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Abstract—This paper introduces a novel statistical method, 

referred to as the stochastic reduced order model (SROM) 

method, to predict the variability of cable crosstalk subject to a 

range of parametric uncertainties. The SROM method is a new 

member of the family of stochastic approaches to quantify 

propagated uncertainty in the presence of multiple uncertainty 

sources. It is non-intrusive, accurate, efficient, and stable, thus 

could be a promising alternative to some well-established 

methods such as the stochastic Galerkin (SG) and stochastic 

collocation (SC) methods. In this paper, the SROM method is 

successfully applied to obtain the statistics of cable crosstalk 

subject to single and multiple uncertainty sources. The statistics 

of uncertain cable parameters are first accurately approximated 

by SROMs, i.e., pairs of very few samples with known 

probabilities, such that the uncertain input space is well 

represented. Then, a deterministic solver is used to produce the 

samples of cable crosstalk with the corresponding probabilities, 

and finally the uncertainty propagated to the crosstalk is 

quantified with good accuracy. Compared to the conventional 

Monte Carlo (MC) simulation, the statistics of crosstalk obtained 

by the SROM method converge much faster by orders of 

magnitude. Also the computational cost of the SROM method is 

shown to be small and can be tuned flexibly depending on the 

accuracy requirement. The SC method based on tensor product 

sampling strategy is also implemented to validate the efficacy of 

the SROM method.  

 
Index Terms— Cable crosstalk, electromagnetic compatibility, 

stochastic reduced order models, uncertainty quantification, 

variability analysis.  

 

I. INTRODUCTION 

HE quality of the signal transmitted in cables is often 

degraded by the unintended interference from other wires 

in the cable or nearby cables. This interference, referred to as 

crosstalk, is caused by the interaction of electromagnetic fields 

generated by the currents along the wires or cables. The 

system may malfunction if the crosstalk exceeds the threshold. 

Therefore, the prediction of crosstalk is an important task to 
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guarantee the cable performance from an early stage. 

 The fundamental approaches to deterministically calculate 

the crosstalk in the cables modeled by three-conductor 

transmission lines, multiconductor transmission lines (MTLs), 

and nonuniform MTLs (NMTLs) in the time and frequency 

domains were systematically addressed in [1]-[3]. For 

deterministic analysis, cable input variables were assumed to 

take deterministic values, i.e., these values truly represented 

input variables, and it only concerned how to obtain the exact 

crosstalk level. In such a case, the crosstalk level is unique.  

 However, the deterministic prediction of crosstalk is not 

enough, as uncertainties always exist in cable variables in 

reality [4], [32]. These uncertainties cause input variables to 

deviate from the nominal value. Therefore, the deterministic 

result obtained using the nominal input values may be 

unconvincing. This randomness feature of cables arises from 

many aspects, such as materials and cable routing. As a result, 

rather than having a specific crosstalk level, the output 

becomes a variation range consisting of all the possible 

crosstalk values caused by the uncertainties of input variables.  

 Due to the input uncertainties, statistical analyses were 

employed to predict the variation range and probability 

distribution of crosstalk [5]-[7], [32]. The traditional statistical 

approach is the brute Monte Carlo (MC) method [8]. For the 

MC method, a deterministic solver is needed to uniquely map 

input values to the corresponding output. Although being 

time-consuming, the MC method is non-intrusive as the 

existing deterministic solver is used without modifications. It 

is also general to all the uncertainty-embedded problems. 

Efforts have been made to simplify the statistical analysis. For 

example, the worst-case method was proposed in [9] to 

provide an envelope holding underneath all the possible 

variations of crosstalk. However, this method may be 

conservative as it overestimated crosstalk at non-resonant 

frequencies.  

Recently, due to the breakthrough in uncertainty 

quantification methods, the polynomial chaos expansion 

(PCE) [10] and stochastic collocation (SC) methods [11], [16] 

have been intensively applied to obtain the statistics of 

crosstalk in the presence of input variability. The PCE method 

was able to describe crosstalk with an analytic formula 

regarding uncertain input variables [12]-[14]. The analytic 

formula was the sum of a series of orthogonal polynomials 

with proper coefficients obtained using the Stochastic 

Galerkin (SG) approach [25]. If the probability distributions of 

each uncertain variable were known, the statistics of crosstalk 
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could be obtained by propagating input uncertainties to 

crosstalk using the probability theory in [15]. It is worth 

noting that in [12]-[14], the PCE-based SG method was 

intrusive as modifications to the existing deterministic solver 

were needed. However, the PCE method can also be 

implemented in a non-intrusive manner [26], [27]. It can be 

applied for uncertain variables with standard distributions, 

such as Gaussian distribution, or with arbitrary distributions 

[28]. Solving the stochastic model of the system could become 

a limitation for the PCE method when the number of uncertain 

variables increases, but this limitation can be significantly 

alleviated using decoupled and sparse PCE techniques [29],  

[31]. Also, PCE-based approaches can be directly applied to 

the transfer function of a system in electromagnetic simulators 

[27]. 

On the other hand, the SC method was non-intrusive and 

only required a selection of collocation points for each 

uncertain variable [19]. At collocation points, samples of 

crosstalk were obtained deterministically, and then 

interpolating functions were used to construct an analytical 

approximation of crosstalk, thus to recover statistics. 

However, the result of the SC method is sensitive to the choice 

of interpolating functions, as different interpolating functions 

produce slightly different output samples at the interpolated 

points adjacent to collocation points.  

Very recently, the stochastic reduced order model (SROM) 

method was proposed in [18] as a potential alternative to the 

SG and SC methods to quantify propagated uncertainties in 

stochastic systems. The SROM method is conceptually simple, 

non-intrusive and efficient compared with the traditional MC 

method. The SROM method can be regarded as a small but 

smart version of the MC method, and therefore can be a 

general approach. It can be applied to uncertain variables with 

any types of distributions, and select input samples with 

regard to input distributions. An in-depth comparison between 

the SG, SC, and SROM methods was given in [19]. 

