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Abstract—Electrical power systems with high solar generation
experience a phenomena called “duck curve” which require
conventional power generators to quickly ramp-up their output,
thus resulting in financial losses. In this paper, we propose an
online model (OLM) for scheduling the charging of electric
vehicles (EV) located at park-and-ride facilities for flattening
solar “duck curves”. This model provides a significant improve-
ment to existing ones for similar systems in the sense that the
availability of information is related to the time period for
which the optimization is done. In addition, a procedure for
finding the schedules for EV charging that significantly decreases
the ramping requirements is introduced. Proposed procedure
includes a combination of a heuristic function and a neural
network (NN) to make a decision on which EVs will be charged
at each time period. The training of the NN is done based on
optimal solutions for problem instances corresponding to the full
information model (FIM). The computational experiments have
been performed for instances reflecting different levels of solar
generation and EV adoptions and prove highly promising. They
show that the OLM manages to find schedules of similar quality
as the FIM, while having some more desirable properties.

I. Introduction

In the recent years there has been a strong push for
increasing the use of renewable energy sources for electricity
production, especially for solar generation. One of the main
problems of a high level of solar electricity production is the
imbalance between peak electricity demand and renewable
energy production during afternoons, resulting in the “duck
curve” issue which lead to financial losses [1], [2]. Moreover,
to meet net-zero emission goals, there has been a growth in
the rate of electric vehicles (EVs) adoption and it is expected
that EVs will become a primary mode of ground transportation
within a few decades. In parallel, a new direction of research,
the exploration and optimisation of the potential EV demand
flexibility to remedy ramping requirements, is becoming pop-
ular. In this paper, we present a scheduling framework to
evaluate the potential of scheduling the charging of large
groups of vehicles in a way that minimizes the ramping
requirements of electric production systems.

The need for ramping up of electric production is a direct
consequence of the “duck curve” phenomena . Here the term
ramping up is used for the need to have a steep increase
in electricity production in a short time period. The idea of
scheduling energy usage of home appliances to achieve this
goal has been extensively researched in the setting of demand
response systems [3]. On the other hand, there has been only
a limited research dedicated to this type of approach in the
context of EV charging.

It is noteworthy that this type of scheduling is not suitable
for fast chargers (50+ kW) due to relatively short service
duration and the fact that EV demand may not align with the
time of system ramping. On the other hand, EV scheduling can
be efficiently incorporated to systems with slower level 2 (5-9
kW) chargers [4], [5] due to demand flexibility associated with
long charging session. Part of the research on level 2 chargers
is dedicated to the designing of convenient away-from-home
charging infrastructure with a special focus on ones located at
the workplace [6], [7], [8]. In the work of Tulpule et al., it has
been shown that such systems can effectively incorporate the
use of solar energy with a wide range of benefits [9]. Several
papers have been published on the smart scheduling of EV
charging at workplace parking lots and different benefits of
such systems [10], [11], [12].

While there are many similarities between scheduling of
home appliances and EV charging for lowering peak demand
issues, there are also important differences. The primary dis-
tinguishing feature of EV scheduling is related to size and
collective scale of loads and the duration of service times.
Some examples of specifics of scheduling EV charging can
be found in [13], [14], and [15]. Since the adoption of EVs
is an ongoing process, there is still research dedicated to
potential methods of incorporating such systems into the real
world. In reference [16], it has been shown that inclusion
of such systems, based on level 2 chargers, to park-and-ride
systems (P-R) [17] is very promising to aid power system
operations. The basic idea of P-R is making it easy to
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park your vehicle and continue your commute using public
transport. P-R systems are growing in popularity, since they
decrease traffic congestion in metropolitan areas and have
other positive effects[18], [19]. Another reason for considering
P-R facilities is that there is a high interest in constructing new
ones by local governments [20] to promote EV usage and the
related projects can easily be adapted to include EV chargers.
In [16], the potential of scheduling EV charging at P-Rs to
decrease ramping up requirements is evaluated through finding
upper bounds that such systems can achieve. This is done by
defining a combinatorial optimization problem that models the
scheduling problem and solves it based on a integer linear
problem (ILP). For practical applications, this model has a
major disadvantage as it requires all the relevant information
such as the whole time period of scheduling as an input.
Because of this, we call this model a full information one
(FIM). In practice this is not practical, the relevant information
becomes available only at specific time periods, making the
problem an online one. This is a common property of systems
for smart charging of EVs and some models have been
designed to reflect this. [21], [22], [14], [13]

In this paper, the basic model from [16] is extended to an
online setting. We call this an online model (OLM). Further, a
method for minimizing the ramping up requirements in the
new setting is defined. It uses a greedy iterative approach
to achieve this goal. An interesting novelty of the proposed
method is that instead of defining a heuristic function, it uses
a neural network to decide the amount of EV charging that
will be conducted at each time period. The neural network is
trained based on problem instances which have been solved
using the FIM. The conducted computational experiments,
show that the NN approach for the OLM, manages to provide
solutions of almost the same quality as the FIM. In addition,
as discussed in the next sections, the solutions found using for
the OLM have some more desirable properties than the ones
for the FIM.

