
SPARSE MULTIDIMENSIONAL EXPONENTIAL ANALYSIS1

WITH AN APPLICATION TO RADAR IMAGING∗2

ANNIE CUYT† , YUAN HOU† , FERRE KNAEPKENS† , AND WEN-SHIN LEE‡3

Abstract. We present a d-dimensional exponential analysis algorithm that offers a range of4
advantages compared to other methods. The technique does not suffer the curse of dimensionality5
and only needs O((d + 1)n) samples for the analysis of an n-sparse expression. It does not require6
a prior estimate of the sparsity n of the d-variate exponential sum. The method can work with7
sub-Nyquist sampled data and offers a validation step, which is very useful in low SNR conditions.8
A favourable computation cost results from the fact that d independent smaller systems are solved9
instead of one large system incorporating all measurements simultaneously. So the method also lends10
itself easily to a parallel execution. Our motivation to develop the technique comes from 2D and 3D11
radar imaging and is therefore illustrated on such examples.12
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1. Introduction. In the past few years multidimensional exponential analysis16

has attracted considerable attention, as researchers were trying to solve the problem17

from the theoretical minimal number of samples, which equals the product of n,18

the number of terms in the multivariate exponential sum (2.1), and d + 1 where d19

indicates the dimension (see among others [10, 30, 11]). Contrary to other approaches,20

the method presented in [10] does not need a full d-dimensional grid of data, nor does21

it require the solution of the full-size structured generalized eigenvalue problem and22

linear system of interpolation conditions. Instead, in [10] the linear algebra problems23

are split up in smaller better conditioned problems. In this paper, we develop a24

reliable numerical implementation, making use of this divide-and-conquer flavour and25

adding a sub-Nyquist sparse sampling feature to the basic theory, to deal with noisy26

data, tackle the numerical sensitivity in case of closely spaced exponential terms, offer27

output validation and provide automatically a reliable estimate of n, being the total28

number of terms.29

Multidimensional exponential analysis is a fundamental inverse problem in signal30

processing, as it appears in magnetic resonance spectroscopy, MIMO radar, sonar,31

wireless communication, antenna array processing, sensor networks, RFID, GNSS32

and automotive radar, to name just a few. It is also at the basis of inverse synthetic33

aperture radar (ISAR) imaging, where the challenge is to extract high resolution34

information from noisy data, if possible using a cost effective algorithmic solution35

rather than an expensive advanced radar system. This application will serve as a36

guiding example throughout the paper.37

ISAR imaging is a system that consists of a real-aperture radar, emitting a se-38

quence of high frequency bursts, and a moving target in the far field of the radar,39
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2 A. CUYT, Y. HOU, F. KNAEPKENS AND W.-S. LEE

causing backscattering. When the target is hit by an electromagnetic wave, a lim-40

ited number of locations on the object, such as edges and surface discontinuities,41

scatter the energy back toward the observation point. The locations of these concen-42

trated sources of scattering energy are called scattering centers, each of which can43

be described by a multivariate complex exponential. ISAR is widely used and plays44

an important role in target identification, commercial aircraft classification, military45

surveillance and the like.46

So the scattering center model in ISAR consists of a finite linear combination47

of complex exponentials that describe the different scattering centers of the radar48

target, where the number of these scattering centers is considerably less than the49

number of image pixels. Although the model is both simple and sparse, the inverse50

problem of reliably extracting the location of the scattering centers is rather sensitive51

to noise [37]. Therefore the problem has attracted a lot of research, which we roughly52

summarize below.53

Fourier-based methods require a large densely sampled 2- or 3-dimensional data54

set, which may require a relatively long time to collect. Also, these techniques are55

trapped in the dilemma of time versus frequency resolution and cannot distinguish56

closely spaced scatterers, as mentioned in [20]. So several researchers have turned57

their attention to Prony-like spectral estimation or exponential analysis algorithms.58

In [27] the authors also conclude that the latter are much more accurate than Fourier59

based methods. But the performance of exponential analysis methods can be seriously60

affected by a low signal-to-noise ratio (SNR), leading to misclassifying noise as signals.61

Here we present another Prony-like technique which allows to overcome this draw-62

back. Also, the number of scatterers must not be estimated a priori, as pointed out in63

[1] for other parametric methods. In addition, the new technique does not suffer the64

well-known curse of dimensionality. A d-dimensional exponential analysis of an n-term65

model can now be carried out from a mere O((d + 1)n) regularly collected samples,66

which is substantially less than in other Prony-based methods [28, 37, 30, 16, 24, 26],67

where the sample usage explodes exponentially. In [37] the entailed complexity of68

these numerical algorithms is improved by the use of a slicing technique. The com-69

putation cost of the new method here compares much more favourably, as we solve70

several smaller systems instead of one large system dealing with all measurements at71

the same time.72

The theory of compressive sensing also works with sparsely located data, which73

are however, collected randomly instead of regularly. Moreover, in radar imaging the74

results may be severely affected if the scattering centers on the target do not match75

the pre-discretized scene grid which makes up the dictionary [5]. We emphasize that76

methods of the Prony family do not work with a discretized grid and hence do not77

suffer from this drawback.78

Other optimisation based ISAR techniques include genetic and evolutionary al-79

gorithms [19, 6]. While they are quite robust and can work completely automatic,80

without estimation of the model order, they require a lot of computation time, a81

disadvantage shared by most optimisation based methods. Several 2-dimensional82

compressive sensing or other optimisation approaches [34, 36, 1] may not be feasible83

in higher dimensions.84

The paper is organized as follows. The proposed d-dimensional exponential analy-85

sis is presented in Section 2. An additional validation of the computed results, which86

proves to be very useful when working with low SNR, is introduced in Section 3.87