 A SROM is an approximation of a random variable in the 

statistical sense, and has a small number of samples. Each 

sample is given a certain probability, such that the SROM and 

the random variable have similar statistics. To guarantee the 

performance, an objective function measuring the discrepancy 

between the statistics of the SROM and the random variable 

can be used. Once the SROM of uncertain input variables is 

constructed, the deterministic solver is used to obtain the 

SROM-based output response. Then, the statistics of the 

SROM-based output can be obtained with elementary 

calculations, and are used to approximate the statistics of the 

actual output. The SROM method has been used to solve 

uncertain mechanical engineering and material problems [20]-

[23], but yet to be applied to electronic and electromagnetic 

compatibility (EMC) problems. 

 The aim of this paper is to present the first application of 

the SROM method to uncertainty-embedded EMC problems, 

in particular the uncertainty quantification of cable crosstalk. 

Given uncertain geometric variables of a cable, the statistics of 

crosstalk are obtained using the SROM method with a small 

computational cost, and the variation range is successfully 

bounded. The SC method implemented via tensor product 

sampling strategy is used as a reference to evaluate the 

performance of the SROM method. However, it is worth 

noting that more efficient SC implementations based on sparse 

grid sampling computed via the Smolyak algorithm are 

possible [31]. Therefore, the implemented SC method in this 

paper is not to represent the state-of-the-art SC method in 

terms of sampling requirements, and can only be used as a 

reference. The remainder of this paper is organized as follows: 

an overview of the SROM method is given in Section II. 

Section III describes the three-conductor transmission line as 

the cable model, and defines uncertain cable variables and 

crosstalk. Section IV presents the implementation of the 

SROM method to predict the statistics of crosstalk, and the 

result is compared to those of the SC and MC methods. 

Finally, the conclusion of the paper is given in Section V. 

II. STOCHASTIC REDUCED ORDER MODELS (SROMS) 

In this section, the background of the SROM method is 

presented. First, the definition of a random variable is given. 

Let X be a D-dimensional random variable (D ≥ 1) if X is 

jointly described by D variables. For example, if X is a 

bivariate random variable, i.e., X = [X1, X2], then D = 2. It is 

assumed that the statistical properties of X are fully known 

beforehand, which are marginal distributions, moments of 

order q, and correlation matrix denoted as [23]: 

𝐹𝑖(𝜃) = 𝑃(𝑋𝑖 ≤ 𝜃)                              (1) 

𝜇𝑖(𝑞) = 𝐸(𝑋𝑖
𝑞

)                                 (2) 

𝒓 = 𝐸[𝑿𝑿𝑇]                                   (3) 

where i = 1, …, D. 

A. Introduction to SROMs 

A SROM �̃� is an approximation of the random variable X 

in the sense that �̃� and X have similar statistical properties. 

The SROM �̃� consists of a sample set x̃ = {x̃
(1)

, … , x̃
(m)

}with 

the corresponding probabilities p = (p
(1)

, … , p
(m)

) for each 

sample in x̃. Any sample x̃
(k)

, 1≤ k ≤ m, contains one or 

multiple values depending on the dimension D of X, as x̃
(k)

 = 

(�̃�1
(𝑘)

, … , �̃�𝐷
(𝑘)

). The elements in p are required to meet the 

constraints ∑ 𝑝(𝑘) = 1𝑚
𝑘=1  and 𝑝(𝑘) ≥ 0. Once the sample set x̃ 

and probabilities p are selected, the SROM �̃� is completely 

defined. The model size m is determined by the trade-off 

between accuracy and computational cost. A large value of m 

usually gives very accurate statistical approximation of a 

random variable, whereas makes the implementation very 

computationally intensive [18]. Similar to X, the statistics of 

the SROM �̃� are defined as: 

�̃�𝑖(𝜃) = 𝑃(�̃�𝑖 ≤ 𝜃) = ∑ 𝑝(𝑘)𝑰(�̃�𝑖
(𝑘)

≤ 𝜃)

𝑚

𝑘=1

           (4) 

�̃�𝑖(𝑞) = 𝐸(�̃�𝑖
𝑞

) = ∑ 𝑝(𝑘)(�̃�𝑖
(𝑘)

)𝑞

𝑚

𝑘=1

                  (5) 

�̃�𝑖𝑗 = 𝐸[�̃�𝑖�̃�𝑗] = ∑ 𝑝(𝑘)�̃�𝑖
(𝑘)

�̃�𝑗
(𝑘)

𝑚

𝑘=1

                   (6) 
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where I(A) = 1 if A is true and I(A) = 0 if A is false. Any 

sample set x̃ and probabilities p can construct a SROM for X. 

However, some SROMs produce more accurate approximation 

of the statistics of X. For this reason, a way of measuring the 

discrepancy between �̃� and X in the statistical sense is needed. 

The next section describes how to construct an optimal SROM 

�̃� for X so that the discrepancy is minimized. 

B. Construction of SROMs 

There exist many SROMs for the random variable X as long 

as the sample-probability pair {x̃, p} meets the constraints in 

the previous section. However, to implement the SROM 

method, an optimal SROM �̃� for the input variable X is 

required so that the discrepancy between the statistics of �̃� and 

X is minimized. The discrepancy is measured with an 

objective function containing three error metrics. These error 

metrics represent the errors between marginal distributions, 

moments up to order of q̅, and correlation matrices of �̃� and X, 

respectively, and are defined as:  

𝑒1(𝒙, 𝒑) = ∑ ∑(�̃�𝑖(�̃�𝑖
(𝑘)

) − 𝐹𝑖(�̃�𝑖
(𝑘)

))2

𝑚

𝑘=1

𝐷

𝑖=1

            (7) 

𝑒2(𝒙, 𝒑) = ∑ ∑(�̃�𝑖(𝑞) − 𝜇𝑖(𝑞))2

�̅�

𝑞=1

𝐷

𝑖=1

                (8) 

