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ABSTRACT
The accurate automated classification of variable stars into their respective sub-types
is difficult. Machine learning based solutions often fall foul of the imbalanced learning
problem, which causes poor generalisation performance in practice, especially on rare
variable star sub-types. In previous work, we attempted to overcome such deficiencies
via the development of a hierarchical machine learning classifier. This ‘algorithm-level’
approach to tackling imbalance, yielded promising results on Catalina Real-Time Sur-
vey (CRTS) data, outperforming the binary and multi-class classification schemes pre-
viously applied in this area. In this work, we attempt to further improve hierarchical
classification performance by applying ‘data-level’ approaches to directly augment the
training data so that they better describe under-represented classes. We apply and re-
port results for three data augmentation methods in particular: Randomly Augmented
Sampled Light curves from magnitude E rror (RASLE), augmenting light curves with
Gaussian Process modelling (GpFit) and the Synthetic Minority Over-sampling Tech-
nique (SMOTE). When combining the ‘algorithm-level’ (i.e. the hierarchical scheme)
together with the ‘data-level’ approach, we further improve variable star classification
accuracy by 1-4%. We found that a higher classification rate is obtained when using
GpFit in the hierarchical model. Further improvement of the metric scores requires a
better standard set of correctly identified variable stars and, perhaps enhanced features
are needed.

Key words: stars: variables- general – methods: data analysis - Astronomical instru-
mentation, methods, and techniques.

1 INTRODUCTION

Astronomy is now in an era dominated by an explosion of
big data, produced with current and future surveys, such as
OGLE (Udalski et al. 2008, 2015), CRTS (Drake et al. 2017)
and Kepler (Koch et al. 2010) among others, thus, relying
solely on visual inspection for classification is becoming im-
practical. Therefore, automatic classification pipelines are
required to categorize an unprecedented amount of variable
star light curves into known or unknown classes for vari-
ous astrophysical applications. Accordingly, machine learn-
ing has heavily been studied to solve classification problems,
for instance, uncovering aberrant phenomena encountered
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in observations, also known as unsupervised anomaly de-
tection (Chen et al. 2018; Zong et al. 2018) and automatic
classification of variable stars (Kim & Bailer-Jones 2016; Be-
navente et al. 2017; Mahabal et al. 2017; Narayan et al. 2018;
Pashchenko et al. 2018; Tsang & Schultz 2019; Zorich et al.
2020).

However, a major issue that impedes the successful au-
tomated classification of astronomical data is known as the
imbalanced learning problem. This occurs when we wish to
organise data into distinct groups known as “classes”, us-
ing examples to guide a process known as “classification”.
When there is a large distributional difference between the
number of examples belonging to each class, minority and
majority classes form. When the imbalance between the mi-
nority and majority classes is large, problems can arise when
attempting to build standard machine learning classification
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Figure 1. Hierarchical Tree classification with automated light curves augmentation for CRTS Data. The number of training examples

(real LCs) is represented by Tr, the number of training examples after augmentation (both real and synthetic LCs) is represented by
A.Tr and the number of test examples (real LCs) is represented by Te. At level 1, the real LCs in the training set are augmented and

the dotted square represents a trained model (RF/XGBoost classifier). During testing phase, the classified examples in the test set move

down the hierarchy at level 2. Afterwards, real LCs in the training set in level 1 moves to their respective branches at level 2. The real
LCs are augmented and features are extracted. This process is repeated until it reaches all leaves in the hierarchy.

algorithms, ultimately resulting in poor categorisation per-
formance. This happens as such algorithms are usually op-
timised to achieve maximum accuracy. However this is triv-
ially achievable in imbalanced datasets by always assigning
the majority class label when making predictions. This leads
to biased classifiers that obtain high predictive accuracy for
majority class, but poor predictive accuracy for minority
classes, which are more often than not, the focus of our in-
terest.

Imbalanced learning problems occur in many domains,
for instance in fraudulent phone call identification (few calls
are fraudulent, (Fawcett & Provost 1996)), or text classifi-
cation (in cases where there is either more positive or more
negative sentiments). In astronomy, this issue becomes acute
given that datasets must often be searched for rare or un-
usual phenomena which may not be accurately defined in
advance. This problem impacts the classification of variable
stars in particular, as some types of variable star are un-
common, making it difficult to build systems to be able to
recognise them. In astronomy, several works have tried to
address the problem of class imbalance to date (Hoyle et al.
2015; Lochner et al. 2016; Narayan et al. 2018; Revsbech
et al. 2018; Agarwal et al. 2019).

There are two approaches for dealing with class imbal-
ance problems (He & Garcia 2008). The first are generally
known as ‘algorithm level’ approaches. These seek to modify
classification algorithms directly, to better accommodate im-
balanced class distributions. This can involve, for example,
adapting the learning function at the heart of the algorithm
to favour metrics other than accuracy during training and
also applying hyperparameter tuning while training the al-
gorithm (See §4.4). Algorithm level approaches make an im-
plicit assumption - that the data is sufficiently descriptive
and statistically characteristic of the classes under consid-

eration, and changes to the algorithm alone will enable this
data to yield good classification performance.

