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ABSTRACT

This thesis looks into the possibility that X radiation
following inner shell ionization by electron impact might
be polarized. There has been some speculation on this
point: one published conclusion (Cooper and Zare, 1968)

is that the polarization must be zero; another conclusion
(Mehlhorn, 1968) is that the polarization need not be Zero
and can be substantially prlarized. By application of the
Bethe and Born collision theories (Chapters &4 and 5), if
will be shown that both these ausertions are wrong: a
non-zero polarization can exist, but will be extremely
small, even in the region of high impact energies. This
work (McFarlane, 1972) has been indirectly confirmed by
measurements of the related phenomenon of the angular
distribution of Auger electrons folloving inner shell
ionization by electrons (Cleff and Mehlhorn, 1971). By
extendiﬁg the Bethe theory to include relativistic
corrections after the manner of Mgller (1932) it is shown
(Chapter 6) that the polarization approaches its high

energy limit only very slowly.

The thesis also looks at other anisotropic processes

following electron and photon impact. Chapter 7 deuls v



the related problem of Auger electron angular
distributions following inner shell photoionization.
Chaptef 8 postulates a directional correlation between
photoelectrons and Auger electrons. Chapter 9 shows
that the spin of a photoelectron is correlated with its
direction of ejection, if there is significant fine

structure interaction in the bound state.

An appendix is concerned with the high energy limit of
the form of anisotropies, and shows that this limit is
more subtle than has been realized. An analytic, compact
expression for the line polarization is hence derived and
tested sucéessfully against experiment and a more

complicated theory.
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1.

CHAPTER 1

PRELIMINARIES

Introduction

This thesis will touch on various topics which can all be

assembled under the heading: the study of anisotropic processes

following electron- and photon-atom collisions. A justification

for such a study may be put forward as follows:

(a) Knowledge of angular distributions can be vital in

(b)

obtaining accurate total cross sections. For example,
polarization corrections must be applied to excitation
cross sections obtained by optical measurements. (An
account of how such corrections may be made is contain: d
in the review by Moiseiwitsch and Smith, 1968). Hen:ce it
is necessary to know the polarization of the emitted

light as a function of collision energy.

The quantum-mechanical amplitude for an anistropic process
of the type dealt with here can be factorized into a radial
and an angular part ( Wigner-Eckart theorem). The latter
depends only on the rotational symmetry of the problem and
can be treated by standard Racah methods (see, for example,

Edmonds, 1960). The former contains the detailed



(e)

information on the structure and interaction. To take

an example from nuclear physics, the angular distribution
between two radiations emitted successively from a
nucleus depends partly on symmetry properties, i.e. on
the angular momenta of the states involved, and partly

on the detailed structure of the states. A classical
example is the motion of a particle in a central field.
The symmetry of the interaction leads to a plane orbit
and conservation of angular momentum, while the exact
shape bf the orbit depends upon the detailed form of the
central interaction. 7o return to the radial amplitudes,
anisotropic processes give information on the ratio of
their squared moduli, whereas total cross seétions depend
usually on the sum of the squared moduli. The types of
measurement can thus be complementary.

As long ago as 1933, Massey and Mohr calculated angular
distributions of electrons ejected in collisions of fast
elecfrons with hydrogen atoms. No experimental information
was (or, to the writer's knowledge, is yet) available to
check against their calculations. However, this kind of
situation is changing, and experimental measurements of
differential cross seétions are increasingly becoming
available. Such experiments will be mentioned as

appropriate in the text. Hence the interest in anisotr .ic

processes seems likely to increase.



Tﬁe kind of process dealt with here, then, is the inelastic
collisién of a photon or an electron with an atom resulting
in the removal of a bound electron from aﬂ inner shell of
the atom.  (An appendix deals with the polarization of outer

shell radiation following electron excitation).

When a photon is absorbed by an atom it thereby gives up its
angular momentum to the atom, and hence the latter may be left
in a non-spherically symmetric state. Thus when the excited
atoms relax, the anisotropy can be reflected in a non-uniform
distribution of the relaxation prodvcts (e.g. photons or Auger
electrons). Notice that use of unpolarized radiation does not
preclude the introduction of anisotropy, for no angular
momentum may be transferred to the atom in the direction of
the beam. It is necessary that a collimated beam of radiation

be used (but not, for some types of anisotropy, sufficient).

In collisions of electrons with atoms(and molecules) the
anisotropy can usefully be thought of as arising from the
receipt by the atom of a momentum transfer, f\‘s s, which is
not isotropically distributed. For a given angle of scattering

A
the direction K is uniquely defined. lowever, if the
~

A
angle of scattering is not detected, the direction ¥ is in

effect averaged, even for a fixed velocity of impact. The



customary picture, due to Bethe (1933), is of the variation

of %’ from being parallel to the direction of incidence at
the threshold excitation energy, to being perpendicular to

this direction in the limit of high energies. Hence the
anisotropy gradually makes a transition between two limiting
forms as the collision energy is varied. We shall make a more
thorough analysis of the variation of €S in connection with

Bethe's theory.
Finally, we give a resumé of the contents of the thesis.

The remaining section of this chapter derives expressions for
the polarization of the characteristic X-ray lines when the
atom has been left with a vacancy in an inner shell, the

vacgncy distribution being known.

Chapter 2 derives a relation which relates the cross sections
for ionization from the '"fine structure'" states ( N Q()rné )

to those for the '"uncoupled'" states (Y\QV“ ).

Chapter 3 obtains expressions for dipole matrix elements
(bound =~ free) which are useful both for photoionization and

electron ionization (Bethe theory).



Chapter 4 applies the Bethe theory to inner shell ionization
by electrons. In the process a prescription is obtained for
A
the treatment of the direction iK' which is of wider application

(see Appendix).

Chapter 5 applies the Born approximation to L-shell ionization.
It is shown that earlier treatments of this problem must be
modified owing to their choicg-of quantization axis. The
polarization of some X-ray lines is calculated in this way as
a function of collision energy. Also, comparison is made with
some experimental results on the angular distribution of Auger
electrons ejected from the L3-shell of argon by electrons

(Cleff and Mehlhorn, 1971).

Chapter 6 modifies the Bethe theory to take into account the
effect of relativity in the motion of the incident and bound
particles. In effect, this requires the adaptation of

Mgller's theory (1930).

Chapter 7 calculates the asymmetry coefficient of the angular
distribution of Auger electrons following photoionization.

Some earlier calculations of a similar type are commented on.



Chapter & postulates a correlation between the direction of
photoelectrons and that of the resultant Auger electrons
following the inner shell photoeffect. The nature of the
correlation is estimated and an experiment to investigate

the effect is suggested.

Chapter 9 shows that the photoelectrons which originate from
individual fine structure levels will be partially spine
polarized, the degree of spin polarization depending markedly
on the direction of ejection. In particular, the polarization
of forward-ejected photoelectrons may be obtained solely from

a consideration of angular momentum.

Finally, the Appendix considers two opposing views of the for.
of anisotropies in the high energy limit of electron impact.

One is these is vindicated (with qualifications) and the other
shown to be erroneous. In the process, a very simple analytic
fofmula, giving the polarization of optical radiation excited

by electron impact as a function of collision energy, is derived.
It depends on a single, well-known collisional parameter which
is related to the differential scattering cross section. The
simple formula is shown to compare well with the Born
approximation és applied to helium excitation by .riens and

Carridre (1970).



2. The Radiative Problem

The prohlem dealt with in this section may be stated as follows:
given a certain vacancy distribution following inner shell
ionization, what will be the resultant polarization of the
X-ray lines emitted when these vacancies are filled by radiative

transitions from higher shells?

Due to the complete analogy between the parts played by the
electron and the vacancy respectively, the radiative problem

of Percival and Seaton (1958; called PS hereafter) is equivalent
to that treated here. However, two of the transitions we wish
to consider - Ly — M, Mg (Q'zp'_.y&—-) 'ba'd%’s&) -
are not tabulated by Percival and Seaton, and we will derive Lhe
appropriate expression for the polarization of these l%nes here.
The third tramsition - ks —3 M, (2%Pay —> 3%sy,) is
tabulated by Percival and Seaton; we will derive this also as

a check on our algebra.

We begin by defining our axis of magnetic quantization to be
the direction of the incoming electrons. The percentage
polarization of the radiation is

]f\"]rL

P = 100 T T (1.2.1)



n A
where L and I are the radiation intensities, in a

direction perpendicular to the quantization axis Oz , with
electric vectors respectively parallel and perpendicular to

Oz .

By a generalization of the argument given by Percival

and Seaton, we may write for /p

3Kz =K

P = 100 K, +K (1.2.2)

Kz is the rate coefficient for emission of photons
characteristic of a dipole aligned along the Z-axis, K is the
total rate coefficient for emission of all photons. They are

defined by the relations

Ke= ¥ ~ (x
= A :%5 Rz (o=@ Qe (1.2.3)

K= v 3 Q) (1.2.4)

Y,
Here ©X represents the substates of the ionized level and
(3 those of the level to which the vacancy makes its
transition, subsequent to ionization. Q@ (X) is the ionization
cross section for the initial substate X . Az is the
radiative transition probability for emission of a Z-photon:
2
Ag (x=-)= C <@z (1.2.5)




where C  is a multiplicative constant which need not concern
us here. F\A is the radiative transition probability summed

over polarizations.

Now since X-ray levels exhibit fine structure, we must consider
& transition of the type (J ™y “*‘3'"5\3 . The necessary
cross section transformation relation to express the Gp(jvyﬁ\
in terms of the fD(Qvn3 is established in the following
chapter. It is

Q Gmd = % W\Z;MES'-‘( \Q@W (1.2.6)
where the factor of yq arises because Q(Qmw@ is
‘independent of W\g , and we have put E:)-l:: Qs:y“l . Using
the Wigner-Eckart theorem, we have

AGm=> 3= (45 0 Yo Ag i)

(1.2.7)

where

AG=3)Y=2,  Ap (Gmy—>jmy)

o (1.2.8)

In obtaining (1.2.7) we have used the fact that 2% may be
considered as a component of an irreducible tensor operator.

Using (1.2.6) and (1.2.7) in (1.2.3) gives
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My kg M ™3 0 =ty ™s ™
(1.2.9)
A1301 P‘(‘-——».‘v C'"}
K = ,\L _ J t) . Jd Q
S - TEN Ty & @Um
(1.2.10)

By employing (1.2.2), (1.2.9) and (1.2.10) we may calculate

?([) »5‘) in terms of the ~Q(Qw\) . We find

Qo ~ @
—> = 300 —=2—— 2. .a
Plls >M) = 3 s5a-7a, (1.2. .a)

A_Q°+11Q1 (1.2.11b)

TR+ 13Q, (1.2.11c)
where Qo and Q1 abbreviate Q(QP,Os and Q(Q,P,‘!i‘) .

The first of these agrees with the tables of Percival and

Seaton.



11

CHAPTER 2

A CROSS SECTION TRANSFORMATION RELATION

FOR INNER SHELL IONIZATION

L. Deriving the Relation

In the theory of atomic line polarization by electron impact,
one calculates cross sections for excitation to individual
magnetic substates of the upper level. We may designate
these cross sections Q (x SLM M) y R being any
other quantum numbers needed to specify the state fully.

If the upper level has well-defined fine sﬁructure, one

must express cross sections Q (R SL'SH-;) in terms of
those with definite “u . The necessary relatiou wn.

obtained by Percival and Seaton (1958) and can be written

2
o SL =
Q@ (K SLTH;) '%;:1\.[3]< Mg M, Mg (2.1.1)

C R xSk MgMY)

where we have used Wigner's 3j-symbol and the abbreviation
CS1=23+1 . Now Percival and Seaton emphasize that this
relation is valid only so long as three assumptions remain

valid. These are:
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(a) that LS-coupling holds (i.e. the spin-orbit
interaction is weak);

(b) that the iritial state of the atom has zero
crbital angular momentum;

(c) and that the interaction potential producing the

transition does not involve spin co-ordinates.

The related phenomenon of polarizafion of characteristic
X-rays excited by electron impact, the study of which forms
a major part of this thesis, has attracted some attention
in the literature quite recently; relevant references are
contained in Chapter 5. Since X-ray levels invariably
exhibit well-developed fine structure - the "spin doublets"
of X-ray spectroscopy - one must therefore express the
cross section for ionization of the atom from . e spin-
orbital characterized by the set of one~electron quai tum
numbers ( M L :)mf) ) in terms of the set ( n L w mg ).
The published papers mentioned above have in fact employed

a relation for this purpose. It is

Q (mAYmyY = Z s J)t] Q(“Qmms\ (2.1.2)
w‘“%

Now this second relation has been employed. without proof -

the similarity to (2.1.1) shows that it has bee': merely

extended to include the second situation. The validity of
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such an extension is not self-evident; nor are the constraints
(corresponding to the conditions (a), (b) and (c) placed on
the use of (2.1.1) by Percival and Seaton) on the use of
(2.1.2) obvious. For one thing, it is clearly not true

that LS-coupling holds for X-ray levels. We will now show
that (2.1.2) can be used for the stated purpose - in fact,

the proof is very simple. But the above remarks should

make it plain that (2.1.1) and (2.1.2) refer to two quite
distinct physical situations, so that the one cannot

simply be inferred from the other.

We denote by ( X ,m; ) the wave vector and spin state of the
ejected electron. In the same way the incident and scattered
electron is labelled by (&t_o,m‘o) and (%t,ms') respectively.

Hence we represent the process by the transition amplitud.
' . - Ve . .
T (V\Q()v“t)3 - <)5‘w\5 ) %1’“‘5\‘ T l“Qi)m\)’) &an‘o>(2.l.3)

It will be necessary to adopt assumption (c) above - that
the interaction is spin - independent - so that total spin
and orbital angular momenta will be separately conserved.
Uncoupling the spin and orbital angular momenta of the

bound electron, we write:



TCV\Q;)M‘Q: Z (’Q' )[J]/z(‘i\"*‘s ™m;

v mg m g~

<X,mg %,,ms.l T \anms',%,,m,» (2.1.4)

Concervation of total spin imposes the constraint

Mg+ M = M + M
s, = Mg s
S ° ' (2.1.5)

The cross section is proportional to the squared modulus of
(2.1.4). We see that cross terms will arise in ™ and Mg
However, the conservation condition (2.1.5) eliminates cross
terms in Wg ,énd the remaining cross terms vanish as a
result of the conditibn

Ynéz m 4+ g (2.1.6)

imposed by the 3j-symbol. Thus we have

'T(“Q-me\\ Z (m > \) }Q)l\-r(nlmms\\ (2.1.7)

mms

and (2.1.2) follows immediately. We see fhat the fact that
the spin compoﬁent Y“§ of the ejected electron is a good
quantum number is essential to the existence of (2.1.2).
This corresponds to the imposition of the constraint (b)

in the case of discrete excitation. In other words, (2.1.1)
and (2.1.2) hold because in the former case there is no

spin-orbit interaction in the initial sta'e, in the latter

14
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there is none in the final state.

As for condition (a) above, the question of LS-coupling,
we see that it does not arise for inner shell ionization,
where the ionized subshell is initially complete and
therefore there is only a single vacancy in the shell
after ionization. The Pauli vacancy principle tells us
that this vacancy behaves like a single electron in an

otherwise empty subshell.

2. Physical Interpretation

In the previous section we saw that the relations (2.1.1)
and (2.1.2) hold only so long as there is no spin-orbit
interaction in one of the two states connected hy the
collisional interaction. It is possible to present ..
physical interpretation of this rule as follows. The
physical content of the two transformation relations is,

in effect, that no interference takes place between the
amplitudes represented on the right hand side of each
relation. In Figure 2.1 a schematic diagram has been drawn
of the collisiomal tramsition  n*§,, —>N"R, . The
degenerate magnetic substates have been shown as separate

for convenience. We can think of the transition as being
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accomplished in three distinct stages: first, the spin-
orbit interaction in the ground state takes the atom into
a state of definite M_ ; secondly, the collisional inter-
action causes a transition to an excited state of definite
M:‘ ; and thirdly, the spin-orbit interaction in the
excited state takes the atom into a state of definite M;y .
In particular we have shown the transition ( W Dy ,M.s-'-*‘i
—_—n Q‘P%‘ MJ-.-.-‘/J_). There exist two possible paths
the transition may take, subject to the conservation of
angular momentum: via upper states with M,_:O and M;-‘--l
respectively. However, the amplitudes for these two paths
may not interfere if it is possible, in principle, to
determine which was taken in any particular case without
disturbing the process. This rule is a consequence of
the Uncertainty Principle and is basic to quantum
mechanics. A discussion of this point may be found in
Feynman and Hibbs (1965, Chapter 1). To use their
terminology, the two paths represent exclusive (as against
interfering) alternatives, because they could have been
separately identified by the information available. If we
use a spin-polarized electron beam and detect the spin
component of the scattered electron, we know from spin
conservation the change in spin component of the atom,

AMS . Measurement of the initial and final orientations



of the atom gives us AM, . Hence, since AM[—' AM:‘AM;
we know which of the two paths was actually taken in a
given instance. Note that preparation of beam and

target in no way limits the discussion, since unpolarized
beams and randomly-orientated targets can be represented

by statistical ensembles of prepared systems.

Figure 2.2 by contrast illustrates the transition
2, -1 v 2 - )
(Y\ ?‘%\’ M:y""i > N ?%’Ms —+’5~) . Here we
can still determine AM_ , but paths (1) and (2) both

have ZKFLF+1 and are therefore interfering alternatives.
Figure 2.3 shows that no interfering alternatives arise for
the case of ionization, since we are faced again with

exclusive alternatives.

3, Coupling to Angular Momenta.in Outer Shells

A contingency which would upset the simple situation
corresponding to (2.1.2) would be if the angular momentum
of the vacancy were to éouple to another source of angular
momentum - that of a partially filled outer shell. However,
such coupling would lead to a further splitting of the

X-ray doublets and could be observed experimentally. In

20



fact, the idea that such higher multiplicities could arise
was propounded as far back as 1926 by Coster and Mulder,
but has never been observed in the Kor L groups, due
probably to the large natural widths of the lines. Van
der Tuuk (1927) has observed what appear to be unresolved
multiplets in the M series lines of the rare earths. Thus
it seems reasonable to treat the atom in an inner shell
ionization process as if its initial angular momentum

were zero, in accordance with assumption (b) of § 2.1.

21
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CHAPTER 3
THE DIPOLE APPROXIMATION

1) Dipole Matrix Element: One-Electron Problem

In the following chapters of this thesis we shall see that the
same matrix elements - those of the components of the position
operator, r - occur both in the treatment of photdionization

and in the treatment of electron-atom collisions at high energy
known as the Bethe approximation (see, for instance, Mott &
Massey, 1965, p.497). Therefore it seemed appropriate to evaluate
these matrix elements prior to a consideration of either of these

theories and to call on the results whenever necessary.