𝑒3(𝒙, 𝒑) = ∑ (�̃�𝑖𝑗 − 𝑟𝑖𝑗)2

𝑖,𝑗=1,…,𝐷;𝑗>𝑖

.                  (9) 

With each error metric defined, the objective function 

measuring the total discrepancy of statistics between �̃� and X 

can be expressed as: 

𝑒(𝒙, 𝒑) = 𝛼1𝑒1(𝒙, 𝒑) + 𝛼2𝑒2(𝒙, 𝒑) + 𝛼3𝑒3(𝒙, 𝒑)    (10) 

where α1, α2, α3 ≥ 0 are weighting factors to make each error 

metric having a similar order of magnitude, or to emphasize 

which statistical property of X to be approximated more 

accurately. For example, we can set α1 ≫ α2 and α3 if the 

marginal distribution of X needs to be approximated more 

precisely by �̃�. The optimal SROM �̃� is defined by the 

sample-probability pair {x̃(opt), p(opt)} that minimizes the 

objective function in (10). As a result, this �̃� is the closest to X 

in the statistical sense. If X is a one-dimensional random 

variable, i.e., D = 1, the error of correlation matrices in (9) can 

be ignored when constructing the optimal SROM �̃�.  

The pattern classification [18] is a common method to find 

the optimal SROM �̃�, and is outlined in seven steps as 

follows:  

Step 1): Generate a collection consisting of n independent 

samples (ξ1, … , ξn) for the random variable X. The cardinality 

n should be large enough to describe the statistics of X 

accurately.  

Step 2): Randomly extract a subset (x̃
(1)

, … , x̃
(m)

) from (ξ1, 

… , ξn), m ≪ n.  

Step 3): Divide the uncertain region of X into m Voronoi 

regions with (x̃
(1)

, … , x̃
(m)

) as generator seeds [30]. The 

Voronoi region Γk centered at x̃
(k)

 (1 ≤ k ≤ m) is comprised of 

all the samples from (ξ1, …, ξn) that are closest to x̃
(k)

 than to 

any other center x̃
(l)

 (l ≠ k, 1 ≤ l ≤ m). Then, the Euclidean 

distance from ξi (1 ≤ i ≤ n) to x̃
(k)

 is measured. 

Step 4): Let d
(k)

 represent the summation of the distances 

from all the samples in Γk to the center x̃
(k)

, i.e., 𝑑(𝑘) =

∑ 𝑑(𝒙𝑘 , 𝝃𝑖)𝑖∈𝛤𝑘
. Then, calculate 𝑑 = ∑ 𝑑(𝑘)𝑚

𝑘=1  as the overall 

distance between the subset (x̃
(1)

, … , x̃
(m)

) and (ξ1, …, ξn). 

Step 5): Select other candidate subsets (x̃
(1)

, … , x̃
(m)

) and 

calculate the values of d for each subset. 

Step 6): The sample set x̃(opt) is selected as the subset (x̃
(1)

, 

… , x̃
(m)

) with the minimum value of d. As a result, the 

samples in x̃(opt) are most widely separated to explore the 

entire uncertain region of X. 

Once x̃(opt) is determined, the probability set p(opt) can be 

obtained in one step as shown below: 

Step 7): Let nk denote the number of the samples in Γk, 1 ≤ k 

≤ m. The probability for x̃
(k)

 is calculated as p
(k)

 = nk ∕ n. Thus, 

the probability set p(opt) can be obtained as the set {𝑝(𝑘)}𝑘=1
𝑚 . 

 With x̃(opt) and p(opt) obtained, the optimal SROM �̃� is 

defined as the sample-probability pair {x̃(opt), p(opt)}. 

C. Uncertainty Propagation by SROMs 

A workflow illustrating how the uncertainty is propagated 

from the random input variable X to the output Y with the 

SROM method is outlined in Fig. 1. The statistics of the actual 

output Y are approximated by those of the SROM-based 

output �̃�. The construction of �̃� requires an optimal SROM �̃� 

= {x̃, p} for X and a deterministic solver M. The deterministic 

solver is used to produce the samples of the output Y given the 

samples of the input X. Similar to �̃�, �̃� is also defined by a 

sample set ỹ = {ỹ
(1)

, …, ỹ
(m)

} together with the corresponding 

probabilities py = (py
(1)

, … , py
(m)

). With the samples {𝒙(𝑖)}𝑖=1
𝑚  

for �̃� known, the samples {�̃�(𝑖)}𝑖=1
𝑚  for �̃� can be obtained by 

performing m deterministic calculations with the variable X 

set equal to x̃
(1)

, … , x̃
(m)

: 

 
Fig. 1.  Workflow of propagating uncertainty from the input variable X to the 

output Y with the SROM method. 
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𝑀: 𝒙(𝑘) →  �̃�(𝑘), 𝑘 = 1, … , 𝑚 .                   (11) 

The probabilities py of �̃� are the same as the probabilities p of 

�̃�, i.e., py
(k)

 = p
(k)

, k = 1, …, m. The reason is that ỹ
(k)

 only 

occurs when the input is x̃
(k)

. Having obtained the sample set ỹ 

and probabilities py, the SROM-based solution �̃� is completely 

defined. The calculation of the statistics of �̃�, such as 

distributions and moments of order q, becomes an easy task as 

shown below: 

𝑃(�̃� ≤ 𝜉) = ∑ 𝑝(𝑘)𝑰(�̃�
(𝑘)

≤ 𝜉)

𝑚

𝑘=1

                 (12) 

𝐸(�̃�
𝑞

) = ∑ 𝑝(𝑘)(�̃�
(𝑘)

)𝑞

𝑚

𝑘=1

 .                     (13) 

The standard deviation σ for �̃� can be obtained using: 

𝜎(�̃�) = ∑ 𝑝(𝑘)(�̃�
(𝑘)

− 𝐸(�̃�1 ))2

𝑚

𝑘=1

 .              (14) 

The statistics of Y are approximated by those of �̃� in (12)-

(14). The SROM method can be an a-priori evaluation by 

developing the error bound of the SROM solution for different 

model sizes as in [20], [ 21], which is beyond the scope of this 

paper. Increasing the model size m is an effective way to 

reduce the error of the SROM result, but choosing the value of 

m mainly depends on the consideration of computation time. 

