
Robust Plan Execution with Unexpected Observations

Oscar Lima1,2, Michael Cashmore3, Daniele Magazzeni3, Andrea Micheli4 and Rodrigo Ventura1

Abstract— In order to ensure the robust actuation of a plan,
execution must be adaptable to unexpected situations in the
world and to exogenous events. This is critical in domains in
which committing to a wrong ordering of actions can cause the
plan failure, even when all the actions succeed. We propose
an approach to the execution of a task plan that permits
some adaptability to unexpected observations of the state while
maintaining the validity of the plan through online reasoning.

Our approach computes an adaptable, partially-ordered plan
from a given totally-ordered plan. The partially-ordered plan
is adaptable in that it can exploit beneficial differences between
the world and what was expected. The approach is general in
that it can be used with any task planner that produces either a
totally or a partially-ordered plan. We propose a plan execution
algorithm that computes online the complete set of valid totally-
ordered plans described by an adaptable partially-ordered plan
together with the probability of success for each of them. This
set is then used to choose the next action to execute.

I. INTRODUCTION

Robust task plan execution is a fundamental problem in the
intersection of AI planning and Robotics: the execution of the
planned course of actions in the real world may differ from
what was expected at planning time. A classical example of
this discrepancy is the duration of actions that often depend
upon external factors, impossible to model in the planning
domain. In addition, plans are usually generated under the
assumption of a static world that does not change without
performing an action. In reality, however, the world in which
the robot operates is often dynamic and comprises exogenous
events, i.e. events that are not under the control of the agent
and may happen unexpectedly. Such events can interfere
with the planned course of actions and therefore we need to
monitor the execution by means of observations and possibly
adapt the decisions to cope with such contingencies.

Nonetheless, in many situations, minor adjustments to the
plan can be sufficient to retain validity with respect to the
ground truth and reach the plan objective. For example, sev-
eral techniques have been devised to absorb small variations
in action durations. This is not the case when the planning
problem exhibits temporal deadlines, time-windows or syn-
chronizations, because minor delays could impact the success
of the plan. This is particularly relevant when concurrency
is considered, e.g. in multi-robot domains, because there can
be positive and negative interactions between parallel actions.
Hence, ordering constraints that arise from the coordination
of these actions must be considered at execution time.

In this paper, we propose a novel flow from AI Planning to
action execution aiming at the following research question:

1 Institute for Systems and Robotics, Instituto Superior Tecnico, Lisbon
2 DFKI Robotics Innovation Center, Bremen, Germany
3 King’s College London, UK
4 Fondazione Bruno Kessler, Trento, Italy

Since observations during execution may differ
from what was expected at planning time (includ-
ing action duration and propositional state), is the
plan valid and what is the next execution choice
that maximizes probability of reaching the goal?

Our approach (described in Section III) starts from a totally-
ordered plan by extracting an adaptable partially-ordered
plan as an offline step. Differently from other approaches,
we allow some causal constraints to be violated in order to
allow for a stronger run-time adaptation. Then, we define an
online algorithm that, given an estimation of the probabilities
of each planning variable, analyzes all the valid totally-
ordered plans induced by the adaptable partially-ordered
plan, associating a probability of success to each of them.
In turn, this set of totally-ordered plans is used by a novel
action selection policy to choose the next action to execute
that maximizes the probability of achieving the planning
goal during execution. This execution flow is extremely
flexible because, depending on the observations, it allows
for dynamic re-ordering of the planned set of actions as well
as the skipping of actions that might no longer be needed.

In Section IV we describe how the approach is integrated
into the planning and execution framework ROSPlan [1] and
we empirically demonstrate in simulation that our approach
leads to a consistently fewer re-plannings, and results in
fewer actions executed. Moreover, we show how, despite
being theoretically demanding in terms of performance, the
whole technique can be implemented to be a fast action
selection policy for practical use-cases.