It simplifies the use of tensor operator theory if we express r
4
in terms of its spherical components, rC» (},\ = 0,t1) .

These are related to the Cartesian components by

O 1 - .
We require the matrix elements of these operators between initial

and final states | > and l\+¥:> where

Y > = Rﬂ. () | Lwm' > | (3.1.2)



represents the bound state of the electron and is therefore an

eigenstate of angular momentum; and

> = am 3 S @ G

Lm

™ (3.1.3)
represents the ejection of the electron in the direction 8
with momentum t‘% , and thus is not an eigenstate of
angular momentum. C}xéYﬁ is the radial wavefunction divided
by XY and Sg is the phase shift (Coulomb + non-Coulomb)
of the 1th partial scattered wave. The normalization of C&QGW
need not be discussed here, concerned as we shall be with
relative transition probabilities. It will be convenient to

rewrite (3.1.3) as

\+$> = Y a(dm) Yl,m(f:) Gxo.(ﬂ (5el.4)

Lm

where

[} -1.89, * A
_ : (%)
a(lm) = 4T (0 2 Y’l.m ~ (3.1.5)

The dipole matrix element for the transition may now be written:
4 !
<HIrCGIYD> = %3 a (2,m) R, <tm|CLilm'>
" ’

(%.1.6)

7%KQ is the radial dipole integral
>

©o 3 d
’ﬂy’& = S'r 'RM‘(?) le(v) { ¢ 1.7)

©

23
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By application of the Wigner-Eckart theorem

) CRllw> = ('™ <rughue>

t

L 1 L

moa -m (3.1.8)
where the reduced matrix element

KRN CNL>= 0 R

(3.1.9)
and q = (Q.“' Q_+‘l.)/2 , 27 being the greater of ]
and 2' . Thus (3.1.6) becomes
Q- 1
<HITCLI%D> = T altm) (0777 g
2.m
o1t (3.1.10)
’RX,Q <m\ m -W\)
The transition probability is obtained by squaring (3.1.10):
Y e N R AR b
= ), A(ly,mep) oX (R map)
L%
2+, rq,
T 0 B by Rt Ruty
(3.1.11)

<Q.‘ LN Y )(X‘ 1 Qz)
Nw a ~m-p/ Am o -mop,



where the properties of the 3j-symbol have been used to eliminate

two summations. We make use of the convenient quantity ?

where P=x?P

L]

is the exact transition probability and o

is left undefined at this stage. We now integrate over all

directions of ejection' and use the orthonormality property of

spherical harmonics. Thus (3.1.11) becomes

P inl'm =y = X < L rCh L > dot)

H

2 2 g 414 2 2
() };JL> ’Kx& ( }*)

m' o -m-~
The summation over Q. is limited by the selection properties

L \
of the 3j-symbol to the terms L=2+1 ana A= -1

Hence we have, on dropping the primes,

13(7\ dm — X) = (4.1T)1 (X+1) Rxfi*l

PR

_(Q 1 £+1>9” + (U)Rz (12.' i 2-13‘ (3.1.13)

m M -Mm-u Mmoo M M-

If there is an appreciable spin-orbit interaction in the initial
state, we must describe the bound electron by means of the
quantum numbers (n ‘Q, J m:\ ). Hence to evaluate the dipole

matrix element we first make the expansion

(3.1.12)

25



Y. >

]

Y (n L) my)

L R m> XE

'YY\W\S

NER NNk (Q 2 )
m o ms -y (3.1.14)

where E]__I‘:. 2,3-&-1

\“f;:> is unchanged apart from

l/
multiplication by its spin function :X;:. Evaluating the

dipole matrix element as before we find that

<HATCETR S

- Z (_1311--‘/1-%»:71'J E)-l'/z (Q- % J >
™m J

m mem —-MJ

( .l.l
| 3 5)

<:\*/ Y\(: l\*/:> Wmmqﬂc&

where we have summed over final spin Yn; . On squaring the

matrix element and integrating over angles of ejection we can

show that

Pnlymy —> XY = (2)+1) (4T Z ( a0 )

m\ fnjwn —r“D

* ¢ 1ot
(1) Ry “) O, )
m A

- )X -M=-p

(,.l.Jb.)

26
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2+- Dipole Matrix Element: Many-Electron Problem

In this section Qe generalize the considerations of the previous
section to atoms containing many electrons. In such atoms the
electron which is removed by the ionization process will initially

be coupled to the other electrons via spin-orbit and electrostatic
interactions. Also, we must take account of the indistinguishability
of the electronsj;this means that, as fermions, they must be
represented by a wavefunction which is antisymmetric under exchange
of particles. Accordingly, we shall construct such N-particle
wavefunctions for the extreme cases of L Sand j-j coupling, and

use them to recalculate the dipole matrix element.

We assume that the initial and final states may be represented as
a Slater determinant of spin-orbitals, the radial wavefuncti.ns

being calculated in the central field approximation.

(a) j-j Coupling

Here the good quantum numbers are 2ﬁ,24)........, QN .
51)31)......’..) JN 9 S‘) sz)""""°‘ SN L) J)MS
(along with N - 2 guantum numbers representing intermediate
stages in the coupling of the j's to form J). We write the

initial state wavefunction as



> = 20 P Y TH)
?

zl”

(3.2.1)

where 13 is the permutation operator and (o4 represents
the remaining 4N=2 quantum numbers. The final state

wavefunction may be written as

¥ > =f_§22(-n? L) Y (o T My

P Awm
@ (mAmwmg) (3.2.2)

where O (fwm) is as given by (3.1.5). Y represents the state
of the ion and G? that of the ejected electron. We now expand
the N-particle wavefunction |Y¥{> in terms of its (N-1)-

particle parent wavefunctions:

‘\ki‘:> = :5: ‘ °<| Jﬁ‘)T\‘QJ 5\ | 104 3'“13:>>
| a’, 35
w4y (3.2.3)

LT3 T T>

where

| ' T‘,n' 23 4 x I Mg >

= 20 W TM) @t pmy)

Mz) ' (3.2.4)

T (T ) o
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Note that in this expression the (N-l)-particle functions

\\/ (x' T M;) are understood to be antisymmetrized. The
quantity <! J‘, n' ;)\ \}“3_> » the weighting coefficient
in the expansion (3.2.3), is known as the fractional parentage
coefficient. Since the parent wavefunctions are orthonormal,
the matrix element of a one-electron operator may receive
contributions only when initial and final states possess a
parent in common. Thus | ¥> as written in (3.2.3) consists
of a series of products of (N-l)-particle functions with
one-particle functions, whereas l\"§> consists of only one
such product. Hence a non-zero contribution to the dipole
matrii element occurs only when x'= " s T"-'-' ‘5", M3:=M3"
(or, in other words, when the '"core'" of non-jumping electrons
does not change its quantum numbers). Hence the contributing

terms in the expansion of s g are

ZQ- \ + (0(" _Ju M-S“\ Q (h‘k‘:\‘ M:-"M:u)
n 'y

ST e (300
My MMy My

<t T W (Fe T

(3.2.5)

At this point it should be noted that we shall use the Pauli



approximation to the exact Dirac wavefunction for the bound
electron in evaluating the dipole matrix element (see Bethe
and Salpeter (1957) p.148). 1In the Dirac theory, the radial
eigenfunction depends on j and the argument presented here
breaks down. The Pauli wavefunctions will constitute a good
approximation only so long as o X 2/‘3"( is not
comparable to unity. It is worth mentioning also that the
Pauli solutions approximate those of Dirac more closely for

j o= R,+'/a' , since we shall be particularly concerned with the
level arising from ionization of the L,-subshell (n = 2,

3
1=1,j=g/z)

The dipole matrix element is thus
<+1:“JZ s C‘; )\K>
jonal Z Z Z Q* (Q')m\ <o<n _J“’ﬂ‘&,\ l-)\ \}O(_S>

Lim v ,ms Ts.)‘

\ B o ) \"‘f’.‘. S"_-\_M "
. )RX,Q <t ,Cf e > [7] L3 ]4 (,,lyQ *o-5-T5

L' 1 R Iy T ¢ a )
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(3.2.6)

{ (] .
mooa M MY MM =Tt g - ey
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where the expansion
@ (W5 MMy
| o
=2 @@Umwmy) (X &)
wime 3

m omg MM
[5‘]./2 (‘ﬂr-‘/"*Mz'Ms“

(3.2.7)

has been used.

The reduced matrix element < -Q.“ Q1 “ 2.‘ > is given in
(3.1.9). We now make use of the assumption that we need only
consider the ejection of equivalent electrons, so that the
summations over M, Q') and 5‘ in (3.2.6) vanish. This
will avoid cross-terms arising in these quantum numbers. Taking
the squared modulus of (3.2.6) and integrating over all angles of
ejection we find

P(xT —="T"My, %)

» ' 2 Wl . 2
= @)+ 1) (em <k"T' MG \F T

A . : >
< P 3 -7 ( L =5 :>

2 2
A R 4 i 2 /g 1 R
C L) Ry g (m " _m_»)—\- )Ry (m \)

M T

where we have averaged over initial atomic orientations P47 H
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summed over final spin orientations LUTY 3y and dropped the

primes on the initial one-electron orbital.

Now the form of (3.2.8) as compared with (3.1.17) implies that
by taking account of the coupling to the other electrons we

will in general reduce the degree of anisotropy in the final
orientation of the atom. However, for the important case of

a completely filled subshell ( J= MSZO ) prior to ionization,
(3.2.8) reduces to (3%.1.17), apart from a factor of (Qﬁ*’i ),
(which arises because of the implicit assumption here that the
probability of finding an electron in the orbital (n R b'hb )
is (23+1 yt , whereas in the previous section it is unity).
One might have expected such a result from the "Pauli vacancy

principle'.

(b) LS coupling

In this case, the good quantum numbers are -Q‘,lt Y""""‘YQN,
1,80y seceeeens; Snos L,S,3 and My (along with 2N - 4

intermediate quantum nuﬁbers). The initial state wavefunction is

1Y, > =J'£TT‘ }; TP Y(thsIMY (3.2.9)
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The final‘state wavefunction is
l P
V> = = -
> 5 Z%m(i) P o tm)

Y LS TIMY) @ (nAmmg)  (3e2010)

Again we may expand | ¢ , an N-particle wavefunction, in

terms of a series of (N-l)-particle parent wavefunctions:
> = T LS w g R sTH >
w13,
n'R .
S KL S, XS lea

where

| k'L S R (LS My >

= 3 T 0% YL s MM QM R my)

M‘.’W\\ Ms‘;m; M)MS

(L‘JL‘L <S‘ s S)(LSj\
MY M /A Me my -Mg /UM Mg =My
L4 M o+ 8 -5 Mg+ L-StM

(ELJ [s10s) 3/‘ (-1)

(3.2.12)

The W (0(‘ L‘ S\ M‘Mb\ > are understood to be

antisymmetrized. Noticing that the final state (1.-1)-particle
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functions are expressed in the ( WL S —SMS) coupling scheme,

we may now express the VY(x'L's'm! Nsl) in terms of

the wavefunctions \{/ (0(' . 8" 'S‘M-SI) and proceed as for

J=J coupling. However, an alternative and more elegant
procedure is to use the following expansion in place of (3.2.12):

SN A mkS',SM5>

1

S8 ) s < TN
L s' 3
L 5 3 (3.2.13)

- (rco' ]E"]EL][S])’*

where 'L 9wy —s‘y IMs >

M

Z Y(O(LS'SM-J)CP(Y\Q‘\S‘MJ)
Msm

. (‘J‘ :)\ -5 (_133\_3\-\-‘43 [.3.1‘/2
-MS

(3.2.14)

{ A
Ns V'V\o

The transformation (3.2.13) relates two possible methods of

\ \ \ {
coupling the four angular momenta W, Q y S and §_

to form a fifth, J' . The two schemes are indicated
~
diagramatically opposite. By means of (3.2.13), the eigenvectors

of Scheme (a) are related to those of Scheme (b). It is well
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(a)

(b)

'FL%- (3.1)
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known that the coefficients of such a transformation must be the

qé - symbols (see Messiah, 1961, p.1066).

Substitution of (3.2.13) and (3.2.14) in (3.2.11) gives

Y > = 3 Z >, Y(<ussmy)

)
O(; L‘,S >

“\)Qu ;a) HB;"\)
@ (' R7y'mg) <<x'L..'S‘)v\'-°\‘l}L.$>
L' 8" -3 »
. o (:r‘ )
>0 M5 my =My (3.2.15)
L s 3

3':-(3l+ MK

~ (tﬂ[f‘]tﬂmtﬂ)‘d (1)

By the same reasoning as before, the only terms in (3.2.15)

which contribute to the dipole matrix element are
1 <\ - u
>0 "L MY @ (' RT3 MM
“.Q);)'
L” Sl\
Loos!

n

<<:°(“L:\S;‘)Vf 9 Y}L~EST>

P)

5)

J

< | )(c—ms"lmmmj 55
My MMy -M
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It is interesting to note the similarity of (3.2.16) to (3.2.5),
the corresponding expression for j-j coupling. They differ
only by a multiplicative factor which is independent of r43

and Tﬂft » the initial and final orientations of the atom

respectively.

Once more we assume that the ejected electrons are equivalent
initially; which means for LS-coupling that the summations over
n and Q' (but not :)‘ ) vanish. From this point the evaluation

of the transition probability proceeds as before and yields
T_>(o<LS‘S — LU TTMY LX)

2
(Y [L10S103'T <<"U's',nR\FLSY

- 2 oSt g Ltost 3

i

3 L s ) s 5 N0y
L S T L S p)

ZZ _5‘.5—5\1&'53 L s )
s v ) L s g gt
2

g 1 R+

1) R,

MR 5 (3.2.17)

2 Q2 1 21
) Ry
TAM e mop
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A more complicated result equivalent to (3.2.17) has been
obtained by Fliigge, Mehlhorn and Schmidt (1972) by a simple
extension of the work of Cooper and Zare (1968). The latter
start from an expansion of the final state many-electron
wavefunction l\P%>> , and hence their procedure appears rather
different from that outlined above, which seems to be shorter
and more elegant to the present writer. One arrives at an
expression equivalent to (3.2.17) by squaring equation (2)

of Flugge et al. It is thus apparent that the method given

here leads to a more economical result, since the alternative
expression involves copious numbers of cross-terms in unobserved
magnetic quantum numbers and is altogether more cumbersome. The
equivalence of the two formulae can be demonstrated by the

application of the standard relation for 9j-symbols:

a b ¢

> (2b+1) (o b c (be,k
° « ¢ YI\p e di“.c

- 5 ch(o\d%dH 3 b N\ Gaeas
ste(‘éqv « & QA% ¢ @/\p MV

By comparison, the only cross-terms arising in (3.2.17) are those

involving j. Since § = %, the values taken by j are limited by
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the triangular relationships as follows:

SR
J 2 (3.2.19a)

T+3° 2 ) > 1T-3") (3.2.198)

We see therefore that the double summation over j and i in

(3.2.17) never involves more than four terms. In fact, if

L= 7+ ‘5"_‘,‘/1 ' (3.2.20a)

or

L= \7-7"1-%
(3.2.20b)

only one 9j-symbol need be evaluated, and no cross-terms remain.

Comparing (3.2.17) and (3.2.8), we see that the two coupling
scheﬁes in general give different relative probabilities for the
different final atomic orientations Nhy « As one would expect,
though, for ejection from a filled subshell, LS-coupling,

jj-coupling and the one-electron model all give the same results.



CHAPTER &4

THE BETHE THEORY

l. Preliminary Remarks ~ Threshold Polarization

In the theory of the polarization of atomic line radiation by
electron impact, one distinguishes three different situations

regarding the collision problem: -

(a) At threshold: At the threshold excitation energy, the

relative probability of exciting the different magnetic
substates of the upper level may be calculated purely
from a consideration of angular momentum conservation,
no detailed knowledge of the collision process thus

being necessary.

(b) Near threshold: In this region, reliable calculations
of the collision cross sections are’most difficult to
obtain, so that experimental measurements and the above
threshold law provide an important test for collision

theories.

(¢) Far from threshold: Here the theoretical calculations are

40
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simpler. The most important and most frequently employed of
such theories is the Born approximation. The question of
interest is how close to threshold one may apply the Born
theory without encountering significant deviations from
experiment. However, the situation is complicated at high

energies by '"cascade" population of the upper level.

In the following sections we shall be concerned with calculating
the relative vacancy population of the magnetic substates of

the excited level produced by the removal of an electron from a

hitherto complete inner shell. It is of interest to compare

the problem with that of outer shell excitation for each of the

three cases distinguished above.

(a) At threshold: At the ionization threshold, the scatte:ed

and ejected electrons have zero velocity and therefore zero
orbital angular momentum. As we choose our quantization axis
along the direction of incidence and recall that a complete
subshell has bL=M™M=O , the total orbital A.M. component
along the Z-axis is zero prior to the collision. Hence only
vacancy states with zero A.M. component in this direction may
be excited by ionization at threshold. However, the situation
is complicated by the existence of discrete unfilled levels

below the ionization continuum. These levels may be filled as
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a result of the collisional excitation, and hence obscure the
threshold law deduced above. Strictly then, the threshold
energy will be that required to excite an electron to the
first unoccupied outer level., Only if this level is an S-state
(L = 0) will the above selection rule still hold. If L = O,
we have merely A M = O for the transition, a restriction
which will not lead to large inequalities in the vacancy
population over the magnetic substates. Even if the first
unoccupied outer level should be an S-state, the situation is
complicated by the fact that the outer energy levels may be so
close compared with the energy spread in the incident electron
beam that any large threshold polarization is effectively

smeared out.

(b) Near threshold: Again, the situation is more complex than

for the outer shell case, due to the absence of a well-defined
selection rule and the importance of the discrete excitations

in this region.

(¢) Far from threshold: Here it should be permissible to

neglect the influence of discrete excitations, and to estimate

the ionization cross sections accurately at such high energies.



The considerations outlined above induce us to begin our
investigations with the high energy region, where one expects
the calculations to be simpler, and also where one might
expect to find large polarizations resulting from inner-shell
transitions, by analogy with the optical case (see Percival

and Seaton (1958) p.133 ).

The remaining sections of this chapter apply the Bethe theory
to this problem. Although worked out in considerable detail
in Bethe's monumental paper (1930), the theory has not been
fully appreciated or exploited until recently. An interesting
review of the Bethe theory has recently been given by Inokuti

(1971).

The following chapter extends the results to lower energies

using the Born approximation.

