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Rapid and continuous regulating adhesion strength
by mechanical micro-vibration

Langquan Shui 18 Laibing Jia%38, Hangbo Li3, Jiaojiao Guo?, Ziyu Guo?, Yilun Liu®, Ze Liu™ & Xi Chen®7®

Controlled tuning of interface adhesion is crucial to a broad range of applications, such as
space technology, micro-fabrication, flexible electronics, robotics, and bio-integrated devices.
Here, we show a robust and predictable method to continuously regulate interface adhesion
by exciting the mechanical micro-vibration in the adhesive system perpendicular to the
contact plane. An analytic model reveals the underlying mechanism of adhesion hysteresis
and dynamic instability. For a typical PDMS-glass adhesion system, the apparent adhesion
strength can be enhanced by 77 times or weakened to O. Notably, the resulting adhesion
switching timescale is comparable to that of geckos (15ms), and such rapid adhesion
switching can be repeated for more than 2 x 107 vibration cycles without any noticeable
degradation in the adhesion performance. Our method is independent of surface micro-
structures and does not require a preload, representing a simple and practical way to design
and control surface adhesion in relevant applications.
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to exhibit excellent surface adhesion properties!=3. For

example, geckos use hierarchical structures in their feet to
quickly regulate surface adhesion, and the adhesion/detachment
switching time is ~15 ms%, which allows them to climb walls at a
speed as high as 0.8 m/s>. The excellent functional properties of
biological systems have inspired many studies on the design and
fabrication of biomimetic artificial surfaces’>0-16, which show
fascinating applications in modern industrial technologies, such
as space technology, micro-fabrication technology, flexible elec-
tronics, robotics, and bio-integrated devices”>1718.

In the past decades, significant progress on improving the
adhesion performance (e.g., adhesion strength, adhesion switch-
ing, reversibility, and durability) of biomimetic artificial surfaces
have been achieved, but at the cost of complexity, versatility, and
cost®. For example, artificial hierarchical adhesion systems have
been reported to possess adhesion strengths as high as 200 kPal?,
higher than that observed in nature (e.g., 100 kPa for a gecko!$),
but they usually require complex surface patterning techniques
and high adhesion-to-preload ratios®°. Besides, the surface
microstructures are susceptible to environmental and intrinsic
surface forces, which limits the durability. Considering that the
apparent adhesion strength can be influenced by the real contact
area, the contact region size!”, and the adhesion work2%, adhesion
switching has been proposed by either controlling the load path
and failure mode of the interface or constructing a “smart”
interface such as a phase transition interface®20. The adhesion
switching triggers, such as mechanical!>»1>21-30, electro/mag-
netic!#1031, light32-34, fluid3>-38, and thermal3°-44 stimulations,
have been suggested. However, at present, there have been only a
few attempts to provide promising methods to tune the adhesion
strength continuously and rapidly, for example, gecko-inspired
directional adhesion!#131516:45-50 and debonding/peeling speed-
regulated adhesion?4-30,

Here, we report a very simple but effective technique to
robustly regulate surface adhesion to a desired (either strength-
ened or weakened) strength based on the modulation of normal
adhesion by micro-vibration. Combining the experiments with
the theoretical model, we found that the adhesion can be either
strengthened or weakened by controlling the micro-vibration.
Moreover, we observed that the adhesion strength can be main-
tained at any desired value with good durability and reversibility
within the theoretically permissible regulation ranges, while the
adhesion switching can be very quick, on the order of 10! ms,
which is comparable to that of geckos (15 ms?).

The experimental setup is shown in Fig. 1, where a stiff glass
sphere is aligned in normal contact to a flat polydimethylsiloxane
(PDMS) platform. Micro-vibration is carried out by fixing the
PDMS platform to a vibration exciter (two loudspeakers are used
in our experiments). During the adhesion test, the stiff contactor
is precisely controlled to move along the normal direction of the
PDMS platform, while the pulling force exerted on the stiff
contactor, the size of the adhesion region, and the displacements
of the platform and contactor are monitored in situ by a force
sensor, a group of laser displacement sensors, and a high-speed
camera, respectively (Fig. 1, see the Methods section). Notably,
the lateral motion of the stiff contactor should be prevented
during the adhesion test.