The details of the exponential model governing ISAR imaging are given in Section 4,88

together with a first application and comparison of the new method to [16]. A way to89
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SPARSE MULTIDIMENSIONAL EXPONENTIAL ANALYSIS 3

recondition and subsequently regularize the d-dimensional exponential analysis is ex-90

plained in Section 5. The full-blown method, including validation and reconditioning,91

is illustrated in Section 6, where it is further compared to [30]. Among the existing92

d-dimensional exponential analysis generalizations, we chose to compare our 2-D and93

3-D numerical illustrations to [16] and [30] for the following reasons. In Section 4.2 we94

compare to the 2-D Prony-like algorithm MEMP from [16] to illustrate the need for an95

automatic pairing of the separately computed 1-D results, as is available in the new96

method. In Section 6 we compare to the multidimensional ESPRIT algorithm from97

[30] to illustrate the importance of obtaining an automatic estimation of the sparsity98

n, which is considered to be a difficult problem but is solved here.99

2. Multidimensional exponential analysis. The problem of d-dimensional100

exponential analysis consists in retrieving the linear parameters αj ∈ C and the101

nonlinear parameters φj ∈ Cd in the exponential model102

f(x) =
n∑
j=1

αj exp (〈φj , x〉) , x = (x1, . . . , xd), φj = (φj1, . . . , φjd)(2.1)103

104

from as few function samples as possible. Until recently, algorithms to solve the105

problem required a number of samples of the order O(nd) [16, 18, 24, 26] or O(2dn)106

[30] or at most (d+ 1)n2 log2d−2 n [31], all growing exponentially with the dimension107

of the problem statement. In this section we present a reliable implementation which108

is based on [10] and requires only O((d+ 1)n) regularly gathered samples.109

Let ∆1 = (∆11, . . . ,∆1d) 6= (0, . . . , 0) and [22, 32]110

|=(〈φj ,∆1〉)| < π, j = 1, . . . , n,(2.2)111112

where the function =(·) returns the imaginary part of a complex number. Let us113

sample f(x) at the points s∆1:114

Fs := f(s∆11, . . . , s∆1d), s = 0, . . . , 2n− 1.(2.3)115116

For simplicity we also assume that the sampling direction ∆1 is such that the values117

exp(〈φj ,∆1〉), j = 1, . . . , n are mutually distinct. How to deal with collisions in these118

values is described in [10].119

The expressions exp(〈φj ,∆1〉), j = 1, . . . , n are retrieved as the generalized eigen-120

values λj of the problem121

122

(2.4)


F1 F2 · · · Fn
F2 · · · Fn+1

...
...

Fn Fn+1 · · · F2n−1

 vj = λj


F0 F1 · · · Fn−1
F1 · · · Fn
...

...
Fn−1 Fn · · · F2n−2

 vj ,123

vj ∈ Cn124125

where the vj denote the right eigenvectors. For the sake of completeness and for use126

further on, we point out that the upper left element in the left and right hand side127

matrices need not carry the indices 1 and 0 respectively. We can start with a higher128

index number instead of 0, as long as we have 2n consecutive samples lined up in (2.4)129

[7]. So the sampling of f(x) in the direction of ∆1 need not start at the origin.130

In applications, the generalized eigenvalue problem (2.4) is often solved as part of a131

classic one-dimensional exponential analysis algorithm. In our numerical illustrations132
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4 A. CUYT, Y. HOU, F. KNAEPKENS AND W.-S. LEE

we use the combination of the matrix pencil method studied in [17, 35] with the133

rank reduction step described in [29]. In the literature this combination is often134

referred to as the ESPRIT method, although the rank reduction is performed on the135

Hankel matrices directly instead of the covariance matrices. For the practical details136

concerning this aspect, the reader is referred to the Sections 4 and 6. In the Sections137

2, 3 and 5 the mathematical backbone of the new method is developed.138

Because of (2.2), we can uniquely recover the inner products139

Φj := 〈φj ,∆1〉, j = 1, . . . , n(2.5)140141

from the computed exp(Φj). Although we have not yet identified the individual142

φji, j = 1, . . . , n, i = 1, . . . , d, nothing prevents us from already computing the linear143

coefficients αj from the 2n× n Vandermonde problem144 
1 · · · 1

exp(Φ1) · · · exp(Φn)
...

...
exp((2n− 1)Φ1) · · · exp((2n− 1)Φn)


 α1

...
αn

 =

 F0

...
F2n−1

(2.6)145

146

Note that (2.6) reduces to a square Vandermonde system in the noisefree case, because147

then n of the linear equations are linearly dependent as a consequence of the fact that148

the values exp(Φj) already satisfy (2.4).149

In order to extract the φji, j = 1, . . . , n, i = 1, . . . , d from the Φj , j = 1, . . . , n,150

still under the assumption that the values exp(Φj), j = 1, . . . , n are mutually distinct,151

some extra samples are required. We choose an additional d− 1 linearly independent152

vectors ∆2, . . . ,∆d such that the set {∆1,∆2, . . . ,∆d} is a basis. The additional153

samples are then taken along a linear combination of ∆1 and some ∆i, i = 2, . . . , d:154

Fsi := f(s∆1 + ∆i), s = 0, . . . , n− 1, i = 2, . . . , d.(2.7)155156

Note that only n additional samples are taken per ∆i-shift and that they are placed157

equidistantly along independent shifts ∆i with respect to the original vector ∆1. At158

the same time we assume the Nyquist constraint [22, 32]159

|=(〈φj ,∆i〉)| < π, j = 1, . . . , n, i = 2, . . . , d.(2.8)160161

We call these vectors ∆i, i = 2, . . . , d identification shifts because they will allow to162

identify the individual φji in the computed Φj from samples taken at shifted locations.163

For this last step we make use of the fact that the φji appear linearly in the Φj .164

For i fixed, the additional samples Fsi can be written as165

Fsi = f(s∆1 + ∆i) =

n∑
j=1

αj exp (〈φj ,∆i〉) exp (〈φj , s∆1〉) , s = 0, . . . , n− 1166

=

n∑
j=1

Aji exp (sΦj) , Aji = αj exp (〈φj ,∆i〉) .167

168

So for i fixed, the Aji, j = 1, . . . , n are obtained from the Vandermonde system169 
1 · · · 1

exp(Φ1) · · · exp(Φn)
...