A. Related Work

There has been considerable work in the literature con-
cerning the robust execution of plans. Some authors pro-
posed ways to increase the flexibility of temporal plans
to cope with more situations at runtime [2], [3], [4]; oth-
ers devised techniques to synthesize correct-by-construction
flexible plans [5], [6], [7], [8]. In this paper, we relax a
fundamental constraint that has been at the base of these
previous works: we break the causal structure of the plan
by discarding causal constraints in order to allow for more
run-time adaptability. The obtained plan admits executions
that are invalid for the planning model, therefore we employ
a runtime action selection policy that dynamically selects
actions that are causally-valid and are likely to reach the goal.
This effectively moves the causal reasoning online instead of
limiting the executor to blindly follow the causal structure
prescribed by the plan.

The authors of [9] show that a Temporal Plan Network
Under Uncertainty is an encoding of a set of many differ-
ent candidate STN [10] sub-plans. They define an correct

ar
X

iv
:2

00
3.

09
40

1v
1

 [
cs

.R
O

]
 2

0
M

ar
 2

02
0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/293755432?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

execution as an ordering of activities that is causally com-
plete (each event’s conditions are satisfied) and temporally
consistent with respect to the STN. Our approach is strongly
related to this idea: we solve the problem of generating the
complete set of valid executions for an adaptable partially-
ordered plan. A valid execution is a correct execution which
also achieves the goal.

This problem is also described in [11] in the form of
selecting an execution of a Temporal Plan Network compiled
from RMPL, and in [12] in the form of synthesizing a
dynamically controllable strategy for a disjunctive temporal
network with uncertainty. During execution, we tackle a
similar problem, without considering decision nodes, and ac-
counting for the selected execution’s probability of success.
In addition, our approach allows the plan execution to adapt
to some unexpected observations.

Uncontrollable temporal durations can be also addressed
via strong controllability [13]. Instead, [14] proposes a
technique that given a plan parameterized with n temporal
durations and domain constants automatically generates an
n-dimensional region corresponding to a valid execution. The
latter work generates a region over real-valued parameters
for which the plan remains valid. Our work differs because
we generate the set of total orderings for which the plan is
valid and attach to each of these a probability of success;
this copes with discrepancies in the discrete state that are
not covered by [14].

II. BACKGROUND

We start by formalizing our definition of a planning
problem and a plan using the PDDL2.1 formalism [15].

Definition II.1. A planning problem is a tuple
〈P, V,A, I,G〉 where P is a set of propositions; V
is a set of real variables; A is a set of durative and
instantaneous actions; I is the total function describing the
initial state of the propositions and real variables; G is the
function indicating the goal condition.

Definition II.2. A durative action a is a tuple
〈pre(a), eff (a), dur(a)〉 where pre(a) is a set of conditions
partitioned into at-start, over-all and at-end conditions;
eff (a) is the set of action effects; and dur(a) is the
duration constraint. An instantaneous action is a tuple
〈pre(a), eff (a)〉 where pre(a) is the set of preconditions;
and eff (a) is the set of action effects.

A durative (resp. instantaneous) action is applicable in a state
S = P ∪ V if the at-start condition (resp. precondition)
of the action is satisfied by P ∪ V . We also say that
the end of a durative action is applicable if the action is
currently executing in the state, the action duration constraint
is satisfied, and the at-end condition of the action is satisfied
by P ∪V . Applying an instantaneous action, durative action
start, or durative action end a to the state S produces a
resultant state S(a).

We formalize plans of actions as networks, similar to
Temporal Plan Networks [11]:

Definition II.3. A plan Π for a planning problem
〈P, V,A, I,G〉 is the graph 〈N,C〉 where each node n ∈ N
represents the plan start, an instantaneous action, or the start
or end of a durative action; and each edge c ∈ C represents
a temporal relation: x < time(n1) − time(n2) < y for
n1, n2 ∈ N and x, y ∈ R. Each edge c is labelled as either
causal, interference, or action duration. Action duration
edges express the temporal constraints between the start
and end of durative actions. Causal edges express tempo-
ral relationships inferred from the causal support between
actions. Similarly, interference edges express the temporal
relationships inferred from the interference between actions.

A plan is totally-ordered if there exists only one total order-
ing of nodes that can satisfy all of the temporal relations.

Similarly to the definitions presented in [16] we say that a
totally-ordered plan is executable if the plan can be simulated
by applying each action in order, and all of the prescribed
actions are applicable. The plan is valid if the final state
satisfies the goal condition G.

