 2014. Advances in the development and application of ferrate(VI) for
- 447 water and wastewater treatment. Journal of Chemical Technology & Biotechnology448 89, 165-177.
- 449 Khetan, S.K., Collins, T.J., 2007. Human pharmaceuticals in the aquatic environment:
- 450 A challenge to green chemistry. Chem. Rev. 107, 2319-2364.
- 451 Kasprzyk-Hordern, B., Dinsdale, R.M., Guwy, A.J., 2008. The occurrence of
- 452 pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in
- 453 surface water in South Wales, UK. Water Research 42, 3498-3518.
- 454 Kim, J.W., Jang, H.S., Kim, J.G., Ishibashi, H., Hirano, M., Nasu, K., Ichikawa, N.,

- 21 -

- 455 Takao, Y., Shinohara, R., Arizono, K., 2009. Occurrence of Pharmaceutical and
- 456 Personal Care Products (PPCPs) in Surface Water from Mankyung River, South
- 457 Korea. J. Health Sci. 55, 249-258.
- Lee, Y., Cho, M., Kim, J.Y., Yoon, J., 2004. Chemistry of ferrate (Fe(VI)) in aqueous
- 459 solution and its applications as a green chemical. Journal of Industrial and
- 460 Engineering Chemistry 10, 161-171.
- Li, C., Li, X.Z., Graham, N., 2005. A study of the preparation and reactivity of
- 462 potassium ferrate. Chemosphere 61, 537-543.
- Liu, J.L., Wong, M.H., 2013. Pharmaceuticals and personal care products (PPCPs): A
- review on environmental contamination in China. Environ. Int. 59, 208-224.
- 465 Moctezuma, E., Leyva, E., Aguilar, C.A., Luna, R.A., Montalvo, C., 2012.
- 466 Photocatalytic degradation of paracetamol: Intermediates and total reaction
- 467 mechanism. J. Hazard. Mater. 243, 130-138.
- 468 Parolini, M., Pedriali, A., Binelli, A., 2013. Application of a Biomarker Response
- 469 Index for Ranking the Toxicity of Five Pharmaceutical and Personal Care Products
- 470 (PPCPs) to the Bivalve Dreissena polymorpha. Arch. Environ. Contam. Toxicol.
- 471 64, 439-447.
- 472 Roberts, P.H., Thomas, K.V., 2006. The occurrence of selected pharmaceuticals in
- 473 wastewater effluent and surface waters of the lower Tyne catchment. Sci. Total
- 474 Environ. 356, 143-153.
- 475 Ranieri, E., Verlicchi, P., Young, T.M., 2011. Paracetamol removal in subsurface flow
- 476 constructed wetlands. Journal of Hydrology 404, 130-135.

- 22 -

Sharma, V.K., 2002. Potassium ferrate(VI): an environmentally friendly oxidant. Adv.
Environ. Res. 6, 143-156.
Sharma, V.K., 2010. Oxidation of inorganic compounds by ferrate(VI) and ferrate(V):
one-electron and two-electron transfer steps. Environ. Sci. Technol. 44, 5148-5152.
Sharma, V.K., Zboril, R., Varma, R.S., 2015. Ferrates: greener oxidants with
multimodal action in water treatment technologies, Accounts of Chem. Res. 48
182-191.
Santos, A., Yustos, P., Quintanilla, A., Rodríguez, S., García-Ochoa, F., 2002. Route
of the catalytic oxidation of phenol in aqueous phase. Applied Catalysis B:
Environmental 39, 97-113.
Skoumal, M., Cabot, P.L., Centellas, F., Arias, C., Rodrí guez, R.M., Garrido, J.A.,
Brillas, E., 2006. Mineralization of paracetamol by ozonation catalyzed with Fe ²⁺ ,
Cu ²⁺ and UVA light. Applied Catalysis B: Environmental 66, 228-240.
Tao, H., Liang, X., Zhang, Q., Chang, C.T., 2015. Enhanced photoactivity of
graphene/titanium dioxide nanotubes for removal of Acetaminophen. Applied
Surface Science 324, 258-264.
Trovo, A.G., Santos Melo, S.A., Pupo Nogueira, R.F., 2008. Photodegradation of the
pharmaceuticals amoxicillin, bezafibrate and paracetamol by the photo-Fenton
process - Application to sewage treatment plant effluent. Journal of Photochemistry
and Photobiology a-Chemistry 198, 215-220.
Wang, H. Y., Liu, Y. B., Zeng, F. C., Song, S., 2015. Electrochemical Synthesis of
Ferrate (VI) by Regular Anodic Replacement. Int. J. Electrochem. Sci. 10, 7966-

- 23 -

499 7976.