The paper is organized as follows. In the following section
the mathematical model for FIM is presented. In Section 3,
details for the online version of the problem are given. The
next section provides information about the proposed solution
method for the OLM. In the following section details about
the conducted computational experiments and their analysis
are given.

II. Full InformationModel

In this section, an overview of the ideas from our previous
work [16] for evaluating the potential of flattening the “duck
curve” by exploiting EV demand flexibility. For the sake of
completeness, in this section the mathematical model, in the
form of an ILP, from [16] is presented.

This model contains the following assumptions. The
scheduling of EVs is done for of a time window T which
is divided into a set of periods {1, ..,T }. This is done for a
set of cars C = {1, ..,M}, which visit the charging station at a
P-R. It is assumed that the activation/deactivation of charging
for each vehicle can be controlled. In relation, let use define a

set of parameters that are known for the whole time window
in the FIM:
• Parameter qt corresponds to the base consumption minus

the solar generation at each time period t ∈ T .
• For each car i ∈ C the arrival time ai and departure time

di are known.
• Each car i ∈ C has a battery of capacity fi and battery

charge at arrival 0 ≤ ba
i ≤ fi.

• A parameter for charger speed s is used to indicate how
much a battery can be charged in one time period. It is
assumed all the chargers at the facility are the same.

The model includes some natural constraints. For instance,
each EV battery can only be charged until its full capacity.
Each EV i must receive a minimal amount of charge r.
Although a maximal allowed charge for the system can be
given for each time period, for sake of simplicity in the used
model is assumed that it is higher than the total charging
potential of the charging station. The flattening of the“duck
curve” can be understood as lowering the change in total
energy consumption (sum of qt and energy used for charging
EVs ) in successive time periods. An illustration of the FIP
and solution can be seen in Fig 1.

Now, we present the ILP from [16] that formally describes
the system of interest. Binary decision variables xit are defined
for i ∈ C and t ∈ T , which is set to one if EV i is charged at
time t and zero otherwise. The goal of the FIP is to optimize
the active periods for all the chargers, in essence making a
charging schedule satisfying specific constraints. Let us define
real variables bit, for i ∈ C and t ∈ T , which indicate the state
of the battery (level of charge) of car i at time t. In the ILP,
instead of parameters for arrival (ai) and departure times (di)
for an EV i, a set of binary parameters vit, for i ∈ C and
t ∈ T , are used to indicate if EV i is at the charging station
at time period t. Auxiliary variables ht, defined for t ∈ T , are
used for the total power consumption of the charging station
and based load qt at some time period t. In relation let us
define variables dt for t = 1 . . . T −1, for storing the change in
energy consumption, or in other words the absolute difference
between ht and ht+1. Using this set of parameters and variables
the necessary constrains can be defined using the following
equations.

bi,0 = ba
i i = 1 . . .M (1)

xit ≤ vit i = 1 . . .M, t = 1 . . . T (2)
bit+1 = bit + xit s i = 1 . . .M, t = 1 . . . T − 1(3)

bit ≤ fi i = 1..M, t = 1 . . . T (4)
biT ≥ ba

i + r i = 1 . . .M (5)

qt +
∑
i∈M

xit s = ht t = 1 . . . T (6)

dt ≤ ht − ht+1 + Mgt t = 1 . . . T − 1 (7)
dt ≤ ht+1 − ht + M(1 − gt) t = 1 . . . T − 1 (8)

dt ≥ ht − ht+1 t = 1 . . . T − 1 (9)
dt ≥ ht+1 − ht t = 1 . . . T − 1 (10)
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Fig. 1. Illustration for the FIM and the OLM. Different letters are used for separate EVs, the values in brackets indicate the initial battery charge and its
maximal capacity. Columns are used for time periods. Orange cells indicate when a vehicle is at the P-R facility. The cells with an“x” indicate that an EV is
charged at that time period. The bottom two rows provide the information for the base load and solar generation, and the same value with addition of energy
used for charging EVS. In the OLM, the red rectangle indicates the active time period; the patterned cells indicate that the information is not available at the
active time period.