Alternatively, ‘data level’ approaches seek to modify the
data given to a classification algorithm, with the aim of
improving classification performance. Data level approaches
can be as simple as balancing training data artificially via
an appropriate sampling method, or as complex as generat-
ing artificial samples to balance the training set. Data level
approaches assume that classification algorithms will be ca-
pable of separating the classes under consideration, given
appropriate training data. Hybrid approaches mix the two
techniques when faced with difficult problems. For instance,
in some cases modifying an algorithm will not produce the
improvement expected, if the classification problem at hand
exhibits excessive class overlap, disjuncts, or is affected by
small sample sizes (i.e. some classes are genuinely rare).
Whilst in some cases trying to balance training sets will
not work if the information content of the training samples
is too low to allow a classifier to delineate effective class
boundaries.

In previous work, we attempted to develop a variable
star classifier together with various techniques of feature
selection and feature importance, and ran into the imbal-
anced learning problem. To overcome this, we attempted
to modify the algorithms used for classification, and ulti-
mately proposed a successful hierarchical classification sys-
tem. We compared the hierarchical system (using 7 features)
with the UPSILON package (Kim & Bailer-Jones 2016) (using
16 features). Whilst hierarchical system was effective, re-
call on minority classes could be stubbornly low relative to
majority classes. In other domains such problems are over-
come by balancing the training distribution directly. This
approach implies the minority class is sufficiently described
in the training data to solve the imbalance, and further that
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the classifier used is sensitive to the class size. We believe
this to be the case, thus we proceed similarly. We present a
hybrid approach to overcoming imbalances, which represents
a principled and pragmatic approach to this problem. Thus
in this work, we improve the Hosenie et al. (2019, hereafter
H19) classification scheme by adding a sufficient amount of
data, such that each class has an equal amount of training
examples. This can be achieved by simulating more data or
gathering more real data (which is often difficult).

Balancing training sets directly can be difficult. Fortu-
nately, techniques such as Synthetic Minority Over-sampling
Technique (SMOTE, Chawla et al. 2002), random values drawn
from the Gaussian distribution (Peterson et al. 1998) and
Gaussian Processes (GPs, Rasmussen & Williams 2005)
modelling (GpFit) can simplify the problem to a large ex-
tent by simulating lightcurves. GPs have been used in sev-
eral works to synthetically augment biased supernova train-
ing sets (Lochner et al. 2016; Narayan et al. 2018; Revs-
bech et al. 2018), variable stars (Faraway et al. 2016; Castro
et al. 2018; Mart́ınez-Palomera et al. 2018) and lightcurve
detrending (Aigrain et al. 2016).

In this work, we are concerned only with periodic vari-
able star classification and we present GPs for augmenting
periodic variable star data using folded light curves. Second,
we propose a new method, Randomly Augmented Sampled
Light curves from magnitude Error (RASLE1), to periodic
variable star data for the first time, which synthetically aug-
ments the training set by sampling from the magnitude er-
rors. We then compare the three data augmentation meth-
ods (SMOTE, GpFit & RASLE) and their utility for improving
variable star classification, trained with either a Random
Forest (RF, Breiman 2001) classifier or eXtreme Gradient
Boosting (XGBoost, Chen & Guestrin 2016) classifier. Fi-
nally, we incorporate a Bayesian Optimisation approach to
find the best hyper-parameters for the RF and XGBoost in
the hierarchical classification (HC) scheme. We achieve an
improvement of 1-4 percent in terms of balanced-accuracy
and G-mean scores at all levels in the HC, compared to the
results of H19.

The structure of the paper is as follows. In §2, we de-
scribe the data set used in our analysis; while in §3, the three
data augmentation algorithms used, are explored. In §4, we
provide a description of the various stages in the hierarchi-
cal classification pipeline; in §5 we present the classification
results and finally, we conclude in §6.

2 DATA

The Catalina Real-Time Transient Survey (CRTS, Drake
et al. 2017) has produced a catalogue of periodic variable
stars from 6 years of optical photometry from the Siding
Spring Survey (SSS). We consider only 11 classes from the
CSDR22 dataset as presented in Table 1 for our analysis.
From Table 1, we observe that the data is heavily imbal-
anced. Thus to simplify our experimentation, we reduced
the size of the largest class (Ecl) via random under-sampling.

1 After the preparation of this manuscript, we learnt that another
team Gabruseva et al. (2019), has come up with a similar method
independently.
2 Catalina Surveys Data Release 2

Table 1. Sample size of classes in CRTS data. The class
distribution is extremely imbalanced, such as Ecl are over-

represented.

Types of variable stars NObjects

RRab (fundamental mode) 4325

RRc (first overtone mode) 3752

RRd (multimode) 502

Blazhko (long-term modulation) 171

Contact & Semi-Detached Binary: Ecl 18803

Detached Binary: EA 4509

Rotational: Rot 3636

Long Period Variable: LPV 1286

δ-Scuti 147

Anomalous Cepheids: ACEP 153

Type-II Cepheids: Cep-II 153

We down-sample this class to 4509 (this makes the number
of Ecl examples comparable to the next biggest class, EA)
and the remaining Ecl light curves (LCs) are then used for
prediction. This is why the number of samples available for
testing exceeds those for training as shown in Fig 1.

