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Abstract 36 

Although preventive chemotherapy has been instrumental in reducing schistosomiasis worldwide,  serious 37 
challenges remain. These include the omission of certain groups from mass drug administration campaigns, the 38 
existence of persistent disease hotspots as well as the risk of recrudescent infections. Central to these challenges 39 
is the fact that the currently prescribed diagnostic tools to establish the burden of infection lack sensitivity, 40 
especially in low endemic settings, resulting in an underestimation of the true prevalence of active Schistosoma 41 
infections. This necessitates a re-evaluation and possible adaptation of current WHO-recommended control 42 
strategies. Recently, more targeted interventions and novel approaches have been employed, such as 43 
establishing infection burden by precision mapping to provide high resolution spatial information that delineates 44 
significant variations in schistosomiasis prevalence within a defined geographical area. Such information is 45 
instrumental in guiding targeted intervention campaigns. However, the need for highly accurate diagnostic tools 46 
in such strategies remains a crucial factor that is often neglected. The availability of highly sensitive diagnostic 47 
tests also opens up the possibility of applying sample pooling strategies, to reduce control programme costs. To 48 
achieve interruption of transmission and eventually elimination of schistosomiasis, better local targeting of 49 
preventive chemotherapy in combination with utilising more sensitive diagnostic tools is vital.  50 

51 
Key-points 52 
* Preventive chemotherapy has been key in reducing the burden of schistosomiasis but serious challenges53 
remain54 

55 
* Current diagnostic tools to detect Schistosoma infections as part of control programmes lack sensitivity56 

57 
* Re-evaluation and adaption of current WHO-recommended schistosomiasis control strategies is urgently58 
needed59 

60 
* The use of highly sensitive diagnostic tools is key in breaking the transmission cycle and moving towards61 
sustained elimination of schistosomiasis62 
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Introduction 63 

Despite years of sustained control efforts, the global burden of schistosomiasis remains high with an estimated 64 
221 million people worldwide requiring preventive chemotherapy of which 90% resides in sub-Saharan Africa 65 
(1). This immense burden is exacerbated by the fact that schistosomiasis is strongly linked to poverty, limited 66 
access to potable water, and lack of adequate sanitation (2). Since 2001, the World Health Organisation (WHO) 67 
has strongly advocated for schistosomiasis morbidity control through preventive chemotherapy (World Health 68 
Assembly resolution 54·19 (3)) with a more recent expanded goal of elimination of schistosomiasis as a public 69 
health problem (World Health Assembly resolution 65·21 (4)).  70 

While there have been successes in reducing the intensity of infections and associated morbidity through 71 
sustained mass drug administration (MDA) campaigns, schistosomiasis remains highly prevalent (5). In regions 72 
that have successfully reduced the intensity of infection to lower thresholds, the currently prescribed diagnostic 73 
tools are no longer reliable for control programmes treating these populations. Especially in areas with a low 74 
infection intensity these methods lack sensitivity and are therefore not able to accurately detect such low 75 
intensity infections and thereby underestimate the prevalence of active Schistosoma infections (6, 7). To break 76 
the cycle of transmission and shift towards sustained elimination of schistosomiasis, changes to the current 77 
global schistosomiasis control strategies are urgently needed (8, 9). The availability of more sensitive diagnostic 78 
tools presents opportunities to revisit these strategies in regions where a break in transmission may be feasible.  79 

Strategic changes to advance the global control of schistosomiasis were discussed at an international workshop 80 
hosted by Leiden University Medical Center in the Netherlands in September 2017. The workshop brought 81 
together representatives from national control programmes, industry, donors and academia (research scientists, 82 
clinicians, and mathematical modellers) to develop a vision for sustained local interruption of transmission and 83 
the eventual successful elimination of schistosomiasis.  84 