o ≥ dt t = 1 . . . T − 1 (11)

The constraint in (1) is used to set the initial value of the
current battery charge to the state of the battery at arrival. Eq.
(2) provides that an EV can be charged only at time periods
when it is at the charging station. The constraint related to the
change of battery charge of an EV, for one time period is given
in (3). The constraints related to the maximal and minimal
level of battery charge of an EV are given in (4) and (5),
respectively. The total amount of power used by the charging
station and the base load is specified in (6). The Eqs. (7)-(10)
are used to set the values of variables to dt to the absolute value
of the difference between ht of consecutive time periods in the
standard way. In these equations, M is used for a sufficiently
large number, and gt are auxiliary values which indicate if
ht > ht+1 is satisfied. The final constraint (11) is related to
finding the maximal difference in power consumption between
consecutive time periods.

There are two objectives of interest for evaluating the poten-
tial benefits of the proposed model. The first one is minimizing
the change in power consumption between consecutive time
periods, which corresponds to flattening of the “duck curve”.
This can be done by minimizing the value of o as in the
following equation:

minimize o (12)

The second one is related to the benefits related to the charging
station operator and drivers of EVs. To be more precise, the
goal is to maximize the total amount of charge of all the EVs,
as in the following equation.

maximize
∑

t=1...T

ht (13)

When finding the optimal solution for a problem instance,
the first step is finding the minimal value of o. The second
one, adds a constraint that sets o to that value and maximizes
the value of eq. 13.

III. OnlineModel

The practical application of scheduling of EV charging for
flattening the “duck curve” is in essence an online problem.
The model presented in the previous section assumes that
all the relevant information for the EVs like arrival/departure
times, battery size and state are available at the moment the
optimization problem is solved. However, this is not the case in
a real world application of such a system. To be more precise,
at some time period t, only the information on EVs that are
currently at the park-and-ride facility are known.

These two types of models have a significant difference
in the way they are solved. For the FIM case, the complete
schedule is calculated at once. On the other hand, in the
more realistic OLM case, the decision on the scheduling is
made iteratively at each time period t based on the available
information. An illustration of the OLM can be seem in Fig.
1. In both models, the objective is the same, to minimize
the level of change in the total load of the system. After an
online problem is solved, all the information (over all the time
periods) can be provided to the FIM and the optimal solution
can be calculated using the presented ILP. It is important to
point out that although the FIM cannot be directly applied in
the real world, it can provide us with upper bounds for the
level of “duck curve” flattening that can be achieved in this
way.

Let us present the setting of the OLM and the corresponding
online problem. The same notation is used as in the FIM. First,
at each time period t, all the information for time periods 1 to
t is assumed to be available. For each vehicle i at the time of
arrival t, it is assumed that the battery state ba

i , battery size fi
and departure time di are known. It is reasonable to assume
that the driver of the EV provides the departure time at the
time of arrival.

There are several important properties that can be calculated
based on the known information from the previous time
periods. The battery state b jt of an EV j that has arrived at
the station before time period t will be known based on its



initial state and the amount of charge it has received prior
to time period t. Note that at each time period tp < t the
number of EVs in the station is known along with the number
of additional time periods an EV j will stay at the station. In
addition, it is assumed that the base load qt, at time period
t, is known. For time periods prior to tp < t, the base load
qtp , number of EVs at the station Vtp and the number that has
been charged Xtp are also known. These values can simply be
calculated for time period tp using the following equations.

Vt =
∑
i∈C

vit (14)

Xt =
∑
i∈C

xit (15)

IV. Solving the online problem

In this section, a method for solving the OLM is presented.
To be more precise, a method for deciding which EVs that
are currently at the P-R facility will be charged. Note that by
iteratively applying such a method for all the time periods from
1 to T , a feasible solution for the FIM will also be generated.
Such a method needs to provide the values xit for time period
t and i ∈ C based on information available at time period t in
a way that the maximal change in demand over all the time
periods o is minimal. In addition, as in the case of FIM, the
objective is to maximize the total amount of charge given in
Eq. 13.

Although it is possible to define a heuristic function that
decides which EVs will be charged at some time period t ∈ T ,
or in other words specify all the values of xit (i ∈ C), it may
not be the best choice. There are several reasons for this. First,
standard rule-of-thumb heuristics for online problems tend to
be highly complex. The second issue is that such a method
needs to incorporate some type of prediction for the future
states of the system, which is often not precise.

