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RESEARCH ARTICLE Open Access

Molecular markers for artemisinin and
partner drug resistance in natural
Plasmodium falciparum populations
following increased insecticide treated net
coverage along the slope of mount
Cameroon: cross-sectional study
Tobias O. Apinjoh1*, Regina N. Mugri2, Olivo Miotto3, Hanesh F. Chi2, Rolland B. Tata2, Judith K. Anchang-Kimbi4,
Eleanor M. Fon1, Delphine A. Tangoh1,5, Robert V. Nyingchu1,5, Christopher Jacob6, Roberto Amato6,
Abdoulaye Djimde7, Dominic Kwiatkowski6, Eric A. Achidi1 and Alfred Amambua-Ngwa8

Abstract

Background: Drug resistance is one of the greatest challenges of malaria control programmes, with the monitoring
of parasite resistance to artemisinins or to Artemisinin Combination Therapy (ACT) partner drugs critical to
elimination efforts. Markers of resistance to a wide panel of antimalarials were assessed in natural parasite
populations from southwestern Cameroon.

Methods: Individuals with asymptomatic parasitaemia or uncomplicated malaria were enrolled through cross-
sectional surveys from May 2013 to March 2014 along the slope of mount Cameroon. Plasmodium falciparum
malaria parasitaemic blood, screened by light microscopy, was depleted of leucocytes using CF11 cellulose columns
and the parasite genotype ascertained by sequencing on the Illumina HiSeq platform.

Results: A total of 259 participants were enrolled in this study from three different altitudes. While some alleles
associated with drug resistance in pfdhfr, pfmdr1 and pfcrt were highly prevalent, less than 3% of all samples carried
mutations in the pfkelch13 gene, none of which were amongst those associated with slow artemisinin parasite
clearance rates in Southeast Asia. The most prevalent haplotypes were triple mutants PfdhfrI51R59N108I164(99%),
pfcrt- C72V73I74E75T76 (47.3%), and single mutants PfdhpsS436G437K540A581A613(69%) and Pfmdr1 N86F184D1246 (53.2%).

Conclusions: The predominance of the Pf pfcrt CVIET and Pf dhfr IRN triple mutant parasites and absence of
pfkelch13 resistance alleles suggest that the amodiaquine and pyrimethamine components of AS-AQ and SP may
no longer be effective in their role while chloroquine resistance still persists in southwestern Cameroon.
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Multilingual abstracts
Please see Additional file 1 for translations of the ab-
stract into the five official working languages of the
United Nations.

Background
Malaria is still a leading cause of illness and death especially
in sub-Saharan African children under the age of five [1].
Case management currently relies largely on the use of a
few effective antimalarials and is being compromised by the
development and spread of resistance [2]. Parasite resist-
ance to antimalarial drugs represents a major obstacle to
malaria containment efforts [1, 3, 4]. Indeed the policy
change to artemisinin-based combination therapies (ACT)
for treatment of uncomplicated malaria [5], was due to the
emergence and spread of resistance to chloroquine (CQ),
sulphadoxine-pyrimethamine (SP) and other monother-
apies [6, 7]. However, the emergence of artemisinin resist-
ance in Western Cambodia of Southeast Asia (SEA) [1, 3]
has prompted global concern given that CQ and SP resist-
ance arose in the same region and then spread to Sub-
Saharan Africa (SSA) [8]. Recent studies also suggest that
resistant mutations may emerge independently in SEA and
SSA [9–13] necessitating regional molecular monitoring of
markers for the control and containment of resistant para-
sites. Information on parasite resistance to artemisinins,
ACT partner drugs or to previously withdrawn antimalar-
ials is vital for malaria control [14] and could justify the re-
introduction of abandoned drugs [15] since drug-sensitive
populations of Plasmodium falciparum resurge following
long-term drug withdrawal.
Single nucleotide polymorphisms (SNPs) have been fun-