Challenges related to the current approach 85 

The WHO’s current strategy for controlling schistosomiasis focuses on reducing disease morbidity and 86 
transmission through periodic, targeted MDA with praziquantel (40 mg/kg body weight) administered to at-risk 87 
populations (10). As part of this strategy, the mean schistosomiasis prevalence is determined in an 88 
‘implementation unit (IU)’; a geographical area where an MDA programme is being rolled-out. This IU can be a 89 
whole district or a sub-district (Figure 1A), for example an administrative, health or education district and it 90 
varies in size from country to country (11).  91 

Usually, in 5-10 sentinel sites within such an IU a parasitological survey is performed to determine the overall 92 
prevalence in the entire IU (Figure 1B) (9, 12). The sentinel site can be a school with 50 children per school 93 
being surveyed. Based on the mean prevalence determined by the survey, the risk of schistosomiasis is 94 
categorised as low (<10%), moderate (≥10% to <50%) or high (≥ 50%) for the whole IU (Figure 1C); a 95 
classification that defines the intervention strategy applied within this geographical area (13). Even though at 96 
sub-district level the burden of infection can be determined in more detail, this strategy does not sufficiently 97 
capture the focality of schistosomiasis, resulting in areas receiving over- or more importantly under-treatment 98 
(12). 99 

Although initial implementation of the WHO MDA strategy has been successful in reducing morbidity (14-16) 100 
there are several opportunities for optimisation. MDA strategies traditionally target school-age children, a group 101 
within which the prevalence of schistosomiasis is often higher compared to other groups and which can be 102 
conveniently reached by programmes at one location (a school). However, this strategy fails to cover other 103 
groups that are at high risk of schistosome infection, for example preschool-age children and adults exposed to 104 
infested water through their occupations (e.g. fishermen, farmers, women doing laundry and irrigation workers) 105 
(17, 18). As such, these groups remain potential active reservoirs for continued transmission in a community. 106 
Preschool-age children are excluded due to safety concerns and poor adherence to praziquantel, although this 107 
concern is likely to be addressed with the development of a paediatric formulation for praziquantel (19). 108 
Likewise, WHO guidelines recommend the inclusion of pregnant and lactating women in MDA campaigns, but 109 
these groups often remain excluded also due to safety concerns despite the growing body of evidence 110 
demonstrating efficacy and safety of praziquantel for their treatment (20, 21). Exclusion of certain groups 111 
becomes a critical issue if the goal is community-wide control and elimination of schistosomiasis. 112 
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The commitment of Merck to support the WHO through the donation of praziquantel for preventive 113 
chemotherapy in school-aged children in Sub-Saharan Africa (22) has been pivotal to schistosomiasis control 114 
efforts. However, with the scale-up of MDA programmes, many African countries have been faced with the 115 
challenge of bridging the gap between the demand for praziquantel and what is available via the donation 116 
programme (23). Moreover, the currently recommended MDA dosage for praziquantel may be leading to 117 
suboptimal cure rates and prolonged low intensity infections within some communities. These consequences 118 
will be even more substantial and pronounced when percentages of population coverage of MDA will be 119 
reduced, leaving larger numbers of infected people untreated.  120 

Additionally, in certain areas control of schistosomiasis is hampered by the existence of ‘persistent hotspots’; 121 
geographical regions where MDA programmes have been in operation for several years, yet remain unable to 122 
achieve the forecasted declines in prevalence or intensity of schistosomiasis (24-27). Persistent hotspots have 123 
been identified across Africa including Kenya (28), Mali (29, 30), Sudan (31) and Tanzania (24, 32). These 124 
hotspots likely require approaches that combine MDA with multi-sectoral efforts such as health education, 125 
improvements to sanitation and potable water supply, environmental and vector control as well as future use of 126 
vaccines (33-37). 127 

Another challenge in the control of schistosomiasis exists in parts of Asia where the prevalent schistosome 128 
species (S. japonicum, S. mekongi and S. malayensis) are known to be zoonotic and have several animal 129 
definitive hosts as a reservoir of infection (38). Also in African schistosomiasis, animal reservoirs have been 130 
described (39, 40). In such areas, the control and elimination of schistosomiasis is even more problematic since 131 
the management of animal reservoirs is imperative (38). In addition, molecular studies have also found evidence 132 
of genetic interactions between human and animal schistosomes within the African continent and the emergence 133 
of hybrid species indicative of some zoonotic spill-over (41, 42).  134 