...
exp((n− 1)Φ1) · · · exp((n− 1)Φn)


 A1i

...
Ani

 =

 F1i

...
Fni

(2.9)170

171
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of which the coefficient matrix is part of the Vandermonde structured coefficient ma-172

trix in (2.6). From the Aji and the αj we obtain for i fixed,173

Aji
αj

= exp (〈φj ,∆i〉) , j = 1, . . . , n,(2.10)174
175

where in the sequel we denote176

Φji := 〈φj ,∆i〉, j = 1, . . . , n.177178

Note that we have no problem to pair the Φji to the Φj , j = 1, . . . , n since for each179

i the Aji are paired to the αj , j = 1, . . . , n through the Vandermonde systems (2.6)180

and (2.9).181

These Aji and exp(Φji) can be computed for each i = 2, . . . , d. The fact that the182

vectors ∆1 and ∆i, i = 2, . . . , d are linearly independent then leads for each separate183

j = 1, . . . , n to the d× d regular linear system184 
∆11 · · · ∆1d

∆21 · · · ∆2d

...
...

∆d1 · · · ∆dd


 φj1

...
φjd

 =


Φj
Φj2

...
Φjd

(2.11)185

186

from which the individual φji, j = 1, . . . , n, i = 1, . . . , d are computed.187

So all unknowns in (2.1) can be obtained at the expense of 2n evaluations Fs188

in (2.3) and (d − 1)n evaluations Fsi in (2.7), or a mere total of (d + 1)n samples.189

In practice, when dealing with noisy data, the value of n is overestimated by η >190

n, as discussed in the next section. The minimal number of samples in an η-term191

exponential model of the form (2.1), in the directions ∆1 and ∆i, i = 2, . . . , d, which192

is respectively 2η and η, is often again overestimated byN ≥ 2η and n ≥ η. The square193

n×n generalized eigenvalue problem (2.4), the 2n×n Vandermonde system (2.6) and194

the n×n Vandermonde system (2.9) then respectively take the sizes (N−η)×η,N×η195

and n×η and are all solved in the least squares sense. Sometimes some of the samples196

are used in a preprocessing step, such as the computation of an intermediate (N−η)×ν197

structured lower rank approximation to the Hankel matrices, where ν < η.198

In the next sections we describe how this technique is combined with convergence199

theorems from approximation theory on the one hand and sparse interpolation from200

computer algebra on the other hand, in order to:201

202

• filter unstructured noise in the data out of the structured exponential model203

(2.1) via a connection to Padé approximation theory,204

• automatically deduce and validate the sparsity n of expression (2.1), which205

is usually regarded to be a hard problem,206

• separate exponential components that are contained in a cluster of similar207

components, using a connection with sparse interpolation,208

• and as a result of all of the above, tighten the numerical estimates for the209

parameters φj and αj in case of a low signal-to-noise ratio.210

211

3. Connection with Padé approximation: validation. From the theoretical212

mathematical presentation in Section 2, we now switch to the practical situation where213

the samples Fs and Fsi are contaminated by noise. For the reliable computation of214
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6 A. CUYT, Y. HOU, F. KNAEPKENS AND W.-S. LEE

the parameters φj and αj we need to add some additional steps to the algorithm. The215

first change is that we are going to interpret the samples as if they are coming from216

an η-term exponential model of the form (2.1), where η > n is a safe overestimate of217

n. A connection with Padé approximation theory will then allow us to separate the218

noise from the actual signal content.219

Consider the function220

f(z) =

∞∑
s=0

Fsz
s.221

222

With Fs given by (2.3) we can write [33, 2]223

f(z) =

n∑
j=1

αj
1− exp(Φj)z

.(3.1)224

225

The partial fraction decomposition (3.1) is related to the one-dimensional Laplace226

transform and the Z-transform of (2.1), where the inner product 〈φj , x〉 is regarded227

as the unknown. It is a rational function of degree n− 1 in the numerator and degree228

n in the denominator with poles 1/ exp(Φj). Now let us perturb f(z) with Gaussian229

noise to obtain230

f(z) + ε(z) =

∞∑
s=0

(Fs + εs)z
s.231

232

The theorem of Nuttall-Pommerenke states that if f(z) + ε(z) is analytic throughout233

the complex plane, except for a countable number of poles [21] and essential singu-234

larities [25], then its sequence of Padé approximants {rη−1,η(z)}η∈N of degree η − 1235

over η converges to f(z) + ε(z) in measure on compact sets. This means that for suf-236

ficiently large η, the measure of the set where the convergence is disrupted, so where237

|f(z) + ε(z) − rη−1,η(z)| ≥ τ for some given threshold τ , tends to zero as η tends to238

infinity. Pointwise convergence is disrupted by η−n unwanted pole-zero combinations239

of the Padé approximants that are added to the n true poles and n − 1 true zeros240

of f(z) [13, 15], the pole and zero in the pair almost cancelling each other locally.241

These pole-zero combinations are referred to as Froissart doublets. In practice, these242

Froissart doublets offer a way to separate the noise ε(z) from the underlying f(z)243

[14, 15]. Because of the Padé convergence theorem, the n true (physical) poles are244

identified as stable poles in successive rη−1,η(z), while the η−n spurious (noisy) poles245

are distinguished by their instability. For different η [3, 23]:246

247

• the noisy poles lie scattered in the area around the complex unit circle, and248

this for every different realization of the noise ε(z),249

• and the true poles exp(−Φj), j = 1, . . . , n are forming clusters with around250

each exp(−Φj) cluster an almost Froissart doublet-free zone.251

252

This characteristic of the true poles is precisely the key point on which our method253

is based: after the computation of η > n generalized eigenvalues λj = exp(Φj), we254

discard the unstable ones and focus on the stable ones. Note that:255

256

• In order to safely rely on this convergence result, it is clear that η should be257

sufficiently large, as the result is more numerically accurate for η large. We258

usually take η to be a multiple of (the so far unknown) n.259
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• To decide which generalized eigenvalues are the unstable ones, the computa-260

tional scheme needs to be repeated a number of times with different sets of261

N + (d− 1)n data, which can be achieved as follows.262

263

We discuss the sampling along the ∆1 direction first. Instead of collecting Fs, s =264