damental in monitoring existing or predicting emerging
drug resistance patterns. Chloroquine resistance is linked to
mutations in the P. falciparum chloroquine resistance
transporter (Pfcrt) [16–18], and is associated with muta-
tions in codons 72–76. The Pfcrt Lysine to Threonine sub-
stitution at position 76 (K76T) [16] is considered to be
critical to CQ resistance as well as to the structurally and
similarly acting drug, amodiaquine (AQ) [19]. SNPs in the
P. falciparummultidrug resistance 1 (Pfmdr1) gene, notably
the Pfmdr1 N86Y substitution [20], have been associated
with resistance to CQ [21], mefloquine, halofantrine, and
quinine [22]. Artemether lumefantrine (AL), the most com-
monly used ACT in SSA [1] seems to select pfcrt and
pfmdr1 SNPs in parasite reinfections [23, 24], with a high
proportion of pfmdr1 - N86 alleles recorded in AL treated
patients with recurrent parasites [25]. SP resistance is due
to point mutations in the parasite dihydrofolate reductase
(dhfr) and dihydpteroate synthetase (dhps) genes that con-
fer resistance to pyrimethamine and sulphadoxine respect-
ively [26, 27].
Mutations in P. falciparum Kelch13 have been shown to

underlie artemisinin resistance [13, 28], with nonsynonymous

polymorphisms in the propeller domain validated as molecu-
lar markers for determining the emergence and spread of
artemisinin-resistant P. falciparum [28, 29]. While the four
core mutations have not been detected in Africa, several
other non-synonymous K13 mutations have been identified
and the effect of these and markers of previous antimalarial
resistance remains largely unknown. The A481V and G533C
substitutions, for instance, have been confirmed to be adja-
cent to these four major SNPs and may affect the tertiary
structure and thus the function of the propeller [29, 30].
This ever evolving parasite population dynamics neces-

sitates antimalarial resistance monitoring in distinct trans-
mission contexts. Although drug pressure is the primary
driver of anti-malarial drug resistance, alterations in mal-
aria transmission has also been implicated [31]. In areas
where drug policy has changed and the insecticide treated
net coverage has been scaled up, molecular monitoring of
current and previously used drugs could provide a better
understanding of the impact of these factors on drug re-
sistance alleles [6]. In Cameroon, CQ, AQ and SP were
administered as monotherapies during 1999–2004, with
CQ used as first line drug for treatment of malaria until
2002, when an interim policy was adopted involving the
use of AQ as the alternative first line drug for uncompli-
cated malaria while SP was the second line drug [7]. Due
to the declining efficacy of P. falciparum to AQ and SP,
the Cameroon Ministry of Public Health revised its treat-
ment policy in 2004 to artemisinin-based combination
therapy (ACT) and adopted AS-AQ as first line drug for
uncomplicated malaria while quinine (QN), injectable
Arthemeter (or QN) and SP were recommended for P. fal-
ciparum treatment failure, severe malaria and intermittent
preventive treatment of malaria in pregnancy (IPTp), re-
spectively [1]. A number of other ACT options are avail-
able for treatment of mild malaria in Cameroon [32], with
artemether-lumefantrine (AL) reportedly prescribed by up
to 36.6% of health workers in a recent study [33].
The government of Cameroon embarked on a scaling-

up of ITN coverage in 2011, in line with the Roll Back
Malaria recommendation of universal coverage [34]. In
the study area, where malaria parasitaemia is higher in the
rainy seasons [35] and at lower altitude [36], significant in-
creases in ITN ownership and usage have been reported
[37]. This, together with infrastructural development in
the area may have altered the structure of the vector popu-
lation, transmission of infection, genetic diversity of circu-
lating parasites and the efficacy of antimalarials. However,
other factors such as host immunity may also be important
determinants of treatment failure and the emergence and
transmission potential of resistant parasites [38–40].
Reports on the monitoring of antimalarial resistance

markers in Cameroon have been limited manly to the pfcrt:
K76T [41–44] and pfmdr1: N86Y [42, 44]. The pfcrt: K76,
for instance, has remained relatively fixed at 12% in 2000
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[41] compared to 13% in 2012 [45]. The only such study in
the mount Cameroon area [44] revealed that 87% and 76%
of samples between 2004 and 2006 carried the pfcrt: K76T
and pfmdr1: N86Y alleles, respectively. Furthermore, there
have been no reports on the prevalence of molecular
markers of artemisinin resistance in the area. In this study,
the prevalence of mutations in genes associated with drug re-
sistance were assessed in natural parasite populations across
different altitudinal zones from southwestern Cameroon,
enriching data on parasite antimalarial resistance, with impli-
cations for the control of the disease.