To avoid these issues, in the proposed algorithm, the deci-
sion on which EVs will be charged and the values of xit are
divided into two subproblems. The first one is finding how
many EVs Xt will be charged at time period t. In the following
text, the notation hn will be used for this function, potentially
a heuristic one. The second one is selecting which EVs will be
charged. In practice, this means that we wish to select Xt EVs
for which xit will be set to one. To achieve this a heuristic
function hs is defined. Result of hs gives the indexes in C
for which xit will be set to 1, in a way that all the necessary
constraints are satisfied. By doing so, in the decision function
the part where prediction is highly needed, the number of EVs
that will be charged, is separated from the one where this is
less necessary, the specific vehicles that will be charged. In
the proposed method the function hs is defined as a standard
“rule-of-thumb” heuristic. Instead of defining the heuristic hn

in the same way, a simple neural network (NN) is used. In the
following text details on the heuristic hs and the method for
defining and training the NN for hn are presented.

Fig. 2. Structure of the used NN. White is used for the input/output layers
and grey for the hidden ones. All the layers are fully connected.

A. Amount of Charging

In this subsection, the details on the method for selecting
the number of vehicles that will be charged are provided.
The full information version of the problem can easily be
solved to optimality using the ILP presented in Section II.
The idea of the proposed method is to exploit this fact, more
precisely, the possibility of generating a large number of
pairs, namely problem instance and optimal solution. From
an optimal solution of the FIM, it is possible to observe the
decision Dt, at some time period t in the FIM that leads to an
optimal solution based on the information It available at that
time. Such pairs (It,Dt) can be used as training data for a NN,
which can later be used instead of the heuristic function hn.

1) Neural Network Structure: In defining such a NN, it is
essential to specify what the input and output parameters are.
A straight forward definition of this NN would be to have Dt

correspond to the decision which vehicles will be charged and
the It to all the available information given in the definition of
the problem. A significant disadvantage of this direct approach
is that the NN becomes large due to the high number of input
and output parameters which are connected to each of the EVs.

To avoid these issues, the NN is designed to only predict the
number of EVs that are charged Xt, the output parameter; and
use only the input parameters needed to efficiently calculated
this value. Empirically, we have found found a list of suitable
input parameters and the structure of such a neural network.
The used parameters are the following:
• qt is the base load at time period t for which the decision

is being made.
• Vt is the number of vehicles that can potentially be

charged at t.
• ht−1 is the total load as the sum of base load and load

related to charging the EVs.
• Xt−1 is the number of vehicles charged at time period t−1

.
• Vt−1 is the number of vehicles at the facility at time period

t − 1.
The structure of the NN can be seen in Fig 2. The activation
function for the hidden layers was Relu and a linear one for
the output layer. It should be noted that in our tests, there was



a wide range of NN structures (with the same set of input
parameters) for which the performance was adequate.

2) Training: As previously stated, if an optimal solution
for a FIM instance has been found, the decisions in the OLM,
for that instance, that generate the optimal solution are known.
More precisely, at some time period t, based on the solution
of the FIM, the input values qt,Vt, ht−1,Dt−1, and Vt−1 and
the output Xt are known. All these values can be trivially
calculated from the problem instance and the solution of the
FIM.

If the relevant information about EVs, the solar production
and base load are known for some time window (in our case
one day), it is possible to find what would be the optimal
scheduling. This fact is exploited in the method for training
the NN in the following way. First, a set of problem instances
is generated. Then, each one of them is solved using the ILP.
These solutions are used to generate input/output pairs for
the individual steps (decisions at specific time periods) of the
OLM. This data is used to train the NN.

The training set (problem instances) has been generated
based on real-world data in the same way as in [16], for which
we give a short outline in the following text. The data used
to generate the EV visits to the P-R facilities is related to the
hourly utilization rate of P-R facilities taken from [17] and
the behavior of passengers of metro services taken from [23].
In addition the battery sizes of the EVs have been generated
based on EV sales data taken from [24] and corresponding
battery sizes [25]. The information related to the total electric
demand and solar energy production are adopted from [26].