2. The Bethe Limit

The Born approximation leads to the well-known transition matrix

element

<{ 1 axpLiKp\i> (4.2.1)

At sufficiently high energies of impact, the bulk of all

ionizing collisions are due to small angle, "glancing" colli.ions,
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that is, collisions involving small momentum transfer t\‘s .
Hence we may perform what is known as the Bethe approximation,

and replace the exponential in the Born matrix element by

the first two terms in its expansion:

Ap(LK. LY = 4x LKy

(4.2.2)
so that
V2 N
|< £\ axp (LK >l = I<KFIL K L)
(4.2.3)
The scgiar product },S-,“C can be expanded as follows:
1 % 4
K.irv= Kr Chu (0, %) C (8,Q)
- ZT A CRD EpROR (h.2.4)

The C; are the spherical tensor components defined by equation
(3.1.1). ( B4\Qc) and (O,® ) are the polar angles of IX.
and ﬁ respectively in a coordinate system where the Z-axis

coincides with the direction of the incidence of the electron.

Equation (4.2.4) allows us to write

<FimLi> = kg C* (or, @0

(k.2.5)
< Sl Clel >

We can simplify (4.2.5) further by the assumption that |§' is
virtually perpendicular to %_o , the wave vector of the

= T i di
incoming electron, so that we may set @K- % The validity

44
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of this approximation will be scrutinized in the following

section. Using this fact we have

<fliei> = K { <t el
+ R < gy Cfi(e,«p\'o"s

(h.2.6)
Since we do not detect the azimu thal angle @« » we must
average over this variable. Hence we obtain
U 2
e ﬁz ([<L1 Ky (0>] Ao
()
a N ) (h2.7)
= K i\q wcji(g)q@\m + <5 wc_i(e,c@\o\}

We now identify |L:> as the bound state of an electron
specified by the quantum numbers (nim), and 1f > as the
continuum state representing an ejected electron of momentum
hX . On integrating (4.2.7) over all directions of
ejection, using (3.1.14) and inserting explicit values for

3j-symbols, one finds

%r §S I<f1xg > dp, A (%)

= K* 2 R)R2) +m> o2 Q=D +m
)nywi 2 (28+2X248+1) N )Rx,u 2 2g+D@k-1)\ (+-2.8)
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Now the total cross section is given by the relationship

K,
Q(anvx): Lo Wd(K‘§,Z"q,
E/R‘B . KO

. 2
) 71/11 ‘<_? \}f(\','{:!l_>\ d(QdeO?SB (k.2.9)

where we have

Km'm

H

ko - ke

(4.2.10a)

ko + Ay (4.2.10b)

Kwmax
We follow the customary practice in the Bethe approximation of
putting

Ky = M AE
" 2k, (4.2.11)

It is also customary to disregard the kinematic upper limit
Kkmx , replacing it with the value K, , called the
"momentum transfer cut off". Here we shall put

(zm AE )'/i

K; tﬁ

(4h.2.12)

and ignore all collisions resulting in larger momentum transfers.
Tt will later become clear that this practice is consistent with

the other approximations made in this section, in particular

setting GK = T% .
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Using (4.2.8), (4.2.9), (4.2.11) and (4.2.12), and integrating

over K , one obtains

QMdm — x) = 4o, ' (z,.g \
2 E
4R,
{ )Rz R R+2) + m . 2 2001 + >
X 2 (R 3)(20+1) %01 2(AR+1HR1)

(4.2.13)

Finally, we must also integrate over all possible energy transfers
AE. . This is equivalent to an integration over ¥ , sincc
. t\Qx'L

Ae = L P (h.2.14)
where Iy\g is the ionization energy of the nQ -subshell.
Note that the argument of the logarithm in (4.2.13) is depei.dent
on AE | but since this dependence occurs in a logarithmic term
it is usual to simplify the integration by putting Ak = I,

in this part of the integrand. Thus one has finally

1

Q n Qv ~> continuum)

Q Iml

A-‘lrQ: L (l+€l B
%, T
{ S 2 (@D T S't -0+ mt L (4.2.15)

Rx,&q % AR+ 3 Y(2041) X,Q—ldx 2(20+1)(22-1)
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It is apparent that the cross section (4.2.15) factorises into a
part dependent on collision energy £ , and a part dependent on
m , the magnetic quantum number. Hence the ratio QIml~

Qm'l

in which we are interested is independent of £ . For the

particular case of ionization from a lp subshell, we have

i

v 2
Qcy f5) S"P\xddx

N > \ (4.2.16)
QL (R a% + 4 [ R dx

To obtain a numerical value for the ratio we must now make some
assumption about the wavefunctions to be used in evaluating the
Ryuests - If we take them to be hydrogenic and use the data of

Bethe and Salpeter (1957 P.350) we find

R, = 0814 (4.2.17)
Qs
|}
Note that the ratio is also independent of Z . Using results
derived earlier (see Chapter 1, ({.2.i1a,b,c)) we obtain
estimates of 1%0 , the high energy limit of the polarization,

for three lines of the L  series.

T ()= B (M =L = -5047 (+.2.18a)
T ()= B (Mg —=La) = -1-007% (4.2.18b)
Fo (L= B (ML) = #2917 (h-2.180)



49

These polarizations are small, whereas 1l° for many optical
transitions is large. It is possible to gain some physical

insight into this result as follows:

If the collision energy becomes sufficiently large, the momentum
transfer will take place virtually at right angles to the
direction of incidence. This means that any transitions which

result from the collision must obey the selection rule

(4.2.19)

This is true both for optical excitation and for inner shell
ionization. In the latter case, the only transitions into the
continuum in the Bethe limit are those which are optically
allowed:

Al==1 (k.2.20)
With the aid of these two selection rules we can illustrate the
situation diagramatically. In figure 4.1(a) we see that,
notwithstanding the selection rule, transitions from all magnetic
substates into the continuum are poésible. In figure 4.1.(b),
however, transitions from the state ( ZP,W\'-'O ) are forbidden.
If only this latter case were important, the vacancy distribution
after the colliSién would be highly unequal and the polarization
of the characteristic X rays large. That the polarization is in

fact small is a result of the inequality
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2 2

when the radial eigenfunctions are hydrogenic. Thus the question
arises as to whether the inequality (4.2.21) could be reversed

in a case where different wavefunctions were appropriate -
particularly since the sensitivity of the integrands in (4.2.21)

to small changes in the form of the radial eigenfunctions is well
known from the related study of photoionization. In fact, it is
known that for certain atoms one has the phenomenon known as the
"Cooper minimum'" in the photoionization cross section as a function
of photon energy. This is due to the vanishing of 4?”d for
certain values of X . Anisotropy following photoionization
will be dealt with separately in Chapter 7. However, the integration
over X tends to mask this behaviour, and it appears likely ‘hat

(k.2.21) will be obeyed by any physically realistic wavefunctions.

The Bethe theory, as we mentioned earlier, is capable of a greater
degreé of sophistication than that which we have deployed up to
this point. The following sections therefore will seek to improve
on the situation, re-examining in the process the assumptions

on which this section is based.
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3. An Improved Bethe Theory I: Direction of Momentum Transfer

The version of the Bethe theory employed in the preceding
section is useful for three reasons: firstly, it allows us to
predict T& , the high energy limit of the polarization of
the characteristic X radiation; secondly, it provides a check
on the more accurate Born cross sections to be calculated in
the following chapter; and lastly, it provides us with the
simple physical picture which results from the selection rule

Am=+1 (sece Fig.(4.1)).

However, as a source of realistic cross sections - even for the
region well above threshold - the theory is inadequate. TIts
inadequacy stems from the neglect of terms of order E:i in the
cross section with respect to the Ed n E term. A more

realistic form for the total cross section would be

g? = _13__.» Rn (A—Eaf \ -+ B X
(E/I“p_\ nl (E/Im_\ (4.3.1)
Of course if E is sufficiently large one expects the
logarithmic term in (3.5.1) to dominate; but if B>>A then
the non-logarithmic term will be important even for very large
E . a study of this problem has been made by Schram & Vriens

(1965). They show that, for the ionization of a hydrogenic atom
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from the 2p-state, the ratio B/A = 10.177. Hence the possibility
exists that the simple calculations of the precedingrgﬁg“nowhere
valid, since for & such that the non-logarithmic terms is
negligible, one may be well into the relativistic region -
particularly since one is dealing with processes where the
ionization threshold is high. The question of relativistic
cornections will be dealt with in Chapter 6. In this section
and the next we calculate the term of order E:l in the cross
sections Q(2p,m —> ionization continuum). One contribution
comes from the close collisions - more specifically, from those
transitions involving momentum transfers P4 ""\Ko , where K,
is the so-called "momentum transfer cutoff factor'", to be
defined below. This contribution is well-known and is dealt
with in Bethe's original (1930) paper. A further contribution,
peculiar to ionization from (or excitation to) states with well-
defined magnetic quantum number ™M , arises from the removal
of the assumption that @ , the angle between the momentum
transfer vector 7\*5 and the incident electron momentum t\‘g}[o )
is ™4 . This assumption is made in the previous section and
in all Bethe literature known to the present writer. In other
words, we shall show that setting QK:T% is equivalent for

-\
these cross sections to the neglect of a term of order E .

Consider the situation as presented in the diagram:



>
R

k

We have
2 2 2
K + ‘&(o - %\
2 kK (4.3.2)

CoS O =

From conservation of energy this may be rew:ix\'itten
z OE
K+ 2m
3 %KE (4.3.3)

cos GK =

The Bethe procedure is to split the integration over K  into
two ranges, Ku;v\ — Ko and K, ~>Kpay s+ where Ky, and Komax
are the kinematic limits and Ko is chosen so that the dipole

approximation, .QXP(US.Q3 o \+ L \‘,‘\_’-f y is valid

throughout the lower range:

Ko << Xne (4.3.8)

where ,, is the reciprocal orbit size of the n® -subshell.

Equation (4.3.4) may thus be rewritten:
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%5
K, << (2m En
(-] T
(k.3z.5)
Now FEml is the ionization energy of the WX -subshell, so

that Eag <AE , the energy transfer to the atom in an

ionizing collision, and we may write:

I (4.3.6)
Use of (4.3.6) in conjunction with (4.3.3) leads to the conclusion

that in the dipole range K, —> K, one has

m AE

@30 ¥ Fmr

~ Kmi% (4.3.7)

so we see that @Qy= O when K=2Wwin , and if Ko>>Kmin we have
6;<= ﬂ/z . Hence the integrand in this region of the

integration may not be simplified by assigning a fixed value to

6K L]

Ko can be chosen such that

Lz 2 2m AT
KMQ“ << Ko << t\z (4.3.8)
only if 2m AE:. Sy |
t'? KWL‘N\ (",509)



Since 2m AE N A-E
RE

,b\z KVV\:V\“ (4.3.10)

condition (4.3.8) can be satisfied in the range of energies to

which the Bethe applies.

Hence we can write

(o8 O ). <<1
© K=K, (4.3.11)
Now, for K= Kumox = 28,
4%2 + QA AE/K‘
oS B X > ~ 1

o ‘ (4.3.12)

Equations (4.2.11) and (4.2.12) appear to suggest that asc.gning
a fixed value to Gg;in the upper region would also be
unjustified. However, it is well known that the contribution

i’} 128
to the cross section is negligible unless K <<%, i.e.
we can choose a second cut-off Ky such that

2_@_%_ << K<< &S

and integrate only from Ko to Kﬁ. .

(4.3.13)

Now
‘z Ao
(0% B Yak, X ——,
° (4.3.14)
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So we see from (4.3.11) and (4.3.14) that no significant
error is sustained in the upper integration region by setting
Ox="%. We shall call on this result in the following

section. Meanwhile, we shall re-evaluate the dipole
contribution taking into account the variation of ©Ok .

Assuming that K is contained in the XZ-plane, we may write

<X 1K 2 ' nm > = Ksing, < X 12X Inkw>

t Keos 0 <X 1K Inmd (4.3.15)

A
We now square, integrate over Zf , and evaluate angular factors:

Sl<v§ | K.Y \nam>{*dw(>:<)

2 ., (L 1Rt 502
K sim” Oy 2(204+)2041) XL

+ -o.()\.‘l\ ‘\'VV\'L ’%t
2(20+44)(2-1) X1

2 ( ,Q+'l.) me 7'
+ K cos @ ’$§
) { 22+ 3)('12«»1‘;&‘&*1 cwim-ﬁ "*‘73

(4-75.16)

!

Now Ko -
A K o8, =1+ as 2 E 4
gmh - 78 mes T OE) Ghzam
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Since we retain terms of order at least E"i in the total

cross section, only the first term on the right of (4.3.17)
makes a significant contribution. Note that this term is

independent of the cut-off parameter K,

The differential cross section in the dipole region is

dQ,, .= kmas ?
Mgt S 0 (Kag) d(K o) 1<% K Inlw) o\uOS

Use of (4.3.16), (4.3.17) and (4.3.18) allows us to perform

the integration over W , upon which we find:

2 2
Qs = L“ Q" [( 2:&55 - 1)

2
(Q+ﬂ(fl+1)+m R -V +wm 1} (k.3.19)

(22+23Y20+1) ’Rx,m (2Qr L)(20-1) "%

(R+1) 2 2?“hﬂ A}
Bty Rt Y Gy J

The dependence on the cut-off parameter ¥, will vanish when

the non-dipole contribution is added to (4.3.19).

It may be shown without difficulty that the additional term
i
of order E vanishes on performance of a summation over v

To demonstrate that it is non-negligible, note that the
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argument of the logarithm may be written

(e /emese ) (g2

Since the first factor is small compared to unity (see (4.3.6)),

(4.3,20)

the logarithm may not be large compared to unity until E is

very much larger than AE  indeed.

The presence of the Ed term above is a result of kinematical
considerations; hence we might expect it to be of importance
for any discussion of the form of anisotropies in the high-
energy limit of the Born approximation. In fact, the only
recognition of its importance known to the writer is that of
Zare (1967) in his calculations of the angular distribution

of products in the electron.impact dissociation of H£+ .
Zare points out that the form of the Born integrand is such as
to weight strongly small values of ¥ , of the order of Kmn .
Since for K=Ky, we have ©Ox=O , as demonstrated above,
the effect of setting ©w=75 is to make the form of the
anisotropy approach its high energy limit too rapidly. Zare
supports his case by theoretical and experimental examination
of the above-mentioned angular distribution. However, he does

not consider the Bethe cross section (4.3.1), which gives us

in analytic form the high-energy behaviour of the Born cross



section, so his arguments remain more qualitative than those
presented here. Zare also makes an incorrect extension of
his argument in which he asserts that the form of
anisotropies will not, in general, reach that value
predicted by setting 6= T, no matter how high the
impact energy; on the basis of this he suggests that some
of the results of Percival and Seaton (1958) are in error.
In an appendix to this work it is demonstrated that Zare's
reasoning is mistaken and that, in fact, the results of
Percival and Seaton are correct. However, it is shown also
that for the case of optically-allowed excitations, the
approach to the Percival and Seaton limit will be slower

than for optically-forbidden excitations.

4, An Improved Bethe Theory II: Non-Dipole Transitions

We now evaluate the remaining contribution of order E to
the Bethe cross section formula (3.5.1). It arises from the
region Ko = Swmax , where the simplification

Lxp (.2 > 1+1Is. 2 is inapplicable. To this end,
we define the generalized oscillator strength {E “() as
follows:

2 A
-&(K)‘: S‘<n\zx¥>(iks.t)\n’iw\>\aw()9 (4.b.1)

L0002 1081 aplign) Iimduo (o)

-2

€ ()



61

Here € is the convenient parameter AE‘/‘ZQAR:5 - The
contribution from the '"close'" collisions to the total cross
section is thus

qlkﬁe

4T0; p-t - Km( d0n (1
L ge [T dued
= Ko

i

(4.4,2)

1

where é

energy.

E/zﬁﬁb is a convenient scaled unit of impact

The integral in (4.4.2) will have to be performed numerically,
so that we must make the limits of integration explicit. We
follow the well-established procedure of setting wax= oo
and thus ignoring the kinematic limit, on the grounds that
the additional contribution arising thereby may be neglected.
As for the lower limit, we avoid the ascription of an explicit
value to Ky by the following method, equivalent to that of

Miller and Platzman (1957): we write

174 0 dtned)
Ko €

o~ g° ¥€(03 dQn(K"\—S (%‘.(o) - %Q(K))AQ“(K'L»
Ko o

¥ So f, ()aRa(K) Chute3)

- -g-e(O) Qn(K:) “I,_ + I,.
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where

Ii = So('&(O) - -i—e (K)) Cl-Qn(Kz)

(b.b ba)
and 0
A R TN
0 (4.h.bp)
We see that all dependence on the cut-off parameter Kp will

vanish when the contribution from (4.3.19) is taken into account.
The replacement of the exact lower limit in Ii s DYy - OO is

justified, since the integrand is negligible for - 0 K§ ¥, .

The -?e(K) must be obtained before Ly and La can
be evaluated. In the present work, we use -&(K) evaluated
with hydrogenic wavefunctions for the states (2p,m= 0) and
(2p,m=1% i\ . These come from the Born approximation
calculations of the following chapter, Equations (5.1.9a) and
(5.1.9b). It will be noticed that these expressions involve
‘GK , the momentum transfer direction, and thus depend
implicitly on the impact energy EE . However, we may effect
an important simplification by remembering (see Sectionk..d)
that in those regions of integration in IL andxg_ for which

the integrand is significant, small error is sustained by

setting Ok "% .
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Hence we have

fw= 8, {:L - oxp (22 )}'1

(kob4.5)
- RXP {‘ "—‘7:-3—:‘:l Ql‘d“oh( Qm:‘:‘z‘ T )}
RN Y A
where f\ts is the momentum of the ejected electron and
Soe” T
po” 15 {(e~q)'+ q’g' (4.4.6a)
. {4 (e-q% + (289 +3)(e-9) + 244**\8%
g - 2€
2p x| (s{(e_q)z+q}5 (4.4.6v)

, {11(5_@‘* + (A2 +TYE-4V + (216 Yoed) (-
+(108 ¢+ 39 )(e~q) + 244>+ 339" §

2
Here the shorthand notation q= (Ka}é\) has been employed.
The optical oscillator strengths fé(o) can, of course, be
obtained by setting Q=o in equations (4.4.5), (4.4.6a)
and (4.4.6b), or by using the explicit formulae for the ﬁaxt

given by Bethe and Salpeter (1957).