Classic diagnosis of schistosomiasis as part of control programmes is often still based on parasitological 135 
assessment of urine or stool, depending on the schistosome species endemic in the area. These diagnostic 136 
methods are known to lack sensitivity in detecting infections of low intensity, resulting in an underestimation of 137 
the burden of infection (7). Identifying areas with low infection intensities using accurate diagnostic tools 138 
combined with cost-effective strategies for implementation is essential for achieving elimination of 139 
schistosomiasis. This is also important for dealing with ‘subtle morbidities’ that could have long-term impact on 140 
the quality of life of individuals including effects on cognitive development (43). Control programmes struggle 141 
with how to tackle low prevalence settings where the factors sustaining transmission at lower levels are poorly 142 
understood and interruption of transmission has not yet been achieved (9, 33, 34). In addition, low endemic 143 
areas likely require continuous surveillance with highly sensitive diagnostic tools, as the risk of prematurely 144 
stopping MDA might very well result in infection levels returning to pre-MDA levels shortly after cessation of 145 
MDA (recrudescent infections) (37, 44). As for persistent hotspots, an integrated control approach is likely 146 
required to achieve these epidemiological targets.  147 

Importance of precision mapping and more targeted interventions 148 

Locating exactly where active transmission occurs and which individuals within a community still harbour 149 
living worm pairs, is particularly relevant as schistosomiasis is heterogeneously distributed, meaning that an 150 
endemic region can be considered as a collection of (micro)foci (45). There is a lack of clear guidelines that 151 
account for the potential effects of this natural heterogeneity, or focality, on programme design. Recent studies 152 
by the Schistosomiasis Consortium for Operational Research and Evaluation (SCORE) have shown a large 153 
variability in MDA efficacy at the community level (24, 28). Therefore, existing control guidelines need to be 154 
adapted with greater focus on geographical areas of low endemicity that are likely to achieve transmission 155 
interruption. In these areas, sampling grids can be narrowed by increasing the number of sites being sampled; a 156 
concept that has been termed ‘precision mapping’ (12). In order to demonstrate the precision mapping approach 157 
in Cameroon, Tchuem Tchuenté et al exhaustively sampled all schools in two schistosomiasis-endemic districts 158 
representing geographical areas characterised as being low and high with respect to schistosomiasis transmission 159 
(12). This approach produced high-resolution mapping information that showed significant variations in 160 
schistosomiasis prevalence between districts and sub-districts (called implementation units, IU), which would 161 
not have been detected with conventional mapping approaches that are part of the current global control 162 
strategies. Analysis of data from precision mapping can be used to guide targeted and intensified interventions 163 
in high-risk areas, providing a cost-efficient and judicious use of donated praziquantel. Furthermore, this 164 
approach presents an opportunity to zoom in on an IU to identify areas of significant transmission and the 165 
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advantage to specifically target the identification of individuals living in a low-endemic community who 166 
harbour significant intensities of living adult worms (the so called ‘super-spreaders’ (46)). 167 

 Importance of highly sensitive diagnostics 168 

The success of any strategy to tackle schistosomiasis hinges on the ability to obtain an accurate picture of the 169 
burden of infection in a given community, as ‘improvement can only come from accurate measurement’ (Lord 170 
Kelvin, 1883) (47). The necessity of accurate diagnostic tools with high sensitivity in these strategies is often 171 
neglected. To achieve the goal of elimination of schistosomiasis, highly sensitive and specific diagnostic tools, 172 
that ideally are field-applicable, are needed to monitor the burden of infection. 173 