Methods
Study area
The study was conducted in localities on the eastern slope
of Mt. Cameroon, with varying altitudes as described [37].
The area is categorized by an equatorial climate compris-
ing two seasons: a short dry season (November–March)
and a long rainy season (March–November) [35], intense
and perennial Plasmodium spp. transmission and higher
parasite prevalence in the rainy season and at lower alti-
tude [36, 46]. P. falciparum is responsible for most of the
malaria infections [1] while Anopheles gambiae (Anopheles
coluzzii M form) is the main malaria vector species, with
overall Entomological Inoculation Rates (EIR) as high as
287 infective bites/person/year [35]. There is a substantial
level of human migration between localities, mainly for
educational, recreational and commercial purposes.

Study design and selection of sampling sites and
participants
This was a cross-sectional community - and hospital –
based study conducted between May 2013 and March
2014. Individuals with asymptomatic parasitaemia (AP)
were enrolled through surveys from selected rural and
semi-urban communities at varying altitudes as described
[37] based on previous reports of variation in malaria
parasitaemia [38, 46]. Three communities, Mutengene,
Ombe and Tiko below 200 m were considered to be at
low altitude while Mile 14, 15, 16, Muea and Molyko lo-
cated between 385 and 575 m were considered to be at
intermediate altitude. Individuals residing from check-
point to Buea Town and Tole above 636 m were consid-
ered to be at high altitude. Uncomplicated Malaria (UM)
subjects were also registered from health facilities within
these communities. All local residents, with a minimum of
1000 asexual parasites per microliter of peripheral blood,
who had not travelled out of the target sites within the last
3 weeks were eligible for enrollment. A structured ques-
tionnaire was used to record demographic and clinical
data such as age, area of residence and drug history of all
participants. All patients were given oral antimalarial,
based on their weight, by the attending clinician and
according to national guidelines.

Sample collection and parasite detection
Prospective participants were prescreened by light micros-
copy using giemsa-stained thick and thin blood smears of
the peripheral blood as described previously [37]. A smear
was only considered negative if no malaria parasites were
seen in 100 high power fields. The level of parasitaemia in
positive smears was estimated by counting the parasites
against a minimum of 200 white blood cells and assuming
a leucocyte count of 8000 per microliter of blood [36, 47].
Quality control was ensured in accordance with the
World Health Organisation’s protocol [47]. Venous blood
(3–5 ml) was then collected from P. falciparum positive
participants into EDTA tubes for molecular analysis.

DNA extraction
Leucocytes were depleted from whole blood using CF11
cellulose columns (4021–050) following a modified World-
Wide Antimalarial Resistance Network (WWARN) MOL02
protocol (www.wwarn.org). Parasite genomic DNA was then
extracted using a commercial kit (Qiagen, UK) according to
manufacturer’s instructions, eluted with 100 μl TE (10 mM
Tris–HCl; 0.5 mM EDTA; pH 9.0) elution buffer (Qiagen,
UK) and kept at −34 °C until genotyping.

Genotyping of mutations in drug resistance genes
Samples with >50 ng DNA and <80% human DNA contam-
ination (239/259, 92.3%) were sequenced on the Illumina
HiSeq platform (Illumina, San Diego, USA), and subse-
quently genotyped using well established methods, as
described previously [13, 48] without any modification. In
brief, samples were genotyped at each SNP on the basis of se-
quencing read counts, with at least 5 reads required to emit a
genotype and at least 2 reads to call an allele. Pfkelch13 alleles
were determined by identifying any variation across the gene
that would result in a non-synonymous change in the pro-
tein, as described [49].
Haplotypes were constructed independently for each

locus. As it is impossible to ascertain if any two haplo-
types are coming from the same genome for complexity
of infection (COI) > 1, only the frequency of haplotypes
without any heterozygous call were reported. The sam-
ple should therefore carry the same DR haplotype even
if multiple genomes are present in the infections.

