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SUMMARY PARAGRAPH  

Volatile compounds emitted by bacteria are often sensed by other organisms as odours, 

but their ecological roles are poorly understood1,2. Well-known examples are the soil-

smelling terpenoids geosmin and 2-methylisoborneol (2-MIB)3,4 that humans and various 

animals sense at extremely low concentrations5,6. The conservation of geosmin 

biosynthesis genes among virtually all species of Streptomyces bacteria (and 2-MIB 

genes in about 50%)7,8, suggests that the volatiles provide a selective advantage for these 

soil microbes. We show here that these volatiles mediate interactions of apparent mutual 

benefit between streptomycetes and springtails (Collembola). In field experiments 

springtails were attracted to odours emitted by Streptomyces colonies. Geosmin and 2-

MIB in these odours induce electrophysiological responses in antennae of the model 

springtail Folsomia candida, which is also attracted to both compounds. Moreover, the 

genes for geosmin and 2-MIB synthases are under the direct control of sporulation-

specific transcription factors, constraining emission of the odorants to sporulating 

colonies. F. candida feeds on the Streptomyces colonies and disseminates spores both via 

faecal pellets and through adherence to its hydrophobic cuticle. The results indicate that 

geosmin and 2-MIB production is an integral part of the sporulation process, completing 

the Streptomyces life cycle by facilitating dispersal of spores by soil arthropods.   
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MAIN TEXT 

One of the most emblematic and abundant microbial volatile organic compounds (VOCs) 

is geosmin, which is familiar as a characteristic odour of soil9. Geosmin is a 

sesquiterpenoid produced by certain soil microbes, most notably streptomycetes and 

related actinobacteria, but also by some myxobacteria, cyanobacteria, and filamentous 

fungi8. The enzyme geosmin synthase catalyses the cyclization of farnesyl diphosphate to 

germacradienol and germacrene D, and then converts germacradienol to geosmin4. The 

gene encoding geosmin synthase is conserved in virtually all sequenced Streptomyces 

genomes (Supplementary Discussion)7,8. Streptomycetes are famous for their plethora of 

specialized metabolites, comprising an enormous range of chemical structures and 

biological activities, including most of the antibiotics in current clinical use10. Each 

Streptomyces isolate has the genetic capacity to produce dozens of specialized 

metabolites but any given compound is made by only a small percentage of strains. The 

ubiquity of geosmin production is therefore remarkable and suggests that it confers a 

selective advantage on the streptomycetes. Here we investigate the biological role of 

geosmin and find that it is intimately connected to the developmental life cycle of these 

organisms. Streptomycetes grow vegetatively as mycelial networks that are entangled 

with the soil particles or other substrates on which they live. The mycelia can spread on a 

cm-scale by a volatile (trimethylamine)-mediated specialised exploratory mode of 

growth11, but dispersal over longer distances occurs through single-celled dormant spores 

that are formed on specialized aerial hyphae emerging from the surface of colonies12. 

When encountering suitable conditions, spores germinate to give rise to new vegetative 

mycelia. 
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Many animals, including humans, can sense geosmin at very low levels, and we perceive 

it as an off-flavour for example in drinking water and foodstuffs5. Drosophila 

melanogaster dedicates an olfactory circuit to the sensing of geosmin, which induces a 

strong aversive behavioural response in the flies6,13, and in Aedes aegypti mosquitoes it 

acts as an oviposition cue14. However, the advantage of geosmin to the producing 

microbes has remained unknown. 

 

To investigate possible roles of geosmin and other Streptomyces VOCs in the context of 

soil ecosystems, we asked whether the smell of Streptomyces might attract soil-dwelling 

arthropods. In a network of field traps baited with Streptomyces coelicolor colonies, we 

found significant attraction of springtails (Collembola) compared to control traps (Fig. 1a 

and c), whereas captures of insects and arachnids were not significantly affected by the 

Streptomyces colonies (Extended Data Fig. 1a and b). Collembola are closely related to 

insects, but constitute a more basal branch of the Hexapoda (six-legged arthropods)15. 

The attraction of springtails to Streptomyces was confirmed in a trapping experiment 

performed in a tropical greenhouse (Fig. 1b), and could finally be proven by a laboratory 

Y-tube bioassay with the model springtail Folsomia candida (Isotomidae) as test 

organism (Fig. 1d and e). VOCs emitted by S. coelicolor were sufficient to attract F. 

candida. 