Several diagnostic tools have demonstrated to be useful alternatives compared to conventional diagnostic 174 
methods currently used by national control programmes, such as the widely used field-applicable point-of-care 175 
circulating cathodic antigen (POC-CCA) test (48, 49). Even though this test has been recommended as a 176 
replacement for traditional microscopy (50), it is limited to the detection of intestinal schistosomiasis and still 177 
lacks sensitivity in detecting infections of low intensity (51, 52). A more promising alternative is the highly 178 
sensitive and specific laboratory-based up-converting phosphor lateral flow (UCP-LF) test that detects 179 
Schistosoma circulating anodic antigen (CAA) (53-56). It is a genus-specific test which detects all Schistosoma 180 
species in blood and urine samples, and may potentially be able to detect a single worm pair by increasing 181 
sample volume (56, 57). Furthermore, the UCP-LF CAA test is amenable to pooled sample testing strategies 182 
(58). Individuals whose pooled urine samples are found negative by the UCP-LF CAA test can be assumed to all 183 
be free of schistosome worms, or at least below a set threshold in worm load, while in CAA-positive urine 184 
pools, one or more individuals harbour a worm burden which might be relevant for further transmission. 185 
Individual urine samples can then be subsequently tested to identify infected individuals within a positive 186 
sample pool, in order to only treat infected individuals and thereby save drugs. Compared to more exhaustive 187 
sampling approaches, such pooling strategies can potentially reduce control programme costs (59). Although the 188 
UCP-LF CAA test is still lab-based, steps are underway to develop a more field-applicable version of this test 189 
(55, 58, 60). Clearly, a reliable and easy-to-use rapid diagnostic test is a prerequisite for the development of test-190 
and-treat strategies, with or without pooled sampling, as well as to facilitate the clinical diagnosis of 191 
schistosomiasis at point-of-care settings and the targeted use of praziquantel. 192 

Other more sensitive and specific diagnostics methods include polymerase chain reaction (PCR)-based methods 193 
for the detection of schistosome-specific DNA in clinical samples (urine, faeces or blood) (7, 61). One approach 194 
that has been designed for field use is loop-mediated isothermal amplification (LAMP), an advanced DNA-195 
based detection method that amplifies DNA without a thermocycler and in some instances, can have higher 196 
sensitivity compared to conventional PCR (62-64). Another potentially field-applicable technique is isothermal 197 
recombinase polymerase amplification (RPA) for schistosome-specific DNA detection applicable to both S. 198 
haematobium (65) and S. mansoni (66).  199 

Integrating sensitive diagnostics into an intensified focal test-and-treat strategy 200 

In a theoretical schistosomiasis endemic area, comprised of one or more IUs, where the prevalence of infection 201 
has been determined to be low by standard parasitological methods (i.e. less than 10% overall prevalence and 202 
less than 1% prevalence of heavy infections), an intensified focal test-and-treat strategy, using highly accurate 203 
diagnostic tools, should at least be included to shift transmission dynamics within these geographical areas 204 
towards a break in transmission.  205 

When applying the precision mapping approach in such an area, the burden of infection within an IU should be 206 
estimated from a larger number of sentinel sites, rather than a sampling from 5-10 sites as is conventionally 207 
recommended. This increased sampling from a larger number of sentinel sites would require pooling multiple 208 
samples in order to reduce the total number of tests needed as a cost-saving measure (58, 59). Given the focal 209 
nature of schistosomiasis, sampling designs should also consider proximity to water contact points where 210 
transmission is suspected. 211 