We have thus:
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Q©

I

€
Q (close_ N Q € eistruwt

1

Q:WQ:.
24 &E [(Qh% —1)

- L DB+ Mt 52 UEATES )ﬁ
21 uneeDd et T Gnees e

2 w2 '1_. 2
R+ - m W 2-wm >?\2x “75
(22 2)C2R+1Y &L (2Re4)(20-4) Y

+ (11‘11\) j

(k.b4,7)

Since we do not in general detect the energy of ejection, we

shall evaluate

o0
(" Qw@ae
h‘l.
- ___‘r}{a?‘ [ 48 -1)
C
QAR+ mt (©F +2 Q—i)ﬂn
(2R+3)(2+1) S >R Md’g (2 H2t-1) Fxl-lé}

R+ ~m ©q % vm
?\(N:t—’b)(ﬁh‘i) S’Km*_gﬁ C22+D('22-13 )R ,Q—i

(4.4.8)
t Cn{w\ ]
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where

s o]
Cagn = Syt €' de (T nm,€) =T, (tmy€))

o0
'Q\S\ G-"Qv\C dé€
e (b.b.9)

The Cme\ must be evaluated by numerically integrating over

€ and K . Using formulae (4.4.5), (4.4.6a) and (4.4.6b),

we have calculated

54240

Hn

C2\°P (4.4 .10a)

and

C’).P;i[ S 60446
(4.4,10b)

The work of Vriens & Bonsen (1968) contains the (implicit) values

o0

2
S'/q, 7R)5°\ d% = 229995 (4.4,11a)
o0
S ’R1 0\9 = 013063 (4.4.11b)
A Xs "€

Hence we find

Q(2p,0-> )=

s
e [0-4599 4B+ 563151 (1
iﬁké%

Q @pxl>1)= %%Lo-swe&nztg 59518 (naa)
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We shall not plot the above cross sections as a function of

Eé y reserving that for the more accurate Born cross
sections of the following chapter. However, the simple
analytic form of (4.4.12a) and (4.4.12b) allows us to draw
some interesting conclusions. Firstly, since the magnitude
of the E~1 term is similar for both cross sections, the
effect of the corrections is strongly depolarizing. Secondly,
since 6/A ~ 10 for both cross sections, the E,.'1 M E
term will be comparable in magnitude to the E_ term when

E ~ 5,000 Zﬂg(ﬁ . Thus, even for the lightest atoms,
the cross sections of Section Wlare unrealistic, since such
energies are relativistic. Thirdly, consideration of
(4.4,10a) and (4.4.10b) shows that the non-dipole contribution

to the E:i term in the cross section is easily the larger, the

dipole contribution, however, being non-nggligiole.

Table (1) gives some idea of how slow is the approach to the
high-energy limit of the cross section ratio which was

calculated in § 3.4,



& (= E4tg,) O’/Qi.
10 09135

50 09031
200 0-8957
1000 0 8853
oD 0-8116

Table (4.1)
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CHAPTER 5

THE BORN APPROXIMATION

1. Theorz

The Born approximation is the most widely-used collisional
theory in dealing with electron-atom collisions where the
incoming electron has a velocity at least several times
larger than the bound electron with which it interacts. It
is based on first—-order perturbation theory in that both
electron and atom are considered as making a transition from
an initial to a final unperturbed state as a result of their
mutual interaction, without passing through virtual, inter-
mediate states as occurs when higher orders in the perturbation
expansion are taken into account. For a derivation and
discussion of Born's formulae, the reader is referred to
standard texts such as Mott and Massey (1965) or Messiah

(1961).

In the Born theory, the amplitude for a transition from an
initial state |C> to a final state {§> is proportional
to the matrix element

<$ 1o AR

(5.1.1)



For the ionization process we wish to consider, LD is
a state labelled by the quantum numbers N, 2.> and m ,
where the axis of magnetic quantization is parallel to the
direction of the incoming electron. For the innermost shells
of the heavier atoms, the deviation of the potential from
Coulomb shape is small, and to a good approximation we may

use hydrogenic eigenstates with the appropriate screening.
‘#3>> is a state of the continous spectrum in which the
atomic electron is moving in a particular direction %

with momentum 'h};(_ in the field of a charge +Z.Q_=‘\‘(Z~S)Q"
where 2 is the nuclear charge and S the screening

factor. Obviously the charge '"seen'" by the ejected electron
varies as it moves through the atom. Discussions of this
problem can be found in the literature and in the standard
references (Mott and Massey, for instance). In the present
work, the same value of 33‘ will be employed for both

bound and ejected electron wavefunctions. As mentioned
earlier, the state of most interest here is the 2p state.
Célculations of ionization cross sections for the 2p state

of a hydrogenic system in the Born approximation have been
carried out by several investigators (Bwhop 1940, Mandl 1952,
Swan 1955, McCrea and McKirgan 1960, and Omidvar 1965).

However, in all of these the practice has been to choose

a quantization axis which is parallel to the momentum
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transfer vector,tl,s . This is the obvious choice, since
thereby the operator exp (ktﬁ.r) in (5.1.1) becomes
simply exp ({KTeo88)= exp (\WKx). It leads to no difficulty
so long as the cross section is averaged over atomic
orientations ™ , as is customary. But if we are interested
in a particular value of Y@ , the total cross section is no
longer meaningful, since to obtain it we must integrate over
\‘5' s+ the average direction of which changes with collision
energy. Hence it is plainly misleading to display graphical
results for ionization cross sections for the individual m
states (as is done by McCrea and McKirgan) referred to E

as axis, without making this point clear.

We shall mw show how it is possible to relate the double
differential cross sections with respect to encrgy transfer
and momentum transfer in the two sets of axes and hence
re-calculate the desired total cross sections. To avoid
confusion, we shall label magnetic substates taken with
reAspect to axis ]’<\ by M, those taken with respect to

(the wavevector of the incident electron) by v . If we
consider these two sets of axes as coinciding when one set
is rotated in the appropriate direction through an angle ©y
about their common y-axis, we obtain the following relation

between the two sets of quantum states {wm Lm> and |nApd:

lnm> = 37 %":L(oekox InAp>  (5.1.2)
Ty
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: ' «Q
where the rotation matrix element %:}L(O( (5\&3 is as

defined by Edmonds (1960).

Hence we have
< £ 1exp G Inm)>
= (> : (5.1.3)
= 2 D 080 <flexplisnnis 3

The cross section is proportional to

|< £ axp (i K.y )ind m}fL

= 2. ﬂb,ffwe«o\ ‘efo,; (0 &) (5.1.4)
o
C < | axp UGS KHaxp e ndind

The differential cross sections which Bwhop and others
calculate are in effect diagonal elements of the matrix
defined by (5.1.4) whenm =2, & =1, and M= O or %1
(apart, that is, from the rotation matrix elements). We
would appear also to have to evaluate the off-diagonal elements.
Fortunately, a detailed consideration of the structure shows
that the contribution from such cross-terms vanishes when one
integrates over all direction of ejection. Thus we may write

§ K3 1axp DIty | dw ¢ (5,15

- % i %(2(06\(0)\9\ j{({l\pr(i\s.@\ni;x)\zdw(ﬁs
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or, alternatively,

. = (M) 2 .
ﬂe(ts,nams % \‘fbm(oe\‘oﬂ JFAE('S’“M

(5.1.6)
where
‘Y’AE (lﬁ;v\Qm) = A%% SK.F\Q_)(PG\S{“V\QM&Q Jw(%}
(qu\)l (5.1.7)

is the quantity known as the generalized oscillator strength
for the transition, O& being the energy transfer. ‘FAE %) ,
usually valuable on account of its independence of incident
particle energy, is here dependent on the energy of the
collision through GK s which is given by

- (Kh;?‘*11§ﬁ§
2 (2 XE/R* (5.1.8)

oS O

It is possible to plot $AE(KI) against ¥  for different
choices of O& , producing in this way what has become
known as the "Bethe Surface'" for the atom (see Inokuti, 1971).
But in the present case, one has also the direction of \'\(’

to take into account; for each possible value of g: there

exists a distinct Bethe surface.

Evaluating the rotation matrix elements for the 2p state

yields the relations
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&E(Is:, 2pm=0) = COS'8, {:AE( K 2p,h=0)
+ s 9, £, 0552p,0e1) (5.1.90)
an

ﬂs. Kiz2pm=x1) = Y5 (1 + cos? ) {ht(m 7%)*:1:\3

. (5.1.9b)
+ 1/2 Sm’l Ok ‘FBE(‘S" QP >M=03

The §65(5> for a hydrogenic system are of the general form

L oA=L
facttsm = 8o - w0 (-2

X 0,

\ 1)‘
-axp 4 2Z arctun “/“2
RQ, x°'° \/“2

L3
where q: (KQ%Z:) . We obtain from the work of Banks,

(5.1.10)

Vriens and Bonsen (1969) in conjunction with that of Vriens

and Bonsen (1968), the expressions

- &€ ke 43
§2P)A=° - {S{(&-Q?‘bq’is {‘\((Q q) + (btbq*'li-) (e q}

+ (1929 + 5k 3(&—0\\" + Bod'(e-d) + \Sd\zg (5.1.11a)

and

. e ,
E’FM' ) ‘si(ﬂu‘«»o\l"’{“&;ﬁ: (28?::2*‘ (5.1.110)
~+ -+



where €= AEéz.R':3 . Hence by means of equations
(5.1.8), (5.1.9a,b),(5.1.10), (5.1.11a) and (5.1.11b) we

have defined the ‘FAE(%',ZP)MB in terms of C‘a € and
E. . To obtain the total cross section we require the

relation
q"“x l%2h3
-&E(\'f‘)ﬁ\o‘m) d q de

Q - fTra,

) (E/RQZ“* 9 e (5.1.12)

w\}n
The double integration in (5.1.12) must be performed

numerically for each value of £ of interest.
2. Results

The total cross sections Q(ZP;W\’—'O’?K) and
Q(Qp,m:t\-—é" Y) , as calculated from (5.1.12) abuve,
are shown in Figure (5.1). They are given in scaled u.its of
TFQ?/Z«"'_ The qualitative behaviour of these cross sections
is quite different from those of McCrea and McKirgan
mentioned above. Whereas in the latter @ (m=0) is larger
than Q(w\ :j:l) for all energies, the present cross sections
intersect about 16 times the threshold energy and thereafter

Q(m:t\) is the larger, the ratio slowly increasing

with increasing energy.
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Figure (5.2) gives the polarization of the lines LQ ) Lq'
and L&, as a function of the collision eneréy. These
curves are obtained simply by substitution of our cross
section data in the formulae (1l.2Ma), (1.2M9, and (l.2.M¢).
Note the‘intersection around twice the threshold energy.
This is not visible in Figure (5.1) because it occurs on
the stesp, low-energy side of the cross section peak.

There seems to be no physical reason for this behaviour,
which can probably be safely ascribed to the inadequacy

of the Born approximation in this region.

At this point we mention that Figures (5.1) and (5.2) are

in sharp disagreement with a calculation published by
Melhorn (1968). Melhorn does not present any
detailed analysis which can be compared with the above
derivation. His polarization results, however, are
substantially larger for all incident energies shown,

do not change sign anywhere in this range, and appear to

be tending to very different high energy limits. It appears
that one could account for such results by assuming that the
collision cross sections were referred to a momentum transfer
quantization axis. This has, in fact, been confirme@ by
Melhorn (private communication). It is therefor> surprising

stw%a ) .
that the only published experimentalaof X ray polarization
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- that of Hrdy, Henins and Bearden (1970) on the L.“'
X rays of mercury -~ is in fairly good agreement with the

erroneous results of Melhorn.

In further support of the present results, two checks have
been carried out. The cross section ratio for the Bethe
limit was obtained by setting K = O in equation (5.1.12)
and performing the integration over & numerically. The

result was

Q(KEﬂﬂ:O->K\
@ pm=tL—=NK)

- O0-81161

(5.2.1)

in good agreement with (4.2.17). Also, the correspondipg

‘FAE (X) 4in the binary encounter (classical impulse) theo y
(see Burgess and Percival 1968, or Vriens 1969) were cnlculated
for the particular case 6.&% and checked with the
previous unpublished calculations of Banks (private

communication). They are:

34
£ (ka-%;apmo)s © €4
AE ) 51 {(G—q31+q'gl’- (5.2.2a)

and

fio (<, 0% s 2pmesd) = & e Pedfed}  Gsozn
§Tl_ i(a—qf"‘q%s
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The cross sections displayed in Figure (5.1) have been used
by Cleff and Melhorn (1971) to predict Auger asymmetry
parameters (5 (see Chapter 7) for comparison with their
experimental measurements on the angular distribution of
Auger electrons ejected from the L3 level of Ay as a
result of electron impact. Table 5.1 opposite shows this
comparison. The latter two results are in quite good
agreement,theory falling within experimental error limits.
The disagreement for the first result is hardly surprising
in view of the unreliability of the Born theory at this

energy.
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CHAPTER 6
RELATIVISTIC MODIFICATION OF THE BETHE THEORY

1. Introductory Remarks

In this chapter we wish to see what changes have to be made
to the Bethe theory when v , the velocity of the incident

electron, becomes comparable to C , the velocity of light.

We first of all note that such a revised Bethe theory already
exists. Mgller (1932) has derived the following expression
for the cross section for the transition ( nQ —» n ') due
to the impact of an electron of velocity U on an arbitrary

target atom:

Qnd »n) = Amerel  on

'Rug ’ ML)'Z

9
: [Qn (2 e m%%\ -2 (1-‘};_ "u/c:a.] (6.1.1)

where 4&5 is the Rydberg energy, ¢ the fine structure
constant, and Cug has been defined in connection with
the non-relativistic Bethe theory. The assumptions on which
Mgller's calculations rest will be discussed later. The most
important difference between (6.1.1) and the non-relativistic

2
expressions (4.4.12a,b) is the presence of the term ~2v\(1"%§‘;
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this means that, whereas the expression ( 4 .4+ VA ) decreases
monotonically with increasing incident velocity, here the cross
section approaches a minimum and then increases as VU approaches
very close to C . The question is whether (6.1.1) can be
employed for transitions of the type (ndm — nLm ), or
whether it must be further modified. In the following section,
three distinct considerations are advanced which indicate that

the latter course must be taken.

2. The Need for Modifying the Mgller Formula

(a) The first consideration is purely classical, the outcome
of kinematical requirements. As has been pointed out earlier,
the physical reason for the variation of the cross section

Q tndw —> )‘5) with impact velocity is the concomitant
variation of the direction of momentum transfer. We now
examine the change in Qf as the momentum of the incoming

(o™

electron, ﬁ.&g becomes very large.

(i) Non-relativistic case

- The situation is shown vectorially in the diagram.



We are interested in the angle ©x which K makes with

the Z-axis, chosen to be parallel to )}_o « Geometrically
we have 2 2 2
- K -+ ‘ke - ’k{
s 8, =
22X K
(6.2.1)
From energy conservation,
%7‘ kq‘ - 2m AE
o i _hg.
(6. 2.2)

where AE, is the increase in energy of the atom as a result

of the collision. Hence
KQ. + 'lmbl%z
2k K | (6.2.3)

s B, =

Now as Q?o — 0 |, CO0S GK - O , and so the momentum
transfer in the high energy limit takes place perpendicular

to the direction of incidence, for all K .
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(ii) Relativistic case:

Equation (6.2.1) still, of course, holds, but in place of

(6.2.2) we have

he [Pvax: ~he K+ = AE (6.2.4)

where X = mc/&

Hence

(6.2.6)
Substitution of (6.2.5) in (6.2.1) gives
2 AE
s 0z (W* - (OF) +20FwR ) (€ 2.6)
2R K
Again letting Re—> ©C .y we find
— QE
©36x /t‘c'K (6.2.7)

So we see that this time the direction of momentum transfer
tends to a limit which is dependent on its magnitude, R K
Since we may consider AE to be fixed for'a given inelastic
transition, (0% O takes its maximum value in (6.2.7)

when Kz K. = .Q;D—&gl , which is the kinematic lower
Min



limit, taken by both Bethe and Born approximations in the

integration over K

Hence ' |
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(6.2.8)

As Jh,‘* 12&) )
Ko —> Ro- Ro (1 = BE w0k )+ )

-2
Since all terms in the brackets of order (R:°)  or smaller
will tend to zero as 4Q°-> o y we are left with the

result

AE
W —> 25 as K = o0
K he ’ (6.2.9)

Combination of (6.2.7) and (6.2.9) gives

I —> o0
(COS@K)mx > 1 as %o (6.2.10)

Thus in distinction to the non-relativistic case ﬁ is
parallel to Ro in the limit of high energy and low momentum
- ~

transfer.
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It will be recalled that the Bethe method involves division
of the momentum transfer integration into two ranges; the
boundary between the two is given by K= K, » where K,
satisfies the inequalities

K, << (1RW\Eo
2 (6.2.11a)

2 AE X
Ko>> (85 (6.2.11b)
(6.2.11a) corresponds to the non-relativistic constraint on

Ko . The need for (6.2.11b) will become apparent below.
Here $o is the ionisation energy of the bound electron.
Use of the inequality (6.2.11b) in conjunction with (6.2.6)
shows that throughout the range ¥, =¥ Ky one can
put SPE T3 without significant error. In the range

Kw. > K, , however, O varies from O to % , so
that one cannot simplify the integration over K in this
range by assigning a fixed value to O . Moreover, it is
from this region that the logarithmic term in the total cross
section, dominant at high energies, is derived. We shall
also see that in this region of K the effects of spin

and retardation are appreciable.
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(b) In the Mgller theory, the familiar Coulomb interaction
is augmented by a term representing the interaction of the
spins of the incident and bound electrons. This leads
eventually to the replacement of the Bethe operator pr(i\s.f)
by the operator

o () (4 + L VSRR Y

XY % (6.2.12)

Hence the new interaction operator selects a particular
direction in space, the magnetic quantization axis. This is
a further reason why (6.1.1) cannot, 'a priori', be applied

to transitions from (or to) individual wn states.

(c) One of the requirements of the relativistic cross

section formula must be that it gives back the non-relativistic

formula when V<<C . Comparison of (6.1.1) with

(4.4.12a,b) shows that this requirement is not satisfied. We

conclude that we must reapply Mgller's methods for the case
(ndw -> %) and that this reapplication must yield

a formula which differs from (6.1.1).

3. An Outline of Mgller's Method

Mgller's adaptation (1932) of the Bethe approximation consists

of a long article of which the text is in Gerr.an and the
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notation somewhat dated. For this reason, it seems pertinent
to synopsize Mgller's procedure here, noting the physical
assumptions, approximations and limits of validity of the
theory, and breaking off the section at that point where

modification becomes necessary.

In common with the first Born approximation, the interaction
between atom and electron is treated as a small perturbation
which causes transitions between unperturbed eigenstates of
the isolated systems. The non-relativistic Born theory
employs a Coulomb interaction, whereas Mgller also takes
account of the spin interaction. Retardation and the
relativistic increase of mass with velocity are also allowed
for. As with the Born, the possibility of exchange is

neglected.

Dirac plane waves are used to describe the free electron, but
for the bound electron the approximate wave-functions of
Darwin are employed. The condition of their validity is

that En << met , where WM labels the discrete

- or continuum state in question and ¥ is the rest mass of

the electron.