 

Next, we recorded chemosensory responses in springtail antennae to identify the VOCs 

that are sensed by the animals. Odour samples of S. coelicolor that were analysed by gas 

chromatography combined with electrophysiological antennal detection (GC-EAD) 

revealed that geosmin, its biosynthetic intermediate germacradienol, and the shunt 

product germacrene D induce sensory responses in F. candida (Fig. 2). In addition, the 
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monoterpene 2-methylisoborneol (2-MIB) also elicits a response. Like geosmin, 2-MIB 

has an earthy smell, and the genes for 2-MIB biosynthesis are found in approximately 

half of sequenced Streptomyces genomes7,8. The sensory detection of geosmin and 2-MIB 

were further confirmed through electroantennography (EAG) using authentic compounds, 

which induced dose-dependent responses at 10 and 100 ng (Extended Data Fig. 1c). In Y-

tube assays, the springtails showed clear attraction behaviour to geosmin at a dose of 1 ng 

(Fig. 1f). Further, there was significant attraction towards headspace samples from wild-

type S. coelicolor (diluted to contain 200 pg of geosmin) but not to headspace samples 

from a congenic geoA mutant (Fig. 1e), and the springtails clearly preferred the wild type 

over the geoA mutant in a choice assay (Fig. 1g). 2-MIB was less active than geosmin 

and showed no statistically significant attraction when tested in isolation at a dose of 1 ng 

(Fig. 1f), or at the low dose of 2-MIB present in the diluted extracts of the geoA single 

mutant used in Fig. 1e (21 pg; Extended Data Fig. 2). However, given the choice between 

a concentration of headspace extract from the geosmin mutant containing 3.2 ng of 2-

MIB and a similar extract from the double mutant lacking both geosmin and 2-MIB 

(Extended Data Fig. 1d-f and Extended Data Fig. 2), F. candida preferred the mutant 

emitting 2-MIB (Fig. 1g), clarifying that both earthy odorants are behaviourally active 

and serve as attractants for the springtail.  

 

F. candida is mostly known to feed on fungi, but also ingests and digests bacteria, and 

springtails have been reported to sense volatile chemical signals for localization of food 

sources16,17. In our study, it was obvious that the springtails were feeding on sporulating 

colonies of S. coelicolor (Supplementary Movie 1), and dark grey bacterial biomass was 

clearly visible in the intestines of the largely transparent F. candida (Extended Data Fig. 

3a). Also, S. coelicolor colonies placed in soil microcosms were grazed upon by F. 
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candida individuals until most of the colony was consumed (Extended Data Fig.  3b). 

Further, although the prolific specialized metabolism of streptomycetes makes them toxic 

to some invertebrates6,18,19, providing S. coelicolor as sole food source had positive 

effects on the survival, moulting and oviposition of F. candida springtails (Extended Data 

Fig. 4). Thus, the ability to sense geosmin and 2-MIB guides springtails to the bacteria as 

a source of food. 

 

To address the possible significance of the VOCs to the bacteria, we investigated 

expression of geosmin and 2-MIB biosynthetic genes during the Streptomyces 

developmental life cycle. These studies were conducted with the alternative model 

species Streptomyces venezuelae, which is superior to S. coelicolor for the analysis of 

developmental regulation12. In time-resolved global transcriptome analyses, the 

biosynthetic genes for both geosmin (geoA4) and 2-MIB (mibA and mibB, encoding a 

monoterpene cyclase and a methyl transferase, respectively, that together convert geranyl 

diphosphate into 2-MIB3) were found to be developmentally up-regulated around the 

time that sporulation is initiated (Fig. 3a). Further, expression of both geoA and mibA-

mibB depended on the regulatory gene bldM, encoding a response regulator transcription 

factor required for development of aerial hyphae and spores (Fig. 3a)20.  Unexpectedly, 

the mibA-mibB genes were found to form an operon with eshA (encoding a putative 

cyclic nucleotide-binding protein of unclear function21) which has the same pattern of 

expression as mibA and mibB (Fig. 3a). ChIP-seq analysis showed that BldM directly 

regulates the promoter of the eshA-mibA-mibB operon (Fig. 3b). GC-MS analysis of 

collected headspace samples showed that production of geosmin and 2-MIB is essentially 

absent from an S. venezuelae bldM mutant (Extended Data Fig. 5).  
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There was no BldM ChIP-seq signal upstream of geoA (Fig. 3b), suggesting that BldM 

does not regulate geoA directly. A survey of other key sporulation regulators revealed 

that geoA also failed to be developmentally upregulated in a whiH mutant (Fig. 3a). 

