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ABSTRACT
Classification of seismic events detected from seismic
recordings has been gaining popularity in interpretation of
subsurface processes, e.g., volcanic systems, earthquake
activity, induced seismicity and slope stability, in particular
landslides. However, due to the variability of signal
representation for different classes in the temporal and
spectral space, a large feature space to characterise the
uniqueness of a particular type of event is used for
classifying seismic signals. The consequence is additional
complexity on the classifier and overfitting. So far, there
has been little attempt to address dimensionality reduction
via feature selection. In this paper, we propose an iterative,
alternating graph feature and classifier learning method for
micro-seismic signals via graph Laplacian regularization
and normalized graph Laplacian regularization. Using
recorded micro-seismic events from an active landslide, we
demonstrate improved classification accuracy with a
relatively small feature space compared to state of the art.

Index terms— Micro-seismic, graph feature learning,
GLR, norm-GLR

1. INTRODUCTION

Microseismic monitoring has been increasingly used to
illuminate subsurface processes, such as landslides, due to
its ability to detect small seismic waves generated by soil
movement and/or brittle behaviour of rock [1]. The
advantage of microseismic against traditional geodetic and
geotechnical monitoring for slope stability is that
seismometers can be deployed outside the unstable soil
mass, offering long-term continuous monitoring over a
large area [2]. However, recordings are often contaminated
by signals generated by other sources (wind, rainfall,
human activities, animals, etc.), requiring robust and
sophisticated methods to characterise the signals that
represent slope instability [1].

To extract useful information from micro-seismic
recordings, it is necessary to denoise measurements, detect
potential micro-seismic events, construct and select most
discriminative features, classify the events into classes

based on the type of the micro-seismic activity, and finally
localize the events.

In this paper, we leverage on developed signal
pre-processing and detection methods [2], [3], [4] and
focus on signal feature selection and classification.
Commonly, feature selection is performed manually, based
on expert knowledge to select the most discriminative
feature vector [5] or estimating the variable importance [6].
Following recent advances in graph signal processing
(GSP) [7], and more specifically graph
regularization-based classification [8] and graph learning
[9], we develop and evaluate suitability of GSP-based
methods for automatic feature selection and classification.
We show that the integrated iterative feature selection,
extraction and classification method outperforms
state-of-the-art feature selection and classification
approaches, reducing the overall complexity.

2. BACKGROUND

The four classes of micro-seismic signals of interest to this
study are [2]: (i) Earthquakes: these are potential landslide
triggers, usually with medium to long duration, their
frequency and waveforms are affected by the source
distance, which makes classification challenging; (ii)
Slidequakes: can be seen as earthquakes with a short
duration; however, there is no clear dominant frequency;
(iii) Various tremors: observed as episodic tremor and slip
(ETS) signals, harmonic, rockfall and multi-events signals;
(iv) Calibration shots: artificial signals generated to
calibrate the seismic monitoring system, derive velocity
models and test localization algorithms.

Micro-seismic signal detection and classification
usually starts by detecting candidate events of
micro-seismic activity, which is traditionally performed
using statistical approaches (e.g., STA/LTA or Akaike
Information Criterion, frequency analysis [3]), or combing
the two [2]. After potential events are identified, feature
construction and selection take place. The current trend is
focused on mostly feature construction, resulting in a very
large set of features (e.g., 102 in [10]) including signals of
ascending and descending duration, signal duration, signal
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envelop skewness and kurtosis, and energy of different
frequency bands [5], [6]. However, high number of
features could overfit classification models and result in
non-optimal performance. This motivates feature selection
to select the most discriminative features from a subset of
the previously constructed features. While seismic signal
feature selection research is an emerging field, initial steps
include using expert knowledge to reduce the feature
vector from 63 to 14 in [5], and using Variable Importance
estimation to reduce the feature set to 58 from 71 in [6].

2.1. Graph signal processing (GSP)

Graphs are commonly used data representation forms for
irregular data domains such as social networks, biological
networks, point cloud data, sensor array displacement, etc.,
by capturing inter-dependency between collected data via
weighted vertices [7].

Let G = (V,A) be an undirected graph, where V is
the set of vertices and A is the weighted adjacency matrix.
By assigning each data sample xi ∈ Rn to one graph
vertex, vi ∈ V, and seeing classification labels as a
piece-wise signal on graphs, one can restore the missing
labels and perform classification by smoothing the graph
signal using graph Laplacian regularization [7].

Indeed, let fk(i) be the k-th feature of data sample xi
associated to vertex vi, and let Fk = (fk(i)−fk(j))2. Then
we define the adjacency matrix A with its (i, j)-th entry:

ai,j = exp

{
−

K∑
k=1

ck
Fk(i, j)

σ2
k

}
, (1)

where σk is the scaling factor, ck weights the importance of
the k-feature, and K is the total number of features.