Complexity of infection
Complexity of Infection was determined using the
program COIL [50]. From the MalariaGEN Plasmodium
falciparum Community Project data resource (https://
www.malariagen.net/projects/p-falciparum-community-
project), 101 genomic SNPs of mid-high MAF with
large between-population Fst were used as a
“barcode” within COIL to estimate COI. COIL was used
with default parameters and population allele frequency
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estimate were calculated from sample data, not pre-
determined.

Statistical analyses
All data were entered into Excel and analyzed using SPSS
Statistics 20 for windows (SPSS Inc., Chicago, USA). The
significance of difference in prevalence were explored
using the Pearson’s chi square test whereas the differences
in group means were assessed using Student’s t – test or
analyses of variance (ANOVA). A difference giving a P
value ≤0.05 was considered statistically significant.

Results
Characteristics of smear-positive participants
A total of 259 participants were enrolled in this study
from three different altitudes (Table 1), most of whom had
uncomplicated malaria (74.8%, 190/254), reportedly had
fever in the previous 48 h (67.5%), were anaemic (47.2%)
and females (52.1%). The mean age (± SD), geometric
mean parasite density and complexity of infection (± SD)
were 13.9 ± 13.09 years, 15,715 parasites/μl blood and
1.81 ± 1.10 respectively. The proportion of individuals
with asymptomatic parasitaemia from the community
surveys at low, intermediate and high altitude was 6.0%,
(11/184), 7% (34/487) and 14.7% (19/129) respectively.

Prevalence of drug resistance molecular markers
Some resistance mutations were highly prevalent; all 233
(100%) samples had pfdhfr: S108N and 232 (more than
99%) had pfdhfr: N51I and C59R mutant alleles (Table 2).
One hundred and twenty one (72%) of samples harbored
mutations at pfmdr1: Y184F while 120 (62.5%) mutations
were detected in pfcrt: Q271K overall. CQ resistance alleles
were also prevalent, with at least 115 (50%) parasites carry-
ing mutations in pfcrt at codons 74, 75, and 76. However, 5
(less than 3% of all samples) had pfkelch13 (pk13) mutant

alleles, except for pfk13: 189 T detected in 58 (36%) samples
overall. Furthermore, none of the samples carried muta-
tions in pfk13 at codons 112, 175, 217, 255, 258, 569, 573,
578 and 580, pfcrt at codon 72, pfdhfr at codons 59
and 164, pfdhps at codon 540 and pfmdr1 at codon
86 (Fig. 1).
The prevalence of pfdhps: K142N (P = 0.006) and

pfmdr1: Y184F (P = 0.010) mutations, but not other
markers, differed significantly among study sites, highest
in the Mutengene – Tiko area (Fig. 1, Additional file 2:
Table S1). However, the proportion of the alleles was simi-
lar between AP and UM individuals in all study sites, ex-
cept for dhps: I431V that was higher (P = 0.039) in UM
(22/86, 25.6%) compared to AP (1/22, 4.5%) at MM. Two
hundred and thirty two (99.6%) samples harbored the dhfr
N51I/C59R/S108 N (IRN) triple mutant, while none had
the dhps A437G/K540E (GE) double mutant and therefore
the IRN + GE quintuple mutant haplotype.

Pfk13 mutations
None of the candidate and validated non-synonymous
K13 resistance mutations were detected in the 239 sam-
ples analyzed (Fig. 1). Furthermore, other less frequent
variants that have been associated with in vivo or in vitro
tests, or both were not seen in all samples analyzed.