N atural long-term evolution has enabled some living things

Results

Adhesion behavior under vibration. Typical experimental
results are shown in Fig. 2. By exciting the PDMS platform
(i.e., using the strategy on the left side of Fig. 1b) with a micro-
vibration (with a frequency of w/(2m) =450 Hz and amplitude
of A, = 68 um), we found that the measured pull-off force (F,i=

Loudspeaker
(vibration exciter)

High-speed camera

Vibrating soft wall | Fixed stiff wall

|
!
I'11" Vibrating soft contactor
Iy
|
|
|

Fig. 1 Model description. a Schematics of the experimental setup for the
adhesion strength regulation test (see the Methods section). b The
corresponding mechanical model, where the curvature radius of the
contactor, the contact radius, and the penetration depth are R, a (>0), and §
(which can be negative), respectively. The contact deformation is
maintained by an external force, that is, the contact load, F. Under the
assumption of small strain, the adhesive contact between a stiff sphere and
a vibrating soft substrate (left of b) is mechanically equivalent to that
between a vibrating soft sphere and a fixed stiff substrate (right of b; see
Supplementary Fig. 3 and Supplementary Movies 1 and 2).

0.7492 N) considerably increases to more than 75 times of that
without micro-vibration (Fog, measured as 0.0097 N) (Fig. 2a).
Meanwhile, we observed that during the tests, the change in the
contact radius (a) within one vibration period is very small. For
example, even if the apparent (or average) contact load F ~ 0.6 N
(note that the average tension of the rubber band is equal to F,
Eq. (1)) is ~60 times Fogo (marked by “x” in Fig. 2a), the change
in the contact radius is <2% (Fig. 2b). This observation indicates
that the modulation of the interface adhesion strength by micro-
vibration originates from the dynamic response of the system
rather than the change in the effective contact area. In addition, in
a durability test in which the apparent contact load F was
maintained at ~70 times Fox (marked by “o” in Fig. 2a), we
observed that such a considerable regulation of adhesion strength
can be robustly repeated over 2 x 107 vibration cycles (Fig. 2c).
Interestingly, we observed that the contact radius changes
asymmetrically within one cycle of micro-vibration (Fig. 2b),
which could originate from the effect of the rate of change in the
adhesion energy, bulk viscoelasticity, inertia, and so on, reflected
in the different crack growing (with a decreasing) and healing
(with a increasing) rates. It is noted that the above adhesion

2 NATURE COMMUNICATIONS | (2020)11:1583 | https://doi.org/10.1038/541467-020-15447-x | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15447-x

ARTICLE

[

0.8 %
=
L
E o
- 04 %
= o
:
3 3
8 0 =
c °
° 5
s 0.60 @
@ 0.4} {1 2
s a
o @
= 0.59 B =
4 415 42 425 3
_08 1 1 1 1 1 é
0 1 2 3 4 5 6
Time t (h)
b F=06N
2.20
8 215
© .
: 5
5 e, %
E ............
S 210
o
2.05 1 1 1
0 T4 T2 37T/4 T
Time t (T=1/450s)
c
o 70
W’
5
% 35
c
(0]
= _
F~07N
0 1 1 1
0 0.5 1.0 1.5 2.0

Vibration cycles (x 107)

Fig. 2 Typical experimental results for regulating the adhesion strength.
The frequency w/(2x) = 450 Hz. The amplitude A, =68 pm. a The
measured pulling force in the rubber (red line) and the upward
displacement of the slider (blue line) as a function of time. b The change in
contact radius with time within one vibration period under the condition of
F ~ 0.6 N (point “x" in a), which is ~60 times the pull-off force without
micro-vibration (Fuf 0, measured as 0.0097 N). The data (here denoted as
a;) are collected from three consecutive vibration cycles in one trial
(correspond to i =1-3), and each cycle contains 7 data points (correspond
to j=1-7). The dotted curve connects the 7 average values a; = >/, a;/n,
n=3. Each bar represents the standard errors (SE, calculated by

SE; = \/ZL (a5 — a,/)z/[n(n —1)],n = 3), and demonstrates the interval
[a,j —SE;,a,+ SE,I-] ¢ A durability test in which the apparent (or average)

un

contact load is held constant (F = 70F g o, point “o” in a), where the
drastically enhanced adhesion strength is maintained for over 2 x 107
vibration cycles without any noticeable degradation in the adhesion

performance.

modulation experiments do not require a preload, which we
attribute to the instantaneously formed reliable adhesion by the
assistance of micro-vibration.