To arrive at a plausible interaction operator, the following



procedure is adopted. Appropriate Dirac charge- and current-

dengities for the free electron are formed:
*
)
™ = -2 ¥, ) ¥, ()

. *
) = 2e Yy XU M, o)

~

(6.3.1)

where (1) 1labels the free electron, W\, and W, the initial
and final Dirac plane wave states, and where the components

of %“) are the Dirac current matrices. These charge- and

current-distributions produce, according to Maxwell's theory,
o) (4h]
a scalar potential @ and a vector potential ﬁl

at the point x‘l given by

3y = g [ ] g

‘f;"!:—,_l
H TR - |/ j Eén‘(r‘)] d\’t. (6.3_.2)
- © lf.‘fz'

(3 ' (
The parentheses signify that for Q and J i the retarded

values, i.e. the values at time + -~ \I‘-l&l are taken.
[

. (4}
The interaction energy due to the effect of the fields &
and @“) on the bound electron (2) at the point Y, is, in

the Dirac theory,

, N
~o [ §Vgpy t x™. A fi;\] (6.3.3)
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Combination of (6.3.1), (6.3.2) and (6.3.3) shows that the

desired interaction operator may be written

2

Q2 _ (o (2) CAE 11 -0,
e X axpl\t 2= 14
1~ X, | (1 - &% ™) axp(hg 12o2l)
1 ~A2 (60504)
where AE = lEnV‘En1 is the magnitude of the energy

K3 (Xm (€))
transfer involved in the process. The factor -X X X

'x‘- ‘f!.‘

represents the spin interaction.

At this point the expressions for the Dirac and Darwin spinors
and for the Dirac matrices are used explicitly. After some

tedious calculation the expression

————

. 2
\nr\o"/q:\aa [ *- (QﬁEE\“ 1

rs
- ey + N_z‘:%;a‘tm

(6.3.5)

is obtained, where

E() = < §laphil v (6.3.6)

and elixy = < f &W"\Ef\%i o> (6.3.9)

In obtaining (6.2.5) the following inequalities are used:



K << x*
(6.3.8)
2 a
<< k
K< ° (6. .9)
2 S
so that terms of order 6<<2 ' h%ﬁ: may be neglected.

(6.3.8) follows from the use of Darwin wavefunctions for the
bound and ejected electron, (6.3.9) from the requirements

]
of 1st order perturbation theory. E(KY derives from the

spin interaction.

2
2 Eo
When K << (—QEF'B we may make the Bethe approximation

2
le () = (Kao) g, (o)

where *35(0\ is the optical oscillator strength. Mgller
shows that the spin term Efﬂ() is appreciable when

K<< (%2%59)% , i.e. for small momentum transfers. This is
because the first term in the expansion of AX‘OC'!‘S-{) vanishes
for E(KY due to the orthogonality of the wavefunctions

]
whereas this is seen not to be so for 3 (V<\ .

Using the identity

- - m Qb
—_ <-‘{ \:%:,\ \‘-> = mt\z ‘ (6.3.11)

x>
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it can be shown that for small <

we may write

X (K)

i

E(KY + ( \B_i;—.l £'(KxY
<flsxries

1"

(6.3.12)

where ‘é is defined as a vector with components

- = 1 AE
VST Ry Se= Ke-EIAE

(6.3.12) can be used in conjunction with (6.3.5) to find the

contribution to the cross section in the range

where
Km:v\ = ‘vzo' ‘k\
~ AE X
- —_— = (6.3.14)
e \ =1

and K; is given by (6.2.10).
Ko - Kw.&x

reduces to

The contribution from the range

is evaluated by noting that here (6.3.5)

2
(<) = 872 ELSRrION

which is simply the non-relativistic expression

Mgller simplifies the calculation of the total cross section



Q? (n - n521> by using the identity
2 2 [~}
Z v%; \ anméh.ﬁ'lmn(K)] = S )Rn'ﬂ.‘ (6.32.16)
m

Since here we are interested in orientations, (6.3.16) may
not be used, and we thus diverge somewhat from Mgller's

procedure.

L. Adapting the Mgller Formula

Due to the close analogy with equation (%,41.12) we can show

that

§1 X o 917 dio (50

A \ v\ ,
=2 s IYL,L<§>112><Q D
L' MmO e
2 (6.4,1)

)Rx)ﬁ'

1 .
An expression for S has been obtained by Mgller. It is

- 2
gz = }(1 ~ (eﬁzﬁ;. - ‘%81 (SE%\ (6.4.7)



2
Thus we need only find an explicit expression for Sx . From

(6.3.13) we have

'L~ -Sz_'_AE- A
= (% T
(6.4.4)
Thus on account of the inequality (6.3.9) we can show
2 2
> ———, (AE 6.4.
h X" (%*-1) (v\c (6.4.5)
Returning to (6.4.2) we have
I Xt ()" dao (%)
2 em B9 L
R,l \ \61({\-"1) c m (o] -VV\‘
£ f - 5 (6
+ (% - (/E -1 (e
(2} G
FrEY L (RAE
m i—vv\> m =1 -m
l \ 2
Q> 22+ 1) GKX&\
(6.4.6)

Using (6.3.5), (6.3.12) and (6.4.11) the integration over K
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may be performed analytically. The result is

Cp (nldm =X ) = 8TTQ°
”‘U/M g e >R’ > (2 1)

[ <(%\7€(ﬁ~n(\<§— (BEY) - ("“}\\(t 1&)
v (e CAN (%) \

—(-'%j'—z:; -1 (K- (LE))
{<i\t~zm) &-11. 'O‘M\} ]

Kivox
+ X E(K) dK
K'b

Ko

(6.4.7)

Now the integral over K, - wa( may be obtained from
earlier results (see Chapter 4). We evaluate the 3j-symbols,

T 2
use the inequality KO >S5 (&/'-\ and obtain finally:

E
3
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(P(ﬂme‘b i.}

2T 2" 0('1 2 "
&a ot (*QV\ %_f_‘_%i"_}_’_ - R (‘.L‘U/Cz\ - 1\
' D

‘i ( (2 DA+2)+m° 2 _‘_1(1—131-»'\'\7' 2 >
@R+2)(28+1) XL peqyal-1) %L

1 T2 a 2 .
+(1-% <(,Q+1\) m . L Q
(%) (20+ )20+ 1) Rrner @ad@e-) Y 8)

There are two checks on this equation: it reduces to (4.4.7)
when \%<<l , and to (5.1.1) when we sum over m . The

factor Cl represents the contribution from the

transitions with momentum transfers greater than 'F\Ko

On insertion of the explicit values of the pwrameters )Rxo\ ,
)

’Rxs v CL obtained in Chapter & we find

"

Q-rra X" 2 mut
Ln i +10-392) 045999
U R Yot

+ (1-%13 0 61353 {

@) 2p,0 = L)

(6.}-{-.95,)

1]

Q (2p,x1->1) + Q- 665 )0 56676

2me e { 9. amo
LAY SRS
mo*. Rbb 'R%( [ "/O.\

(6.4.9b)
* (1-%2)0 45999 ¢
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Figure (6.1) exhibits the ratio of these two expressions,
q%/kpi , as a function of energy, for three different
valuers of 2Z . For comparison, the corresponding non-
relativistic expressions have also been included. Figure
(6.1) makes it clear that the =ffect of the correction is to
make the approach to the high energy limit more rapid, although
still extremely slow, thus emphasizing that the high energy
limit is of formal rather than of practical interest. The
major correction is the so-called "relativistic rise" term,
- 2 (1~‘%%\. According to Fano (1956), this term, which
causes the total cross section to pass through a minimum
before rising monotonically with further increase of euergy,

stems from virtual photons which give rise to forces

perpendicular to 5 . Hence the fact that G%AQI tends
to the same high energy limit both relativistically and
non-relativistically is not trivial. We recall that, for
those collisions which make the major contribution to the
cross section at .hese energies (those of small t\\s ).‘,%
tends with increase of energy to become parallel to the

A
direction of coincidence, Q@ . This is a purely
Kinematic conclusion. The virtual photon forces identified
by Fano, however, are a consequence of the special nature of
the M@gller interaction. The combination of these effects

leads to the conclusion that the forces acting on the bound
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electron tend to become perpendicular to 45, in the limit

of high energies, just as for the non-relativistic case.
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CHAPTER 7
ANTISOTROPY FOLLOWING INNER SHELL PHOTOIONIZATION

l. Introduction

It 1s known that there is a close connection between electron
impact ionization in the 1limit of high energies and the
process of photolionization. This connection is reflected
in the presence of the optical oscillator strength in the
Bethe asymptotic cross section formula (see, for example,
Inokuti 1971). Hence one would expect the occurrence of
anisotropic effects following electron ionization of inner
shells to imply similar effects for photoionization. This
fact has been realized by Flugge, Mehlhorn and Schmidt
(hereafter abbreviated by FMS), who have recently (1972)
calculated some Auger electron angular distributions
following photoionization by unpolarized light. Notwithstanding
the existence of these prior calculations of FMS, this chapter
will be concerned with
(a) the calculation of photoionization cross sections from
the orbital designated by the set of quantum numbers
(n R b hﬁs);
(b) the use of these to predict the asymmetry parameter

of the resulting Auger electron angular distribution,
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(5) as a function of photon energy.

Before doing so, the obvious charge of redundancy must be

countered.

(1) Explicit formulae will be given for any ( W Q_b m; )
and for all possible light polarizations. FMS contains such
formulae only for Q=1 ,:)'-'- L2 y IMmjl= ?’/2) |/$L , and
for unpolarized light. Thus their results represent a

special case of the present calculation.

(2) By the manner in which FMS present and interpret their
calculated data they give the impression that (5 is

typically quite large, which is not in fact the case.

(3) 1In a simple physical argument, it is shown why the
study of anisotropic effects following photoionization can
be of more interest than similar studies with regard to

photoexcitation.

2. Calculation and Results

The required photoionization cross sections are obtained

by evaluating the expression
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4 . 2 A
:[?nwaﬁ): ZE: ‘<<2§;W§\ 1‘C:;L\V*&Q’“S§>\CN”(E?% o)
g v 2.

a 2
where ) = hy ~ Ea; is the energy of the ejected
m p)

photoelectron. Note that we integrate over all directions
of ejection and sum over all final spin orientations. The
index M in the operator gives the polarization of the
incident radiation. It will be apparent from (7.2.1) that
the photoionization process is being described in the

dipole approximation, which should hold for Z not too

large.

Now the photoionization cross section will be proportional to
(7.2.1), but since the proportionality constant is certainly
independent of Wj , we can leave i1t out ot consideration
and need only evaluate for our purposes the quantity
I}%nﬂéws) . in the expression (3.1.17) we have
AIM(V\Q:)M“)) in terms of Bj-sy;mbols. It will be useful

to write IA(“Q:)W\')\) in the general form
— M 2 2
1 (“23"53 = A Rx,&n + 5 RX,Q-i (7.2.2)

where the szﬁxi are defined in (3.1.7) 2nd A and ES

are functions of )A)Q,J and ™j (not to be confused with

the Einstein A and 15 coefficients). Calculation of
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the 3j-symbols in (3.1.,17) allows us to construct Table 7.1,

which gives A and B  for all so , and for each of the

two possibilities 5: ‘Qi.ki . Note that an unpolarized

beam may be represented by the incoherent addition of left-

and right-circularly polariied beams.

.

For the specific case 0=%ﬁ y Table (7.1l) gives

(] _ TO© - 2
1 (QHJ%5>"I:(%§‘%f)" <25 Rxd

L5202 T(3r5) = K, 2%

(7.

(7.

(7.

(7.

(7.

It can be checked that addition ot (7.2.4a) to (7.2.44d)

2.3%a)

2.3b)

2.4b)

2.h4e)

2.44)

anu
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of (7.2.4b) to (7.2.4c) give expressions for unpolarized

radiation which agree with FMS.

We turn now to the distribution of the Auger electrons
ejected from the atom as a result of radiationless transitions
into the vacancies left by photoionization. For the case
where the residual ion is left with J=0O in the Auger shell,
the distribution is particularly simple, and has been given
by FMS:

I6) &« L+ (> Hisd) (7.5.5)
where
TG, 150 - 1°(%,1%)
T90%, 1) + T (3,1%))

e

(7.2.6)

Equations (7.2.%) and (7.2.4) give

2 2
> (Rineas) = 0'253&0\ * ’K:g (7.2.7)
:IWZni + 5sz

C)(ﬁ%ﬁ&dfo&o\y)' = (b( Qm-(lk c?rCuQaq.§
@ (unpolorizod
(=0°5) - (> (Lingay )

i

i

(7.2.8)



It is interesting that circularly polarized radiation produces
the same Auger distribution as unpolarized radiation. This
result is true for all 5 s as can readily be seen from

Table (7.1). It arises from the independence of (7.2.6) of
the sign of W) . Note also that the expression (7.2.8)

is exactly - 0.5 times that given by (7.2.7), so that the

two distributions are opposite in sense, for all photon

energies. This would seem to be a peculiarity of orbitals

having :)’—'- 3/1 .

Comments

It could be argued tha; the inclusion of all possible states
ot poirarization is not really necessary, since an experimental
measurement which uses unpolarized radiation will obtain
information on the quantities 7£1§Qt1. and hcrce the
added practical complication of polarizing the radiation leads
~to no new information which could not have been obtained
without recourse to this. However, there are several points

to be made against this.

1) UV radiation from electron synchrotrons is at present
being used in photoionizstion studies, and such radiation
has a strong linear polarization. Thus the formula of FMS

would be inapplicable to such a case.
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2) The angular distributions resulting from the use of
linearly polarized radiation are sometimes more anisotropic
than those from unpolarized radiation, and may therefore

be easier to measure.

3) Lastly, the use of polarized radiation provides a means
of checking the information derived from unpolarized

radiation.

FMS have calculated explicit values for the asymmetry parameter
Gb for the cases CQ_ (3p -~ubshell) and *{% (2p subshell).
Of these, the former leads to larger (> for all photon
energies shown,Aand exhibits a steep maximum near threshold, in
which (5 touches the extreme value - 0.5. P1%5 shows no
maximum and is less than -0.1 for most of the energy range.
FMS say that they select these two examples "to demonstrate the
striking differencess in the angular distribution of Auger
eleqtrons of different elements'". They do not poiné?xhowever,
that this striking difference can be readily correlated with
the phenomenon observed in photoionization cross sections
known as the Cooper minimum. In the case in point, this
minimum is a result of the variation of the overlap, as a
function of energy, of the )(d with the 3p wave function.

For a particular value of Y this results in t.e disappear.nce
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of the quantity ¥<x& . That this circumstance leads to
a maximum in the Auger asymmetry parameter can be veritied
by reference to Table (7.1), using tne fact that only the B
coefficient of (7.2.2) takes part. Physically, it can
readily be explained as follows. Given that the quantization
axis 1s chosen along the wave vector of the photon, we see that
angular momentum transfers to the atom are limited by the rule

Awm X0 . When to this is added the further restriction
that only XS states can be reached by photoionization, we
see that we have the selection rule

Q(np,mco > Xc) = ©
(7.3.1)

where by )Q we have labelled the energy correspondi.g to
the Cooper minimum. Hence only vacancies with = WM =0 can
be produced at the Cooper minimum, and the maximuux in the

asymmetry parameter is thus accounted for.

Hence one only expects large anisotropy in the region of a
Cooper minimum. This.is exemplified 5y the behaviour of Q}
for the 2p subshell of fﬂb s which does not possess a Cooper
minimum in its photoionization cross section. MoOre generally,
large anisotropy results only from photoionization of some
subshells, only for photon energies in a certain range, and
the behaviour of the M%QP results of FMS may be regarded

as more typical than that of the Ca. 3p r.sults.
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Many investigations have been carried out on the polarization
of opfical radiation from atoms excited by radiafion which

is itself polarized (see Mitchell and Zemansky, 1934; or more
recently Kleinpoppen and Neugart, 1966). Typically one is
exciting the atom to an upper state which has well-defined
orbital angular momentum, and essentially one calculates the
polarization of the de-excitation radiation from angular
momentum conservation, a knowledge of radial wave functions
thﬁs being superfluous. The crucial difference in the
ionization case is that continuum energy levels are degenerate
with respect to orbital angular momentum, so that S,Psdw&‘ -
states are present at the same excitation'energy. For each of
these states of given L it is possible to calculate the
relative vacancy distribution in the residual ion over the
substates, using only angular momentum conservation. Howev:.r,
to sum their contributions to the resultant vacancy dislribution
we must know the extent of the overlap of the final state

wavefunction with the initial state wavefunction for each case.

To the extent that the dipole approximation is correct, one
1
need only consider the two states given by R'= Q1 .
In other words, the vacancy distribution depends on the ratio
énd thus contains information on
RKQ"""‘/’KKDA ’
the form of the radial wavefunctions. It is t'is feature of

anisotropic phenomena following photoionization which coultc
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render future experimental investigations particularly

interesting.



CHAPTER 8

DIRECTIONAL CORRELATION IN INNiR SHELL PHOTOIONIZATION

1. Theory

It is the intention of this chapter to demonstrate that when
an atom de-excites following inner shell photoionization, the
particle emitted - photon or Auger electron - is ejected in a
direction which is strongly correlated with that of the
primary photoelectron. It will be shown that the detailed
form of the correlation is a function of parameters of basic
theoretical interest - the radial dipole matrix elements,

and the phase shifts of the partial (ejected electron) waves.
For this reason, it is suggested that a coincidcuce
experiment (electron-electron or electron-photon) could be

expected to yield much worthwhile information.

We havevseeﬁ in previous chapters how Auger angular
distributions and X-ray polarizations depend on the ratios
of the ionization cross sections Cp(vnQvn —#-L) for
different values of YN\ ., These ratios are nol very large
in general, and therefore do not lead to large anisotropy in

the vacancy de-excitation process. However, it might happen
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that the probability of ejection in a particular direction

varies substantially, depending on which magnetic substate
the electron initially occupies. Of course, an experiment
on the angular distribution of photoelectrons will detect
the sum of the contributions from the individual W states,
and will give no information on the ratio of these
contributions. To obtain such information, we must detect,
in coincidence with the photoelectron, the particle which
results from the filling of the vacancy caused by its
ejection. If the ratio of the above-mentioned contributions
is large, the angular distribution of the secondary particle

may in general be expected to be highly anisotropic.

To put the foregoing argument on a more quantitative footing,

we must first of all calculate the angular distribution of
photoelectrons ejected from a bound state characterizcd by

the quantum numbers ( m L w ). Comparable calculations for

the quantum numbers (TLQ), summing over all orientationswm , .
have been carried out bj Zare and Cooper (1968). The atomic
wavefunctions are calculated in the central field approximation,
and the interaction between photon and atom is treated in the
dipole approximation. The quantization axis is taken along

the direction of the photon beam, and the beam is assumed to

be unpolarized. This is achieved by calculating separatzsly
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the probabilities for right- and left-circular polarization

and adding them incoherently.