The graph Laplacian matrix is then defined as L = D−
A, where D is the diagonal matrix, given by di,i = Σjai,j ,
and its normalized form is Lnorm = D(−1/2)LD(−1/2).

For a binary (semi-)supervised classification problem,
where all N data samples xi need to be classified into one
of two pre-defined classes, based on the training set of
features fk, . . . , fn, n < N , a graph signal representing
classification labels is defined as:

si =


+1, if xi belongs to the Class and i ≤ n
−1, if xi does not belong to the Class and i ≤ n
0, for n < i ≤ N.

(2)
Then, one can perform effective classification,

competitive to advanced classification approaches when the
training set is unreliable or very small [7], by minimizing
the (normalized) graph Laplacian regularisation (GLR)
term given by:

s∗ = arg min
s∈R

(sTLs) (3)

where L is either graph Laplacian or normalised graph
Laplacian.

Graph-based feature weight learning so far
concentrates on diagonal element optimization [9], [11],
which assumes features are independent while full matrix
optimization [12], [13] takes into account cross-correlation
among features. However, the search space of the optimal
solution in [13] is not large enough and [12] uses a
closed-form solution without optimization. In this paper,
we focus on diagonal element optimization only. As a
benchmark, we implement the seminal work on graph
feature learning [11], that adopts gradient descent to
determine the diagonal entries while minimizing the
average entropy of the unknown labels.

3. METHODOLOGY

Based on prior micro-seismic event characterisation [2] as
well as time-series acoustic signal classification [10], we
narrowed down and constructed a set of 48 features, shown
in Table 1, to characterise micro-seismic events arising
from landslides. The 48 candidate features include
spectrum features (feature 1-15), temporal features (feature
16-42), and cepstrum features (feature 43-48). The task is
to select an optimum subset of the 48 candidate features
automatically and classify the corresponding events into
one of four classes (see Section 2).

Table 1: Candidate Features: y(t) is the seismic signal in time
domain, p(t) is the power signal, e(t) is the signal envelope,
q(v) is the frequency domain signal and c(v) is the cepstrum.

1.Mean of q(v) 17.Root mean square y(t) 33.Rate of attack y(t)
2.Max of q(v) 18.Standard deviation y(t) 34.Rate of attack e(t)
3.Median of q(v) 19.Max value of y(t) 35.Rate of decay y(t)
4.Variance of q(v) 20.Average power of y(t) 36.Rate of decay e(t)
5.Max envelop PSD of q(v) 21.Skewness of y(t) 37.Ratio1=30/31
6.Frequency 95%bandwidth 22.Skewness of p(t) 38.Ratio2=30/32
7.Frequency 50%bandwidth 23.Median value of y(t) 39.Ratio3=30/std e(t)
8.Dominate frequency 24.Kurtosis of y(t) 40.Ratio4=(tmax − 1)/(N − tmax)
9.Median normal q(v) 25.Kurtosis of p(t) 41.Onset of y(t)
10.Variance normal q(v) 26.Entropy of p(t) 42.Offset of y(t)
11.Int-ratio [14] 27.Entropy of y(t) 43.Std of c(v)
12.Number of peaks of q(v) 28.Kurtosis of e(t) 44.Mean of c(v)
13.Gamma 1 [14] 29.Skewness of e(t) 45.Skewness of c(v)
14.Gamma 2 [14] 30.Max of e(t) 46.Kurtosis of c(v)
15.Gamma 3 [14] 31.Meam of e(t) 47.Dominate Frequency of c(v)
16.Duration y(t) 32.Median of e(t) 48.Max of c(v)

Alg. 1 represents the proposed iterative alternating
binary graph classification and feature learning for
micro-seismic signal classification. Feature selection is
performed iteratively between classification and feature
weight update during graph learning. The algorithm takes
as input the entire set of candidate features, fk(i), and the
set of micro-seismic events to be classified xi, where the
first n events are labelled and used for training. The
algorithm processes one class at the time based on
one-against-all strategy converting this multi-class
classification problem into multiple binary classification
tasks. Eq. (2) is used to form the initial graph signal, where



Algorithm 1 Alternating Classifier and Graph Learning

Input:
Candidate Feature matrix (Table 1)
Initial graph signal si (2)
Graph weight scaling factor σk, see (1)
tol_set = tol_pg_set = µ
Constraint C, such that

∑
k ck ∈

[
0, C

]
Output: The predicted labels spredicted

1: Initialization: ck identity vector, tol = 1; i = 1
2: while tol > tol_set do
3: A← (1) and find L

4: s∗ ← (3); tol_pg = 1, j = 1
5: while tol_pg > tol_pg_set do
6: c∗k ← proximal gradient descent [9]
7: update A← (1) and find L using c∗k
8: obj_pgvalue(j)← using (4)
9: s∗ ← (3); j = j + 1

10: tol_pg = obj_pgvalue(j)− obj_pgvalue(j − 1)
11: objvalue(i) = min

s∈R
(sTLs)

12: tol = objvalue(i)− objvalue(i− 1); i = i+ 1
13: return spredicted

Class denotes the micro-seismic class to be considered for
each binary classification.