Haplotypes of CQ and SP markers
CQ resistance haplotypes
The prevalence of pfcrt and pfmdr1 haplotypes in the
study area are shown (Table 3). Two different pfcrt haplo-
types were observed, with 60 (25.3%) of the samples bear-
ing wild type alleles at all five codons, C72V73M74N75K76

(CVMNK) while the majority (112, 47.3%) carried triple
mutations at codons 74, 75, and 76 (CVIET). Neverthe-
less, 65 (27.4%) had a mixture of the CVIET and CVMNK
haplotypes. In all, 177 (74.7%) of the samples had the

Table 1 Basic characteristics of Plasmodium falciparum smear-positive participants at different altitudes along the slope of mount
Cameroon, southwestern Cameroon

Characteristic All participants MT <200 masl MM 385–575
masl

CB ≥ 626 masl P-value

n Values

Age (mean ± SD) [Range] / years 246 13.6 ± 12.8 [0.5–65] 7.7 ± 8.6 (32) 14.1 ± 11.4 (160) 15.6 ± 17.1 (54) 0.014

Weight (mean ± SD) [Range] / kg 217 37.2 ± 24.7 [2.0–110.0] 22.6 ± 13.7 (30) 40.1 ± 24.5 (137) 38.2 ± 27.5 (50) 0.002

Male: Female ratio 246 47.9: 52.1 40.6: 59.4 (32) 49.7: 50.3 (159) 47.3: 52.7 (55) 0.641

Clinical phenotype (AP: UM) 244 25.2: 74.8 35.5: 64.5 (31) 21.5: 78.5 (158) 34.5: 65.5 (55) 0.076

GMPD [Range] (parasites/μl blood) 246 15,715 [1267–1,840,000] 22,387 (32) 16,254 (160) 11,216 (54) 0.081

COI (mean ± SD) [Range] 230 1.8 ± 1.1 [1–5] 2.1 ± 1.2 (29) 1.8 ± 1.1 (147) 1.7 ± 1.0 (54) 0.222

Hb (mean ± SD) [Range] / g/dl 235 10.7 ± 2.1 [6.0–19.0] 10.2 ± 2.3 (30) 10.8 ± 2.0 (154) 10.5 ± 2.1 (51) 0.254

Anaemic [% (n)] (Hb < 11 g/dl) 235 47.2 (111) 53.3 (30) 42.2 (154) 58.8 (51) 0.093

Fever in last 48 h [% (n)] 235 67.5 (155) 64.5 (31) 84.7 (150) 72.7 (55) 0.017

Values in italics depeict significant p values for differences in group means or proportions; AP Asymptomatic parasitaemia, COI Complexity of infection, UM
Uncomplicated malaria, GMPD Geometric mean parasite density, masl altitude (in metres) above sea level, MT Mutengene & Tiko, MM Mile 14 to Muea transect, CB
Checkpoint-Molyko to Buea Town transect
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CVIET haplotype, which was more prevalent (P = 0.011)
in semi-urban settings (50.2%) compared to rural settings
(31.2%) (Table 3). The alternative South American-type
mutant haplotype (SVMNT) was not detected.
A total of four pfmdr1 haplotypes were detected in the

area, with 46 (33.1%) samples containing wild type
alleles at codons 86, 184 and 1246, pfmdr1 N86Y184D1246

(NYD). Nevertheless, the predominant haplotype (74,
53.2%), contained a single mutation at codon 184 (YFD)
whereas 18 (12.9%) and 1 (0.7%) of samples had haplo-
type variants with double (YFD) and single (YYD)
mutations respectively. The proportion of the pfmdr1
haplotypes did not vary with locality (Table 3).

SP resistance haplotypes
A total of nine distinct haplotypes were detected in the study
area, with the proportion of the different variants independ-
ent of locality of residence (Table 2). At least 232 (99%) and
67 (69%) of samples in all localities harbored the pfdhfr
N51I/C59R/S108N/I164 (IRNI) and pfdhps S436/A437G/K540/
A581/A613 (SGKAA) haplotypes respectively. Overall, 73.3%
and 4.4% of isolates in the area harbored the IRNI + SGKAA
and IRNI + AAKAA haplotypes carrying quadruple muta-
tions at the key dhfr and dhps codons respectively. Further-
more, 11 and 3 samples had the sextuple mutant
IRNI + AAKGS and IRNI + AGKAS respectively while
7.4% and 3.0% had the quintuple mutant IRNI + AGKAA
and IRNI + SGKAA respectively. The remaining quintuple
haplotypes containing the pfdhfr triplet mutant IRN and
different SNP combinations at two pfdhps codons (G437A581)

were present in four samples. Only one sample had the dhfr
triple mutant without any additional mutations.