Continuous regulating capability. To experimentally show the
capability of continuously tuning surface adhesion (both enhan-
cing and weakening) by using our method, we varied the fre-
quency of micro-vibration (w/(27)) from 0.1 to 0.8kHz and
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Fig. 3 Measured normalized pull-off force F,¢/Fosr,0 With different
actuation frequencies and amplitudes. The experimental data are marked
by the plus sign. In this plot, Fos/Foft,0 ranges from O to 76.83. Four
contours (Fos/Fors0 =10, 30, 50, 78) are plotted based on theoretical
calculations [using Eq. (3), for which the parameters are the same as those
in Fig. 51.

changed the amplitude (A,) from 5 to 110 pm. The experimental
data are shown by the plus sign in Fig. 3. For comparison, the
theoretical predicted pull-off forces (based on Eq. (3)) Foa/Fosro
are plotted as contours, where the red contour corresponds to the
maximum of Fog/Fogo. It is clear that the trend of the experi-
mental data agrees with the theoretical results, especially for large
frequencies, while a deviation occurs when w/(27) <400 Hz. This
is because Eq. (3) only holds for w >0 (see the Discussion sec-
tion). However, the lower and upper bounds can be theoretically
determined as 0 and 78, respectively (see the Discussion section),
which agree well with the experimental results, where min{Fg/
Fofro} = 0 and max{F¢/Fog o} = 76.83. The observed continuous
tuning of surface adhesion, from weakening (Fog/Fogo<1) to
enhancement (F,g/Fyfr > 1), is remarkable since in many prac-
tical applications, such as those using gecko-like robots, interface
adhesion, and debonding, must be executed repeatedly.

Adhesion switching and energy consumption. From the view-
point of practical application, the timescale of adhesion switching
is another key parameter and can be measured by a sudden
change in the actuation amplitude, frequency, or apparent contact
load. Typical results are shown in Supplementary Note 5, where
we measured the adhesion by a sudden change either in the
actuation amplitude (e.g., from A,=30-80pum) or in the
apparent contact load (e.g., from F/F,g , = 6-69) with a constant
actuation frequency of 450 Hz. We observed that the system
responds very quickly (within 16 ms, see Supplementary Fig. 2
and Supplementary Table 1). Similarly, by an abrupt increase in
the actuation frequency from w/(27) =300-500 Hz, but with a
constant actuation amplitude of 30 um, the measured shortest
transformation time is 33 ms (Supplementary Table 1). All of the
measured adhesion switching times are comparable to that of
geckos (15 ms3), which indicates that our method is desirable for
applications, such as fast mobile robotics and space technologies
that require the ability to move and place objects accurately and
quickly. Considering that the input power for adhesion regulation
is crucial for practical applications, we further calculated
the input power. By varying the actuation amplitude from 8.6 to
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96.5 um with a constant actuation frequency of 450 Hz, we found
that the input power per contact area of the system varies from
0.12 to 5.57 mW mm~2 (see Supplementary Note 6 and Supple-
mentary Table 2), which is very low and promising for highly
integrated and untethered applications.

Discussion

To understand the observed phenomena, we modeled the adhe-
sion system as sketched in Fig. 1b. Mechanically, the stiff con-
tactor/vibrating soft platform system (left) is equivalent to a
vibrating soft contactor/stiff platform system (right; see Supple-
mentary Fig. 3 and Supplementary Movies 1 and 2). Under an
external force, F (pressing is defined as positive and pulling as
negative), the stiff part will penetrate into the soft part. The
penetration depth is defined as . In our experiments, a spherical
crown-shaped stiff glass (with a curvature radius of R) and a stiff
connector (the part between the rubber band and the glass in
Fig. la) served as the contactor (with a mass of M), and a widely
used soft material, PDMS, was chosen as the soft platform.
Poisson’s ratio of PDMS can be taken as v =0.5. The elastic
modulus of PDMS is thus K = 4/3E/(1 — v2) = 16E/9°!, where E is
Young’s modulus. Considering that the ratio of the vibration
amplitude of the contactor to the elongation of the rubber band in
our experiments was <0.01, we assumed that the pulling force in
the rubber band measured by the force sensor approximately
equals the apparent/average contact load F. We herein derived
the governing equations for the dynamic adhesive contact as (see
Supplementary Note 1):