3 DATA AUGMENTATION

While the under-sampling methods (i.e. downsample Ecl and
developing the hierarchical system) help to address some of
the class imbalance issues, they are themselves insufficient,
as minority class performance was not good enough for our
purposes. We therefore provide three ways to over-sample
the data, a form of data augmentation necessary as some of
the classes still outnumber other classes (see Tr values in
Fig 1). We augment the data via the generation of artificial
data, in order to increase the number of training samples by
generating similar but not identical examples. In principal
the more data we have, the better our ML models will be
as this technique helps to reduce overfitting. In this work,
we consider three methods of augmentation, (i) SMOTE, (ii)
RASLE, and (iii) GpFit.

3.1 Synthetic Minority Over-sampling Technique

The Synthetic Minority Over-sampling Technique (SMOTE)
inserts artificially generated minority class examples into a
dataset, by operating in “feature space” rather than “data
space”. This technique helps to balance the overall class
distribution. The standard implementation of SMOTE uti-
lizes k−nearest neighbours (Buturovic 1993) to group similar
class objects and to determine which class categories are in
the minority class and need over-sampling. To generate a
new synthetic example, the k−nearest neighbours method is
further used by first selecting an example in the minority
class. The collection of feature values describing this exam-
ple, it’s feature vector, is then combined with the feature
vectors of one of it’s k nearest neighbours chosen at ran-
dom. The difference between the vectors of these two exam-
ples is computed and subsequently multiplied by a random
number drawn between 0 and 1. This produces an entirely
new synthetic feature vector. This process is repeated un-
til enough synthetic examples have been created. Finally,
the new augmented training set is comprised of both the
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Figure 2. Generating new light curves by random sampling from

a normal distribution. The true magnitude along with its error

bars is shown in black and yellow. We assume a normal distri-
bution with mean equal to the true magnitude and with sigma

equal to the error in magnitude. We randomly draw one sam-

ple (red-dashed line) from each normal distribution to produce a
completely new light curve.

synthetic examples and the real minority examples. In our
pipeline, we utilize the ‘regular-SMOTE’ algorithm from the
imbalanced-learn3 (Lemâıtre et al. 2017) package.

3.2 Randomly Augmented Sampled Light curves
from magnitude Errors

The artificial examples generated by standard SMOTE, may
not truly represent data recorded during observations. One
way around this is to generate artificial samples from exist-
ing data points in a more scientifically valid way. That is
we randomly sample a selection of rare class examples, take
their primary characteristics, and generate new examples
from them by perturbing them in a principled way. We do
this using the Randomly Augmented Sampled Light curves
from magnitude Errors (RASLE) method.

The application of RASLE is employed on unfolded-LCs,
that is, each variable star is described by its time, magnitude
and error in magnitude. Using this information, we generate
new light curves in the following way. Let us consider a prob-
ability distribution which can be concisely represented by a
normal distribution. The probability distribution function
(pdf ) can be interpreted as going over the magnitude space
vertically with the horizontal axis showing the probability
that some value will occur. To construct the pdf, we make
an assumption that the magnitude follows a normal distri-
bution with mean, µ, to be equal to the true magnitude and
the standard deviation, σ, to be equal to the error in mag-
nitude. For each data point at a specific time, we sample a
single magnitude from the pdf. Each sampled magnitude is
assigned the same time as in the original data. Fig 2 shows an
example of a light curve with the magnitude and error bars
drawn for three specific times. The pdf of the magnitude
is shown in blue and one magnitude is sampled randomly
from the pdf shown in dotted red lines. The generated light
curve is given the new (random) sampled magnitude with
the same time value as in the original data.

3 https://imbalanced-learn.readthedocs.io/en/stable/index.html

3.3 Modelling Light Curves with Gaussian
Process

An ideal case for data augmentation is to use a well de-
fined model of the classes under consideration to create syn-
thetic data. However, there is no available model valid for
all the different variable stars considered. We therefore build
a model describing variable stars using Gaussian Processes
(GPs, Rasmussen & Williams 2005) applied to CRTS data.
We then use this model to generate artificial light curves, al-
lowing us to augment our training data through the addition
of new examples in a principled way, using the distributions
of existing data to create them.

A GP is a distribution over functions. It is defined by a
mean µ(t) and a covariance (kernel) function c(t, t ′), and is
given as

f (t) ∼ GP
(
µ(t), c(t, t ′)

)
. (1)

When the function f is computed at points t, the marginal
distribution follows a multivariate normal distribution (Ras-
mussen & Williams 2005). The kernel function, c, takes two
inputs and shows the similarity between them. When eval-
uating Bayesian inference, having the set of known function
values for the training sets fx , and the set of known function
values for the test sets fy , are normally distributed and is
given as follows:



fx
fy


= N *

,



µ fx

µ fy


,



C fx fx C fx fy

C fx fy C fy fy


+
-
, (2)

where the means of the training and test set are denoted by
µ fx and µ fy respectively and likewise C fx fx , C fy fy , C fx fy rep-

resent the training, test and train-test covariances/kernels.
The conditional distribution, fx | fy = P is given by

P ∼ N

(
C fx fyC

−1
fy fy

(
fy − µy

)
+ µ fx ,C fx fx − C fx fyC

−1
fy fy

C
ᵀ
fx fy

)
.