In principle, the SROM solution is guaranteed to converge to 

the theoretical statistics of Y when the model size m 

approaches infinity [17]. Despite this, the SROM method has 

been shown to be able to produce very accurate statistics, even 

with a small m to reduce the computational cost [17], [23]. It 

is clear that the SROM method has the non-intrusive feature 

and is therefore very convenient to implement. This method is 

also very efficient compared to the traditional MC simulation, 

as the effect of the uncertain input space on the output 

variation is taken into account using only m samples and the 

corresponding probabilities. The only overhead is to construct 

the optimal �̃� to ensure that the statistics of the input variable 

X are accurately approximated. 

 In summary, to propagate the uncertainty from the input 

variable X to the output Y using the SROM method, only three 

steps are needed. First, an optimal SROM �̃� for X is 

constructed to minimize (10). This step is the nucleus of the 

SROM method, and totally isolated from the deterministic 

solver. Second, the SROM-based output �̃� for Y is constructed 

using �̃� and the deterministic solver. Finally, the statistics of �̃� 

are calculated to approximate those of the actual output Y. 

III. CABLE MODEL 

In this section, the input variables, output responses, and 

deterministic solver of the cable model are introduced, as 

these three aspects are involved in the SROM method. In this 

study, the cable bundle is modeled as a three-conductor 

transmission line. Due to the well-established deterministic 

solver of this model, it has been used to validate the efficacy 

of the SG and SC methods for predicting the statistics of 

crosstalk in [12], [16]. Therefore, the three-conductor 

transmission line is also chosen to verify the efficacy of the 

SROM method for quantifying the uncertainty propagated 

from input variables to crosstalk. 

A. Input Variables 

Fig. 2 shows the schematic of a three-conductor 

transmission line. The two parallel conductors with length L 

are known as the generator wire and the receptor wire. As the 

names indicate, the generator wire could induce crosstalk on 

the receptor wire. The third conductor is the ground to which 

voltages and the heights of wires are referenced. In the 

generator circuit, the generator wire connects a voltage source 

VS with impedance RS to a load with impedance RL. In the 

receptor circuit, the termination loads RNE and RFE at two ends 

are connected by the receptor wire. The subscripts NE and FE 

indicate if the load is at the near-end or far-end of the receptor 

circuit. The return paths of the generator and receptor circuits 

are formed by the ground.  

Apart from the electrical parameters mentioned above, the 

crosstalk is also determined by the following geometric 

variables: the wire length L, the radius rG and height HG of the 

generator wire, the radius rR and height HR of the receptor 

wire, and the distance d between the generator and receptor 

wires. The following assumptions are used: rG = rR = r, HG = 

HR = H, and RS = RL = RNE = RFE = T.  

B. Output Responses 

When switching on the source VS, the coupled voltages VNE 

and VFE are induced to the near-end load RNE and far-end load 

RFE in the receptor circuit, respectively. The crosstalk is 

defined as the ratio of the induced voltage to the source 

voltage [5]: 

𝑁𝐸𝑋𝑇 =
𝑉𝑁𝐸

𝑉𝑆

 , 𝐹𝐸𝑋𝑇 =
𝑉𝐹𝐸

𝑉𝑆

                    (15) 

where NEXT means the near-end crosstalk and FEXT means 

the far-end crosstalk. The output responses of the cable model 

are NEXT and FEXT. 

C. Deterministic Solver  

The traditional deterministic solver for calculating crosstalk 

is the Telegrapher’s equations used in [12]. An analytical 

solution was derived in [24] to directly calculate crosstalk 

based on the values of input variables, thus to bypass solving 

the Telegrapher’s equations. Therefore, this analytical solution 

is used as the deterministic solver with the following 

assumptions: 1) the two wires and ground are made of perfect 

electric conductors; 2) the cross-sections of two wires are 

 
Fig. 2.  The model of a three-conductor transmission line. 
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invariant along the cable length; 3) the medium around wires 

is lossless and homogeneous. 

IV. APPLICATIONS OF SROMS 

In this section, the SROM method is applied to obtain the 

statistics of crosstalk in the presence of single or multiple 

uncertain variables. To propagate uncertainty with the SROM 

method, the first step is to construct a SROM for uncertain 

cable variables. Then, the SROM-based output 𝑁𝐸𝑋�̃� and 

𝐹𝐸𝑋�̃� for the actual output NEXT and FEXT can be 

constructed with the deterministic solver. Finally, the statistics 

of NEXT and FEXT are approximated by those of 𝑁𝐸𝑋�̃� and 

𝐹𝐸𝑋�̃� using (12)-(14). In subsequent sections, the NEXT is 

considered as the output in one example, and then the FEXT is 

used in the other example. For the demonstration purpose, 

uncertain cable variables are assumed to have Gaussian 

distributions. However, it is worth noting that the SROM 

method is applicable for any types of probability distributions, 

and switching from one type of probability distributions to 

another is straightforward. The SROM method is 

demonstrated with three examples where the number of 

random variables gradually increases. The frequency at which 

the simulation was run is set to 400 MHz. To validate the 

SROM method, the SROM-based result is compared to those 

of the MC method and the SC implementation based on tensor 

product sampling strategy. The statistics from 1,000,000 MC 

simulations are used as reference results to set benchmarks. 

A. Single Uncertainty Source: Height H 

The aim of this section is to demonstrate the 

implementation of the SROM method for a single uncertainty 

variable: the wire height H with a Gaussian distribution of 

mean E(H) = 10 mm and standard deviation σ(H) = 1 mm. 

Other variables are regarded to take deterministic values 

shown in Table I.  