Multilocus haplotypes
Multilocus haplotypes in CQ and SP markers were con-
structed based on pfcrt: K76T, pfmdr1: N86Y, pfdhfr N51I/
C59R/S108N and dhps A437G/K540E to determine if CQ
resistant parasites also tend to be SP resistant. In total,
seven haplotypes were observed, with 13.7% and 59.8%
of samples having variants with 6 (T + Y + IRN + GK)
and 5 (T + N + IRN + GK) mutations respectively.
Nevertheless, no sample had the sextuple mutant
haplotype (T + Y + IRN + GE).

Discussion
Antimalarial drug resistance monitoring remains critical to
malaria control and elimination, especially with the con-
firmation of artemisinin resistance in Cambodia [3, 28] and
other foci in that region. ITNs can alter Plasmodium spp.
transmission and thus indirectly influence the spread of
drug resistance by changing the number of parasite clones
per host and the level of community/population drug use
[6]. The use of ACT is not only expected to improve the
treatment efficacy, but also to delay the emergence of P.
falciparum drug resistance [51]. Therefore, it is very im-
portant to monitor ACT partner drugs to ensure that
national treatment policies remain effective [52]. In
the mount Cameroon area, ITN ownership and usage
has increased significantly following the nationwide
free distribution campaign [37], possibly selecting for

Table 2 Most prevalent drug resistant mutations in P. falciparum isolates from the slope of mount Cameroon

Gene Codons This study
Prevalence (isolates)

Previous reports in areaα or elsewhere in Cameroonβ

Prevalence (isolates) Year of sampling Reference

Pfcrt M74I 55.0 (116) NR NR NR

N75E 54.2 (115) NR NR NR

K76 T(R,I) 55.2 (116) 87.1 2004–2006 Mbacham et al., 2010α [44]

Q271K 62.5 (120) NR NR NR

I356K 46.1 (77) NR NR NR

Pfdhfr N51I 99.6 (232) 96.1 (51) 2010–2011 Chauvin et al., 2015β [63]

C59R 99.6 (232) 98 (51)

S108 N 100 (233) 98 (51)

Pfdhps K142 N 9.2 (19) NR NR NR

I431V 17.6 (31) 9.8 (51) 2010–2011 Chauvin et al., 2015β [63]

S436A 32.0 (39) 47.1 (51)

A581G 9.8 (19) 5.9 (51)

A613S 12.3 (18) 11.8 (51)

Pfmdr1 N86Y 13.0 (25) 73.8 2004–2006 Mbacham et al., 2010α [44]

Y184F 72.0 (121) 9 (64) 1997–2000 Basco et al., 2002β [41]

Pfkelch13 K189 T 36.0 (58) NR NR NR

α and β denote reports from the study area and elsewhere in Cameroon respectively; NR = No Reports
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resistant parasites over time. The study assessed mo-
lecular markers to a wide panel of antimalarials in
this area, across three transects at different altitude
and varying malaria transmission intensity based on
proxy measure of malaria parasitaemia.

Although artemisinin resistance has not been docu-
mented in Africa [11, 49], and pfkelch13 alleles are prob-
ably not under selection [49], monitoring is necessary, as
the history of anti-malarial resistance suggests the possi-
bility of it spreading to Africa despite global efforts in its