(3)

For a specific set of testing samples, Eq 3, represents the pos-
terior distribution. For a set of training examples D, the pos-
terior distribution is described by (Rasmussen & Williams
2005)

fy | D ∼ GP
(
µD, cD

)
,

µD (t) = µ(t) + c
ᵀ
Ts t

C−1 (
fy − µ

)
,

cD
(
t, t ′

)
= c

(
t, t ′

)
− c

ᵀ
Ts t

C−1cᵀ
Ts t′

,

(4)

where the covariance vector between every training sample,
Ts and t is cTs t = c(Ts, t). The choice of the covariance func-
tion is established, based on the knowledge of the domain.
In our case, we want to model light curves, so we require
a kernel that can demonstrate both small fluctuations and
smooth variations. Given the different characteristics of the
various stars, an appropriate choice of the kernel in this work
is the Matern 5/2 kernel given by,

CMatern52(Υ) = *
,
1 +
√

5Υ
`
+

5Υ2

3`
+
-

exp *
,
−

√
5Υ
`

+
-
, (5)

where Υ and ` are the kernel hyperparameters, that is, Υ
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Figure 3. Gaussian Processes offer a flexible approach to produce a smooth model of periodic light curves reported in magnitudes as
a function of phase. This is demonstrated with model fits for each example of variable stars considered in the CRTS dataset. The data
points are illustrated in black-rounded dots along with the error bars. The mean of the GP fit is shown in brown with three standard

deviation away from the mean, shown in shaded pale brown. In the bottom panel, the black lines represent three randomly drawn samples

from the GP fit. These randomly sampled light curves, also known as synthetic LCs together with real LCs, are used in the training set.

controls the degree of smoothness and ` is the characteristic
length scale. We employ the GP regression using George

(Ambikasaran et al. 2014) with kernel hyper-parameters
randomly initialised. Using our data and these randomly
initialised hyper-parameters, the negative log likelihood is
calculated. Afterwards, these hyper-parameters for the ker-
nel are optimised (i.e., finding the best values for these
parameters) using the Limited memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS, Fletcher 1987) optimization al-
gorithm by minimizing the negative log likelihood.

The kernel with the optimized parameters is then used
to fit the GP from which we sample synthetic light curves to
augment our training set. Before fitting a GP to our data, we
first convert the LCs from time distribution to phase distri-
bution (folded-light curves) where the data is at the detected
period for each variable star. We then randomly sampled
synthetic LCs from the GP model to form the augmented
training set. We show an example of GpFit on the folded-
LCs for the different variable stars in Fig 3 and the bottom

plot illustrates 3 synthetic LCs randomly drawn from GpFit.
We then unfolded the phases back into time space and used
those synthetic LCs together with the original LCs as the
training set.

4 METHOD DESCRIPTION

Drawing heavily from H19, we outline the general approach
used to classify variable stars. In this study, we use RF and
XGBoost classifiers. We use these classifiers for two reasons.
Firstly, to ensure that results presented here are compara-
ble with previous work. Secondly, because they have proven
to be robust against the issues associated with class imbal-
ance (Chen et al. 2004; Wang et al. 2019). We then provide
an overview of the HC scheme, together with the various
stages we adopt to build the ML pipeline. Similar to H19, we
pre-processed the lightcurves by applying a sigma-clipping
method prior to any analysis.

MNRAS 000, 1–11 (2020)
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4.1 Stage 1: Hierarchical Tree Classifiers

H19’s HC uses the astrophysical properties of the various
sources to construct a tree-based structure to represent the
different classes (Fig 1). Each node/leaf represents a class -
identified by the label inside the node/leaf - and the edges
represent the relationship between the super-class and sub-
class. For the HC, we use XGBoost and RF and then re-
port the one that provides the best classification perfor-
mance. XGBoost is a boosting algorithm and is a tree-based
model which became popular since its inception in the ML
community in 2016. XGBoost works in the same way as
Gradient Boosting Decision Tree (GBDT, Friedman 2001).
GBDT is an ensemble classification system that iteratively
adds simple decision tree classifiers. The first classifier of
the ensemble system is trained on the data, while the suc-
cessive classifiers are trained on the errors of the predeces-
sor classifiers. Unlike, in GBDT, XGBoost parallelizes this
process/task and gives a substantial boost in speed. In addi-
tion, this classifier controls overfitting by using the regular-
ization techniques, L1-norm (Tibshirani 1996) and L2-norm
(Ng 2004). While a RF is simply an addition of decision
trees that aggregate tree decisions. In astronomy, XGBoost
has recently been used by Mirabal et al. (2016) who imple-
mented this classifier for unknown point source classification
in the Fermi-LAT catalog and for the separation of pulsar
signals from noise (Bethapudi & Desai 2018). In addition,
XGBoost has also been applied for variable star classifica-
tion (Sesar et al. 2017; Pashchenko et al. 2018; Kgoadi et al.
2019).