The amplitude for photo-ejection from a bound state (nQJn)

by light of polarization M is given by

[ L
<Hirchi> = 3 o (@)™ D (250 R

R'm!
" 2 1 & (8.1.1)
(M A=

where we have adopted the notation and procedure of Chapter 3.
The dependence on direction of photo-ejection, it will be

1o
recalled, is contained in & ( L,m ). The required angular

distribution is proportional to
4 . 2
T*mkm 0y = 1< EirCiV >

= D1 G (R, mtR) o\*(kz,m-\-M\
Uy

(-1 Bl (!l.>3kl (fla>3)i Re, >?\xfzm

L1 ‘Ql B(Q i {7.
(w\ Mo\ n —mep

(8.1.2)

The summations are limited by the requirements Q‘ =R=+1

Q.= £%4  (triangular property of 3j-symbols).

For unpolarized radiation,



Lintm; 03 = % {‘<1°‘ v oy 1O+ l<{-’\vc’.‘1\L>\‘}

=% -1 "‘*‘Q"\*%\"‘%g 5, Y%
2 %;1( D (9«» (2,}) 7Rm' "

‘ {O\(thn)o\*(.ﬂz‘m.‘.ﬂ (9* 14 £ 1 &
m 4L -m-i/\m 41 m1

+°(Q\»"‘“1)Q*(Qz,m-1)(Q A 2‘)(1 1 e
mo~1 mim -4 -wa

(8.1.3)

After evaluating 3j-symbols and substituting the explicit

expressions for the QO (&,m ), we find

I(nm s 6)
R
[ (1:4«%)1(2%1) {‘ "5 I (Q-wi)(l-mn)
+ \ YQ”_ R \ (l""m*ix{*m-\-?\i}
+ Rua.
(*‘):*1)1(2:{47 { | Y}’;{ l(2+m)uz+ "m-1>

+ | M‘S}fﬁ (Q—m}(&_-m_l‘)}
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R X Led Rx Q-1
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(22 By (2813

z(Y*():‘) Y o ‘Q_-\(gm."%m-o_‘_ Y(x) YC iy o (%M. %p__ >

Lai ey R-4m-4 R4, m-1 Q.*j, m-4

[(’* ") (R-ma2) (R Qe ~4) 4
(Y(x) Yx) 2 (Bt 30.-13_“ Y 3 Y 6o Q_L(%m'&m\)

i Rdmey 3wl Rt

- LRy DR e R-m) (L-ma-1Y] } ] (8.1.4)

By squaring the well-known identity

Cosd Y [(Q+m+i)(2-m+1) Y (L+m)(R- m)] Y

(22+HY20+1) m,m 2+ D(2%-1)] Yoy m (8.1.5)

and rearranging terms, it is poséible to eliminate cross
terms between spherical harmonics appearing in (8.1.4).

We have then finally

I(“anscbv

&ngji )
(2R+ D)2+ 1) Ym’f) ] (R=m+1)(2-m=+2)

T ‘ Y&;&%}\ (rme (L4 M-\-'Z)}

Rt .
uenye-1) 1 | YQ_@‘?\ (R4mY(Rwn 1)

* I e ]
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+ Rxl—ﬂ. ?Rx.l,-i cos(ggﬂ_‘ %Q.i\
. { 0f® (1Y, ol « 1%, \

'L
(2R42)(2ReL) | ‘et (22+)(22+1) | Vel il

- R = (m-1Y 4}5 \7' Q- (maa)" Y k)\
(am)(u-q (22+1)(20-1) FH™LN8.1.6)

Below we ev:luate (8.1.6) for the first few values of 2

=0 (s-state):

I(ns;0)= % Ryp Sn 0
' (8.1.7a)

Q=41 (p-state):
_ 0
T (np,0,0)= 2% Ry St @ c0s O

(&6.1.7b)

T (pt110)= 4 Ry [(3eog6-1)+ 4 5inr6)

+ 72%5
’Rxd)gxscos (S& %5’) (3C0$19 1\)
(8.1.7¢)
LZ (d-state):
T tnd 0,63- 4$me(5wz‘>9 AN 1)

““i’o KPS‘“ 0+ x")ﬁx\ocos(g.; 80
. 5in@ (5080-1)
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T (nel 21 e) A-O x{, COBGE(&-OSG 3)%—258177493
%6 ﬁ%q,COéfe

+ %6 RXP Yx{ cos (8{,‘8‘;)
- o8 ® (Scode - D)

(8.1.7e)
Lndp2y0) = 2 ’R Sin'® [(_‘Scose-ﬂ*c’ZS& “e)

160
>

¥ 25 Rt Ry 05(8;-8) 5B (SeolE-1)
(8.7.7f)

The I(“o\'>6> which Cooper and Zare calculate can all be
. 2 . R

cast in the form Q.+ Co0S @ s irrespective of the values
of n and lQ'. This is because summation over W renders
ail subshells therically symmetric, so that asymmetry cnters
only through the incident photon. The Ixnkﬁn39§ , on the
other hand, become increasingly complex functions of © as

2 increases, reflecting the increasing complexity of

the angular wavefunction.



For inner shells, and particularly for the heavier atoms,
one must take account of fine structure. This means that
the initial bound state of the electron should be described
in the coupled representation (’ﬂ—Q.:) my ). It can be
cshown, by a straight-forward extension of the algebra of

Chapter 3, that for the present case

L a
< ‘Q‘ \ T‘Ciﬂ\ \>\ Coup\ed

= R L s 3 9 i ;
mZ‘ms E\)] (M \Mg'w\b\ l<'€ ]TC»\L%‘MCO&F\QA

(8.1.8)
Hence we may write
I(n%m:,‘,@}
. X
L s )
- L .
= % £yl It @
Vv\zms (W\ fng =M \\1 " 3 .
.1.9

As stated earlier, we can gain information about the
Tndym;y®) , and hence the Iwlm; @) , by
observing the angular distribution of the secondary particle,
which can either be a photon or an Auger electron. A
comprehensive review of the Auger effect is given by Burhop

(1952).
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To render the discussion more specific, we consider an
Auger transition of the type La M'l{b ‘Vkp (* S)
where the Auger electron is emitted as a single P%-wave.
For the case where one does not detect the direction of
the initial photoelectron, the angular distribution can be
written

IHyoed1+ ¢ A (os Bn)

(8.1.10)

where we have used 6& for the direction of ejection of the
Auger electron to avoid confusion with 6' , that of the

photoelectron. '@_(CDS 653 is a llegendre polynomial and

b= Q0D -QUsE)
© (%, )+ Q(%,%) | (8.1.11)

(b is called the gsymmetry parameter of the distributirc

and the (Q()»my) are abbreviations for the total ionization

cross sections (QQ&QS“Q54>)<)-

TIf the angle of ejection of the photoelectron is measured in
coincidence with that of the Auger electron, we may define

by extension an asymmetry parameter which is a function of Q.

T(%%,0)-1%%0)
T(%,%,9)+1(%,%,9) (8.1.12)

CIC)

where  L()M; 4 @) is in abbreviated for . the L{nRim;i@)

which was defined in (8.1.9).
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2. Results

We have taken theoretical values for the ‘K)(Qtl - from
two sources. Firstly, we have used the results of

Burgess (1964), which apply to hydrogenic systems, and

which should therefore give good results when applied

to the inner shells of the heavier atoms (aithough it

should be remembered that in this region the dipole
approximétlon will be suspect). Secondiy, the results

01 McGuire (1970) have been employed. ‘McGuire has

calculated the ’RKQ*1 for sel~cted values of ¥ for

the elements He to Xe . Details of his method of
calculation ére given elsewhere (McGuire, 1968). Briefly,

he approximates the quantity *Y‘V(T) by a series of
straight lines, adjusting the parameters of the streigh®
linés to give approximately the same bound state energy eigen-
values as those.obtained by Herman and Skillman (1963) using
the Hartree-Fock-Slater approach. He then uses the discrete .
and continuum ofbitals of the model to obtain photoionization

cross sections.

The theoretical HK)(&+1 values can be used to evaluate
the I(v&m‘,@} given in (8.1.7a - f). The case I'(“%',G) [X3
somewhat trivial: here we have a S\W\Q ) distribut.

for all ’QKP . For the case I(.“P.O‘,G} we have a
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Sn® o0  distribution for all Rxp » but for
I(.Y\\O,ii‘)e) we have two competing outgoing channels
and therefore the detailed form of the distribution
depends on the ratio ﬁaxd.//XZKs and on the phase
shift difference (%4q-%s) - Figure (8.1) shows
X (Q‘P,O‘)G\‘) and 'I(qu,ﬂ',e) , using Burgess's data,
for zero energy of ejection. 112rnr136§ was calculated
using the extreme values of © and TT for the phase
shift difference. It is interesting that the ratio
T (2p,0, Omagic)
T(2p, £, Omaggc ) | (8.2.1)

-1 ° .
(where © magic = CoS (}fi)e ES is the so-called "magic
angle")does not depend on the phase shift difference but

only on the ratio ’R)«L /?KS .

The picture is not appreciably altered for ejeétion energies
greater than threshold, for a hydrogenic system, because of
the slow, mdnotonic variation of «’Kd/«xs with ¥ . However,
a very different picture cah be seen for the lighter atoms on
the basis of McGuire's data. We consider the particﬁlar

case of-pﬁotoionization from the 3p-subshell of Ca .

Figure (8.2) shows the situation at threshold. Here,
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)R‘Ad/«xsﬁ:l , and I(?)P,*i')e\ is extremely sensitive
to the phase shift difference. Furthermore, the |
distributions vary rapidly as the total photoionization
cross section goes through what has become known as the
"Cooper minimum". Such minima are associated with a
change in sign of &;i as X varies, so that for a
particular value of ¥ we have ’Rxd‘zo . Inspection
of (8.1.7b) and (8.1.7c) shows that I(n pi0,8)=0
and I(V\P.tl';e)z constant at the Cooper minimum.

For energies well above the minimum, we have Kaxd>é’q%6

as in the Coulomb case, so that here the distributions

look much 1like those of Figure (8.1). Incidentally, for
the 2p-subshell of Ca McGuire's data give a picture which
approaches more nearly to the hydrogenic case, as one

would expect of an inner subshell. The most important
feature of these results, then, is that the ratio

I(“P\o‘)e)/]:(“v,‘ﬂ_')e\) is far from being unity for
most angles © , and is a rapidly-varying function of @ .
Thus encouraged, we insert the data of Figure (8.1) into
the formulae (8.1.9) and (8.1.12) and obtain the
corresponding behaviour of (3(6) as a function of @ .
We see that the magnitude of Gﬂ@)varies considerably
and that its sign changes twice in the region @=0O to

©=T4s (Figure (8.3)).
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_&3 (R.3) Ru.%et- e%\nu*%g poramater 3@ vs. O,
amade of photoejechion, usiney dotu of Fia(84).
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In figure (8.4) we have shown (5(6) for various angles as
a function of the photon energy, using the data of

McGuire for the Ca 3p-subshell. Notice that (}(ey = 0.5
at the energy of the Cooper minimum, independently of ©
Also, (.5(‘100)= @(Oo} = -0.5 independently of Ryd + RxS

' %d. and 85 s and hence independently of photon energy.

This chapter has indicated that some interesting results
might be expected from an experiment which detected in
coincidence a photoelectron and the resultant Auger electron
(or photon). Coincidence experiments are relatively

recent in ihe field of atomic physics, due to the difficulty
of using the cdunting techniques ~responsible for their
successvin nuclear physics-~in the detection 6f 1§w energy
particles. However, the use of the coincidence techniqu -

is increasing (Erhardt, 1971) and has already had some

important successes.

Thus the experiment proposed here is put forward in the
realization that it may not be feasible for technical
reasons, bhut in thé expectation that such problems could

be solved in the near future.
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CHAPTER 9

CORRELATION BETWEEN SPIN POLARIZATION

AND ANGLE OF PHOTOEJECTION

1. General Case: Arbitrary Angle of Ejection

In recent years, the study known as photoelectron spectroscopy
has come into being. Experimental techniques have developed
to such an extent that not only total photoabsorption cross
sections, but also the individual subshell contributions

and angular distributions may be measured. The recent paper
of Kennedy and Manson (1972) contains many useful references
in this field. Thus it is now possible to measure the energy
and direction of the ejected electron; the only parameter
which remains unmeasured is its spin orientation. Tu

chapter will show that, following photoionization By
cifcularly polarized light, thé electrons origiﬁating from

a particular fine structure state are in general partially
spin-polarized, the degree of spin polarizationvdepending
strongly on the angle of ejectién. Thus the spin polarization
depends on the same basic theoretical parameters - radial
dipole matrix elements, phase shifts - as does the angular
distribution. We shall see, however, that th- spin

polarizatibn has the added interest that © r certain



directions of ejection it is possible to predict the degree
of polarization purely from angular momentum conservation

and independently of the details of radial wavefunctions.

The premises of the calculation are identical to the fore-
going part of this thesis - wavefunctions are calculated
in the central field approximation, and the interaction
between photon and atom is restricted to the dipole term.

The matrix element required is

<xamy| P Cl M2 im>>

\
where T\ 5 is the momentum and YNg the spin component of

(9.1.1)

the ejected electron, and the operator describes the c¢linctric
dipole interaction with a right circularly polarized beam of
radiation. The corresponding cross section for puotoejeci.on
in the direction © (the polar angle with respect to tne -

photon momentum as Z-axis) is

2 a
L, (8) = ST280 N (€ - €
’ Cﬁéﬁ-i\

2
2 KK me e Inim,
] m
™y ~ s 1 J ‘?\ (9.1.2)
where Enﬂé is the binding energy in rydbergs of ar electron
2 1
. Y. - . wol,
in the bound state (nQo), € = G,“QQ +%'K}:’) . X

is the fine structure constant; Qg the Boh radius; and
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is the number of electrons occupying the initial state. It

will be found convenient to cast Ix’m‘j (6) in the form

\ - (ms)
Ly (@Y= = (4 + @(wxs)'P(cose)\ o

where

+1
O, tmg) = S Ixmg () d(ose)
S (9.1.4)
© \ 2 2 '1\) .

2 ()= 1&( o - and (5 is called the asymmetry
parameter of the distributicin. Now the calculation of
(9.1.1), and hence of (9.1.3), is essentialiy similar to
that outlined in Chapter 3%, excep. that no integration over

angle of ejection is performed. After emplaying the

identities

AN

" Lim 4Ty ' (1.1.5)
and

| 2, .
S | Yeml| = Q(Q*ié)-(,:hn sin*a |
LN ‘ ' (9.1.6)

the following expressions are obtained:
Case (i) :) = L+ K
O, (+K) = 1% X0 [Nn2 2k (€= € p3) fa042))

- L3%+2) Rypug + L Ry g ]

(9.1.7;. '
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= (R+2)(30+ 1) ﬂt(}ﬂ "‘*Q(Q‘iyR;Q-i* ol RepoRa oS Cui )

) =
> ALY [130+2) Rygy + L R gy 1

(9.1.7b)

v
G/\-&(‘){l) = % O(Q: [NnQ,Q-V-«k (6 - e—nQ,Q-b&\/Q-Q*Ql

- L@ 2) R +30R% 0 ]

k) = GO Roaot B R +6UDRyRaosCaoiFily "
QL) [+ Ry, * 30 Ry ]

(9.1.74)
Case (41) = R-%
OJkk (+,h) = B%o( Q: [N“Q)Q_}i (e" Q-WQ)Q“‘E.\ é‘q-]
T Ry * GDRg ] oot

By = (0D R O b R By 05 s )

@ 0) [ Ry g9+ BUAD R ] (9.1.80)

2
Ol () = T [Nug,eg (6-Enees) /2]

- [ais+) ’Rz\ui + @1 >R2x)°.-1—.\
(9.1.8¢c)



)= B ot (-0 R+ Ry By 05 G
Q1) C3le R,y + )Ry ]

(9.1.843)

A useful check on these equations is to sum over spin

orientations. For both Case (i) and Case (ii) one obtains

2
Orex = L"gom" LNy (€= €my) R+1 ]
LRy + 2R 0]
(9.1.9a)

and
& = ) XD Rgn UEDRy .~ TR cosurten

(1) [ReA) Rgy + VR,

(9.1.9b)

which agrees with the Bethe-Cooper-Zare formula for the

photoelectron angular distribution.

Before evaluating the above results numerically, we wish to
cbnsider the sﬁécial case where the photoelectron is ejected
along the direction of the quantization axis (forward or |
backward ejection). Of course, this can be obtained by
setting ©=0" or ©=\80 in the general formula. However,
the following section will show that for such a case the spin
polarization can be obtained simply from angular momentum

conservation. This has also the virtue of »roviding a
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further check for the algebra of the present section.

2. Special Case: Ejection Along Quantization Axis.

For the particular case of forward (or backward) ejection,
we shall show that the spin polarization can be obtained
independently of any detailed knowledge of atomic wave-
functions. Now as a result of our choice of quantization
axis, we have
(9.2.1)
where Yn‘ is the orbital gngular momentum component along
this axis of the ejected electron. If the photon responsible
for the transition if right circularly polarized, we know
that ,
' -
OBm= m'-m = +1 (9.2.2)
‘Ass a result of combining the last two relétions, the selection
rule .
| m= -1 (9.2.3)
is obtained. In the presence of a spin-orbit interaction,
Y\ is no longer a good quantum number and we specify the
orbital occupied by the bound electron by the set (YVQ:)Yﬂé ).

We may expand this bound state thus:
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ey - L s 3 ok Res-m:
rtym> = mZ " (m ™ -amaj L3>y ™™
ELAANY
’ rnQnm:> 3::;
(9.2.4)

If the spin component of the ejected electron is th , the
orthonormality of the spin functions and the selection
rule (9.2.3) limit the contribution to the transition
amplitude to one term in the expansion (9.2.4), this term

being

. 245-m,
(&5 > ) LT 0™ ey 23,

1w -m; (9.2.5)

Hence the spin polarization
) ~TCh)
= 100 .
¥ TG+ TE%) (9.2..)

can be replaced for this special case by

2 s ) L sy
-1 4y 4k -1-4_-{55_
= 100 (Q 5 5\1 (Qs d ‘
S U "i*"ﬁ (9.2.7)

Since S=J) , we have the two possibilities :): L+ X

Using explicit expressions for the 3j-symbols, we find

Y= 100 - {‘1/3&1 (3= 24

4 QERASY
(9.2.0)



135

Remembering the statistical weight factor (2j+1), we note

that the contributions from the states :}:Q‘t}i are such

as to cancel each other out. The values £ = 1, ) = 3 are

of particular interest in that they lead to P = 100%.