III. ROBUST PLAN EXECUTION

PDDL2.1 planners output is represented as time-triggered
plans (e.g. [17], [18]). A time-triggered plan is a set of tuples
〈t, a, d〉, where a is an action, t is the time at which the action
should be executed and d is the prescribed duration.

As a running example, consider a scenario where a fleet of
robots can move on a known map and are tasked to retrieve
specific items produced from a pool of machines located at
known positions. When a robot is at a machine location,
it can turn the machine on. Once the machine is on, two
robots are required to be at the machine location to produce
an item. Clearly, the navigation actions of the two robots
are independent until they synchronize to be at a specific
machine together. A concrete instance is as follows. Two
robots r0, initially in location wp1, and r1, initially in
location wp0, must reach location m0 where a machine is
located, switch on the machine and produce an item that is
finally delivered in location wp1. A valid time-triggered plan
Πtt

ex for the problem is reported below, indicating the starting
time for each action to be executed (before the colon) and
the expected duration (in brackets)1.

0.000: (goto r0 wp1 m0) [14.000]
0.000: (goto r1 wp0 m0) [9.000]
14.001: (switch_on r0 m0) [5.000]
19.002: (load_at_machine r1 r0 m0) [15.000]
34.002: (goto r1 m0 wp1) [14.000]
48.002: (ask_unload r1 wp1) [5.000]
53.003: (wait_unload r1 wp1) [15.000]

In order to allow for temporal flexibility, time-triggered
plans must be converted into partially-ordered plans as per
Definition II.3. In addition, we further relax the plan into an
adaptable partially-ordered plan by removing the ordering
relations that represent the causal support between actions.
This allows for unexpected, but beneficial events in the
environment to achieve the preconditions of actions. An
adaptable partially-ordered plan can then be executed using
the online procedure defined in Section III-B.

1This the the usual syntax PDDL planners use for temporal plans.

PDDL 2.1
Planning
Problem

PDDL2.1
Planner Πtt ESTEREL

Transformer Π
Causal Edge

Remover Π′

Perception State Probability
Estimator S0

Total-Order
Extractor

Totally-Ordered
Plans

Action
Dispatcher

OFFLINE

ONLINE

Action to executeSensor data

Fig. 1: High-level overview of the proposed flow from
planning to execution.

Our approach is essentially composed of three phases,
depicted in Fig. 1. The first phase is performed offline and is
responsible for converting a totally-ordered input plan into
an adaptable partially-ordered plan (this corresponds to the
upper part of Fig. 1 and we provide full details in Section III-
A). The adaptable partially-ordered plan is passed to the
second, online phase (Section III-B) that generates the set
of valid totally-ordered plans described by the adaptable
partially-ordered plan. This phase is indicated as “Total-
Order Extractor” in Fig. 1. Finally, the produced set of valid
totally-ordered plans is the input for the action dispatcher
(Section III-C) that chooses the next action to execute by
reasoning over the set of valid totally-ordered plans.

A. Phase 1: Generating Adaptable Partially-Ordered Plans

Once a time-triggered plan (Πtt in Fig. 1) is generated
by an off-the-shelf planner, it needs to be converted into an
ordinary partially-ordered plan Π by generating a node for
each instantaneous action and each durative action start and
end. The relations are generated as follows. For each node n1
that supports the condition of a node n2, the temporal relation
0 < time(n2)− time(n1) <∞ is generated. For each pair
of nodes 〈n1, n2〉 representing the start and end of a durative
action a, a relation representing the constraints in dur(a) is
generated. Finally, for each pair of actions in the plan a1
and a2 that interfere, an interference relation is generated.
Two actions interfere if they have conflicting effects, or the
effects of one action conflict with the conditions of the other
(see [15] Definition 12). As durative actions are represented
by two nodes (at-start and at-end), the relation is generated
between the nodes that contain the interfering effects or
conditions. In the case of an interfering over-all condition
a relation is generated for both nodes.

For our running example, this gives the plan Πex, whose
graph representation is reported in Fig. 2. It is easy to
see that, while multiple ordering of the events are possible,
the plan has a well-defined causal structure that ensures a
sequence of pre-defined actions.