0, . . . N − 1 in the direction of ∆1, we collect some additional Fs, s = 0, . . . , N + (κ−265

1)bpNc − 1. Here 0 ≤ p ≤ 1 and 1 ≤ κ ∈ N. From these samples we construct κ266

snapshots of N samples each, snapshot number k = 0, . . . , κ − 1 starting at kbpNc267

with an overlap of roughly (1− p)N points with the previous and the next snapshot.268

The case p = 0 and κ = 1 delivers the single snapshot situation of the previous section.269

When putting all κη generalized eigenvalues of the κ different eigenvalue problems270

(2.4) together, then theoretically κn of them cluster together in n clusters of each κ271

elements and the other κ(η − n) generalized eigenvalues lie scattered around as they272

do not reflect true terms in the exponential model (2.1). Of course, the noise may273

be such that the method does not work perfectly and that in an apparent cluster274

somewhat less than κ elements are found. We therefore accept a cluster as soon as a275

sufficiently large fraction of the κ expected elements is found.276

In the numerical examples we found it most useful to use a density-based cluster277

analysis such as DBSCAN [12]. The DBSCAN implementation requires two parameters:278

the density δ of the clusters and the minimum number mδ of required cluster elements.279

These parameters are chosen in terms of the noise in the signal:280

281

• Larger values of δ allow the detection of wider clusters, for instance in case282

of a higher noise level. Smaller values of δ lead to denser clusters with very283

stable estimates for the generalized eigenvalues, for instance in case of lower284

levels of noise.285

• A value for mδ smaller than κ allows to discard bogus estimates appearing as286

a consequence of outliers in the data or too high noise levels. It makes perfect287

sense, depending on the application, to relax mδ to for instance κ− 1, κ− 2288

or b0.9κc, d0.8κe.289

290

A very desirable side result of the technique described in this section, is the fact that291

the method automatically reveals the true number n of terms in the expression (2.1)292

underlying all the samples: n equals the number of clusters detected by the cluster293

analysis.294

Remains to discuss the sampling along the linearly independent shifts of ∆1.295

Here also, the data set needs to be enlarged in order to support the processing of κ296

snapshots. So at most we collect for each i = 2, . . . , d the samples Fsi, s = 0, . . . , n +297

(κ − 1)bpNc − 1 (for some choices of the parameters N,κ, n, p not all consecutive298

samples are used). Remember that each of the computed Φji, j = 1, . . . , η, i = 2, . . . , d299

is connected to its Φj , j = 1, . . . , η from the solution of the generalized eigenvalue300

problem (2.4). For i fixed, we therefore know which Φji are linked to a cluster element301

Φj and which belong to a scattered Φj . When taking the mδ values Φji together that302

are linked to a cluster element Φj , then we can improve the estimate for Φji, j =303

1, . . . , n, i = 2, . . . , d by considering the center of gravity of the mδ values Φji that go304

together. As the Φji are obtained from the solution of two Vandermonde structured305

linear systems through (2.10), their estimates are usually found to be somewhat less306

accurate than the estimates computed for the clustered Φj .307

Analysis of the Φji values when taking κ snapshots can also serve an additional308

purpose. Sometimes it is useful to run DBSCAN a consecutive number of times with309
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increasing values for δ. In this way, very condensed clusters are detected right from310

the start and more relaxed clusters are picked up in some later run. In case δ is311

relaxed too much, an inspection of the (at least) mδ values Φji associated with the312

(at least) mδ estimates for a particular Φj in the candidate cluster, helps to accept or313

refute the relaxed cluster. The latter can be done by looking at the spread (standard314

deviation) of the associated Φji. If this exceeds an acceptable threshold, the candidate315

cluster is rejected. So while a cluster of mδ estimates for some Φj is “identified”, it316

is “confirmed” by the analysis of the mδ associated values Φji and this for each317

i = 2 . . . , d.318

Let us illustrate the procedure described in the Sections 2 and 3 on some small-319

scale numerical examples. In Section 5 we further explain how to deal with the320

situation where some of the clusters around the true Φj , j = 1, . . . , n partially overlap,321

for instance because of very similar φj , j = 1, . . . , n in the exponential model (2.1).322

4. Application to ISAR imaging. High frequency scattering toward an ob-323

servation point is often modeled by means of a finite number of concentrated sources324

of scattering energy, also called scattering centers. A radar signal backscattered from325

a far-field target with n scattering centers at locations (xj , yj , zj), j = 1, . . . , n in a326

cartesian coordinate system, is then decomposed into n contributions, each with a327

different phase and magnitude.328

Assume the radar system emits a signal at frequency ωh in the direction or line329

of sight with azimuth angle θg and elevation angle φm. The backscattered signal330

f(h, g,m) with (h, g,m) ∈ R3
+ is approximated by the following sum of complex331

exponentials,332

f(h, g,m) ≈
n∑
j=1

βj exp

(
−4πi

c
(ωhxj + ωcθgyj + ωcφmzj)

)
,(4.1)333

334

where βj is the scattering amplitude of the j-th scattering center, c is the speed of335

light, ωc is the central frequency ωc = (ω0 + ω(N−1)h)/2 and the parameters ωh, θg336

and φm are defined by337

ωh = ω0 + hδω, θg = θ0 + gδθ, φm = φ0 +mδφ.338339

The remaining values ω0, θ0, φ0 and δω, δθ, δφ are set by the user and are system340

dependent. We rewrite the exponential model (4.1) as341

f(h, g,m) ≈
n∑
j=1

αj exp

(
−4πi

c
(hδωxj + ωcgδθyj + ωcmδφzj)