4.2 Stage 2: Level-wise Data Augmentation in HC

Since the training set is still imbalanced after aggregating
sub-classes into super-classes, we use the three data augmen-
tation techniques described in §3. Each technique is applied
and tested independently in our HC based ML pipeline. For
the SMOTE approach, features (the mean magnitude, stan-
dard deviation, skewness, kurtosis, mean-variance, ampli-
tude and period) described in H19 are extracted from the
real LCs. Then, SMOTE automatically balances the class dis-
tribution via the creation of synthetic examples sampled
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Figure 5. For each synthetic LC, a period value (red vertical

line) is randomly sampled from a normal distribution, with mean
T being the true period of the real LC and σT being the computed

uncertainty of the period, T.

over the feature space, such that the size of the minority
class equals the size of the majority class, cancelling the
imbalance out. For example, considering level 1 in Fig 1,
the majority class is Pulsating, consisting of 7338 examples.
Therefore, SMOTE adds new examples of the other two mi-
nority classes (eclipsing 6312 and rotational 2545) ensuring
they both contain 7338 examples. This process is repeated
for each branch and level in the HC, where the training set is
directly balanced according to the size of the majority class
prior to data augmentation.

While for the GpFit and RASLE cases, we are generat-
ing new light curves based on real LCs, thus generating new
synthetic LC examples. Therefore, our training set will con-
sist of both real and synthetic LCs, whilst we test our ML
pipeline with only real LCs. These two techniques can be
used to over-sample both the majority and minority class.
The number of training examples after augmentation, A.Tr
used for each level is given in Fig 1. Afterwards, features are
extracted from these LCs as discussed below.

4.3 Stage 3: Feature Extraction

In this work, similarly to H19, our features are based on
6 intrinsic statistical properties relating to location (mean
magnitude), scale (standard deviation), variability (mean
variance), morphology (skew, kurtosis, amplitude), and time
(period). These features are highly interpretable, and ro-
bust against bias (Hosenie et al. 2019). For the GpFit and
RASLE approach, the first six features are extracted directly
from the augmented training set (containing both real and
synthetic LCs) using the FATS library (Nun et al. 2015).
Whilst for the period feature, the real LCs in the training set
are assigned their respective period from the ascii-catalogue
(Drake et al. 2017) and the synthetic LCs are assigned a
period calculated by the method discussed in §4.3.1. For the
test set we use only real LCs, hence the six features are ex-
tracted directly from the LCs and their period is obtained
from the data catalogue. Therefore, we have 7 features that
describe each variable star. Fig 4 shows the distribution of
the two most important features as investigated in H19 (pe-
riod and skew) for real and synthetic LCs. We observe that
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the synthetic LCs show similar characteristics compared to
the real LCs.

4.3.1 Period for augmented LCs

A synthetic LC is given a period based on the uncertainty
in the estimated period of the real LC. In this case, the esti-
mated period, T, is obtained from Drake et al. (2017). The
associated uncertainty, σT for a given period is calculated
as follows. A periodic signal is detected in a periodogram by
the presence of a peak with a certain width and height. In
Fourier perspective, we assume that there is a direct rela-
tionship between the precision with which a peak’s frequency
can be detected and the width of this peak; often known as
the half-width at half-maximum (VanderPlas 2018) and is
given by:

υ 1
2
≈

1
T

(6)

This can be viewed as interpreting the periodogram with the
least-square method, that is, the inverse of the curvature of
the peak is determined with the uncertainty (Ishak 2017). In
the Bayesian perspective, this translates to a Gaussian curve
fit to the exponentiated peak (Smith & Erickson 2012; Bret-
thorst 2013). Let us consider a periodogram with maximum
value Pmax = P (υmax ), such that

P
(
υmax ± υ 1

2

)
=

Pmax

2
. (7)

Hence, the Bayesian uncertainty is calculated by approxi-
mating the exponentiated peak as a Gaussian, that is,

exp [P (υmax ± δυ)] ∝ exp


−δυ2(
2σ2

υ

)  . (8)

The above equation can then be written as follows and we
obtain the uncertainty in frequency in Eq 9.

Pmax

2
≈ Pmax −

υ2
1
2(

2σ2
υ

) ;
υ2

1
2

2σ2
υ

≈
Pmax

2
;

συ ≈

υ 1
2

√
Pmax

, (9)

where δυ ≈ υ 1
2
. Considering the signal-to-noise ratio ϕ =

rms
[
yn−µ
σn

]
, where µ is the mean magnitude, yn and σn is

the magnitude and error in magnitude for each data point
respectively. We can then write the following equation for a
well-fitted model,

Pmax ≈
ϕ2N

2
. (10)

We then substitute Eq. 10 in Eq. 9 and the uncertainty in
frequency can be written as:

συ ≈ υ 1
2

√
2

ϕ2N
, (11)

where υ 1
2
≈ 1

T, N is the number of data points and ϕ is the

signal to noise. We now compute the uncertainty in period
by taking the derivative of συ ,

∂υ

∂T
≈ −

1
T2 ; ∂T = −T2συ ; σ2

T = T4σ2
υ .

Hence, the uncertainty in period is then obtained using Eq
12.

σT = T2συ (12)

where σT will be Gaussian if συ is very small. A period value
is given to each synthetic LC (generated either with GpFit

or RASLE), by randomly sampling from a normal distribution
with mean, T (the true period of the real LC from which
the synthetic LCs are generated) and within 1 σ-confidence
interval, being σT using Eq. 12. An example of associating
a period to an augmented LC is shown in Fig 5.