Before execution begins, the plan is relaxed into an adapt-
able partially-ordered plan. Given a plan Π the adaptable
partially-ordered plan Π′ is defined as Π′ = 〈N ′, C ′〉, where
N ′ = N and C ′ ⊆ C contains only the edges of C
labelled interference and action duration. By removing the
causal support edges, the execution algorithm will be given
more flexibility in action selection, possibly skipping actions
whose effects have already been achieved by exogenous

0. plan_start

1. goto_start(r0,wp1,m0)

[0, inf]

2. goto_end(r0,wp1,m0)

[0, inf]

3. goto_start(r1,wp0,m0)

[0, inf]

4. goto_end(r1,wp0,m0)

[0, inf]

6. switch_on_end(r0,m0)

[0, inf]

8. load_at_machine_end(r1,r0,m0)

[0, inf]

10. goto_end(r1,m0,wp1)

[0, inf]

[14, 14]

5. switch_on_start(r0,m0)

[0, inf]

7. load_at_machine_start(r1,r0,m0)

[0, inf] [9, 9]

12. ask_unload_end(r1,wp1)

[0, inf]

[0, inf]

9. goto_start(r1,m0,wp1)

[0, inf]

[5, 5]

[0, inf]

[15, 15]

14. wait_unload_end(r1,wp1)

[0, inf]

[0, inf]

11. ask_unload_start(r1,wp1)

[0, inf]

13. wait_unload_start(r1,wp1)

[0, inf]

[14, 14]

[0, inf] [0, inf]

[0, inf][5, 5]

[0, inf]

[15, 15]

Fig. 2: Graph of the de-ordered plan Πex. Nodes represent
instantaneous actions or startings or endings of durative
actions. Edges represent temporal relationships in the form
[min,max], and illustrate causal support (green) action
duration (red) and interference (blue) constraints.

1. goto_start
(r0,wp1,m0)

2. goto_end
(r0,wp1,m0)

[14, 14]

3. goto_start
(r1,wp0,m0)

4. goto_end
(r1,wp0,m0)

[9, 9]

12. ask_unload_end
(r1,wp1)

[0, inf]

5. switch_on_start
(r0,m0)

6. switch_on_end
(r0,m0)

[5, 5]

7. load_at_machine_start
(r1,r0,m0)

8. load_at_machine_end
(r1,r0,m0)

[15, 15]

14. wait_unload_end
(r1,wp1)

[0, inf]

9. goto_start
(r1,m0,wp1)

[0, inf]

10. goto_end
(r1,m0,wp1)

[14, 14][0, inf]

11. ask_unload_start
(r1,wp1)

[5, 5]

13. wait_unload_start
(r1,wp1)

[15, 15]

Fig. 3: Graph of the adaptable partial-order plan Π′ obtained
from Π by removing causal edges.

events. This is achieved using the algorithm in Section III-B.
In our running example, we obtain the adaptable partial

order plan Π′
ex reported in Fig. 3. This graph allows for

many more executions orderings with respect to Fig. 2, but
causal structure is no longer guaranteed for all of them and
we need to restore this structure using runtime reasoning.

B. Phase 2: Extracting the Set of Totally-Ordered Plans

Each adaptable partially-ordered plan generated from a
valid totally-ordered plan encodes a set of valid totally-
ordered plans. Plan execution can be thought of as selecting
one such totally-ordered plan to execute. In addition to
this, our algorithm considers a notion of uncertainty in the
environment, selecting the total-orderings that are most likely
to succeed, given a known probability over propositions.

Algorithm 1 Generate Totally-Ordered Plans
1: function GENERATEPLANS(S0,Π)
2: O ← {n |∀n ∈ Π} . initialize open list.
3: C ← {c |∀c ∈ Π} . set of temporal constraints.
4: F ← ∅ . initialize set of ordered nodes.
5: R← ∅ . return set of totally-ordered plans.
6: ORDERNODES(O,C,F ,S0,R,1)
7: return R

8: function ORDERNODES(O,C, F, S,R,Q)
9: if ¬ CHECKTEMPORALCONSTRAINTS(F ,C) then

10: return . the ordering is not executable.
11: if S |= G then
12: R← R ∪ {〈Q,F 〉} . add new valid ordering to R.
13: return
14: Φ← VALIDNODES(O,S)
15: if Φ = ∅ then
16: return . the ordering is not valid.
17: for each 〈q, a〉 ∈ Φ do
18: K ← {b ∈ O | b ≺ a} . all nodes b ordered before a.
19: F ′ ← F ∪ {a} . update current ordering.
20: O′ ← O \ (K ∪ {a}) . remove skipped nodes from 0.
21: S′ ← S(a) . apply a to S.
22: ORDERNODES(O′, C, F ′, S′, R, Q× q) . recurse.