{%(35_%)+M5+68:F=F+f7

K (5— %)2: w(a,v),

(1)

8ma

where f= Arcos wt is the imposed micro-oscillation of F. In our
experiments, Ay= MA,w?, where A;, and w are the amplitude and
circular frequency exerted on the platform by the loudspeaker,
respectively. ¢ is the damping coefficient of the system. w(a, v) is
the effective adhesive work at the contact line, which asymme-
trically depends on the speed of the moving crack tip v (v = —a).
Specifically, as the crack propagation speed (v) increases, the
adhesion work first increases exponentially, then falls sharply and
finally rises rapidly again. As the healing speed (|v|) increases, the
adhesion work rapidly approaches zero (Fig. 4). When v < v, w(a,
v) is (see Supplementary Note 1)24-30.52-61,

3

ay —1
) , —oo<v<0,

v
W 0<sv<y,

w0<1+

(2)

w(a,v) = W0<1 N

v
Yo
where w, is the quasi-static (intrinsic) adhesion work of the
contact pair, v, and « are two constants that depend on the
materials in contact, and v, is the saturation velocity; w locally
decreases with v when v>v. (Fig. 4). If ignoring the time-
dependent terms, Eq. (1) degenerates to the classic JKR
(Johnson-Kendall-Roberts) theory>!>2, that is, 8 =a?/R—
\/8/3-maw/K and F=Ka/2 (36 —a®/R). To theoretically
predict the effect of micro-vibration on the contact adhesion, we
approximately solved Eq. (1) (see Supplementary Note 2). The
obtained apparent contact load as function of the average contact
radius (@) and the micro-vibration (As w) reads

_ Ka?
F(Ay, w,a) :Ta — \/6nw,Ka>
3 AfKa

2 \/(SK&/Z — Mw?)* +c2a?

; AfZO,w > 0,v<v,.

(3)

Crack propagating
Wy (v=—a>0)

Hysteresis loop
under a cyclic load

i a Crack healing
a (v=—a<0)

Fig. 4 The constitutive relation of effective adhesive work. The propagating
and healing of an interface crack generally have different resistances, which
results in the adhesion hysteresis. The inset shows a typical hysteresis loop
under a cyclic load. For the situation of v <v, where v, is the saturation
velocity, the adhesion hysteresis can be utilized to increase the apparent
adhesion work, hence enhance the interfacial adhesion strength. The
experimentally determined « varies between 0.1 and 0.8, and the “N" shaped
w(v) curve is generally observed when v>v.25-27:30, More details can be
found in Supplementary Note 1.

Based on Eq. (3), the pull-off force (Fo¢) can be readily
obtained by finding the minimum value of F for v < v, Equation
(3) also indicates that Fog is higher than Fq o = —3/2 - mRw,
(Foge = Fofro when As=0) if As> 0 (under micro-vibration), which
we attributed to the adhesion hysteresis (see the hysteresis loop in
Fig. 4) induced by the adhesion asymmetry as stated above. In
fact, a similar “vibration suction method”®2-64 has been reported
to enhance the negative pressure through vibration.