4.4 Stage 4: Training with Bayesian Optimization

We first randomly split our data into training (70 per cent)
and testing sets (30 per cent). The training set moves
through the first level in the HC scheme discussed in §4.1.
The training examples are then augmented using one of the
three data augmentation techniques and features are ex-
tracted where appropriate. Afterwards, the model (see dot-
ted square at level 1 in Fig 1) is trained using either the RF
or XGBoost classifier, as required. We then use a Bayesian
Optimization approach to find the best hyper-parameters for
the ML algorithm. It has been demonstrated for large pa-
rameter spaces that Bayesian Optimization, also known as
Sequential Model-Based Optimization (SMBO, Hutter et al.
2011) performs better than either manual or randomized
grid searches (Bergstra et al. 2013). It is one of the most
efficient techniques for hyper-parameter optimization of ML
algorithms.

In this work, we used SMBO techniques compared
to H19, who used a randomized grid-search for hyper-
parameter optimization. Before applying the above meth-
ods, we perform a stratified cross validation. The training
data is split into 5 folds, where 4 different folds are kept for
training each time and an independent fold is used for vali-
dation. We then use the SMBO method, HyperOpt (Bergstra
et al. 2013) to find the best hyper-parameters on the 4 folds
and validated the model on the independent fold. We then
evaluate our trained model based on balanced-accuracy, G-
mean, precision, recall, and F1-scores, on real LCs in the
test set.

5 ANALYSIS AND RESULTS

This paper is mostly concerned with learning from an imbal-
anced class distribution. The problem is typically addressed
using the following approaches.

(i) Data level : We employ three approaches to the HC
scheme in such a way that the class distributions are rebal-
anced directly; that is, it is a first proof of principle applica-
tion of a level-wise augmentation in Hierarchical taxonomy,
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where we resample the original dataset to achieve a desired
balancing.
(ii) Algorithm level : We focus on using two different algo-
rithms (RF and XGBoost), together with a Bayesian Opti-
mization algorithm for hyper-parameter tuning, to achieve
improved performance on the minority class examples.

The HC algorithm is trained on both real and artifi-
cially augmented data and tested on real data. We show the
results of the three data augmentation techniques in Table 2.
We assess the consistency of the results based on balanced-
accuracy and G-mean scores. The shaded blue color repre-
sents the augmentation methods, which when applied to-
gether with the HC classifier, yielded improved results over
H19. We found that GpFit achieves the best performance
measures compared to H19 at all levels in the HC. When
using the GpFit method, we found that our RF implemen-
tation performs best at all HC levels when compared to H19
and we highlight this result in gray. In addition, we found
that XGBoost, similarly to the RF, provides good perfor-
mance for variable star classification. Moreover, in H19, we
show that the HC model is neither underfitting nor over-
fitting by plotting precision-recall curves at different levels.
In this paper, we assess the consistency of the results using
GpFit and RF by plotting the Receiver Operator Character-
istic (ROC) curve for each class (see Fig 6). We note that
classification performance is very good. The area under the
ROC curve (AUC) values are greater than 0.95 for several
classes, except for Rotational, RRd, and Blazhko. The rea-
sons for these misclassification are further discussed in §5.1.

We improve upon the result obtained in H19. For in-
stance, the balanced-accuracy increases from 61 to 65 per
cent in level 1, from 86 to 88 per cent at level 2 for the eclips-
ing node, from 86 to 87 per cent for sub-classes of RR Lyrae
at level 3, and finally from 81 to 83 per cent for Cepheids
at level 3. To check the consistency and robustness of our
new approach, we perform an additional step. We use dif-
ferent splits (K = 5, 6, . . . ,10) during cross-validation and
predict on the 30% test set. With these analyses, we obtain
an uncertainty on the metric scores considered, for example
for Cepheids at level 3, a 0.83 ± 0.02 balanced-accuracy and
0.91 ± 0.01 G-mean score are obtained. We obtain similar
results at different levels in the hierarchy. In these analyses,
we observe that we have not made a huge improvement to
H19, in terms of minority classes and we explain the various
reasons that might lead to this outcome in §5.1.

5.1 Impact of imbalance on classification
performance

Training a classifier upon imbalanced data does not guar-
antee poor generalisation performance (Galar et al. 2011).
Regardless of imbalance, if the features or the training data
themselves are discriminative enough to provide a clear sepa-
ration between the different classes, then classifiers will likely
generalize well. However, there are three main characteristics
of imbalanced data sets that make it hard for a classifier to
discriminate the minority from the majority classes. These
are

(i) small sample sizes (Galar et al. 2011; He & Garcia 2008),
(ii) class inseparability (Galar et al. 2011; Japkowicz &
Stephen 2002) (see Fig 7(a) & 8) and,
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Figure 6. Receiver operating characteristic (ROC) curves for
each node in the hierarchical model. Each curve represents a dif-

ferent variable star class with the area under the ROC curve
(AUC) score in brackets. This metric is computed on the 30%

of the dataset used for testing.

(iii) small disjuncts (see Fig 7(b)).