To perform this reasoning, we assign a probability to each
predicate in P by means of a map ρ : P → [0; 1] (this is in
fact a fuzzy truth assignment). Then, we consider a set of
states of the form S = 〈P ∪V, ρ〉. Moreover, for each action
a we use the map ψa : eff (a) → [0; 1] to represent the
probability of setting a proposition p ∈ eff (a) to true after
executing the action. For a deterministic action, ψa(p) = 1
if a adds p, and ψa(p) = 0 if a deletes p. The operation of
applying an action a in a state S (i.e. S′ = S(a)) is extended
to update the set ρ by assigning

ρ(p) = ψa(p)

for all p ∈ eff (a), while the P∪V part of the state is updated
as per Section II. As for the transitions, S′ can be reached
from state S with the joint probability of a’s preconditions.

The algorithm requires as input an adaptable partially-
ordered plan Π and the current state S0 (where we have
probabilities assignments in the map ρ). The complete set
of totally-ordered plans are then generated as described in
Algorithm 1. The algorithm can be run before execution,
in which case the plan Π is the whole adaptable partially-
ordered plan and the state S0 is the initial state before
starting the execution. If, instead, the algorithm is run online,
S0 is the current state with the probabilities derived from
observations and the plan Π is the adaptable partially-
ordered plan where nodes representing actions that have been
executed in the past are removed. In either case, the algorithm
will return the set of valid totally-ordered plans that can be
executed from the state S0.

The algorithm describes a search through the nodes con-
tained in the plan. A representation of the state, S = 〈P ∪
V, ρ〉, is used throughout the search to check action condi-
tions and simulate their effects. At each step of the search,
the VALIDNODES procedure is called to return a set of tuples

〈q, a〉, where a is an applicable next node, and q is the
joint probability of that action’s preconditions (line 14). The
search branches on each element of Φ, applying the action a
to S (line 21). The probability of reaching a node is stored in
Q (initially 1), which is

∏
a∈F ρ(pre(a)) where ρ(pre(a))

is the probability of the action’s preconditions in the state
in which a was applied. For example, consider an action a0
with precondition p0 and positive effects p1, . . . , p5, with
ψa(eff) = 1 for all effects. Action a1 has precondition
p1 ∧ . . .∧ p5. The probability in the initial state is ρ(pi) = 0
for all i > 0 and ρ(p0) = 0.5. a0 is added to F (line 19) and
the state is updated (line 21). The effects of a0 set pi = 1 in
S′ for all i = 1 . . . 5. The recursion is then called updating
the probability of the next node to Q = 0.5 (line 22). The
joint probability of action a1 from the new search node is
1. Thus, the probability of being able to apply the sequence
[a0, a1] from the initial state is 0.5.

The search has three backtracking conditions. First, if
adding the new node violates a temporal constraint, including
both interference and action duration relations, then the
current total ordering is discarded (lines 9-10). Second, if the
goal is achieved then the current total ordering is saved (line
12). Third, if the goal is not achieved and there are no more
applicable nodes, then the current total ordering is discarded
(lines 15-16). In the case of any of these three backtracking
conditions, the search resets S and tries the next element
of Φ (line 17), so that every executable ordering of nodes
is explored, and all valid orderings are saved. The returned
result is the a of tuples: 〈Q,Π〉 where Π is a totally-ordered
plan and Q is that plan’s probability of success.