The construction of the optimal �̃� for H follows the 

guideline described in Section II (B). As H is a 1-dimensional 

random variable, there is no need to consider the discrepancy 

in correlation matrices in (9) when constructing 𝐻. Three 

optimal SROMs 𝐻 are constructed with 5, 10, and 20 samples, 

respectively, and are used to approximate the cumulative 

distribution function (CDF) of H denoted by F(H) in Fig. 3(a).  

It is clear that as the sample size of 𝐻 increases, the 

approximated probability distribution of H becomes closer to 

the reference distribution. When the sample size is 20, the 

difference between the reference and SROM-based 

distributions is very small.  

Fig. 3(b) shows the absolute error of moments up to the 

order of 4 for 𝐻 constructed with 5, 10, and 20 samples. 

Generally speaking, the error at each moment order is reduced 

by increasing the sample size of �̃�. It is seen that the model 

size of 10 can provide an accurate approximation for each 

moment order, and increasing the size from 10 to 20 does not 

further reduce the error significantly. This nice feature means 

that the SROM method does not need a very large sample size 

to achieve good accuracy. In the case of uncertain H, a sample 

size of 10 is reasonable as the approximated CDF and moment 

orders match the reference counterparts in good agreement, 

and the computational cost is kept low.  

After the SROMs 𝐻 with sizes of 5, 10, and 20 samples are 

constructed, the deterministic solver is used to produce the 

samples of the SROM-based output 𝑁𝐸𝑋�̃�. Due to the one-to-

one relationship between the input and output samples, the 

sample sizes of the three corresponding 𝑁𝐸𝑋�̃� are also 5, 10, 

and 20, respectively. The probabilities of the samples in 

𝑁𝐸𝑋�̃� are the same as those in 𝐻. With the samples and 

probabilities obtained, the SROM-based solution 𝑁𝐸𝑋�̃� can 

be constructed. In Fig. 4, the CDFs of 𝑁𝐸𝑋�̃� are plotted to 

TABLE I 

DETERMINISTIC VALUES OF INPUT VARIABLES  

Input variable Deterministic value 

L (m) 7 

r (mm) 1.024 

d (mm) 6 

T (Ω) 

f (MHz) 

H (mm) 

50 

400 

10 

 
 

Fig. 3.  (a) The reference CDF of the uncertain variable H and the CDFs 

approximated by the SROMs �̃� formed with 5, 10, and 20 samples. (b) 

Absolute errors of moments approximated by SROMs �̃� with sizes of 5, 10, 

and 20. 
 

 

 
Fig. 4.  The reference CDF of NEXT, the CDFs approximated by the SC 

method with 5, 10, and 20 collocation points,  and the CDFs approximated by 

the SROMs 𝑁𝐸𝑋�̃� with sample sizes of 5, 10, and 20. 
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approximate the reference CDF of the actual NEXT. It is seen 

that all three 𝑁𝐸𝑋�̃� are able to recover the general shape of 

the reference distribution, and the 𝑁𝐸𝑋�̃� with 20 samples 

gives the closest distribution for NEXT. This is because the 

corresponding input 𝐻 with size of 20 provides the most 

accurate statistics for H. Therefore, the performance of the 

SROM method is highly dependent on the quality of the input 

SROM. On the other hand, the SC method using Lagrange 

polynomials as the interpolating function is also implemented 

to compare with the SROM method. For the SC method of this 

study, the number of collocation points is chosen the same as 

the sample size of the SROM method, such that the 

deterministic solver is run with the same number of times by 

the two methods. As can be seen in Fig. 4, unlike the step-

shaped CDFs given by the SROM method, the SC method can 

produce faultless and continuous CDFs for NEXT using 5, 10, 

and 20 collocation points. 

In addition to providing the distribution information, the 

SROM method is also able to predict the mean and standard 

deviation of NEXT with great accuracy. As Fig. 5 shows, the 

mean value  (NEXT) and standard deviation σ (NEXT) given 

by 𝑁𝐸𝑋�̃� with different sizes are very accurate, and the 

accuracy is improved by increasing the sample size of 𝑁𝐸𝑋�̃�, 

but not dramatically. This is because in this case the 

approximated statistics by the SROM method converge to the 

reference values very fast. At the sample size of 10, the mean 

value and standard deviation given by the SROM method are 

almost identical to the reference counterparts. In contrast to 

the SROM method, three MC experiments are performed, and 

each MC experiment is performed with 5, 10, and 20 samples. 

As shown in Fig. 5, from size of 5 to 20, the variation of the 

statistics given by the MC method is different from one 

experiment to another. At the size of 20, the mean and 

standard deviation by the MC method fail to converge to the 

reference results as close as the SROM method. We note that 

in the MC experiment 3 with the size of 5, an accurate 

standard deviation could be produced by incident, but the 

accuracy is unrepeatable. Therefore, at small sample sizes, the 

MC method is inaccurate and gives different results when 

repeating experiment. It is worth noting that the corresponding 

confidence interval for each moment can be estimated based 

on the sample size of the MC simulation, which is beyond the 

scope of this study. By contrast, the SROM method is stable as 

long as the uncertain input space is well approximated by 

SROMs, and able to provide very accurate mean using small 

sample sizes. On the other hand, the SC method can produce 

almost error-free statistics using only 5 collocation points, but 

the difference between the accuracies of the SROM and SC 

methods is very small in this example. 

 Fig. 6 demonstrates the convergence rates of the SROM, SC 

and MC methods to produce accurate statistics of NEXT. As 

can be seen, both the SROM and SC methods converge to the 

reference result faster than the MC method.  Specifically, the 

MC method needs at least 10
4
 samples to converge to the 

accuracy of the SROM method at sample size of 10. 

Therefore, comparing with MC, the SROM method reduces 

the computational cost by a factor of 10
4 
∕ 10 = 10

3
 in this case, 

which is a sizable acceleration for stochastic analysis. On the 

other hand, only 4 collocation points are needed by the SC 

method to give the same performance of the SROM method 

with size of 10. However, the relative goodness between the 

SC and SROM methods cannot be purely evaluated using the 

sample size needed for certain accuracy.  This is because for 

the SC method, after obtaining the output samples at 

collocation points, the overhead is to derive the analytical 

approximation of the output response using the interpolating 

function, and then the statistics of the output can be recovered. 