- 500 Wang, J., Fu, W., He, X., Yang, S., Zhu, W., 2014. Catalytic wet air oxidation of
- 501 phenol with functionalized carbon materials as catalysts: Reaction mechanism and
- 502 pathway. Journal of Environmental Sciences 26, 1741-1749.
- 503 Witorsch, R.J., Thomas, J.A., 2010. Personal care products and endocrine disruption:
- A critical review of the literature. Crit. Rev. Toxicol. 40, 1-30.
- 505 Yang, L., Yu, L.E., Ray, M.B., 2008. Degradation of paracetamol in aqueous solutions
- 506 by TiO2 photocatalysis. Water Research 42, 3480-3488.
- 507 Yang, L., Yu, L.E., Ray, M.B., 2008. Degradation of paracetamol in aqueous solutions
- 508 by TiO2 photocatalysis. Water Res. 42, 3480-3488.
- 509 Yang, B., Ying, G.G., Zhao, J.L., Liu, S., Zhou, L.J., Chen, F., 2012. Removal of
- selected endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal
- 511 care products (PPCPs) during ferrate(VI) treatment of secondary wastewater
- effluents. Water Research 46, 2194-2204.
- 513 Zhou, Z., Jiang, J. Q., 2015. Reaction kinetics and oxidation products formation in the
- degradation of ciprofloxacin and ibuprofen by ferrate(VI). Chemosphere 119,
- 515 Supplement, S95-S100.

516	Figure captions
517	Fig. 1. Effect of reaction time and ferrate (VI) dosage on AAP degradation
518	Fig. 2. Effect of different pH values on AAP degradation
519	Fig. 3. Kinetics analysis of AAP degradation by ferrate (VI)
520	Fig. 4. Detection of oxidation products $(a - c)$ and original compound, AAP (d)
521	Fig. 5. Evolution of OPs and nitrate with decreasing of AAP concentration
522	Fig. 6. Possible pathways of AAP degradation by ferrate (VI)
523	Fig. 7. Effect of different HA dosage on AAP degradation
524	Fig. 8. Effect of different ions on AAP degradation

527 Fig. 1. Effect of reaction time and ferrate (VI) dosage on AAP degradation

529 Fig. 2. Effect of different pH values on AAP degradation

532 Fig. 3. Kinetics analysis of AAP degradation by ferrate (VI)

531

535 Fig. 4. Detection of oxidation products (a - c) and original compound, AAP (d)

538 Fig. 5. Evolution of OPs and nitrate with decreasing of AAP concentration

541 Fig. 6. Possible pathways of AAP degradation by ferrate (VI)

543 Fig. 7. Effect of different HA dosage on AAP degradation

554 Table 1

_	D _{Ferate (VI)}	C _{IAAP}	Fitting equation	V (min ⁻¹)	P ²	R _{IR}
	$(mg \cdot L^{-1})$	$(\mu g \cdot L^{-1})$	Fitting equation	κ _{obs} (IIIII)	K	$(\mu g \cdot L^{-1} \cdot min^{-1})$
	13	1000	1/C=0.0003X+0.0012	0.0003	0.9093	208.3
	19.5	1000	1/C=0.0005X+0.0012	0.0005	0.9946	347.2
	26	1000	1/C=0.0007X+0.0013	0.0007	0.9943	414.2
	32.5	1000	1/C=0.0009X+0.0012	0.0009	0.9961	625.0
	32.5	900	ln C=-0.2647X+6.2611	0.2647	0.9088	138.6
	32.5	700	ln C=-0.3920X+6.0656	0.3920	0.9596	168.9
	32.5	500	ln C=-0.5504X+5.8182	0.5504	0.9694	185.1
	32.5	300	ln C=-0.8308X+5.5569	0.8308	0.9665	215.2

555 Kinetic parameters of AAP degradation by ferrate (VI)

556 D_{Ferate (VI)} :Ferate (VI) dosage

557 C_{IAAP}:Initial concentration of AAP

558 K_{obs}: The pseudo reaction rate constant

559 R_{IR}:Initial reaction rate

560 Table 2

Parameter	D _{ions} (mM)	Na ⁺	K^+	Ca ²⁺	Mg^{2+}	Al^{3+}	CO3 ²⁻	SO_4^{2-}	PO4 ³⁻
$K_{obs}(\min^{1})$	0.2	0.0026	0.0033	0.0038	0.0038	0.0007	0.0004	0.0031	0.0005
R^2	0.2	0.9661	0.9905	0.9837	0.9842	0.7765	0.9944	0.9925	0.9999
$K_{obs}(\min^{1})$	1	0.0041	0.0042	0.0037	0.0053	0.0001	0.0002	0.0044	6.1×10 ⁻⁵
R^2	1	0.9963	0.9729	0.9829	0.9700	0.6713	0.9893	0.9583	0.9789
$K_{obs}(\min^{1})$	5	0.0030	0.0029	0.0037	0.0084	0.0001	6.8×10 ⁻⁵	0.0031	2.2×10 ⁻⁵
R^2	5	0.9852	0.9989	0.9787	0.9340	0.6352	0.9887	0.9728	0.9012

561 Kinetic parameters of the AAP degradation in the presence of 8 dissolved ions

562 D_{ion}:The ions dose

563 K_{obs}: The pseudo reaction rate constant

Table 3

V _{aluminum} (µL)	0	10	100	200	300	400	500
C _{Ferrate (VI)} (mM)	13.2	12.8	11.5	8.9	6.6	4.3	2.8

Effect of aluminum ions on ferrate (VI) concentration

V_{aluminum}: The volume of aluminum ions

C_{Ferrate (VI)}: The concentration of ferrate (VI)