The VALIDNODES procedure forms the expansion step of
the search by returning a set of tuples 〈q, a〉, where a is an
applicable next node, and q is the probability that the node
is applicable. An action start node is applicable if the at-
start and over-all conditions of pre(a) are true in the state,
while an action end node is applicable if its at-end conditions
are true. The probability q of the preconditions of node a
(indicated as pre(a)) in S is computed from ρ as the joint
probability of the preconditions of a. For example, a node n
with precondition pre(a) = p1 ∧ ¬p2, where p1, p2 ∈ P is
q = ρ(p1)∗(1−ρ(p2)). If q is greater than some threshold (in
our implementation this is 0), then the tuple 〈q, a〉 is added
to the return set of VALIDNODES, otherwise it is discarded.

Theoretically, the number of possible total orders induced
by an adaptable partially ordered plan is factorial in the num-
ber of nodes: it suffices to consider a plan with no constraints
where every permutation of the nodes is a valid total order.
This is the dominant complexity cost, hence the algorithm
runs in O(n!). Nonetheless, this case is practically never
encountered for meaningful, practical plans, because interfer-
ence and duration constraints dynamically prune executions
that are causally impossible given the current observations.
In Section IV we show that this approach exhibits very good
empirical performance.

C. Phase 3: Action Selection Policy
During execution, the executor is tasked with selecting the

next node, whether this is the start of an action, the end of

an action, or to await some other external timed event.
Given a set of totally-ordered plans with probabilities,

〈Q,F 〉, our executor takes the ordering with maximum Q
and select the node that is first in the order (whether that is to
dispatch an action start, wait for an action end). For example,
given the set: [〈0.5, [a, b, c]〉, 〈0.3, [b, a, c]〉, 〈0.3, [b, c]〉] The
executor would choose node a to be executed first. Note
that in this example there are two orderings beginning with
node b both with probability 0.3, but their probabilities are
not necessarily independent. For example, it could be that
the probability of being able to apply a and c is always
1, and that the probability of applying b is 0.5 after a,
and 0.3 otherwise. For this reason, we cannot combine the
probabilities of success of the orderings starting with b (that
would be 0.6) and we decide to execute a instead.

Given the plan Π′
ex for our running example situation,

Algorithm 1 can extract all the possible valid total orderings.
Among these, the procedure is clearly able to reconstruct
the original, totally-ordered plan Πtt

ex, but other orderings
are also possible, depending on the observed probabili-
ties. Let us consider an example situation to clarify the
possibilities opened by our approach. Suppose that the
machine m0 is found to be already switched on (with high
probability) upon r0 arrival. By running Algorithm 1, the
orderings having (switch on r0 m0) as first action
to execute will have very low probability, while the ones
having (load at machine r1 r0 m0) will have high
probability. For this reason, our action selection policy,
exploiting the result from Algorithm 1, will choose to exe-
cute (load at machine r1 r0 m0) and a subsequent
successful continuation of the plan will effectively skip the
(switch on r0 m0) action. This is because the system
will reach the goal without ever executing such an action.

IV. IMPLEMENTATION AND EVALUATION

The approach has been implemented in ROS and inte-
grated as an alternative execution algorithm in ROSPlan [1].
The architecture of the resulting system is illustrated in
Fig. 5. A PDDL2.1 domain and problem file are passed to
the system at launch, thereafter a new planning problem is
automatically produced during each planning episode.

We use the planner POPF [17], as it is a PDDL2.1 planner
that produces time-triggered plans and is already available
with ROSPlan. The planner output is parsed into a partially-
ordered plan within ROSPlan, and this output is subscribed to
by our node, which publishes an adaptable partially-ordered
plan following the procedure described in Section III-A. This
plan is then used to produce a set of valid totally-ordered
plans, through an implementation of Algorithm 1.

The plan dispatcher selects the first node of the plan
with highest probability, and executes that node as described
in Section III-C. After each node is executed, the totally-
ordered plan generation is run again (Algorithm 1).

A. Experiment Description

We use the tasks in the Robot Delivery domain to investi-
gate our approach. The domain is a much simplified version

of the domain used in the Planning and Execution Compe-
tition for Logistics Robots in Simulation [19] comprising a
fleet of small robots that can navigate in an euclidean graph.
These robots are tasked to pick and deliver orders within a
deadline. Collecting orders requires two robots present at a
machine. We randomly generated a total of 30 initial states
with 3 robots, 3 to 5 machines, 4 to 8 delivery locations, and
the goal to deliver 2 or 3 orders. For 9 of these problems,
the optimal plan duration was calculated, and a deadline
was added to each order equal to 1.5 times the optimal
plan duration. If this deadline is passed, the order cannot
be delivered and the task is failed. Thus, the problem set
contains 39 tasks overall. 9 tasks with deadlines, and 30
tasks without.