By contrast, for the SROM method, after the SROM-based 

output is obtained, only elementary calculation in (12) – (14) 

is needed to recover the statistics of the output. It is clear that 

in the presence of single uncertain source, both the SROM and 

SC methods are efficient to produce the accurate statistics of 

crosstalk, as only a small fraction of the computational cost of 

the MC method is required.  

In Fig. 7, the reference probability distribution function 

(PDF) of NEXT is plotted to compare with the probabilities of 

the samples in 𝑁𝐸𝑋�̃� with sample size of 10. It is clear that 

the discrete probabilities of 𝑁𝐸𝑋�̃� are in good agreement with 

the shape of the reference PDF. Therefore, the probability of 

each sample in 𝑁𝐸𝑋�̃� can reflect the possibility of the actual 

NEXT taking values in the vicinity of this sample. On the other 

 
Fig. 6.  Convergence rates of the SROM, SC and MC methods to the reference 

statistics of NEXT. 

 
Fig. 5.  Absolute errors of the statistics of NEXT obtained by the SROM, SC, 

and MC methods using small sample sizes.  
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hand, the PDF approximated by the SC method with 10 

collocation points is exactly the same as the reference PDF. 

Therefore, the SC method may be a better approach if the aim 

is to recover the output PDF in detail. 

 As the SROM method can predict the accurate mean μ and 

standard deviation σ of NEXT, the variation range of NEXT 

can be bounded as the interval: [μ − 3σ, μ + 3σ]. The 

boundaries of the NEXT variations are obtained by the SROM 

method and plotted from 1 MHz to 400 MHz in Fig. 8. It can 

be seen that only a small number of extreme cases are outside 

the variation range. It is worth noting that only 10 samples of 

𝑁𝐸𝑋�̃� are required at each frequency to obtain the variation 

range. Therefore, the SROM method is able to predict the 

accurate variation range of crosstalk with small computational 

cost. 

B. Two Uncertainty Sources 

In this section, the SROM method is applied in the presence 

of two random variables: the wire height H and distance d 

between two wires. To tackle multiple uncertainty sources 

with the SROM method, the idea is to regard each uncertainty 

source as a 1-dimensional variable, and integrate these 

uncertainty sources into a multidimensional variable. Then, a 

SROM can be constructed for this multidimensional variable 

to globally approximate the overall uncertain input space. For 

example, we can use the D-dimensional random variable X 

described in Section II to contain two 1-dimensional variables 

H and d, i.e., X = [H, d]. In this case, X is a bivariate variable 

and D = 2. Each sample of X represents a point in a plane 

formed with H as the x-axis and d as the y-axis. The 

coordinates of the point contains a set of possible values of H 

and d to run the deterministic solver once. As a result, the 

uncertainties of H and d can be jointly approximated by 

building a SROM for X = [H, d]. 

The height H and distance d are assumed to follow the 

Gaussian distribution with the mean values E(H) = 10 mm and 

E(d) = 6 mm, and the standard deviations σ(H) = 1 mm and 

σ(d) = 0.6 mm. Other variables are considered as deterministic 

values in Table I. A SROM �̃� with a sample size of 10 is used 

to visualize the concept of the SROM of 2-dimensional 

variable X= [H, d]. Fig. 9 shows the distribution of 10,000 

samples of X. In addition, 10 optimal samples of �̃� are 

selected from the 10,000 samples of X using the algorithm 

introduced in Section II(B), and are plotted in the Voronoi 

tessellation in Fig. 9. As these 10 samples of �̃� are widely 

separated from each other, the entire uncertain region of X is 

explored, rather than only focusing on highly likely or 

marginal regions. 

The probability of each optimal sample in �̃� can be 

calculated using the number of samples in the corresponding 

Voronoi region. Having obtained the sample and probability 

sets, the optimal SROM �̃� is constructed and visualized versus 

the PDF of X in Fig. 10. As shown in Fig. 10, the coordinates 

of a red dot on the H-d plane indicate the values of H and d 

contained in this optimal sample, and the height of the red dot 

represents the corresponding probability.   

 
Fig. 7.  The reference PDF of the output NEXT, the PDF obtained by the SC 
method with 10 collocation points, and the probabilities of the samples in the  

SROM-based 𝑁𝐸𝑋�̃� with sample size of 10. 
  

 
Fig. 9.  The distribution of 10,000 samples of X, and 10 optimal samples of  �̃� 

in corresponding Voronoi regions. 

 

 
Fig. 8.  Upper and lower boundaries obtained using the SROM method to 

bound the variation of NEXT. At each frequency, only 10 samples of the 

SROM-based 𝑁𝐸𝑋�̃� are used. The uncertain variable is H. 
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Both the SROM and SC methods are used to propagate the 

uncertainty from X = [H, d] to NEXT. In this example, the SC 

method based on tensor product sampling is implemented 

using the cubic Hermite interpolating function [33]. The 

number of collocation points on the H-d plane is set to 3  3, 4 

 4 and 5  5, respectively. Here, 3  3 means there are 3 

collocation points in the uncertain ranges of H and d, 

respectively. To ensure the deterministic solver is evaluated by 

the SROM method with the same number of times, the sample 

size of the SROM �̃� is set to 9, 16 and 25 accordingly. At each 

sample size, the predicted CDFs of NEXT using the SROM 

and SC methods are plotted in Fig. 11. It is seen that the CDF 

by the SROM method with size of 9 can recover the general 

shape of the reference CDF. At the size of 25, the difference 

between the SROM-based and reference CDFs becomes very 

small. On the other hand, the CDF approximated by the SC 

method is very close to the reference CDF by using 9 

collocation points. When increasing the number of collocation 

points to 16, the difference between the SC-based and 

reference CDFs becomes indistinguishable.  