Ultimately, the training data showing these character-
istics conspire to make it hard for any classifier to build an
optimal decision boundary leading to sub-optimal classifier
performance. These characteristics are seen at some levels
in the HC. In this section, we illustrate these effects at level
3 using the sub-classes of RR Lyrae. Fig 7(a) shows that
some classes have overlapping characteristics, which leads to
poor performance. We observe similar characteristics (class-
overlapping) for the sub-classes of RR Lyrae in Fig 8(a), even
after balancing the classes in the training set. These over-
lapping characteristics are due to the fact that there are no
physical distinction between some of the subclasses. As can
be seen in Fig 8(a), RRab and RRc classes can reasonably
be separated based on their period alone. RRab are variable
stars pulsating in fundamental mode, RRc stars pulsate in
the first overtone while RRd stars simultaneously pulsate in
the fundamental and first overtone. Therefore, RRd’s form
part of both RRab and RRc variable stars at the same time.
In addition, Blazhko stars are found among RRab stars (Ju-
rcsik et al. 2009), RRc stars (Netzel et al. 2018) and even
RRd stars (Jurcsik et al. 2015). This explains the poor per-
formance of the classifier for separating RRd and Blazhko
stars, even after balancing the classes. In addition, we also
present a t-distributed stochastic neighbour embedding (t-
SNE, van der Maaten & Hinton 2008) of the minority classes
(Blazhko, δ-Scuti, ACEP & Cep-II) in Fig 8(b) after aug-
menting them using the GpFit method. The result shown
in Fig 8(a) does not differ when we perform multiple runs
with different parameters. Each time we find small disjuncts
in the feature space, showing characteristics similar to those
shown in Fig 7(b), thus making it difficult for the classifier
to construct a decision boundary.

In this paper, we found that training the HC with class-
balanced data has the effect of improving balanced-accuracy
and G-mean scores. However, the minority classes are still
misclassified. Although these results suggest that balancing
the class distribution is not sufficient for classifying the mi-
nority classes, their capacity to prevent overfitting and in-
crease the recall rate makes them appealing.

Another reason that leads to misclassification - the lack
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Table 2. Evaluation metrics used to summarize the HC pipeline with the application of three methods of data
augmentation. We present the balanced-accuracy and G-mean scores level-wise to evaluate our model. H19 results

are presented in bold text in the table. It is seen that the HC pipeline performs fairly well with data augmentation,

achieving G-mean scores above ∼ 80% at all levels. The shaded blue represents the augmentation methods that
outperform H19. We observe that at all levels, GpFit together with RF, performs better than H19 and it is represented

in shaded gray. The ‘∼’ represents a single value for the computed average metrics by taking into consideration the

overall classes.

Augmentation Techniques Classifiers G-Mean Balanced-accuracy

First Level: Eclipsing, Rotational and Pulsating Classification

H19 (No augmentation) RF 0.78/0.78/0.86 (∼ 0.79) 0.59/0.60/0.75 (∼ 0.61)

XGBoost 0.80/0.77/0.89 (∼ 0.81) 0.63/0.59/0.80 (∼ 0.65)
SMOTE

RF 0.80/0.78/0.89 (∼ 0.81) 0.63/0.60/0.79 (∼ 0.65)

XGBoost 0.82/0.76/0.89 (∼ 0.83) 0.66/0.57/0.79 (∼ 0.68)
RASLE

RF 0.82/0.77/0.89 (∼ 0.83) 0.66/0.58/0.79 (∼ 0.68)

XGBoost 0.80/0.75/0.89 (∼ 0.81) 0.63/0.56/0.79 (∼ 0.65)
GpFit

RF 0.80/0.75/0.89 (∼ 0.81) 0.63/0.56/0.78 (∼ 0.65)

Second Level: RR Lyrae, LPV, Cepheids and δ-Scuti

H19 (No augmentation) RF 0.99/1.00/0.97/1.00 (∼ 0.99) 0.98/0.99/0.93/1.00 (∼ 0.98)

SMOTE
XGBoost 0.99/1.00/1.00/0.95 (∼ 0.99) 0.97/0.99/1.00/0.90 (∼ 0.97)

RF 0.99/1.00/1.00/0.96 (∼ 0.99) 0.97/0.99/1.00/0.92 (∼ 0.97)

XGBoost 0.99/1.00/0.99/0.93 (∼ 0.99) 0.98/1.00/0.98/0.85 (∼ 0.98)
RASLE

RF 0.99/1.00/1.00/0.94 (∼ 0.99) 0.98/0.98/1.00/0.88 (∼ 0.98)

XGBoost 0.99/1.00/0.99/0.95 (∼ 0.99) 0.97/0.99/0.97/0.99 (∼ 0.98)
GpFit

RF 0.99/1.00/1.00/0.97 (∼ 0.99) 0.97/0.99/1.00/0.93 (∼ 0.98)

Second Level: Ecl and EA

H19 (No augmentation) RF 0.93/0.93 (∼ 0.93) 0.86/0.86 (∼ 0.86)

XGBoost 0.94/0.94 (∼ 0.94) 0.88/0.88 (∼ 0.88)
SMOTE

RF 0.94/0.94 (∼ 0.94) 0.88/0.88 (∼ 0.88)

RASLE
XGBoost 0.93/0.93 (∼ 0.93) 0.85/0.85 (∼ 0.85)

RF 0.93/0.93 (∼ 0.93) 0.85/0.86 (∼ 0.86)

XGBoost 0.93/0.93 (∼ 0.93) 0.88/0.88 (∼ 0.88)
GpFit

RF 0.94/0.94 (∼ 0.94) 0.87/0.88 (∼ 0.88)