The hyper-parameters, σk,C, and the stopping criteria µ
are heuristically set. Note that ck ≥ 0 represents the weight
given to feature fk and is set to zero if fk is not used at all.

Based on [9], Alg. 1 alternates between learning the
features, c∗k, in Line 6 for fixed classifier (s∗) and learning
the classifier s∗ for a fixed set of features c∗k. The objective
function for graph learning in Line 8 is given by [9]:

min
∑
i,j

exp

{
−

K∑
k=1

ckFk(i, j)

}
di,j + I(c), (4)

where I(c) is an indicator function, that returns 0 if all
elements of c = [c1 . . . cK ] are in the range [0, C], or ∞,
otherwise. The algorithm iterates until the improvement is
above the threshold µ. Finally, as the output s∗ is a real
number, we take the sign operation as the final label:
s̃∗ = sign(s∗). See [9] for the complexity and
convergence analysis.

4. EXPERIMENTAL SETUP AND RESULTS

We evaluate the proposed classifier and graph learning on a
landslide site in Super-Sauze with continuously recorded
micro-seismic data for 58 days in 2010, containing four
event types or classes: earthquake, slidequake, tremors,
and calibration shot [2].

Firstly, similarly to [4], we perform bandpass filtering
and Neyman-Pearson detection resulting in 223 detected
events (56 earthquakes, 58 slidequakes, 37 tremors, 11

calibration shots, and 12 undefined events) plus 49 false
alarms. Note that [4] showed that Neyman-Pearson
outperforms STA/LTA, usually used for event detection.
After feature construction, we implement the SMOTE
algorithm to generate synthetic feature samples based on
all 48 features to balance the training set [15]. We split the
entire set into 30% used for testing and 70% used for
training, where the testing set does not contain any
synthetic features. In Alg. 1 we set µ = 0.01 and C = 48
(the total number of features).

As benchmark we use the feature selection method of
[16] (Inf-FS) (as used in [4]) and classifiers - Support
Vector Machine (SVM) and Random Forest (RF), as used
in [10] and [6], respectively. Inf-FS is a filter-based
unsupervised feature ranking method, that outputs features
sorted by their importance. Then, cross-validation is
utilized to pick the optimized subset of features with best
classification performance. Finally, SVM or RF classifiers
are used for classification based on the selected features. In
addition, we also implemented the harmonic
function-based graph feature learning method of [11] for
benchmarking.
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Fig. 1. Variation of feature weights, for all 48 features, with
iteration number.

Figure 1 shows how the feature weights for all 48
starting features vary across iterations. We can observe the
variations in feature weights between iterations until
convergence is reached (the curves become flat) around the
tenth iteration, even earlier for most features. This is
therefore the number of iterations we use in our
experiments, whose results are shown in Table 2.
Furthermore, we also observe only 22 features with
non-zero weight once convergence is reached, showing
dimensionality reduction of over 50%.

Table 2 shows the classification performance expressed
as F-score, where 1 is the best performance and 0 the
worst. We compare the non-iterative Inf-FS feature
selection followed by the ML classifier (SVM or RF), as
well as the method of [11], with our proposed iterative
alternating graph learning with two graph-based classifiers.
We can observe that the proposed graph-based alternating
classifiers and feature learning, for all 4 micro-seismic



event classes, provides the most accurate classification
result. The improvement is especially significant for the
Slidequake class. The reason that benchmark [11] performs
slightly worse than our method may potentially be that it
does not promote smoothness within the label signal.

Table 2: Classification Result (F1-score)
Feature

Selection Classifier Earthquake Slidequake Tremors
Calibration

Shot

Inf-FS SVM 0.9 0.84 0.92 0.8
RF 0.9 0.88 0.91 0.9

[11] [11] 0.91 0.91 0.88 0.8
Graph

Learning
GLR 0.94 0.95 0.93 0.85

norm GLR 0.95 0.93 0.95 0.92

5. CONCLUSION

We propose an iterative alternating graph feature and
classifier learning approach to tackle the emerging problem
of micro-seismic event classification. We show that by
tackling feature selection and classification jointly as in the
proposed approach, we can consistently improve
classification performance, with a smaller set of features,
of 4 types of micro-seismic events compared to
state-of-the-art seismic event classification methods.
Future work will focus on optimizing the underlying graph,
i.e., adjacency matrix and considering the case of labelling
errors in the training set.
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