In Fig. 12, the convergence rates of the SROM, SC and MC 

methods are compared at the sample sizes (i.e., the number of 

collocation points for the SC method) of 9 (3  3 for SC), 16 

(4  4), 25 (5  5), 36 (6  6), 49 (7  7), 64 (8  8), 81 (9  9) 

and 100 (10  10). It is clear that both the SROM and SC 

methods steadily converge to the reference result when 

increasing the sample size, but the convergence rates are 

different. Specifically, the SROM and SC methods have 

almost the same performance to predict accurate mean value 

using small sample sizes, but the convergence rate to the 

reference standard deviation by the SC method is faster than 

that by the SROM method. Despite this, the standard deviation 

by the SROM method is still accurate to a certain extent. For 

example, at the sample size of 16, the SROM-based standard 

deviation is within the error of 7%.  

Unlike the SC and SROM methods, for the MC method, 

increasing the sample size may not guarantee the increase in 

the accuracy of the result. As seen in Fig. 12, the MC method 

only produces accurate results by incident using small sample 

sizes, as the approximated statistical results in two MC 

experiments experience random variations and fail to converge 

under the sample size of 100. Therefore, it is clear that for 

small sample sizes, the MC method only produces different 

and inaccurate results, whereas the SC and SROM methods 

are accurate, stable and fast converging.  

Fig. 13 shows the variation range of NEXT obtained using 

the SROM method with sample size of 25. It can be seen that 

nearly all the 10,000 MC simulations, except for a small 

number of extreme cases, are well enclosed by the upper and 

lower boundaries.   

C. Four Uncertainty Sources 

In this example, the efficacy of the SROM method to 

recover the statistics of FEXT in the presence of four random 

variables is demonstrated and compared with that of the SC 

 
Fig. 10.  (a) The PDF of a bivariate variable X = [H, d]. (b) The visualization 

of an optimal SROM �̃� with sample size of 10. 

 
Fig. 11. The reference CDF of NEXT, the CDF approximated by the SC 

method (using Cubic Hermite interpolating function) with 9, 16 and 25 

collocation points,  and the CDF approximated by the SROMs 𝑁𝐸𝑋�̃� with 

sizes of 9, 16 and 25. 

 
Fig. 12.  Convergence rates of the SROM, SC and MC methods under 100 

samples, when the random variables are H and d. 
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method based on tensor product sampling. The four uncertain 

variables are selected as the wire height H, distance d, 

termination load T and wire radius r, following the Gaussian 

distribution with mean values E(H) = 10 mm, E(d) = 6 mm, 

E(T) = 50  and E(r) = 1.024 mm, and standard deviations 

σ(H) = 1 mm, σ(d) = 0.6 mm, σ(T) = 5  and σ(r) = 0.1024 

mm. The frequency f and wire length L are assumed to take 

deterministic values in Table I. In this example, the nominal 

values of random variables can be different by orders of 

magnitude. Therefore, this example can demonstrate the 

potential applicability of the SROM method for stochastic 

problems where input variables represent different physical 

quantities.  

Let X be a 4-dimensional variable containing all the 

uncertain variables, i.e., X = [H, d, T, r]. In this case, the 

optimal SROM �̃� of X cannot be visualized as in the 2-

dimensional example, but the concept and the construction of 

the optimal �̃� follow the same principle. Fig. 14 shows the 

predicted CDFs of FEXT using the SROM method with the 

sample size of 50, 81 and 256. It is clear that at the size of 50, 

the CDF given by the SROM method recovers the general 

shape of the reference CDF. Then, the difference between the 

SROM-based and reference CDFs is further reduced at size of 

81, and becomes indistinguishable at size of 256. In order to 

use the cubic Hermite interpolating function for the SC 

method, at least 3 collocation points are needed in each 

random dimension. Therefore, the illustrated SC method based 

on tensor product sampling needs a minimum of 3
4
 = 81 

collocation points in total. If 4 collocation points are selected 

in each random dimension, the total number of collocation 

points will be 4
4
 = 256. For the SROM method, choosing the 

sample size is flexible. As shown in Fig. 14, the CDF 

predicted by the SC method using 81 samples is almost the 

same as the reference CDF. Therefore, the SC method may be 

a better approach to recover the CDF of the system output. 

Fig. 15 shows the convergence rates of the SROM method 

and the SC method using both the linear interpolating function 

[34] and the cubic Hermite interpolating function. For the SC 

implementation using linear interpolation and tensor product 

sampling, the minimum required number of collocation points 

is 2
4
 = 16, as each random dimension needs at least 2 

collocation points. As shown in Fig. 15, the result of the SC 

method is sensitive to the choice of the interpolating function, 

as the mean value given by the cubic interpolation is more 

accurate than that by the linear interpolation. It is also seen in 

Fig. 15 that both the SROM method and the SC method using 

the cubic interpolation and tensor product sampling can 

produce very accurate mean values. In Fig. 15, a steady 

convergence is observed for the standard deviation by the 

SROM method, which means a better accuracy is guaranteed 

by increasing the sample size. We note that the convergence 

rate of the SROM method to the reference standard deviation 

is slower than that of the SC method. However, the SROM-

based result is still accurate to a certain degree. For example, 

the standard deviation by the SROM method at sample size of 

 
Fig. 13.  Upper and lower boundaries obtained using the SROM method to 

bound the variation of NEXT. At each frequency, only 25 samples of the 

SROM-based 𝑁𝐸𝑋�̃� are needed. The uncertain variables are H and d. 

 
Fig. 14. Comparison of the reference CDF of FEXT, the CDF approximated 

by the SROMs 𝐹𝐸𝑋�̃� with sizes of 50, 81 and 256, and the CDF 

approximated by the SC method (using Cubic Hermite interpolating 

function) with 81and 256 collocation points. 

  

 
Fig. 15.  Convergence rates of the SROM method and the SC method using 

cubic and linear interpolating functions, when the random variables are H, d, r 

and T. 
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50 is within the error of 10%.  