Each task was run in simulation using our re-ordering
approach (RO) and a replanning (RP) approach. The RP
approach attempts to directly execute the partially ordered
plan Π, and replans when the execution fails. In contrast, RO
follows the procedure described above, generating new total
orders online to select the next action, and replanning only
when no valid total ordering can be found by Algorithm 1.
Replanning takes place when (1) an action reports failure,
(2) an action is to be executed, but its preconditions are not
true, and (3) a temporal constraint is violated.

We use a non-physics simulation that includes a probabil-
ity of action failure and non-deterministic action duration. In
addition, the ground truth of the simulation is not static. For
example, the proposition (machine on m0) may be true
in the initial state, but later change due to exogenous events.
In this case, the plan execution may fail due to a mismatch
between the planner’s model and the ground truth, leading
to replanning condition (2). Each task and system was run
in simulation 10 times to account for random events, action
failure, and non-deterministic action duration.

For each run we recorded whether or not the task suc-
ceeded in delivering all of the orders. For the tasks that
succeeded, we also recorded the number of times the plan
execution failed and the system had to replan, and the number
of actions that were actually executed in order to achieve the
goals. The results for both the cases are shown in Table 4a.
The results demonstrate our hypothesis that in problems with
and without deadlines the re-reordering approach will result
in fewer replans, and that fewer actions will be executed
overall. The coverage of RP is marginally higher in the
problems with deadlines, where the overhead of RO can
cause failures. However, the reduction in the number of
replans is significant while impact on coverage is minimal.
In domains with dead-ends (from which recovery through
replanning is impossible) or in platforms with insufficient
computational power to perform online planning, the results
show that RO is a viable plan repair.

As discussed in Section III-B, the worst case complexity
of our algorithm can be factorial in the size of the plan.
To provide some empirical insight in terms of performance,
160 problems were generated and solved, producing STN
plans with up to 128 nodes. The time taken to generate the
adaptable partially-ordered plan and to extract all valid total

Coverage Avg. Replans Avg. #Actions
#orders 2 3 2 3 2 3

D
ea

dl
in

e-
Fr

ee

RO 98% 94% 0.9 0.9 12.5 17.2

RP 98% 97% 1.6 2.0 13.7 19.3

W
ith

D
ea

dl
in

es

RO 91% 0.7 17.3

RP 97% 2.9 19.6-

(a) Results for deadline-free tasks (top) and
for problems with deadlines (bottom), show-
ing coverage, average number of replans
across successful tasks, and average number
of actions executed.

(b) Time taken to produce valid orders for
plans of varying size.

(c) The number of valid orders generated,
and time taken in generation.

Fig. 4: Experimental results.

Fig. 5: System Architecture for the evaluation. The proposed
approach has been integrated into the ROSPlan system.

orders was recorded, as well as the number of total orders.
Figure 4b plots the time against the number of nodes, while
Fig. 4c shows the time against the number of valid total
orders produced. The algorithm takes less than 10 seconds
in all cases, hence it is definitely suitable to be used online.

V. CONCLUSIONS

In this paper, we proposed a novel approach for improving
the robustness of the execution of automatically-generated
task plans with respect to unforeseen circumstances. The
approach consists in relaxing the causal structure of the
generated plan, allowing for run-time adaptation of the
ordering of the actions and, possibly, for the skipping of
some action in situations where their execution is no longer
needed. The approach is proven effective on a simulated use-
case, where the number of re-planning attempts was reduced.

There are several directions for future work. First, we
plan to integrate this approach with [14] to natively handle
discrepancies in continuous dimensions of the problem, such
as time or resources. Second, we would like to try to use
our approach with multiple plans: instead of generating the
total orders from a single plan, we can use several, diverse
plans to allow for more variability in the action selection
policy. Finally, we plan to consider other kinds of runtime
plan repairs in addition to action reordering and skipping.