)
,342

αj = βj exp

(
−4πi

c
(ω0xj + ωcθ0yj + ωcφ0zj)

)
.343

344

By means of the Prony-like method presented in Section 2, the computation of the345

unknown scattering locations (xj , yj , zj), j = 1, . . . , n and the unkown scattering am-346

plitudes βj , j = 1, . . . , n is then neatly separated, with the scattering locations being347

delivered first after applying (2.9) and (2.10).348

4.1. 3-dimensional illustration of the new algorithm. To illustrate the349

method on a synthetic small-scale 3-D example, we consider the 29-term exponential350

expression (4.1) with (xj , yj , zj) and βj given in Table 1. We further set the following351
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radar parameters:352

ω0 = 7.9GHz, δω = 0.0015GHz,353

θ0 = φ0 = −0.024, δθ = δφ = 3.75× 10−4.354355

We choose (for no specific reason, except that (2.2) and (2.8) need to be satisfied): the356

linearly independent vectors ∆1 = (1.17, 0.7, 1.87),∆2 = (−1.00,−1.00,−1.00),∆3 =357

(−2.10, 1.20, 3.29) as basis vectors for all (h, g,m), and furthermore N = 450, ν =358

150, η = 100, n = 450, κ = 10, p = 0.1 and start the collection of the required samples.359

To each evaluation of (4.1) we add a Gaussian noise term of a fixed prechosen signal-360

to-noise ratio SNR (in dB). So361

Fs = f(s∆1) + εs, s = 0, . . . ,M − 1 := N + (κ− 1)bpNc − 1362

Fs2 = f(s∆1 + ∆2) + εM+s, s = 0, . . . ,m− 1 := n + (κ− 1)bpNc − 1363

Fs3 = f(s∆1 + ∆3) + εM+m+s, s = 0, . . . ,m− 1.364365

With our choices for the parameters, we sample at 855 points in the direction of ∆1366

and another 855 at each of the shifted locations s∆1 + ∆i, i = 2, 3, or a total of 2565367

points. This number is in sharp contrast with even the simplest (∆1,∆2,∆3)-grid368

structured data set of 35× 35× 35 = 42875 points, where we choose 35 as a very mild369

overestimate of n = 29. In addition, a d-dimensional algorithm departing from a grid370

structured data set [16] does not offer any of the advantages we have discussed so far,371

among which:372

373

• the natural pairing of Φji, i = 2, . . . , d to Φj , j = 1, . . . , n,374

• the automatic detection of the sparsity n, and375

• the validation of the computed locations (xj , yj , zj).376

377

In Figure 1 we show the DBSCAN result for SNR = 10 dB with mδ = κ−2 and δ varying378

over 5` × 10−4, ` = 0, . . . , 4: among the 1000 computed generalized eigenvalues (η =379

100, κ = 10) 29 clusters are indicated in colour. They identify the stable generalized380

eigenvalues, which were detected and confirmed by the algorithm outlined in Section381

2. None of the groups of mδ associated values exp(Φji), j = 1, . . . , 29, i = 2, 3 exhibits382

a standard deviation larger than 0.25.383

We also run the above example for varying noise levels, from 40 dB SNR to 5384

dB SNR, now with κ = 20 and each experiment repeated 100 times as the noise is385

randomly generated. In Figure 2 we show the average true cluster radius over the 29386

scattering locations, for the generalized eigenvalues exp(Φj) with mδ = κ − 2. This387

true radius is computed a posteriori with the exact exp(Φj) in the center. In Figure388

3 we respectively show at the left and the right for i = 2, 3 the average cluster radius389

over the 29 scattering locations, for the κ− 5 estimates closest to the true associated390

exp(Φji). With κ = 20, a ratio of κ− 5 over the maximum number mδ of associated391

elements still represents 83.3% of the associated values. In each of the Figures 2 and392

3 we also show the smallest and largest cluster radius (dashed lines): they differ by393

a factor of about 2. It is quite clear that the computation of the exp(Φj) is more394

accurate than that of the exp(Φji). The estimates of the latter can be tightened but395

this is not really important at this point.396

4.2. 2-dimensional illustration of the validation aspect. In another ex-397

periment we consider the 2-D example with 12 scattering centers (xj , yj) from Table398

2. The dimension is reduced from three to two for the sole reason that in our figures399
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10 A. CUYT, Y. HOU, F. KNAEPKENS AND W.-S. LEE

Fig. 1: The 29 clusters (red) identified by DBSCAN (left) and a zoom (right) on the
stable clustered (red) versus the unstable scattered (grey) generalized eigenvalues
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Fig. 2: Average radius of the exp(Φj), j = 1, . . . , 29 clusters

we want to use the third dimension to graph the impact of the SNR. The radar pa-400

rameters ω0, θ0 and δω, δθ are as in Section 4.1. We further take N = 150, ν = η =401

50, n = 100, κ = 11, p = 0.054 and ∆1 = (1.38, 4.14),∆2 = (−7.56, 5.67).402

In order to reduce the cluster radius in the shift direction ∆2 we perform the shift
a number of times, over ∆2, 2∆2, . . . , 8∆2 and combine the results, since for s fixed,

f(s∆1 +m∆2) =

n∑
j=1

αj exp(〈φj ,m∆2〉) exp(〈φj , s∆1〉).

So the coefficients extracted from the different shifts are

αj exp(〈φj ,∆2〉), αj exp(〈φj , 2∆2〉), . . . , αj exp(〈φj , 8∆2〉).