Instances having 500 EVs visiting the P-R facility over a
time period from 6:00 to 20:00 hours have been randomly
generated. Each hour has been divided into 4 time periods.
The generated instances had the same statistical properties
as the used real-world data. Specific details on the method
of generation and properties of the used data sets can be
found in [16]. Separate training sets have been generated for
different levels of EV and solar generation adaptation. In case
of EVs, the adoption levels are related to the level of electric
consumption used for charging EVs to the total one, and it
was 2.5 %, 5% and 10 %. In case of PV production, the
level of solar energy production is related to the total electric
consumption (without EV charging) and it was 10%, 20% and
30% of the total load.

For each pair, EV and solar generation adoption, a separate
NN is trained. To be more precise, 1000 problem instances
have been generated for each pair. Since each solved FIM
instance provides 56 input-output pairs (14 hours scheduling
window and each hour is divided into 4 time periods), a total
56000 such pairs are used for training the NN for each pair.

B. Vehicle selection

In this subsection, we give the details of the heuristic hs

used to selecting which N EVs will be charged at some time
period t. The number of EVs that will be charged is calculated
using the function hn. In addition, for each EV i three values
are provided based on the current time period t. The first one lit

is the remaining time that the EV i will spend at the facility.
The second parameter cit is the amount of charge that the
battery of EV can receive. The last parameter rit is the total
amount of charge that EV i has received before time period t.
Let us define arrays Rt, Ct, and Lt that hold these values for
all the vehicles i that can be charged at time period t. These
are the EVs that are at the station and the battery is not fully
charged at time period t. Note that the arrays Rt, Ct, and Lt

are dependent on the time period t and the previous states of
the system.

The heuristic function hs(N,Rt,Ct, Lt) has output as an array
X̂t of binary values. As before, a value of xit = 1 means that
EV will be charged at time t, and the value of 0 the opposite.
The idea of the heuristic is to set N values of elements of xit to
ones, for the vehicles whose charging is most desirable. There
are two main factors for desirability. The first one is related
to providing a minimal charge to a vehicle. The charging of
a vehicle for which rti < r is highly desirable, and for such
vehicles the desirability is proportional to r− rti and inversely
proportional to the remaining time lit at the station for that
vehicle. This can be formalized using the following equation

charge(i, t) =

{
0, rit ≥ r
r−rit

lit
, rit < r (16)

Note that in Eq. 16, only vehicles that can be charged will be
considered, hence division by zero will not occur.

The second part is related to the available charging capacity
of an EV battery. The goal is to maximize the potential
charging in the future time periods. This can be achieved by
preferring the charging of vehicles that have a high amount of
available cit and a low amount of remaining time lit.

capacity(i, t) =

{
0, cit = 0
cit
lit
, cit > 0 . (17)

Since providing the minimal charge to an EV is a hard
constraint, it will be always preferred to charge a vehicle that
has not received the minimal charge to one that did. The
overall desirability o charging an EV i at time period t can
be summarized using the following equation

Desirability(i, t) = M · charge(i, t) + capacity(i, t). (18)

In Eq. (18), M is constant satisfying M � 1. The function
Desirability simply states that the satisfying the minimal
charge is of higher importance than remaining capacity of a
battery for an EV. Using this function, we can specify the
heuristic function hs in the following way. It will set the value
of xit of N EVs, that can be charged at time period t, that have
the highest values of Desirability(i, t).

C. Implementation details

In this subsection, the details of applying the proposed OLM
are given. The procedure can be divided into two parts. The
first on is related to the training of the NN and the second one
to the use of the heuristic functions. The training of the NN
has the following steps:



• Collect data on related to EVs visiting the P-R facility,
solar generation, and base load. In case only a small
amount of such data is available, it is possible to generate
it based on statistical properties.

• Use this data to generate FIM problem instances. Solve
the instances using ILP.

• Transform FIM solutions to OLM format. More precisely,
generate input/output pairs for each time period for each
instance that will be used as training data.

• Normalize the training data.
• Train NN using the normalized data. The trained NN is

later used as the function hn

The second part of applying the OLM is specifying the appli-
cation of the decision function for selecting EVs that will be
charged over the time window of interest. As previously stated
this is done iteratively over time periods 1 to T . This procedure
is best understood through observing the pseudocode given in
Algorithm 1.

Algorithm 1 Pseudocode for the online method
t = 1
repeat

Calculate qt,Vt, ht−1, Xt−1 and Vt−1
Xt = hn(qt,Vt, ht−1, Xt−1,Vt−1)

X̂t = hs(Xt,Rt,Ct, Lt)
Update problem state based on X̂t

t = t + 1
until t = T

In Algorithm 1, each iteration represents the procedure for
one time period. At each of them, the first step is calculating
the parameters of the system known at time period t, in exact
qt,Vt,Tt−1, Xt−1 and Vt−1. These value are used to decide the
number of EVs that will be charged using function hn which
uses the previosly trained NN. The next step, is calculating the
specific vehicles that will be charged, and stored in X̂t, based
on function heuristic function hs. The values of X̂t are used
to update the system parameters. This procedure is repeated
for all the consequential time periods until the end of the time
window for which the scheduling is done.