ACKNOWLEDGMENTS

This work was supported by the FCT projects
[UID/EEA/50009/2013] and [PTDC/EEI-SII/4698/2014].

REFERENCES

[1] M. Cashmore, M. Fox, D. Long, D. Magazzeni, B. Ridder, A. Carrera,
N. Palomeras, N. Hurtos, and M. Carreras, “Rosplan: Planning in the
robot operating system,” in ICAPS, 2015.

[2] C. Bäckström, “Computational aspects of reordering plans,” Journal
of Artificial Intelligence Research, vol. 9, pp. 99–137, 1998.

[3] J. Frank and P. Morris, “Bounding the resource availability of activities
with linear resource impact,” in ICAPS, 2007, pp. 136–143.

[4] M. Do and S. Kambhampati, “Improving temporal flexibility of
position constrained metric temporal plans,” in ICAPS, 2003, pp. 42–
51.

[5] M. Ghallab and H. Laruelle, “Representation and control in IxTeT, a
temporal planner,” in AIPS, 1994, pp. 61–67.

[6] J. Frank and A. Jónsson, “Constraint-based Attribute and Interval
Planning,” Constraints, vol. 8, no. 4, pp. 339–364, 2003.

[7] A. Cesta, G. Cortellessa, S. Fratini, A. Oddi, and R. Rasconi, “The
APSI Framework: a Planning and Scheduling Software Development
Environment,” in ICAPS (Application Showcase), 2009.

[8] A. Umbrico, A. Cesta, M. C. Mayer, and A. Orlandini, “Integrating
resource management and timeline-based planning,” in ICAPS, 2018,
pp. 264–272.

[9] S. Levine and B. Williams, “Watching and acting together: Concurrent
plan recognition and adaptation for human-robot teams,” Journal of
Artificial Intelligence Research, vol. 63, 2018.

[10] R. Dechter, I. Meiri, and J. Pearl, “Temporal constraint networks,”
Artificial intelligence, vol. 49, no. 1-3, pp. 61–95, 1991.

[11] P. Kim, B. C. Williams, and M. Abramson, “Executing reactive,
model-based programs through graph-based temporal planning,” in
IJCAI, 2001, pp. 487–493.

[12] A. Cimatti, A. Micheli, and M. Roveri, “Dynamic controllability of
disjunctive temporal networks: Validation and synthesis of executable
strategies,” in AAAI, 2016.

[13] E. Karpas, S. J. Levine, P. Yu, and B. C. Williams, “Robust execution
of plans for human-robot teams,” in ICAPS, 2015.

[14] M. Cashmore, A. Cimatti, D. Magazzeni, , A. Micheli, and P. Zehtabi,
“Robustness envelopes for temporal plans,” in AAAI, 2019.

[15] M. Fox and D. Long, “PDDL2.1: An extension to pddl for expressing
temporal planning domains,” Journal of Artificial Intelliigence Re-
search, vol. 20, pp. 61–124, 2003.

[16] R. Howey, D. Long, and M. Fox, “Val: Automatic plan validation,
continuous effects and mixed initiative planning using pddl,” in ICTAI,
12 2004, pp. 294– 301.

[17] A. Coles, A. Coles, M. Fox, and D. Long, “Forward-chaining partial-
order planning,” in ICAPS, 2010, pp. 42–49.

[18] M. F. Rankooh and G. Ghassem-Sani, “Itsat: An efficient sat-based
temporal planner,” Journal of Artificial Intelligence Research, vol. 53,
no. 1, pp. 541–632, 2015.

[19] T. Niemueller, G. Lakemeyer, and A. Ferrein, “The robocup logistics
league as a benchmark for planning in robotics,” Planning and
Robotics (PlanRob-15), p. 63, 2015.

	I Introduction
	I-A Related Work

	II Background
	III Robust Plan Execution
	III-A Phase 1: Generating Adaptable Partially-Ordered Plans
	III-B Phase 2: Extracting the Set of Totally-Ordered Plans
	III-C Phase 3: Action Selection Policy

	IV Implementation and Evaluation
	IV-A Experiment Description

	V Conclusions
	References