In one scenario discussed at the workshop, an IU at sub-district level can be divided into separate ‘transmission 212 
units’ (TU, Figure 1D); a proposed geographical area limited to one or few transmission sites. So, instead of the 213 
current strategy in which 5-10 sentinel sites within an IU are being sampled, the whole IU is divided into 214 
smaller TUs. By integrating a pooling strategy using a highly sensitive diagnostic test, a whole TU will be 215 
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sampled and tested, leading to a quantitative evaluation of the overall infection burden within each TU. 216 
Mathematical modelling could provide valuable information on the best pooling strategy, taking into 217 
consideration age-groups or risk groups, as well as expected infection levels based on pre-control endemicity 218 
and history of control, to determine optimal pool size (58, 59). Information from existing databases on 219 
correlation between different diagnostic tests could also be used to develop a predictive model to estimate for 220 
example CAA or DNA loads and linking these individual measurements to transmission potential within a given 221 
area. The outcome of testing pooled samples with a highly sensitive diagnostic test in combination with the 222 
predictions of the model(s) would then guide the prevalence thresholds that should be set to determine the 223 
appropriate control strategy that will be embarked on within each TU.  224 

225 

Figure 1. Schematic representation illustrating the current strategy of sampling within an intervention 226 
unit in comparison to a mapping approach at a smaller level based on a pooled sampling strategy. 227 
Currently, according to the WHO, areas are divided into implementation units (IU) (A) which can vary in size; 228 
for example a whole district (A-i) or a sub-district (A-ii). The burden of infection in each IU is determined and 229 
monitored by sampling from 5-10 sentinel sites (B) using conventional parasitological diagnostic tools. The 230 
burden of infection is then categorised as low, moderate or high for each IU (C). By further dividing sub-district 231 
IUs into smaller transmission units (TU) (D), and instead of sampling from 5-10 sentinel sites applying a 232 
pooling strategy to the whole TU, a bigger area will be sampled from. This results in more accurate data for 233 
mapping and quantifying the distribution of schistosomiasis as well as to identify communities at risk.  234 
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Table 1: Proposed treatment strategy based on infection burden 235 

Infection burden established by sampling Recommended treatment strategy* 

I. High infection burden Intense MDA (annual or biannual treatment of all high-risk 

groups as well as community-wide treatment) 

II. Medium infection burden Regular MDA (annual community-wide treatment) 

III. Low infection burden (near elimination) Intensified focal test-and-treat (multiple rounds per year) 

and frequent surveillance, using the most sensitive 

diagnostic tool available in combination with pooled 

sampling  

IV. No infection (anymore) No MDA, regular surveillance, using the most sensitive 

diagnostic tool available in combination with pooled 

sampling 
* Combined with integrated intervention measures, see text 236 

From the strategy outlined above, we envisage four scenarios that may reflect the burden of infection from 237 
surveying each TU (shown in Table 1). The corresponding recommended strategy should then also be 238 
implemented at TU level. In TUs found to have a high infection burden, for instance potential ‘hotspots’ or 239 
‘persistent hotspots’, intense MDA of yearly or twice-yearly treatment should be rolled out following existing 240 
control strategies. Additional samples should be taken not only from school-age children, but also from high-241 
risk groups (such as fishermen, car-washers, women doing laundry, etc.) and testing stratified according to these 242 
groups. The strategy could be adapted to treatment for each positive group in addition to all school-age children; 243 
and the entire group could be monitored and followed up over a two-year period. For TUs where a medium 244 
infection burden is established, a regular MDA programme of yearly community-wide treatment should be 245 
implemented. In areas where the burden of infection is found to be low, an intensified test-and-treat strategy 246 
with multiple rounds of testing and treating per year should be implemented after identifying the high-risk 247 
groups within each community. In addition, the identification, treatment and monitoring of individuals who still 248 
harbour high worm infections also needs to be taken into account in this strategy. Furthermore, knowledge 249 
about local transmission sites with respect to aquatic biology and social behaviour patterns is indispensable in 250 
tackling and reducing exposure. Individual worm levels could also be included to guide local or regional 251 
interventions. In TUs found to be negative, no MDA would be carried out but groups should be followed-up and 252 
tested over a given period of time using a cost-efficient sample pooling strategy. It would be important to know 253 
if these areas have always been negative or are negative after prolonged control since the monitoring approach 254 
depends on the potential for transmission in the area (best reflected by the pre-control endemicity). Obviously, 255 
all strategies also need to include other integrated multisectoral approaches such as health education, snail 256 
control, and water, sanitation and hygiene (WASH) initiatives. Classic xenomonitoring augmented with DNA 257 
methods that can identify infected snail hosts is especially important to determine environmental risk accurately 258 
(67), as well as monitoring of schistosome infection in locations where zoonotic spill-over may occur. Further 259 
innovations such analysis of water for environmental DNA (eDNA) (68), signatures of schistosomes with taxon 260 
specific probes, could be very powerful to verify putative interruptions of transmission.  261 