3. Results

The percentage spin polarization of electrons ejected with

momentum t\)‘S at an angle @ may be defined as

Ty 416(0) = Tc 14(8)
Ty (@) + T 5(0) (9.3.1)

Pe) = 100

To obtain explicit numerical values of anD, we must now
choose an atomic system, specify the subshell from which

the electron is to be ejected, and obtain theoretical

values for the radial dipole matrix elements and phase

shifts needed. The choice of atom was dictated as follows.
The formulae (9.1.7a,b,c,d) and (9.1.8a,b,c,d) were obtained
by neglect of coupling of the bound electfon to other electrons.
This is justified for either a single electron in an otherwise
empty subshell or an electron in a closed subéhell (Pauli
vacancy principle). We opt for the latter since the fine
structure splitting is so small in the former case as to make
experimental energy discrimination unlikely. Th. noble gases

were chosen because of the availability of a recent



calculation (Kennedy and Manson, 1972) which provides the
requisite theoretical data for these elements, for both
outer and inner subshells; and also because they are
simple to deal with experimentally, being monatomic gases
at room temperature. Figure 9.1 shows the percentage spin
polarization ¢%6> as a function of the angle of photo-
ejection © from the A}P&—subshell of Kr , each curve
corresponding to a different photon energy. Note that
Py = 100%, in agreement with Section 9.2, for all
energies. Note also the interesting behaviour which

occurs at the energy of the Cooper minimum, discussed

in previous chapters. At this energy, only the contribution

from the outgoing S-wave is present, and this is
accompanied by the complete suppression of the spin

: ,
orientation WNg = ‘%i , so that we have P = 100% for all

angles of ejection.

Figure (9.2) shows the corresponding situation for the inner

2
3_?;1 -subshell of Ky . The important difference here is

that there is no Cooper minimum present, so that the change

in P with photon energy is much less marked.

The picture for the other noble gases is similar to that

given above for Ky .
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Photoejection from a closed p-subshell leaves the residual
ion in either of the states P’i,% . In the presence of a
spin-orbit interaction, these two states are separated in
energy: hence, for ionization with photons of a sharp
wavelength, the photoelectrons will consisf of two groups,
differing in energy by the amount of the fine structure
splitting. The problem of observing the spin polarization
of these groups separately can be dealt with‘in two ways.
Firstly, the photon waveiength can be arranged so that only
the higher energy F%ML group is obtained. In this
connection, we note that the energy resolution necessary

to achieve this is available, as shown by Berkowitz et al,
(1966) who have studied the angular distribution of the

two groups of photoelectrons for the noble gases. Secondly,
both groups can be excited, and subsequently separated by
using their different mean velocities to deflect them
through different angles. This, however, could prove

difficult and lead to losses in intensity.

It seems unlikely_thét the process dealt with in this chapter
will provide a serious rival to the existing methods of
providing intense beams of spin-polarized electrons; however,
it could provide an interesting extension to photoelectron
spectroscopy as a means of gaining information on both bound

and continuum atomic wavefunctions.

139



APPENDIX

THE FORM OF ANISOTROPIES IN THE HIGH-ENERGY

LIMIT OF THE BORN APPROXIMATION

In the course of calculating the angular distribution of
products in the electron impact dissociation of ‘*;f ,
Zare (1967) makes some general assertions concerning the
form of anisotropies in the high energy limit of the Born
approximation. In particular, he claims that the work of
Percival and Seaton (1958) (henceforth referred to as PS)
on the polarization of atomic line radiation contains an
error in this respect. We shall show that (a) Zare's
general argument contains a fallacy; (b) the results of
 PS are correct; and (c) the rapidity with which the high
energy limit is approached depends on whether or not the

transition in question is optically allowed.

It is well known that the physical reason for the variation

of such anisotropies as a function of impact energy is the

energy dependence of the direction of momentum transfer to

)
the atom K (momentum transfer "v'\\s ). The customary
A
approach is to consider that ¥ is parallel to the
incident beam at threshold and perpendicular at the high

energy limit, varying monotonically between these two
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extremes. Hence PS simplify their calculation by setting

Ok (the angle between \:\s and %o, where t%o is the
momentum of the incoming electron) equal to TL{ . Zare
contends that this substitution is in general unjustified.
He correctly notes that, as i<—>'K;¢~ (the kinematic
lower 1limit), €%<-%> Cf even for 4h° very large. Since
the momentum transfer integrand in the Born approximation
weights strongly small values of K close to Kwmin , the
form of the anisotropy even at high energies may be
substantiaily less than the limiting form predicted by
putting ek=121. This is in agreement with the conclusions
of § 4->. However, Zare extends his argument in the

following manner:

"It rﬁight be wondered whether the St O limiting form
(Zare is referring to the dissociation of H; ) would be
reached, provided we were to consider still higher
energies thén‘that shown in Figure 7. Ho&ever, this is
not the case, as can be demonstréted in the following
‘manner. Let us calculate the fractional contribution

to the total integral made by those values of ® (our S )
that are less than or equal to e‘magic ( GSmagic is the
'magic angle" of 54.70 introduced by Van Vleck (1975)) ....
eeeeses such values of e's 6! magic, correspording to the

limits of integration from Km'.,,\ to BKW'.,,\ , cause peaking
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along 439 and thus oppose the formation of a Sh?%a
distribution. In the high-energy limit, the integrand
of (52) will be dominated by some leading inverse power
of K, so that the indefinite integral has the functional
form -(:? K.“ where, in general, Ne=©O . The fractiong

\
of the total integral for which © & ©'magic is thus

given by
. 0 (3D Kuin
% (e‘s ewﬁlc ) - ( ch )Km'm (54)
n\ Kwax
<~(b‘<- \)Kw\‘w\

which is seen to be independent of the bombardment energy B¢ ."

Zare concludes that if W» 2 , the angular distribution need
never be reversed in sense; Since the above argument is qu'te
general, Zare goes on to say that the performance of the
integral over K in PS Equations (6.13), (6.14%) and (6.15) is
incorrect in the general case, and leads to the wrong high-
energy limit of the line polarization P, unless the integrand

in question varies as K or slower.

The flaw in Zare's argument is contained in the statement:
"In the high-energy limit, the integrand of (52) will be
dominated by some leading inverse power of K'. ‘‘his is not
the case, for the coefficient (5 of such an inverse powcr

of K will be shown to be itself a function of the collision
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energy, so0 that although Zare's equation (54) is quite

correct, the contribution from such a term tends rapidly

to zero as 2%*>°°

We shall demonstrate this for the case dealt with by PS;
namely, the excitation 1s>n&m in the Born approximation.

Restating PS equation (6.13) in altered notation, we have:

Q@ (s = nlm) = (9.%-1\% %, S\ “?cosa‘\\ Tl OKAXK (a.1)

Kwin
where
2
K)= B and) |<nl) ), (Ke) 118D
1) K‘*Jk,(a i N (4.2)
in which
Jo (Kr) = (%L—;Y ey (Kv)
(A.3)
Now since
‘ | -
@@s=>nl) -ko% T (KY KAK (A.4)
1 -

we have

5 L) T UOKAK
S I,\Q(K)KO\K (4.5)

Q[:LS?an) _ \
Q(is—> nd) 9"“'1
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By setting ©,=7% PS obtain from this

Lin Q(is ~> “Qm\

- 2 Il 2
ko> oo - RUSEALL T (‘m\ 1% ) (A.6)

Now the Bethe cross section (4.3.1) is the asymptotic form
of the Born approximation as ‘Qo becomes 1arge; PS do not
make it clear whether (A.6) should apply in the Bethe
region or whether it is intended as a purely formal high-
energy limit. The procedure we follow is equivalent to

performing the Bethe approximation on the expression (A.5).

In § 4.3 we saw that Qgis significantly different from
IE only if KwnSK<S< K, ., K, being the "momentum
cut-off factor" introduced by Bethe (1920). Hence for
Ko €< K< X,ax » the approximation represented by
(A.6) is certainly justified in the Bethe approximation,
and we need only consider the behaviour of the integrand
in (A.5) in the lower region of momentum transfers.. This
region is defined such that the inequality
Ke <<1 (A7)
holds for all T contributing appreciably to the integration

implied in (A.2).

Thus bq(Kr)can be replaced by the leading term, of order
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(Kﬁf , in its expansion, and we find

\M\

2 283
Ko} '€ |R (osdy) K dx
K"Q‘s dK (A.8)

~QUS>nlm) 3
[Q“s"'“’g cew, ¥ G 16

Min
Now at high energies

. A ranE.
Ko Tk (4.9)

and thus we may write, using (4.3.2),

s B = 5 Kmin
< 2% * K (4.10)

for such energies. The first of the two terms on the right
side of (A.10) is certainly much smaller than unity for K<X,,
so that the substitution

il tw) .
R ospd) = K (\f_‘_'*(*'é»

(A.11)

should lead to no serious error in evaluating (A.8). Hence

we make the substitution o= Kmia /K and find
L

un;t -Mbidac
[M] o~ (2“0 S“ =l (A.12)

(iS-)nQ) KéKo 5 —29.1—1. d
Kma?

The energy dependence in (A.12) is thus confined to the lower

limit of integration, making it clear, in view I (A.9), that
the dominant term at high energies will come from the leading

inverse power of X in the integrand, and not, as stated by
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Zare, from that of K.

Now the associated L.egendre function 1%£mbx) is the

product of Ci‘DL)a"\ and a polynomial of degree

( X=m ); hence the coefficient of the leading inverse

power of X in the upper integral in (A.1l2) is just
l’PL\m\(O)\Q’ , so that

: _Qii_sz&@] = a\ LN
é;'_:@[Qus»nb K <K, (;cmn \ﬂ (03 (4.13)

and we have thus vindicated the use of (A.6) by PS as a
formal high-energy limit. Also, because of its similarity
in structure, one can easily show that the expression (52)

of Zare's paper (for the angular distribution of products

+

2
the S‘W\Qe form corresponding to BK-‘-gi .

following the dissociation of H_, ) must eventually reach

The question remains as to whether the PS values calculated
by using (A.é) are attained in the region of energies for
which the Bethe approximation is valid, or whether they
represent a merely formal high-energy limit, unattainable
except for collision energies which require the modification
of the Bethe formula itself due to the onset of relativistic
effects. Now for opéiﬁally—disallowed excitations ( 22 in

the above formulae) the contribution from distant collisi. -
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(represented by (A.12)) is relatively unimportant (see, for
‘example, Inokuti (1971) p.307). Hence, one may substitute
6K=1£: for such excitations throughout the Bethe region
of validity, and the line polarization following a transition
from such an excited state will reach the value 13° predicted
by P3 throughout this region (neglecting any other depolarizing
phenomena). For an optically-allowed transition, the
contribution of the distant collisiohs is predominant at high
energies, and one cannot neglect the contribution represented
by (A.12). We shall find it convenient to use the formula

of Vriens and Carriére (1970) for the polarization:

100P, (3 weBx -1)
200 ""Po &1- (D‘sien) (A.14)

where

.
s code fut 4

1 - min .
N

and ¥\0<> is>the generalized oscillator strength fqr the
transition. The relation between %h“<3 and the Born
métrix element is given in Chapter 5. @% is the threshold
polarization; values of fi have been tabulated for a wide

range of transitions by PS.
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Now (A.15) can be rewritten as

a()
=75, - {‘i( L6 &fKB% S&. oSO %(K) 16
K )d(K)

KMI Y

From the definition of the parameter ¥, , we car make the
substitution ‘%K(KD o~ ?k(cﬂ in the first integral in
the numerator, {xo)being the Opticai oscillator strength;
from our kinematic analysis of the behaviour of %:
(Chapter 4) we can set ©y*% in the second integral, the

contribution from which thereby vanishes. We have therefore

Ko
oTB. ‘F“”S“ cge‘élé? (£.17)
< &( g}(mdx
, T

- { .‘:“(o) + O(¥ Qv\E)‘zs /S \K)d (<)

Now the evaluation of the denominator is equlvalent to the

performance of the Born approximation; it must be evaluated
separately for each collision energy of interest, since

the limits Kwin K@gx. are themselves functions of energy.
However, it has been amply demonstrated (see Inokuti, 1971)

' that the Bethe asymptotic cross section, which is a function
of the parameters {;(O) and C, (the latter to be defined)
has virtually all the physical content of the Born
approximation, at least to terms of order Efl . The Bethe

. procedure gives:



Kt
Lo C_l_(‘é? = L) W (4cn E/R@
Ko

where Cw is defined by
d - Q}
2 Ben (AE/RO\ 1= JD EXOVZ Leod) éiKK—l

~ j {1 - EH@/&wﬂ’;"i@%
substitution of (A.18) ;?(A.l’?) gives
w020k = [ (hcn Bl
and thus

p- 100% [ 2= (4t E/Ru) ]
(200 - Po) ™ (4cn E/Q%B +* 'Po
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(A.18)

(A.19)

(A.20)

(A.21)

The formula (A.21)3ives the polarization of any line in

terms of the two parameters f% and Cn . As mentioned

vefore, B has been tabulated by PS; equation (A.19) shows

that Cwn depends only on the shape of the generalized

oscillator strength {:“(K\) and hence on the shape of the

differential cross section.

We shall test the validity of the assumptions on which (A.21)

is based by evaluating the polarization of the helium line

( 3*? —> ’).15 ) following the electron impact excitation
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For this line there are experimental
data (Moustafa Moussa, 1967) available, and also a Born
approximation calculation (Vriens and Carriere, 1970). The
latter calculation takes a truncated series expansion for
¥“(K)of the Lassettre type (Lassettre, 1965) and determines
the expansion coefficients by fitting to the definitive ¥“0<3
obtained by Kim and Inokuti (1968). It then calculates both
excitation cross section and polarization using the

expansion. We use the value

An Cote = -1-833
(A.22)

given by Kim and Inokuti, so that any difference between the
two calculations cannot be ascribed to the use of different
wavefunctions. The results are shown in Figure (A.1l). We
see that the present results converge on those ol Vriens

and Carriére with increasing energy, so that by E=‘BkQV
the two curves are indistinguishable. Both curves are in
reasonable agreement with experiment, considering that the
latter ié uncorrected for the depolarizing effect of cascade
population of the upper level. Since the validity of the
Born itself is questionable below 400eV , one sees that the

use of (A.21) represents a simple and worthwhile alternative

to more elaborate Born calculations,which require a numerical

integration for each value of E of interest. Furthermore, an

estimate of P made with an empirically-det.rmined Cw may te

180
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more accurate than a full Born calculation with inadequate

wavefunctions.

It is interesting to note that the formula (A;2l) requires
a correlation between the shape of the differential cross
section at a particular (moderate to high) energy and the
polarization of radiation from the subsequent transition.
It iz possible that this could be exploited both

experimentally and theoretically.

The thesis of_Moustafa Moussa (1967) contains some calculations
on the high energy tendency of the polarization. However,
these are unsupported by any kinematic analysis such as is
employed here, and consequently Moustafa Moussa is able to
deal only with the low momentum transfer range ( KK, ).

Hence his conclusions, although correct, remain qualitative.
We conclude with a summary of the appendix:

a) The argument about the high energy limit of anisotropies
is more subtle than it appears at first sight - as witness
the inadequacy of its treatment by Zare and also, differently,

by PS.
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b) The limiting values Ths given by PS are formally
correct, but practically wrong for optically-allowed
excitations, for which case the approach to the limit
is extremely slow, so that 1D<3:f; y even for very
fast electrons (see Figure (A.l)). This stricture does

not apply to optically-disallowed excitations.

c) A compact formula giving P  as a function of

impact energy has been obtained. The excellent agreement
with the full Born calculation of Vriens and Carriere

for E>1keY suggests the correctness of the kinematic

argument on which the formula is based.

d) The dependence of the formula for P on the pérameter
Gy s which can be obtained independently from total

and differential cross sections, both theoretical and

experimental, implies an interesting cross-correlation

among these different types of high energy data.

e) The generality of the kinematic procedure for ts
suggests its possible extension to other types of
anisotropic process following on electron impact, e.g.
the angular distribution of products after molecular
dissociation; or the direction of ejection of secondary

electrons after ionization.
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. The polarization of characteristic x radiation excited by
electron impactf
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Abstract. Using hydrogenic wavefunctions, the cross sections for ionization of an atom
from the magnetic substates of the L, level are calculated in (i) the Bethe approximation;
and (ii) the first Born approximation. Calculation (ii) differs from previous work of a similar
nature in that it takes as axis of quantization the direction of the incident electron beam.

Hence the polarization of the resulting characteristic x radiation is estimated; it is
found to be small in comparison with the degree of polarization which typically results
from the excitation of optical lines, in marked disagreement with a previous calculation.

1. Introduction

When atomic line radiation is excited by a collimated beam of electrons, it is in general
polarized. This is well known from observation and has been accounted for satisfactorily
within the framework of quantum mechanics. The field is the subject of a recent review
article by Kleinpoppen (1969). The electron beam introduces a large degree of anisotropy
into the process which manifests itself in the non-uniform angular distribution of the
emitted radiation. Hence, when a collimated beam is used to excite the characteristic
x rays of an atom, the question arises as to whether this radiation also is polarized. The
purpose of the present study is to look at the latter process in more detail and to give
some kind of quantitative indication of the extent of the polarization to be expected in
a given line.

There has been, to the author’s knowledge, only one published experimental study
of x ray polarization—that of Hrdy et al (1970) on the L,, x rays of mercury. They
claim good agreement with the only previous theoretical work, due to Mehlhorn (1968).
But there are strong reasons for believing the results of Mehlhorn to be erroneous;
these will be discussed in detail later.

The basic premise of the theory presented here is the same as that ofthe Oppenheimer-
Penney theory of the polarization of optical line radiation; that one may calculate
separately the probability of collisionally exciting a state with a particular orbital
angular momentum component along a fixed direction, and the probability of emission
of a polarized photon in the subsequent transition from that state. Percival and Seaton
(1958) showed that in certain circumstances, this assumption leads to ambiguities, and
presented a more sophisticated theory which successfully resolved these ambiguities.

+ This work was first reported on at the 3rd National Atomic and Molecular Physics Conference, University
of York, April 1971.
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Nevertheless, we shall retain the assumption in what follows, on the grounds that the
inequality

fine structure splitting > line width > hyperfine structure splitting (1)

is generally true of x ray spectra, and that therefore the ambiguity should not arise in
practice.

Hence we can separate the problem into two parts—the collisional and the radiative,
the former presenting the greater difficulty. The bulk of discussion in this paper will
concern the collision problem, but § 2 deals with the question of threshold polarization
which for optical lines may be calculated without knowledge of cross sections. §3 deals
with the calculation of the ionization cross section from any state designated by the
quantum numbers (nlm) in the Bethe approximation, whereas § 4 uses the Born approxi-
mation to calculate the cross sections for ionization from the states (2p, m = 0) and
(2p, m = +1) using hydrogenic wavefunctions. The Bethe approximation is, of course,
much cruder than the Born. The advantages of its use lie in its simplicity and its generality
(it applies to any values of (nlm)). Also, it supplies a formal high energy limit on the
Born calculation, and a simple physical picture which helps to explain the results.