a

b

c

Fig. 1 Prevalence of mutation in different marker genes in natural Plasmodium falciparum populations along the slope of mount Cameroon
(a = low altitude (MT); (b) = Intermediate altitude (MM); (c) = High altitude (CB); numbers in brackets after marker name indicate samples
effectively genotyped)
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containment. None of the nonsynonymous polymor-
phisms at N458Y, Y493H, R539T, I543T, R561H and
C580Y in the kelch repeat region of K13 propeller
domain validated as markers of artemisinin resistance
[28, 29] as well as the adjacent A481V and G533C muta-
tions thought to affect the three-dimensional structure
of the K13-propeller [30] were observed in the surveyed
parasite samples as reported previously [10, 53]. Further-
more, even pfk13: A578S, the most frequent allele
observed in Africa [29, 53], which has recently been
reported elsewhere in the country [54] was not detected,
although it is not associated with clinical or in vitro
resistance to artemisinin [29]. However, the K13: K189T
mutation (36%, 58/161) was highly prevalent. Other k13
mutant alleles were at such low frequencies, suggesting
that further measures are needed, including monitoring
at 2–3 time points and investigating sweeps in flanking
microsatellites around the DR markers to ascertain that
ART resistant parasites are not under evolutionary selec-
tion in south western Cameroon.
The pfcrt: K76T [15] and Pfmdr1: N86Y mutations [20]

are thought to be most decisive in CQ resistance, with the
latter allele serving to augment CQ resistance in isolates
with the former. As such, the pfcrt-K76 allele is expected to
be selected after almost 15 years of change in national drug
policy. The removal of chloroquine drug pressure resulted
in the reemergence of chloroquine sensitive parasites in
east Africa [55, 56] that reached 100% in Malawi [56] less

than 10 years after chloroquine was replaced with SP and
dramatically 2 years after introduction of AL [55]. This
study reports a high frequency (55.2%) of pfcrt: K76T, but
low proportion (13.0%) for pfmdr1: N86Y relative to previ-
ous studies prior to the large scale ITN distribution in
Cameroon (pfcrt: 76 T: 71–87.1%) versus pfmdr1: N86Y
(73.8–76%) [42, 44]. The slow decline in the pfcrt: K76T
mutant since 2004–2009 is in line with previous reports [4]
and can be explained by (i) the fixation of the allele in the
parasite populations that need more time to recover CQ
sensitivity in the absence of CQ pressure or (ii) the high use
of amodiaquine (AQ) at the population level that selects for
pfcrt: K76T alleles. As such, it is not yet possible to reintro-
duce CQ against P. falciparum in the study area. Neverthe-
less, the decreased prevalence of the pfmdr1: 86Y mutation
reflects the complete withdrawal of CQ usage in the com-
munity [56] but may also be due to its selection by
lumefantrine.
In line with previous reports in Cameroon [41, 42, 44],

pfcrt polymorphisms scanning revealed that the mutant
pfcrt CVIET (Southeast Asian CQ-resistant) haplotype was
still the more predominant in the parasite population
while the pfcrt SVMNT haplotype was not detected in any
of the samples analyzed as reported elsewhere [43]. The
remaining isolates had the wild type (CQ-sensitive) pfcrt
CVMNK form, distributed in all three transects in variable
frequencies (Table 3). In all, 25.3% (60/237) were of
CVMNK type—suggesting that one quarter of P.

Table 3 Prevalence of point mutation haplotype in the P. falciparum CQ resistance transporter, dihydrofolate reductase, dihydropteroate
synthetase, and multidrug resistance 1 genotypes among clinical samples from different localities in south western Cameroon

Drug implicated Gene (codons) Haplotype
(amino acids)

Prevalence
[n (%)]