The total number of collected samples then adds up to (κ − 1)bpNc + N in the ∆1403

direction and 8× ((κ− 1)bpNc+ n) in the ∆2 shifts, or 1670 samples altogether.404

In Figure 4 (right) we show the result of the computations, after applying DBSCAN405

with mδ = κ− 1 and δ = 0.00001, 0.002505, 0.005 to each SNR result for the Φj and406

discarding cluster results when the standard deviation of the Φj2 exceeds 0.2. We let407
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Fig. 3: Average radius of the exp(Φj2), j = 1, . . . , 29 clusters (left) and the exp(Φj3),
j = 1, . . . , 29 clusters (right)

the SNR vary from 40 dB to 5 dB, top to bottom. The SNR = 10 dB slice is presented408

in Figure 5 (right) and a separate coordinate view is found in Figure 6 (right) where409

the SNR varies from right to left. For each SNR the experiment is repeated 250 times.410

We compare these results to the output in the Figures 4 (left), 5 (left) and 6 (left)411

of the 2-D Prony-like algorithm MEMP [16] using the same number of samples but now412

laid out in a (∆1,∆2)-grid of size 40× 42. We remark the main differences with the413

new algorithm:414

415

• the matching in the MEMP algorithm between results computed in separate416

dimensions is definitely not flawless, and as the noise increases erroneous417

combinations give rise to inexistent locations;418

• the matching through the indexing of the variables in (2.6) and (2.9) leaves419

no room for error and so does not introduce matching errors;420

• for increasing noise, meaning decreasing SNR, the unvalidated MEMP algorithm421

may return a few erroneous (xj , yj), despite the fact that the sparsity n = 12422

was passed to the algorithm as well;423

• the correct sparsity n = 12 need not be passed to the new algorithm, which424

detects it automatically as the number of identified and confirmed clusters;425

• in the new algorithm the results for very small SNR are either somewhat less426

accurate or absent because of the high validation requirement, which can of427

course be relaxed by the user.428

4.3. 3-dimensional fighter jet example. In a larger scale example of 1000429

scatterers depicting the surface of a fighter jet [37], we take the radar parameters430

as in Section 4.1, add noise with SNR = 20 dB and further choose N = 6000, ν =431

2000, η = 1500, n = 6000, κ = 11, p = 0.4 with ∆1 = (−2.2371, 0.2796, 0.8389),∆2 =432

(1.6528,−1.6528, 4.9584),∆3 = (0.4744, 2.1350, 0.5535). The density δ in DBSCAN was433

varied over 2` × 10−5, ` = 0, . . . , 10 while mδ was kept at mδ = d0.8κe = 9.434

When dealing with the exp(Φji), i = 2, 3 we discard cluster results with a stan-435

dard deviation above 0.5. We remark that as the density δ increases, the probability436

increases that a candidate cluster, detected among the ∆1-projections, is not con-437

firmed in each and every one of the ∆i-projections, i = 2, . . . , d. Rejection dominates438

acceptance from ` = 7 on.439
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Fig. 4: Unvalidated (xj , yj) locations from MEMP (left) and validated (xj , yj) from the
new algorithm (right).
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Fig. 5: Slice of Figure 4 (SNR = 10) with the colour intensity indicating the frequency
of detection in the 250 runs.

In the end, the above algorithm detects and validates 516 scatterers (out of 1000),440

but misses out on the scatterers that are located too closely together or for which the441

inner products in (4.1) are too much alike. Although the overall shape of the fighter is442

correctly recognized (nose, wing tips, tail, . . .), which may be more than satisfactory443

for many applications, the accuracy of the algorithm can be improved in the region444

where several scattering centers (xj , yj , zj) are located near one another, such as the445

windshield. To this end the algorithm needs to be combined with a sub-Nyquist446

technique, particularly suitable for the exponential analysis of such signals [9]. This447

final addition to the algorithm is explained in the next section. We also point out448

that, thanks to the validation step, there are no false results.449
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Fig. 6: Unvalidated xj and yj coordinates from MEMP (left) versus validated xj and yj
coordinates from the new algorithm (right)

Fig. 7: Fighter jet original 1000 scattering center data

5. Connection with sparse interpolation: superresolution. We return to
the notation of Section 2 to continue our presentation. When replacing the primary
sampling direction ∆1 by a multiple

∆1(m) := m∆1

and sampling at s∆1(m), s = 0, . . . , 2n − 1 instead of at s∆1, s = 0, . . . , 2n − 1,
we are possibly violating the Shannon-Nyquist constraint (2.2) for ∆1(m), when
|=(〈φj ,∆1〉)| ≥ π/m, j = 1, . . . , n. With

Fs := f (s∆11(m), . . . , s∆1d(m)) , s = 0, . . . , 2n− 1,

the eigenvalues retrieved from (2.4) are not λj but [4]

λj(m) = exp(mΦj) = λmj , j = 1, . . . , n.

From λmj the imaginary part of Φj = 〈φj ,∆1(m)〉 may not be retrieved uniquely450

anymore because we can only guarantee that451

|=(〈φj ,∆1(m)〉)| < mπ.(5.1)452453
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Fig. 8: Fighter jet reconstruction of 516 out of 1000 scatterers

So aliasing may have kicked in: because of the periodicity of exp(=(〈φj ,m∆1〉)) a454

total of m values in the 2mπ wide interval (5.1) can be identified as plausible values455

for 〈φj ,∆1〉. Note that when the original λj are clustered, the powered λmj may456

be distributed quite differently and unclustered. Such a relocation of the generalized457

eigenvalues, here referred to as superresolution, can seriously improve the conditioning458

of the Hankel matrices involved. In Figure 9 we show the effect of this powering on459

a particular example where 20 generalized eigenvalues are clustered in 5 clusters of460

different size.461

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.5 0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Fig. 9: Example analysis of (2.1) with n = 20 generalized eigenvalues: m = 1 (left)
versus m = 11 (right)

What we need to resolve now is the aliasing problem that is possibly introduced462

by powering the generalized eigenvalues. This aliasing can be fixed at the expense463

of a small number of additional samples. Remember that in what follows, n can464

everywhere be replaced by η ≥ n when using η − n additional terms to model the465
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noise.466

To fix the aliasing, we add n samples to the collection F0, Fm, . . . , F(2n−1)m,
namely at the shifted points

s∆1(m) + µ∆1 = (sm+ µ)∆1, s = r, . . . , r + n− 1, 0 ≤ r ≤ n.