On the other hand, Eq. (3) allows us to quantify the influence of
micro-vibration on the apparent contact load. Typical results are
shown in Fig. 5, where the apparent contact load F is normalized
by Fogp. It is clear that even for a very small increase in A, (Ar=
MAyw?, with fixed 27/w=450Hz), both the ranges of the
apparent contact load and the contact radius increase significantly,
which reveals that the surface adhesion can be effectively regulated
by the micro-vibration. In principle, for any given combinations of
Ay (or Ap) and w, the maximum value of F/F g gives the nor-
malized apparent pull-off force Fou/Fogro (Supplementary Note 3).
As the normalized pulling force increases, the average contact
radius decreases/increases along the F/Fg, ~ a curve until it
reaches the maximum normalized pulling force (blue circles in
Fig. 5a), at which interface adhesion fails and the two contact parts
are pulled off. Therefore, the upper bound of F,g/Fxo can be
obtained by setting max{v} = v,, which gives F,g/Foro = |v/vo|*/4
(Supplementary Note 3, red dashed line in Fig. 5a). The lower
bound of Fog/Fo is 1, which is set by letting A= 0. In practice,
we can regulate the contact adhesion by keeping either A, or w
fixed while varying the other to obtain a target pull-off force.
Typical results are shown in Fig. 5b, where the blue curve in
region 1 is obtained by fixing w/(27) = 450 Hz. We found that the
pull-off force in this region depends almost linearly on the micro-
amplitude, that is, Fog/Fog0 x Ay, in line with the theoretical
prediction (Eq. (3) and Supplementary Note 3).

Notably, the results above are based on the assumption that the
crack propagation speed (v =—a) is lower than the saturation
velocity v.. In some cases, if the combinations of Aj, and w result
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finite element simulation (see Supplementary Note 4 and Supplementary Fig. 1; the actual elastic modulus of the PDMS is K=16E/9 = 6.211 MPa

corresponding to an infinite thickness). The radius and mass of the contactor are R = 51.64 mm and M = 2.905 g, respectively. The damping coefficient ¢ ~
51Nsm~1is determined by the power consumption data. wo =40 mJm=2, vo=0.6 um s, a=0.46, and v. = 0.16 m s~ are experimentally measured

by the peeling test.

in max{v} > v, the adhesion system will become dynamically
instable and the contact states cannot be predicted by Eq. (3)
(shown as dots instead of solid lines in Fig. 5a). Although it is
difficult to precisely predict the contact states when max{v} > v,
the upper bound of F¢/F,o should be the same as |v./vy|*/4 (red
dashed line in region 2, Fig. 5b) since the rate-dependent effective
adhesion work decreases when v is larger than v, (Fig. 4). This
relationship has been verified by experiments in which the
actuation frequency was kept constant while the amplitude was
increased from 2.4 to 168 pm (denoted by “o” in Fig. 5b).
Notably, the adhesion strength can be reduced to 0% of the
default/quasi-static/intrinsic strength when A, >153 pm (Figs. 3
and 5b). The dynamic instability (see the “N”-shaped constitutive
curve in Fig. 4) induced adhesion deterioration demonstrates that
our method can not only enhance the surface adhesion (pink
region in Fig. 5a) but also reduce the contact adhesion to make
the originally sticky interface a non-stick interface by increasing
the vibration frequency or amplitude so that v>> v, (green region
in Fig. 5a). This is very attractive for applications such as the
using of robots for the nondestructive separation of adhesion
interfaces. Experimentally, we found that to make F,g/Fogo <1,
one needs to set a sufficiently high Afor w to effectively weaken
the adhesion strength (Figs. 3 and 5b).