Third Level: RRab, RRc, RRd and Blazhko

H19 (No augmentation) RF 0.97/0.92/0.65/0.44 (∼ 0.92) 0.94/0.85/0.40/0.18 (∼ 0.86)

SMOTE
XGBoost 0.95/0.92/0.67/0.58 (∼ 0.91) 0.91/0.83/0.42/0.31 (∼ 0.83)

RF 0.95/0.82/0.47/0.33 (∼ 0.91) 0.91/0.82/0.47/0.33 (∼ 0.83)

XGBoost 0.96/0.95/0.56/0.53 (∼ 0.92) 0.93/0.89/0.30/0.26 (∼ 0.87)
RASLE

RF 0.97/0.95/0.52/0.52 (∼ 0.92) 0.94/0.90/0.25/0.25 (∼ 0.87)

XGBoost 0.97/0.93/0.57/0.44 (∼ 0.92) 0.94/0.86/0.30/0.17 (∼ 0.85)
GpFit

RF 0.97/0.93/0.56/0.41 (∼ 0.92) 0.94/0.87/0.32/0.26 (∼ 0.87)

Third Level: ACEP and Cep-II

H19 (No augmentation) RF 0.90/0.90 (∼ 0.90) 0.82/0.80 (∼ 0.81)

SMOTE
XGBoost 0.88/0.88 (∼ 0.88) 0.78/0.76 (∼ 0.77)

RF 0.88/0.88 (∼ 0.88) 0.78/0.76 (∼ 0.77)

XGBoost 0.88/0.88 (∼ 0.88) 0.77/0.78 (∼ 0.77)
RASLE

RF 0.88/0.88 (∼ 0.88) 0.77/0.78 (∼ 0.78)

XGBoost 0.88/0.88 (∼ 0.88) 0.78/0.78 (∼ 0.78)
GpFit

RF 0.91/0.91 (∼ 0.91) 0.84/0.82 (∼ 0.83)
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(a) (b)

Figure 7. Demonstrattion of (a) Class inseparability and (b)
small disjuncts in feature space.

of a standard set of correctly classified (i.e. where the ground
truth is certain) variable star example useful for training.
Drake et al. (2017) investigated the level of agreement of
their classifications with the International Variable Star In-
dex (VSX, Watson et al. (2006)). They found that

(i) VSX has not classified any of their Blazhko stars, but
instead simply classify them as RRab stars,
(ii) VSX classified many of their contact binaries as de-
tached and semi-detached binaries,
(iii) most of their Rotational stars (spotted or ellipsoidal
variables) have been classified as contact binaries, and
(iv) most of their RRd stars have been misclassified as other
stars (RRab, RRc) by VSX.

We observe similar misclassifications when using our au-
tomated HC pipeline, even after balancing the classes. With
the presence of so many misclassified objects, we can plausi-
bly say neither Drake et al. (2017) or VSX can be considered
as providing ground truth. Therefore, there is a real need
to have a standard set of correctly identified variable stars
that can be utilized for training automated machine learn-
ing methods. It is imperative to train these sophisticated ML
based algorithms with accurately calibrated priors in order
to obtain reliable classification outputs.

6 CONCLUSION

In this paper, we present a new approach for tackling the
problem of imbalanced data: a level-wise data augmenta-
tion in a hierarchical classification framework. Through an
empirical investigation, we demonstrate three techniques for
augmenting data, that is, SMOTE, RASLE and GpFit are ap-
plied to variable star data. We show that using RF and GpFit

together can effectively improve recall rates, hence increas-
ing the balanced-accuracy and G-mean scores by 1-4 per
cent. Although, the results show that even after balancing
the training set level-wise, such approaches do not prevent
the misclassification of the minority class, though their ca-
pacity to increase other metrics (e.g. recall) still makes their
application appealing. Perhaps, the misclassification occurs
because these objects are just not easily separable and we ob-
serve similar misclassifications in this paper as determined
by Drake et al. (2017) when they compared their results
with VSX. Therefore, it is imperative to have correctly la-
belled data that can accurately be used to train automated
ML pipeline in order to output reliable classification perfor-
mance.
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Figure 8. (a) shows the Period-Skew distribution of RRab, RRc, RRd and Blazhko after augmenting each respective class to 10,000

examples. We note that the classes are still overlapping in the feature space, even after the augmentation process. (b) illustrates small
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arXiv:1504.05966

VanderPlas J. T., 2018, The Astrophysical Journal Supplement
Series, 236, 16

Wang C., Deng C., Wang S., 2019, arXiv preprint

arXiv:1908.01672
Watson C. L., Henden A. A., Price A., 2006, in Society for As-

tronomical Sciences Annual Symposium. p. 47

Zong B., Song Q., Min M. R., Cheng W., Lumezanu C., Cho D.,
Chen H., 2018

Zorich L., Pichara K., Protopapas P., 2020, Monthly Notices of

the Royal Astronomical Society, 492, 2897
van der Maaten L., Hinton G., 2008, Journal of Machine Learning

Research, pp 2579–2605

This paper has been typeset from a TEX/LATEX file prepared by
the author.

MNRAS 000, 1–11 (2020)