Area (%) P-value

MT MM CB

CQ, AQ, LM pfcrt (72–76) CVIET 112 (47.3) 51.7 46.6 47.3 0.905

CVMNK 60 (25.3) 27.6 23.6 25.5

CVIET + CVMNK 65 (27.4) 20.7 29.7 27.3

SP pfdhfr (51, 59, 108, 164) IRNI 232 (99.6) 100 99.3 100 0.754

NCNI 1 (0.4) 0.0 0.7 0.0

pfdhps (436, 437, 540, 581, 613) SGKAA 67 (69.1) 66.7 65.1 75.0 0.925

AGKAA 10 (10.3) 22.2 7.9 15.0

AGKGS 10 (10.3) 11.1 12.7 5.0

AAKAA 5 (5.2) 0.0 6.3 5.0

AGKAS 3 (3.1) 0.0 4.8 0.0

AAKGS 1 (1.0) 0.0 1.6 0.0

SAKAA 1 (1.0) 0.0 1.6 3.0

AQ, CQ, LM, MQ pfmdr-1 (86, 184, 1246) NFD 74 (53.2) 71.4 55.7 40.0 0.169

NYD 46 (33.1) 7.1 30.7 48.6

YFD 18 (12.9) 21.4 12.5 11.4

YYD 1 (0.7) 0.0 1.1 0.0

Boldface letters depict mutant alleles; AQ amodiaquine, CQ chloroquine, LM lumefantrine, MQ mefloquine, SP sulphadoxine–pyrimethamine, MT Mutengene &
Tiko, MM Mile 14 to Muea transect, CB Checkpoint-Molyko to Buea Town transect
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falciparum isolates are still susceptible to chloroquine in
the area, slightly higher than previous reports [57]. Such
genetic reformation might have been propelled by the
selection pressure exerted by the amodiaquine component
of the AS-AQ artemisinin combined therapy recom-
mended for the treatment of uncomplicated P. falciparum
malaria in Cameroon [44]. This can be justified by the fact
that AQ has a very similar genetic target (Pfcrt) to chloro-
quine [43]. With close to three quarters of the population
carrying this CQR haplotype, however, CQ and AQ
cannot be effective treatment options in the area. Taken
together, these findings suggest that the intensification of
control has not affected the diversity of the parasite popu-
lation. Nevertheless, that only 47.3% of parasites were of
the reversible CQ resistant haplotype (CVIET) phenotype
suggests the possibility of CQ re-use over time.
Sulphadoxine-pyrimethamine remains the drug of choice

by the World Health Organization for intermittent prevent-
ive treatment in pregnancy (IPTp) [58], although, resist-
ance is reportedly increasing in stable transmission areas
[59, 60]. The dhfr IRN triple mutant and dhps double GE
mutant combination associated with in vivo SP treatment
failure [61] was not recorded in any of the samples
analyzed. However, up to 99.6% of samples harbored the
dhfr triple mutant in this study (Table 3) while none of the
isolates carried the dhps: K540E mutant. This suggests that
resistance to pyrimethamine but not sulphadoxine is
widespread in the study area, although it may also be due
to trimethoprim and sulfamethoxaxole (Cotimoxazole), a
commonly used antibiotic that is known to select for dhfr/
dhps resistant alleles [62]. This suggests that IPTp with SP
may no longer be effective in the area, although further
measures are needed to confirm the local prevalence of
dhfr/dhps genotypes/haplotypes. Additionally, the overall
impact of these alleles on the IPTp-SP routine can only be
ascertained through in vivo efficacy studies in pregnancy.
The pfdhps: 142N and pfmdr1: 184F mutations were

highest at a low altitudes compared to medium and high
altitudes. However, there were no significant differences
in the prevalence of the critical pfcrt: 76T and pfmdr1:
86Y mutations as well as CQ pfcrt and SP pfdhfr/dhps
haplotypes among the three transects (Table 3). Al-
though variability in malaria parasitaemia with altitude
has been reported [36, 46] in the region, the prevalence
of the markers does not mirror this. The similarity in
the prevalence of the markers among the three areas
could be explained by the small relative differences in
transmission intensity between areas as well as gene flow
due to migration of human and vector populations [6].
This study had a few limitations. First the small num-

ber of samples analysed in this study might have also re-
duced the statistical power. Secondly, the geographic
proximity of the three study areas and evaluation of the
effect of transmission intensity on drug resistance at a

single time point may have limited the ability to detect
differences in the molecular profiles of drug resistance
among the areas [6]. Thirdly, the fact that only individ-
uals with asymptomatic parasitaemia or uncomplicated
malaria were enrolled may have limited the diversity of
the parasite population analysed.

Conclusions
None of the candidate and validated K13 resistance muta-
tions were detected in southwestern Cameroon, although
other non-synonymous mutations were observed. Para-
sites in the area, however, remain largely resistant to CQ,
with only a slow decline in the pfcrt: K76T mutant since
2004–2009 suggesting the fixation of the allele in the pop-
ulations that need more time to recover CQ sensitivity in
the absence of CQ pressure. Resistance to pyrimethamine
but not sulphadoxine is also widespread in the study area.
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