At the national level, a surveillance response mechanism would need to monitor these focal test-and-treat 262 
strategies. This includes modelling for prediction and guiding the intervention, monitoring of infection and 263 
mechanisms to evaluate interventions (69). Global positioning system (GPS) mapping could be used to 264 
determine precise locations of infected people of all ages and their households (70). However, privacy issues 265 
need to be taken into consideration. Innovations such as surveying snail environmental DNA (eDNA) in water 266 
bodies (68, 71) are additional tools that can be used to monitor transmission. Lessons can also be learnt from the 267 
Global Polio Eradication Initiative which uses environmental surveillance of poliovirus in sewage to monitor 268 
the virus (72). 269 

After presumed interruption of transmission has been achieved, communities should still, ideally, be monitored 270 
longitudinally using highly sensitive and specific assays using the UCP-LF CAA test and eventually also 271 
serology. After a number of years with no new infections being detected, new-borns and young children would 272 
have to be followed to assess their exposure to schistosomes (44, 73), which could be done through for example 273 
targeted anti-schistosomal antibody testing (74, 75). In addition, the movement of individuals from regions that 274 
are still endemic for schistosomiasis into post-transmission areas would have to be monitored, and infected 275 
individuals promptly treated. The development of commercially available highly sensitive tests would be 276 
indispensable in targeting these groups in this post-transmission phase.  277 
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Given that current schistosomiasis control programmes in sub-Saharan Africa rely heavily on donated 278 
praziquantel for MDA campaigns, the proposed test-and-treat strategy will enhance cost-efficiency. The 279 
availability of a paediatric praziquantel formulation for young children will further support and strengthen a 280 
community-wide targeted treatment approach. 281 

The successful implementation and efficient rollout of the proposed strategy would hinge on close cooperation 282 
between key international players (such as WHO) and stakeholders within endemic countries. Within these 283 
countries, engagement with national and local authorities would guarantee local ownership and responsibility 284 
for the strategy and its implementation. Targeted implementation at more local levels such as a TU could be 285 
more complex due to logistical challenges and the lack of adequate structures. Therefore, strengthening overall 286 
neglected tropical disease (NTD) coordination structures at national and sub-national levels, including the 287 
building of local capacity, would assure the proper execution of the proposed strategy, as well as effective long-288 
term monitoring, evaluation and overall sustainability. 289 

Additionally, it would be essential that endemic countries adopt and incorporate the strategy into the 290 
development of their NTD master plans. This would be achieved through local and international stakeholders 291 
working closely with endemic country NTD expert committees that are responsible for coordinating the 292 
direction of national NTD goals and policies (including for schistosomiasis) and ensuring that these are in line 293 
with regional and global targets. Combining all these efforts is essential for improved focal targeting of 294 
preventive chemotherapy in combination with more sensitive diagnostic tools in order to achieve interruption of 295 
transmission and the eventual elimination of schistosomiasis.  296 
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Conclusion 297 

The persistent global burden of schistosomiasis despite continuous large-scale MDA, requires a rethinking and 298 
revision of both intervention strategies and the diagnostic tools that enable these strategies. Especially in areas 299 
of low infection intensity, non-invasive pooled sample testing with highly accurate diagnostic tools should be 300 
implemented by national control programmes in adapted control strategies that ensure cost-efficiency in 301 
monitoring and evaluation, as well as longer-term surveillance. We believe this will be the way to go to achieve 302 
interruption of transmission and eventually elimination of schistosomiasis.  303 

304 
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