An easy choice for µ is a (small) number mutually prime with m (for the most gen-467

eral choice allowed, we refer to [8]). With the additional samples we proceed as follows:468

469

• From the samples F0, Fm, . . . , F(2n−1)m we first compute the generalized ei-470

genvalues λmj and the coefficients αj going with λmj in the model471

Fsm = f(sm∆1) =

n∑
j=1

αj exp(〈φj , sm∆1〉)(5.2)472

=

n∑
j=1

αjλ
sm
j , s = 0, . . . , 2n− 1.(5.3)473

474

We know which coefficient αj goes with which generalized eigenvalue λmj , but475

we just cannot identify the correct =(〈φj ,∆1〉) from λmj .476

• Next we deal with the samples at the additional locations sm∆1+µ∆1, which477

satisfy478

Fsm+µ = f(sm∆1 + µ∆1) =

n∑
j=1

αj exp (〈φj , (sm+ µ)∆1〉)(5.4)479

=

n∑
j=1

(αjλ
µ
j )λsmj , s = r, . . . , r + n− 1.(5.5)480

481

This system is a linear system with a similar Vandermonde structured co-482

efficient matrix as in (5.2), but now with a new left hand side Fsm+µ and483

unknown coefficients α1λ
µ
1 , . . . , αnλ

µ
n instead of α1, . . . , αn. And again we484

can associate each computed αjλ
µ
j with the proper generalized eigenvalue485

λmj , because of the indexing of the variables and coefficients.486

• Then, by dividing the αjλ
µ
j computed from (5.4) by the αj computed from487

(5.2), for j = 1, . . . , n, we obtain from each quotient λµj a second set of µ488

plausible values for 〈φj ,∆1〉 in the 2µπ wide interval |=(〈φj , µ∆1〉)| < µπ.489

• Because of the fact that we choose µ and m relatively prime, the two sets490

of plausible values for 〈φj ,∆1〉 have only one value in their intersection [9].491

Thus the aliasing problem is solved: each 〈φj ,∆1〉 is retrieved uniquely from492

the computation of both λmj and λµj for j = 1, . . . , n.493

494

This multidimensional sub-Nyquist sampling strategy may help us determine the495

clustered scattering centers occurring in Section 4.3. As suggested in Figure 9, the496

technique spreads out the generalized eigenvalues, which may recondition the inverse497

problem. In addition, a variation of scale factors m may be used and the idea can be498

translated to the sampling at the shifted locations involving the identification shifts499

∆2, . . . ,∆d which satisfy (2.8).500

To illustrate how the combined algorithm, laid out in the Sections 2, 3 and 5 works,501

we take up the challenging example of Section 4.3 again to return highly accurate502
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results on about 95% of the scattering locations. The result is also compared to503

another d-dimensional generalization, called ND-ESPRIT, which arranges the samples504

in multilevel Hankel matrices [30].505

6. Full scale ISAR illustration. When returning to the example in Section506

4.3, we take the radar parameters, the signal-to-noise ratio and the vectors ∆i, i =507

1, 2, 3 as specified there. We collect 30000 samples Fs = f(s∆1) and 30000 samples508

Fsi = f(s∆1+∆i), i = 2, 3 along each of the shifts, so a total of 90000 samples in total.509

These samples are now reorganized as follows for use with the technique described in510

Section 5.511

With the total of 90000 samples we perform the following analyses. For each of512

the analyses we take N = 6000, ν = 2000, η = 1500, n = 6000. The remaining param-513

eters for the sub-Nyquist sampling in the direction ∆1 are:514

515

• m = 2, µ = 1, κ = 6, p = 0.3;516

• m = 3, µ = 1, κ = 4, p = 2/9;517

• m = 4, µ = 1, κ = 3, p = 0.125.518

519

In each of the above analyses, the sampling in the direction ∆1 starts with F0520

and continues with Fm, F2m, . . . The shifted samples, that serve the purpose of re-521

pairing the possible sub-Nyquist aliasing effect, start with F1 and continue with522

Fm+1, F2m+1, . . . In order to make good use of the samples inbetween, the proce-523

dure can be repeated m − 1 times with the same m and µ but now starting the524

sampling, instead of at F0, at F1 and then at F2 and so on till Fm−1. In this way a525

choice of m produces mκ estimates for the exp(Φi), i = 1, . . . , η instead of κ, and thus526

provides a sound basis for validation since mκ is usually sufficiently large.527

For the choices above, we have mκ = 12 for m = 2, 3, 4 and so we can take, for528

instance, mδ = (5/6)mκ = 10. In Figure 10 (left and right), we show how accurate the529

scattering centers are reconstructed, under SNR = 20 dB noise: with every scattering530

center in the original data we associate the log10 of the Euclidean distance to the531

nearest reconstructed scattering center (in meter on the x-axis) and then accumulate532

these (tally is on the y-axis). The distinction between the two figures is that Figure533

10 (left) is the result for m = 1 (516 scatterers reliably identified), without the use534

of the enhancement given in Section 5, and Figure 10 (right) is the result for m = 4535

(696 scatterers detected and validated).536

The improvement from m = 1 to m = 4 may not seem very impressive at first537

sight. But note that the accurately reconstructed scattering centers (say log10(·) ≤538

−1) from m = 1, need not be the same as the accurately reconstructed ones from539

the use of m = 4. Therefore the combination of both results, merely joining the 516540

reconstructions from m = 1 with the 696 reconstructions from m = 4, immediately541

leads to the improved distance graph shown in Figure 11.542

Eventually, all runs executed with m = 1, 2, 3, 4 can be combined, merely joining543

all the computed scatterer reconstructions: 516 from m = 1, 667 from m = 2, 673 from544

m = 3 and 696 from m = 4, adding up to 2552 in total, with many of them (almost)545

duplicates. This then leads to highly acurate results for most of the scatterers. In546