In Fig. 16, the variation range of FEXT is obtained using the 

SROM method with a sample size of 50. It can be seen that 

the SROM method can provide accurate upper and lower 

boundaries to enclose most of the 10,000 MC simulations, 

except for a small number of extreme occurrences. It is clear 

that in the case of four uncertainty sources, only a small 

computational cost is needed to predict the variation range of 

crosstalk using the SROM method.  

 From the examples of this study, it is clear that the SC 

method can produce very accurate statistics of crosstalk using 

the appropriate interpolating function. On the other hand, the 

SROM method can provide the mean value of crosstalk as 

accurate as that of the SC method, but is less accurate than the 

SC method to predict standard deviation in some cases. Also, 

choosing the sample size for the SROM method is flexible. 

The overhead of implementing the SROM and SC methods is 

also different. Specifically, after the samples of the SROM-

based output are obtained, it is straightforward for the SROM 

method to calculate statistics. For the SC method, having 

known the output samples at collocation points, the analytical 

approximation of the output needs to be derived before 

estimating output statistics. With a CPU of 3.4 GHz and RAM 

of 8 GB, the computation time of the SROM, SC and MC 

methods for each example is given in Table II to demonstrate 

the efficiency of the SROM and SC methods. 

We note that it is possible to obtain more accurate results by 

using other interpolating functions for the SC method. Also, 

the illustrated SC implementation could be more efficient 

using sparse grid sampling computed via the Smolyak 

algorithm. However, such an exhaustive comparison is beyond 

the scope of this study. The relative goodness of one method 

over another only holds true in the examples of this study.  

There are also some remaining questions about the SROM 

method itself. Specifically, although a randomness 

dimensionality of four is tackled using the SROM method in 

this paper, the maximum randomness dimensionality that the 

SROM method can handle is still unclear and needs further 

investigation. Also, it would be beneficial to develop an a-

priori evaluation method which provides bounds on the errors 

of the SROM solution. Such an evaluation can be used to 

select the minimum SROM sample number to keep the 

computational cost as small as possible whilst guaranteeing 

sufficient accuracy. 

It is worth noting that the demonstration scenario in this 

study is chosen as a simple three-conductor transmission line, 

and therefore lacks practical uncertainty sources in a real 

random bundle. In order to show the efficacy of the SROM 

method on predicting crosstalk in a realistic cable bundle, one 

needs to consider typical uncertainty sources discussed in [32], 

such as the uncontrolled meandering path of each wire, and 

the presence of dielectric jackets and lacing cords. This is 

intended as the future work. 

V. CONCLUSIONS 

This paper has introduced a new non-intrusive stochastic 

approach known as the SROM method to quantify the 

uncertainties of cable crosstalk. A simple three-conductor 

transmission line has been taken as the demonstration 

scenario. The SROM, SC (based on the tensor product 

sampling strategy) and MC methods have been applied to 

obtain the statistics of crosstalk subject to multiple uncertainty 

sources. With the SROM method, the statistics of the actual 

crosstalk have been accurately approximated, and the variation 

range of crosstalk has been successfully obtained. 

The results from the three methods have been carefully 

compared and it has been found that the SROM method is 

more efficient than the MC method, and offers a good 

accuracy in estimating statistical information. In addition, the 

sample size for the SROM method has been shown to be 

flexible depending on the requirement of the result accuracy. 

It has also been noted that the SC method has a better 

performance to predict the standard deviation of crosstalk 

compared with the SROM method.  The overhead of the 

SROM and SC methods has been shown to be different, as the 

SROM method only needs numerical calculation to obtain the 

optimal SROM for random variables, whereas the SC method 

involves algebraic calculation to derive the approximated 

expression of the output. 

Having demonstrated the non-intrusive, accurate, and 

efficient features of the SROM method in three-conductor 

transmission lines, the future work is to investigate the 

advantage of the SROM method to quantify the crosstalk 

uncertainty subject to practical uncertainty sources in realistic 

random bundles. In terms of the SROM method itself, the 

future work can be dedicated to: (1) investigating the 

maximum dimensionality of the random variable space that 

the SROM method is practically able to handle; and (2) 

 
Fig. 16.  Upper and lower boundaries obtained with the SROM method to 

bound the variation of FEXT. At each frequency, only 50 samples of the 

SROM-based 𝐹𝐸𝑋�̃� are used. The uncertain variables are H, d, r and T. 
  

TABLE II 
EFFICIENCY OF THE SROM AND SC METHODS 

EXAMPLE X=[H] X=[H, d] X=[H, d, r, T] 

SROM 
Time (s) 0.25 0.56 4.72 

Samples 10 25 81 

SC 
Time (s) 11.03 16.57 18.48 

Samples 10 25 81 

MC 
Time (s) 125.51 124.95 126.37 

Samples 10,000 10,000 10,000 
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developing an a-priori evaluation of the errors of the SROM 

solution to choose minimum SROM sample number which 

guarantees sufficient accuracy. 
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APPENDIX 

This appendix provides a list of the symbols and acronyms 

in this paper. 
TABLE III 

SUMMARIZATION OF THE SYMBOLS IN THIS PAPER 

Symbols Meanings 

SROM Stochastic reduced order model 

PCE Polynomial Chaos expansion 

SG Stochastic Galerkin 

SC 

MC 

Stochastic collocation 

Monte Carlo 

X 

F(X) 
q 

d-dimensional random input variable 

Cumulative distribution function of X 

Moment order 

�̃� Stochastic reduced order model of X 
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x̃(k), k = 1, …, m Samples in �̃� 

p(k), k = 1, …, m Probabilities of x̃(k), k = 1, …, m 

Y Output response/solution 

�̃� Stochastic reduced order model of Y 

M Deterministic solver/mapping 

NEXT Near-end crosstalk 

FEXT 

H 

Far-end crosstalk 

Height of the conductor 

d Distance between two conductors 

r 
T 

Radius of the conductor 
Termination  load of the circuit 
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