Methods

Adhesion strength regulation test. The experiments were carried out with a
custom-built adhesion testing system (Fig. 1), where a stiff glass contactor with a
spherical surface was aligned perpendicular to a flat PDMS platform. The PDMS
platform was prepared by pouring mixed liquids (Dow Corning SYLGARD® 184,
with a base to cross-linker weight ratio of 10:1) into a shallow rectangular slot mold
(50 x 20 x3 mm?3) at room temperature, and the upper surface became very smooth
under the action of gravity and surface tension. After curing at 23 °C for 720 h, the
final thickness of the PDMS platform was measured to be 3 mm. Two electro-
dynamic coil cone loudspeakers (with a diameter of 8 in., rated power of 200 W,
and impedance of 8 Q) were used to excite the vibration of the PDMS platform.
The loudspeakers were driven by a harmonic signal generator (with working fre-
quency <20 kHz), equipped with a power amplifier (with working frequency <10
kHz and power of 1 kW). The vibration amplitude was controlled by adjusting the
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amplification factor of the power amplifier. An optical plano-convex lens (with a
radius of curvature of 51.64 mm) was chosen as the spherical crown-shaped glass
contactor, which was then connected in series with a rubber band buffer (cut from
a yellow natural latex loop; section of 1.5 x 1.5 mm?2, stiffness of 121.4 N m~!) and
a force sensor. The force sensor (with a measurement range of +2 N, resolution of
30 uN, and working frequency <2 kHz) was constructed by a cantilever beam with
several strain gauges adhered to the surface and was used to measure the normal
force near the free end. The force sensor was then fixed to the slider of a vertical
translation stage. During the adhesion test, the stiff contactor was precisely con-
trolled to move along the normal direction of the PDMS platform by actuating the
vertical translation stage. The loading rate was varied between 3 um/s and 0 with
holding times of 1s and 10 s, respectively (such a loading mode approximates the
quasi-static). The displacements of the platform and the contactor were measured
by four laser displacement sensors (KEYENCE® LK-G5001, LK-H150) with a
sampling frequency of 100 kHz, which were recorded by a data acquisition card (NI
USB-6212). The size of the adhesion region was recorded by a high-speed camera
at a frame rate of 3500 frames/s. During the adhesion test, the temperature and
humidity were monitored and maintained at 23 °C and 65% relative humidity,
respectively.

Durability test. As the vibration continued, the contact load was slowly increased
by moving the cantilever beam upwards (the loading rate was set as 3 um s~1) with
the vertical translation stage to a target value, and then holding the cantilever beam
position with the translation stage by simply turning its power off. During the tests,
both the displacement and the force were recorded until the contactor separated
from the PDMS platform spontaneously.

Determination of material properties. The Young’s modulus of the PDMS (E)
was measured by dynamic thermomechanical analysis and compared with the
corresponding value reported in the literature®. The typical value is taken by
averaging the modulus at ~450 Hz. The effective elastic modulus was determined to
be 2.23 times the actual elastic modulus (see Supplementary Note 4 and Supple-
mentary Fig. 1). The stiffness of the rubber band was measured by a uniaxial
tension test. The damping coefficient of the system (c) was determined by the
power consumption data with v <v,, and the typical value was determined by
averaging the coefficients at ~450 Hz. Specifically, based on the recorded data, we
calculated the experimental power consumption by P = w/(27) - ¢ fdé. By com-
parison to the relation P = cw?/2 Afz/ (3Ka/2 — MwZ)ZJrCZwZ] (see the main
text), ¢ was thus obtained. The adhesion properties (wo, v, and v,) were measured
by a peeling test as follows: Preparing bilayered PDMS tape. A rectangular slot

mold (600 x 50 x 0.25 or 0.5 or 1.0 mm?3) was first sealed by a commercial trans-
parent tape (with width of 60 mm), and then the as-mixed PDMS liquids were
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poured into the mold. After solidification and demoulding, the PDMS and com-
mercial transparent tape were glued together, resulting in a bilayered PDMS tape.
The prepared bilayered PDMS tape was then cut into four narrower tapes with a
size of 600 x 10 x 0.25/0.5/1.0 mm? and then adhered to a cleaned glass plate. Slight
pressure was applied to ensure good adhesion between the PDMS tape and the
glass plate. Placing the glass plate vertically and then peeling off the upper end of
the PDMS tape slightly, this end of the PDMS tape was then connected to a free
weight by a stiff string. Once the weight was released, the weight fell vertically
under gravity, and the PDMS tape peeled off from the glass surface with a peeling
angle of 180°. By recording the falling displacement and time, the falling speed of
the weight can be determined. By substituting these values into the Kendall formula
(the peeling force is approximately wb/2 at the peeling angle of 180°, where w is the
work of adhesion and b = 10 mm is the width of the PDMS tape), and applying the
constitutive relation of w=wy(1 + [v/v|%) (Eq. (2)), we obtained the adhesion
property constants by least square fitting (w, was measured by the adhesion
strength regulation test with a vibration amplitude of zero, i.e., without vibration).

Data availability
Data supporting the findings of this manuscript are available from the corresponding
authors upon reasonable request.
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