V. Results

In [16], the positive effects of scheduling the charging of
EVs at P-R facilities for flattening “duck curves” have been
evaluated. To be more precise, computational experiments
show that the optimal solutions for the FIM can decrease
ramping requirements (difference between minimal and max-
imal load) between 3 % and 25%, depending on the level of
adoption of EVs and solar generation. Due to this, the main
objective of the conducted computational experiments is to
show the potential of keeping such positive effects in case
of a more realistic online setting. The properties of solutions
acquired using the OLM are compared to the optimal ones
for the corresponding FIM. The OLM has been evaluated for
settings in which the total electric consumption need for EV
charging corresponds to 2.5%, 5%, and 10% of the base load.

In addition, several levels of solar generation are considered,
more precisely settings where 10%, 20%, and 30% of the base
load (excluding EV charging) is satisfied in this way. It should
be noted that the generated problem instances are different than
the ones used to train the NNs.

In our computational experiments, the behavior of FIM and
OLM has been compared over a hundred problem instances for
each pair solar generation and EV adoption. From our analysis,
there is no significant difference between the behavior of the
methods on different instance of the same type. Because of
this, we have used illustrative examples on specific problem
instances for each pair solar generation and EV adoption, see
Fig. 3. In these figures, we show the sum of base load, EV
charging and solar generation over the entire time window on
which the scheduling is conducted.

It can be observed that the OLM manages to maintain the
positive effects of the FIM for all the levels of EV adoption.
The total load curve, is smoother for the OLM than for the
FIM. This is important since this is a more desirable behavior
for electric distribution systems, and in a sense the OLM
produces better results than the FIM. It is expected that this
improvement comes from some deficiencies of the ILP used
for the FIM. Note that this data is used for generating the
data for training the NN for the OLM. This model focuses
on minimizing the maximal difference of total load between
two consecutive time periods while maximizing sum of the
total load. It does not take into account that it is preferable
to minimize the total sum of differences. Consequently, this
results in adding some small peaks in the demand curve that
maximizes the energy use. It is very interesting that the trained
NN, manages to “abstract” the positive requirement of having
a smooth total load. In a sense the “fine tuning” done by the
ILP is considered as “noise” by the NN.

Although the OLM has a very good overall performance,
in case of some test instances, it would increase the maximal
change of the total load for consecutive time periods, even
when compared with the base load summed with PV. This type
of behavior was rare and would not occur if the difference
was observed over a larger time window (time period on a
distance greater than 1). The total ramping up requirements
for the OLM had a neglectable increase when compared to
FIM, which was the most important parameter for evaluating
the new model.

VI. Conclusion

In this paper, a new model for evaluating the potential of
using EV scheduling for flattening the solar “duck curve” has
been proposed. The focus of the model was on systems of this
type that can be applied at P-R facilities. Compared to existing
ones for similar systems, it has a significant advantage that
the information related to the underlying optimization problem
becomes available as it would be in a real-world application.
To be more precise, the model is an online one in the sense
that the availability of information is related to the time period
for which the optimization is done. In this way the new model
simulates the passage of time.
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Fig. 3. Comparison of the normalized values required generation of electricity for different levels of solar production with different levels of consumption
related to charging of EVs. The notation Load − S ol is used for the case there is not EV charging, and EV − C/S ol to indicate the part of the load that is
related to EV charging/Solar generation. FIM and OLM are used for the values corresponding to the full information and the online models, respectively.

In addition to defining the model, a solution methods has
been designed. It consist in using a combination of a heuristic
function and neural network to make a decision on which
EVs will be charged at each time period. The training of the
NN is done using optimal solutions for problem instances,
which can be potentially acquired using data collection, using
an ILP. The conducted computational experiments indicate
that the use of this type of decision method in the online
model provides schedules that are near to the upper bounds
for improvement provided by the previously developed full
information model. One interesting aspect of the schedules
found by the proposed method is that they even have some
advantages to the previously developed FIM.

In the future, we plan to adapt this model to other charging
systems for EVs. Some promising adaptations can be for office
charging and charging of fleets of vehicles.
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