‘Section 5 gives the results of these calculations and § 6 comments on their significance.

2. Threshold polarization

In electron impact excitation, it is well known that the threshold polarization can be
calculated without any knowledge of cross sections. Thus the question presents itself
where this can be done for excitation of x ray levels by electron impact.

We consider, for the moment, the process to be simply one of ionization. Before the
collision takes place, the incident electron has zero orbital angular momentum com-
ponent along the quantization axis, by definition. Also, the shell which is to be ionized
is initially complete, and therefore has zero orbital angular momentum component
(M, = 0). Hence the total component is initially zero (ignoring any component which
may exist in an outer shell, which takes no part in the ionization process). After the
collision, at the energy of the ionization threshold, the scattered and ejected electrons
have zero velocity and therefore zero orbital angular momentum. Hence only vacancy
states with M, = 0 can be excited, and we have a very similar threshold selection rule
to that for optical excitation, that is

o(n,L, M; # 0) = 0. 2)

However, the process is not simply one of ionization. It is possible to create a
vacancy in an inner shell by exciting an electron to a discrete unfilled level. Because of
the narrowness of the energy range occupied by such levels, the probability of this
process is in general small compared with that of ionization, and if we use a collisional
approximation such as the Born, which is in any case only valid for high impact energies,
the error in ignoring excitation to discrete levels should be negligible. But as we approach
the ionization threshold, the discrete excitations will become increasingly important,
and the above threshold law will therefore be invalid.

Strictly speaking, then, the threshold energy will be the energy required to excite an
electron to the first unoccupied outer level. Only if this level is an S state (L = 0) will
the selection rule (2) still obtain. For L # 0, we have merely AM, = 0 for the transition,
a restriction which will not lead to large ratios between the cross sections for producing
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vacancy states with different M;. Even if the first unoccupied outer level should be an
S state, the situation is complicated by the fact that the outer energy levels may be
sufficiently close compared with the energy resolution of the incident electron beam
that any large threshold polarization is effectively smeared out.

This very qualitative account is meant to indicate the more complicated nature of
the threshold region in the x ray case and to guard against the facile application of a
threshold selection rule derived from the optical excitation case. The remainder of this
paper will deal with the region well above threshold, where these strictures do not apply.

3. The Bethe approximation

At sufficiently high energies of impact, the bulk of all ionizing collisions are due to
small angle, ‘glancing’ collisions, that is collisions involving small momentum transfer, K.
This justifies replacing the exponential in the Born matrix element by its first two terms
(see Mott and Massey 1965 p 497).

expiK.r)~1+iK.r 3)
so that
[Kxl'm'| exp(iK . r)|nim)|* ~ |{xl'm'|(K . r)|nlm)|? @

where (nlm) are the quantum numbers of the initial atomic state and (x!'m’) those of a
state in the continuum. Strictly speaking, the continuum state should represent the
ejection of an electron in a particular direction. It can be demonstrated by expanding
such a state in spherical harmonics that one arrives at the same result as in equation (6)
below.

To measure the polarization we must choose our z axis along the direction of the
incident electron. With this choice we have

K.r = Kr(cos A cos 0+sin Asin 6 cos ¢) (5

where (0, ¢) are the polar angles of the vector » and 1 is the angle between K and the
quantization axis. We may arbitrarily set the azimuthal angle of K equal to zero in
these axes.

Substitution of (5) into (4) and summation over the angular momentum quantum
numbers of the final state gives

Y Kxl'm'|(K . r)|nlm)|?

= K? cos?2{|<kl+ Lm|r cos Olnim)|* +|{kl— Im|r cos 6|nim}|?}
+1K?sin?A{|<kl 4+ 1m+ 1|rsin0e'*|nlm)| + |kl + Im— 1|rsin e~ ¥*|nim)|?
+|<xl = 1m+ 1|r sin 0 e|nim>|* +|<{xl— Im— 1|r sin O e " “|nlmD|?}.  (6)
The angular parts of these matrix elements can be evaluated simply (see Bethe and
Salpeter 1957 p 432). Now we make the additional approximation A = 4=, that is the

momentum transfer takes place perpendicular to the direction of incidence ; this should
hold good in the limit of high energies. Thus we find for the total ionization cross
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section, on performing the integration over K,

47za0 J‘g?““ (l+1)(l+2)+m
Tnim = (T/Ry) 21+3)(2z+1)

a0 (o7
2(21+ HQERI-1) Ry
where 25" = |[$ R, (nR,{r)r* dr|, the R’s being the appropriate radial eigenfunctions.
T is the kinetic energy of the incident electron and Ry the Rydberg energy.
We are concerned here with the ratio of the cross sections for ionization from

different substates corresponding to the same subshell defined by the values of n and L.
From (7) we can write such a ratio

f A di (l+1)(1+2)+m’2+fw@""‘d (I-DB+m?
nlm

7

2204 3) 2+ 1) nl "(21+1)(21—1) ®
Ot w1 g, U+ DU+ +m? i —D()+m?
fg? 201532+ 1) J A dr 21+1)(2z—1)

Note that, in the high energy limit, this ratio is independent of incident electron energy.
To evaluate the ratio for given values of n, I, and m in a particular atom, we must first
make some assumptions about the form of the radial atomic wavefunctions. We shall
postpone consideration of this until § 5.

4. The Born approximation

The Born amplitude for a transition from an initial state to a final state is proportional
to the matrix element (sometimes called the atomic form factor)

{f] exp(iK . Pli). )

In the ionization process we wish to consider, i is a state labelled by the quantum
numbers n, [ and m, where the axis of quantization is as defined above. For the innermost
shells of the heavier atoms, the deviation of the potential from Coulomb shape is small,
and to a good approximation we may use hydrogenic eigenstates with the appropriate
screening. fis a state of the continuous spectrum in which the atomic electron is moving
in a particular direction in the field of a charge +Z'e = +(Z—s)e, where Z is the
nuclear charge and s the screening factor for the subshell. From general symmetry
considerations we can say that the 2p state is the first state, going out from the nucleus,
capable of giving rise to polarized x rays. Calculations of cross sections for ionization
from the 2p state of a hydrogen like system in the Born approximation have been carried
out by several investigators (Burhop 1940, Mandl 1952, Swan 1955, McCrea and
McKirgan 1960, and Omidvar 1965). However, in all of these the quantization axis is
taken as parallel to the momentum transfer vector. This is done to simplify the evaluation
of the matrix element (9), since exp(iK . r) becomes simply exp(iKr cos ). As long as the
cross section is averaged over m, this procedure leads to no difficulty. But if we are
interested in a particular value of m, the total cross section is physically meaningless,
since K, the quantization axis, is itself a function of incident electron energy.

In what follows, a method is shown of relating ionization cross sections from par-
ticular magnetic substates to a fixed axis of quantization along the direction of the
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incident beam of electrons. To avoid confusion, we shall label magnetic quantum
states taken with respect to axis K'by y, those taken with respect to &k (the wavevector
of the incident electron) by m. If we consider these two sets of axes as coinciding when
one set is rotated in the appropriate direction through an angle about their common
y axis, we obtain the following relation between the two sets of quantum states [nlm)
and |nly>:

nlmy = Y. 20,(040)|nly) (10)

where the rotation matrix element 23 (28y) is as defined by Edmonds (1960).
Hence we have

(f| exp(iK . P)|nim)y = ¥ 2,(040) <f] exp(iK . P)|nlu). (11)

u

The cross section is proportional to

[Kf| exp(iK . r)|nlm)|* = 3 22X {nly'| exp(—iK . )l ) <{f] exp(iK . r)|nlp). (12)
uu’

The differential cross sections for the cases (2p, 0) and (2p, + 1) which Burhop and others
calculate are in effect the diagonal elements of the matrix defined by the right hand side
of equation (12) (apart, that is, from the rotation matrix elements). We have to evaluate
also the off-diagonal elements. As it happens, a detailed consideration of the matrix
elements shows that these off-diagonal terms vanish when one integrates over all
directions of ejection of the atomic electron. So we may write

[ Kt expl iy doh) = 3 128,0002 [ K< expK. > do)  (13)
or, alternatively,

(K s nlm) = ¥ |Z8(0A0) 214K ; nly) (14)
where

£(K : nim) = (ZSZ f 1| exp(iK . P){nim)|? do(R) (15)

is the generalized oscillator strength, E being the energy transfer in the collision. Note
that in this case f(K), usually valuable precisely because of its independence of incident
particle energy, is here dependent on the energy of the collision through the angle 4,
which is itself related to the energy:

{(K-ao)2 + E/Ry} 2
4Ka,)*T/Ry

cos?l = (16)

We use fg(K) here for the sake of brevity.
For the 2p state, evaluating the rotation matrix elements yields the relations
fo(K;2p,m = 0) = cos®Af(K; 2p, u = 0)+sin?Af(K; 2p,u = £1) (17a)
and

f(K;2p,m = +1) = Y1+ cos’ YK ;2p, u = +1)+3sin?AHK; 2p, u = 0). (17b)
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The fi(K) for a hydrogenic system of effective charge Z’ are of the general form

(K ; mly) = c,,,m{l —exp(—z,le)}_l

Ao

(18)

2xay/nZ’ )}

——arct
xexp{ arctan 0—(agZ 2 + 1/

Kdg

where Q = (ka,/Z’')* and xh is the momentum of the ejected electron. We obtain from
the work of Banks et al (1969) in conjunction with that of Vriens and Bonsen (1968), the
expressions

4e¢
Sapu=0 = m{?(e—Q)4+(64Q+4)(E—Q)3 (194)
+(19202 + 540) (e — 0) +800%(c — Q) + 1502}
and
4
Eappm it = m{«e—g)z +(280 +3)(e— Q)+ 2402 + 180} (19b)

where ¢ = E/Z'’Ry. Hence by means of equations (16), (17a), (17b), (18), (19a) and (19b)
we have defined f(K ; 2p, m = 0)and f(K ; 2p,m = +1)intermsof Q,eand t(= T/Z"*Ry).
To obtain the total cross section we require the relation

- = 420 f;: [0 (20)
where

Oumin = 2t—e—20(1—¢/t)"? (21a)
and

Oumax = 2t —e+21(1 —¢/t)'? (21b)

from the kinematics of the collision process.
The double integration in (20) must be performed numerically for each value of ¢ of
interest. The resulting total cross sections are shown in the following section.

5. Results

5.1. Bethe approximation

Equation (8) becomes for the particular case of an initial 2p state:

a0 _ [Apdis (22)
Tzt [R5 Ak o+ A5, dic- &

To obtain a numerical value for the ratio we must make some assumption about the
wavefunctions. If we take them to be hydrogenic and use the data of Bethe and Salpeter
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(1957 p 350) for the radial matrix elements, we find

220 _ 0814, (23)
O2p+1
This ratio is independent of both t and Z'. The percentage polarization of radiation
is defined as

I—rt
where I'l is the intensity of radiation with electric vector aligned parallel to the quantiza-
tion axis, and I the intensity with electric vector perpendicular to the same axis, the
direction of observation in both cases being at right angles to the axis. Now I and I*
depend on the optical transition probabilities and on the population of atoms with
vacancies in the different substates, the latter being proportional to the ionization cross
sections for these substates. Since there is a substantial spin—orbit interaction, the
substates in question are designated by the quantum numbers n, I, j, m;. The ionization
cross sections for these substates must therefore be expressed in terms of those for
substates designated by n, [, m. This may be done using vector coupling coefficients.
When these coefficients are evaluated, together with the appropriate optical transition
probabilities, for the particular case of ionization from the L, sublevel, the resulting
expressions for P are as follows:

_o'l

Oo
P(L) = P(M, » L;) = 300—2 L
(L) = P(M, = Ls) = 3005 2~ (24a)
P(L,) = P(Ms — L;) = 100-——0"71_ (24b)
wl YT M 6,4+ 130,
0—0
P(L )= P(M, — L. = _t 70
(Ly,) = P(M, — Lj) 300400 o, (24¢c)

where we have used the abbreviations 6, = ¢}, and ¢, = 65,,,. Thus, in the limit
of high energies

P, (L) = —504% (25a)
P,(L,,) = —1.00% (25b)
P(L,) = +391%. (25¢)

These polarization are small, whereas P, for many optical transitions is large. It is
possible to gain some physical insight into this result as follows.

As the collision energy becomes large, the momentum transfer is virtually at right
angles to the direction of incidence. This means that any transitions which result from
the collision must obey the selection rule

Am = +1. (26)

This is true for both optical excitation and inner shell ionization. In the latter case, the
only transitions into the continuum in the Bethe limit are those which are optically
allowed. This situation is illustrated in figure 1. In (a) we see that, notwithstanding the
selection rule, transitions from all magnetic substates into the continuum are possible.
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m=-2 -l 0 +H o 42 4 m=0 .
2 S 2
m= i 0 W m= -l 0+ P
(@) )

Figure 1. Bound-free transitions from the 2p level in the Bethe limit. The selection rule
Am = +1 means that, in case (b) the ionization cross section from the state (2p,m = 0) is
zero.

In (b), however, transitions from the state (2p, m = 0) are forbidden. In this case the
vacancy distribution after the collision will be highly unequal and the polarization of
the characteristic x rays large. That the polarization is in fact small is a result of the
inequality

J R die > f@:{‘l dx 7)

where the radial eigenfunctions are hydrogenic.

5.2. Born approximation

Thetotal cross sections 6(2p, m = 0)and 6(2p, m = =+ 1),ascalculated from the expression
(20) above, are shown in figure 2. They are given in scaled units of maZ/Z'*. The cross
sections intersect at around 16 times the threshold energy. They intersect again on the
low energy side of the peak, as can be seen more clearly in figure 3, which gives the

0 2 4 6 8 0 2 14 16 8
Electron incident energy (threshold units)

Figure 2. Ionization cross sections from the hydrogenic states (2p, m = 0) and (2p,m = +1)
in the Born approximation, referred to a quantization axis aligned parallel to the direction
of electron incidence.
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P (percent)

0 2 4 6 8 10 12 W 6 18
Electron incident energy (threshold units)

Figure 3. Percentage polarization of the lines L, (Ms—L;),L,(M,—L;)and L,(M; - L,)
as a function of electron incident energy. The calculation uses the cross section data shown
in figure 2.

polarization of the lines L;, L, , and L, as a function of collision energy. There seems
to be no physical justification for this low velocity behaviour, which can probably be
safely ascribed to the inadequacy of the Born approximation in this region.

At this point we should mention that figures 2 and 3 are in sharp disagreement with
the published results of Mehlhorn (1968). Mehlhorn’s calculated polarizations are
substantially larger for all incident electron energies shown, do not change sign anywhere
in this range, and appear to be tending to very different high energy limits. It appears
that Mehlhorn’s results can be accounted for on the assumption that his collision cross
sections are referred to a momentum transfer quantization axis. This has been confirmed
by Mehlhorn (private communication).

In further support of the present results, two checks have been carried out. The
cross section ratio for the Bethe limit was obtained by setting K = 0 in equation (20)
and performing the integration over e. The result was

a(2p,m = 0)

T 7~ 08116 2
sCp.m = 1) 0-81161 .(8)

in good agreement with (23). Also, the corresponding expressions for f(K) in the binary
encounter (classical impulse) theory (see Burgess and Percival 1968, or Vriens 1969)
were calculated for the particular case A = 4z and checked with the previous unpublished
calculations of Banks (1968 private communication). They are:

16 Q%2

RSP =0 S S e or oy

(29a)

and

8 €Q°{9(c—0)*+0}
St {e—Q7+0Q)
Setting 4 = 4= in equations (17a) and (17b), it can be shown graphically that they agree

well with (29a) and (29b) respectively, in the limit of large Q and e, as the work of Vriens
and Bonsen (1968) shows they must.

fe(K;2p,m = £1) = (29b)
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6. Comments

Both Bethe and Born calculations concur in suggesting that the polarization of charac-
teristic x radiation resulting from electron impact is small over the intermediate to high
range of collision energies. However, in the Bethe case we saw that this conclusion is a
result of the inequality (27), and such radial matrix elements tend to be highly sensitive
to the form of the wavefunctions, so that a small deviation from the Coulomb shape
which we assume might lead to significantly different results.

In appraising the validity of the foregoing simple theory, it should be remembered
that it neglects several effects which may have an important influence. Firstly, it takes
no account of the phenomenon of radiationless or Auger transitions (see Burhop 1952),
which may seriously alter the primary vacancy distribution due to the collision, and
hence the polarization. Secondly, it ignores the effect of focussing and acceleration by
the highly charged nucleus on the incoming electron, which must pass close to the
nucleus to ionize from an inner shell. Thirdly, and perhaps most importantly, the theory
makes no allowance for the effects of relativity. Even for Z as low as 30, the velocity of
an L shell electron is ~0-1¢, and for the Born to be valid the incident electron must be
at least two or three times faster. It is hoped to take some account of relativity in a future

paper.

Acknowledgments

The author would like to thank Professor I C Percival for initiating this research and
for many extremely helpful discussions, Mr J Wilson for his help in programming the
numerical work, and the Science Research Council for providing a Research Studentship.

References

Banks D, Vriens L and Bonsen T F M 1969 J. Phys. B: Atom. molec. Phys. 2 976-83

Bethe N A and Salpeter E E 1957 Encyclopedia of Physics Vol 35 ed S Fliigge (Berlin: Springer-Verlag)

Burgess A and Percival I C 1968 Advances in Atomic and Molecular Physics eds Bates and Estermann (New
York: Academic Press) 120-22

Burhop E H S 1940 Proc. Camb. Phil. Soc. 36 43-9

——1952 The Auger Effect and Other Radiationless Transitions (London: Cambridge University Press)

Edmonds A R 1960 Angular Momentum in Quantum Mechanics (Princeton NJ: Princeton University Press)

Hrdy J, Henins A and Bearden J A 1970 Phys. Rev. A 2 1708-11

Kleinpoppen H 1969 Physics of the One- and Two-Electron Atoms eds Bopp and Kleinpoppen (Amsterdam:
North-Holland) 612-31

Mandl F 1952 4AERE Report T/R1006

McCrea D and McKirgan T V M 1960 Proc. Phys. Soc. 75 235-42

Mehlhorn W 1968 Phys. Lett. 26A 1667

Mott N F and Massey H S W 1965 Theory of Atomic Collisions (Oxford: Clarendon Press)

Omidvar K 1965 Phys. Rev. 140 A26-37

Percival I C and Seaton M J 1958 Phil. Trans. R. Soc. A 251 113-38

Swan P 1955 Proc. Phys. Soc. A68 1157-60

Vriens L and Bonsen T F M 1968 J. Phys. B: Atom. molec. Phys. 1 1123-9

Vriens L 1969 Case Studies in Atomic Collision Physics I eds McDaniel and McDowell (Amsterdam: North-
Holland), 335-98