Figure 12 we see that in this combined output 81% of the scatterers is reconstructed547

within an error of at most 10 cm and 95% is found within a distance of 30 cm! Only548

3 scatterers are not reconstructed within a distance of 1 m. The most inaccurately549

reconstructed scatterer in Figure 13 is near the engine outlet, where one can note that550

one reconstruction is slightly off. In Figure 13 the 2552 reconstructions are displayed551
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Fig. 10: Accuracy of the reconstructed scatterers for m = 1 (left) and m = 4 (right)
versus the data (log10 of the Euclidean distance)

-3 -2.5 -2 -1.5 -1 -0.5 0
0

100

200

300

400

500

600

700

800

900

1000

Fig. 11: Accuracy of the reconstructed scatterers (m = 1 and m = 4 combined) versus
the data (log10 of the Euclidean distance)

altogether. Note that, thanks to the validation technique, there are no false results, as552

also pointed out for Figure 8 where the sub-Nyquist subdivision of the data samples553

is not yet put to work.554

Remains to compare the result to that of a d-dimensional Prony-type algorithm,555

such as [30] from data laid out in a grid. For instance, a 45× 45× 45 grid consists of556

91125 samples, which compares nicely to the 90000 samples used in our method. The557

d-dimensional version considered in [30] starts with the construction of a multilevel558

Hankel matrix, for which we take 26 × 20 Hankel blocks on all d = 3 levels, thus559

totalling up to a 263× 203 or 17576× 8000 matrix. A log-plot of its singular values is560

shown in Figure 14 (left), from which one can deduce that n ≈ 467 (point of maximal561

curvature of the plot). With 20 dB noise added to the data, the Euclidean distance562

log-plot for the 467 reconstructed scatterers is as in Figure 14 (right). This graph563

somewhat compares to the graphs in Figure 10 but is far from the result displayed in564

Figure 12 which can be attained with the same sample usage. In Figure 15 we show565

the actual 467 reconstructed scatterers superimposed on the fighter jet.566

One may wonder what the role is, played by the total number of 90000 collected567
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Fig. 12: Accuracy of the reconstructed scatterers (m = 1, 2, 3, 4 combined) versus the
data (log10 of the Euclidean distance)

Fig. 13: Fighter jet reconstruction of 934 out of 1000 scatterers

samples for our method, in the Figures 10 to 13. When reducing the sampling from568

30000 along each of the 3 directions to 24000, then 71% of the scatterers is found569

within a distance of 10 cm and 93% within 30 cm. When increasing the sampling570

from three times 30000 to three times 60000, then as expected, the reconstruction571

improves, namely 94% is found within 10 cm and 98% within 30 cm.572
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Fig. 14: Singular values of the multilevel Hankel matrix (left log-plot) and distance
error of the reconstructed scatterers (right log-plot) using [30]

Fig. 15: Fighter jet reconstruction of 467 scatterers using the method in [30]

j xj yj zj βj j xj yj zj βj
1 -9.25 0.77 -9.10 53.40 16 -0.59 -8.07 2.44 38.80
2 -8.51 0.77 -7.34 52.50 17 1.93 9.00 4.18 37.6
3 -7.75 0.77 -5.65 51.30 18 1.93 7.22 4.18 36.90
4 -5.15 2.99 -3.19 50.60 19 1.93 -8.07 4.18 35.70
5 -5.15 -2.55 -3.19 49.30 20 1.93 -6.22 4.18 34.90
6 -4.31 4.33 -1.85 48.20 21 2.99 0.77 4.18 33.80
7 -4.31 -4.11 -1.85 47.50 22 4.46 0.77 5.50 32.60
8 -2.61 7.22 0.59 46.30 23 5.87 2.99 6.55 31.50
9 -2.61 -6.22 0.59 45.70 24 5.87 -2.55 6.55 30.80
10 -0.59 9.00 2.44 44.40 25 7.02 2.99 7.52 29.90
11 -0.59 4.33 2.44 43.20 26 7.02 -2.55 7.52 28.70
12 -0.59 2.99 2.44 42.00 27 8.67 2.99 8.42 27.60
13 -0.59 -0.80 2.44 41.20 28 8.67 0.77 8.42 26.50
14 -0.59 -2.55 2.44 40.50 29 8.67 -2.55 8.42 25.10
15 -0.59 -4.11 2.44 39.60

Table 1: 29-term 3-dimensional ISAR problem.
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j xj yj βj
1 0.00 4.00 50.00
2 1.00 3.50 50.00
3 2.00 5.00 50.00
4 2.00 4.00 50.00
5 2.00 3.00 50.00
6 2.50 2.00 50.00
7 2.50 1.00 50.00
8 3.00 5.00 50.00
9 3.00 4.00 50.00
10 3.00 3.00 50.00
11 4.00 3.50 50.00
12 5.00 4.00 50.00

Table 2: 12-term 2-dimensional ISAR problem.

Acknowledgments. The authors are indebted to the colleagues from [37] for573
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[15] J. Gilewicz and M. Pindor, Padé approximants and noise: rational functions, J. Comput.615
Appl. Math., 105 (1999), pp. 285–297, https://doi.org/10.1016/S0377-0427(99)00041-2.616

[16] Y. Hua, Estimating Two-dimensional Frequencies by Matrix Enhancement and Matrix Pencil,617
IEEE Transactions on Signal Processing, 40 (1992), pp. 2267–2280.618

[17] Y. Hua and T. K. Sarkar, Matrix pencil method for estimating parameters of exponentially619
damped/undamped sinusoids in noise, IEEE Trans. Acoust. Speech Signal Process., 38620
(1990), pp. 814–824, https://doi.org/10.1109/29.56027.621
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