WhiH is a transcription factor that is required for proper septation of aerial hyphae during 

spore formation22. ChIP-seq analysis showed that WhiH directly regulates the geoA 

promoter (Fig. 3c), and emission of geosmin was strongly reduced in the whiH mutant 

compared to the wild type (Extended Data Fig. 5). Previous studies in S. coelicolor 

showed that whiH itself is regulated by another developmental regulator, the RNA 

polymerase sigma factor encoded by whiG23. However, expression of whiH in S. 

venezuelae is only partially dependent on whiG24. This observation likely explains why 

geoA is expressed in the whiG mutant, although apparently with slight delay compared to 

the wild type (Fig. 3a). In summary, the production of both earthy odorants is directly 

coupled to spore formation via transcriptional control of the geoA and eshA-mibA-mibB 

loci by key sporulation regulators. These insights provide a mechanistic explanation for 

the previously reported correlation between geosmin production and sporulation in 

Streptomyces25,26. 

 

The geosmin and 2-MIB-mediated attraction of springtails and the direct coupling of 

these VOCs to spore formation suggested that springtails might act as vectors for spore 

dispersal. Springtails are characterised by anti-adhesive skin patterns and a cuticle 

covered with hydrophobic layers of wax, leading to a poor adherence of most bacteria to 

the animal’s surface27,28. However, we found that 104-105 spores could be washed off 

from the surface of F. candida individuals that had been exposed to sporulating S. 

coelicolor colonies, and scanning electron microscopy showed that spores adhered to 

hair-like setae on the Folsomia body (seen as short chains of spores in Fig. 4a). Our 
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findings are in agreement with previously reported adherence of Streptomyces griseus 

spores to the hydrophobic cuticles of springtails and mites29. It is likely that the 

adherence to the unwettable cuticle of the springtails is mediated by the extremely 

hydrophobic sheath that covers Streptomyces spores12. To compare adherence of spores 

and vegetative hyphae, we allowed springtails to feed for 3 days on either S. coelicolor 

wild type strain M145 or the congenic, non-sporulating whiG mutant J2400 (a 

developmental mutant producing only non-sporulating aerial hyphae in addition to the 

vegetative mycelium). A substantial number of colony-forming units (CFU) adhering to 

the body surface could be washed off from springtails having been exposed to the 

sporulating strain, while almost no CFU in form of hyphae were adhering to or could be 

washed off from springtails exposed to the non-sporulating strain (Extended Data Fig. 

6a).  

 

In addition to transport of spores on the body surface, the feeding behavior of the animals 

offers a second possible route for spore dispersal through defaecation. To test this 

possibility, we took springtails that had been offered S. coelicolor biomass as food, 

washed off surface-adhered spores, and then collected the faecal pellets that they 

released. 70.8 % (n=24) of the animals released faecal pellets containing viable 

Streptomyces spores that gave rise to colonies when plated on agar media, confirming 

that spores were being ingested by the animals and could survive passage through their 

guts. Springtails that had been fed with the non-sporulating whiG strain (containing only 

vegetative and aerial hyphae but no spores) and thereafter washed, released very few 

CFU when given time to defaecate, while the sporulating strain dispersed over 100-fold 

more CFU under these conditions (Extended Data Fig. 6b). Overall, the results show that 

Streptomyces spores are much more efficiently dispersed by F. candida than non-
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sporulating hyphae, and that dispersal can occur via two different routes: by adherence to 

the surface of the cuticle and by passage through the gastrointestinal tract.  

 

Finally, using Petri dish bioassays, it was confirmed that spore dispersal by springtails is 

influenced by the VOCs. We placed the same number of viable spores of S. coelicolor 

wild-type and the geosmin and 2-MIB-deficient double mutant on agar plates and 

compared to what extent they were dispersed by F. candida. The number of spores 

dispersed and the average distance of their dispersal were positively affected by 

production of the volatiles in wild-type S. coelicolor (Fig. 4b and c). We also 

complemented the double mutant strain J2192 in trans with geoA and mibA-mibB carried 

on an integrated plasmid (pIJ10646) and compared it with the same mutant carrying only 

the empty vector pIJ10770. Complementation restored production of geosmin and 2-MIB 

and enhanced F. candida-mediated dispersal of spores from developed colonies 

(Extended Data Fig. 6c and d). 

 

In summary, we find in laboratory experiments that the model species F. candida senses 

both geosmin and 2-MIB, and that attraction to the odours mediates spore dispersal for S. 

coelicolor and guides springtails to a source of food. Collembola are dietary generalists 

that feed on a wide range of microorganisms and even plant material. Numerous studies 

have shown that microorganisms differ in their quality as food resources for springtails, 

and springtails discriminate when offered different microbial species as food30,31. Two 

genome sequences show that collembolans have a broad repertoire of enzymes for the 

degradation of cell wall material, including the peptidoglycan of bacteria32,33. Certain 

microbes likely use structural and chemical defense mechanisms to defend against 

grazing, for example toxic specialised metabolites19,34,35. Streptomycetes and other 
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geosmin-emitting microbes often produce such metabolites that are toxic to 

invertebrates10,18,36. A recent study showed that Caenorhabditis elegans avoids toxin-

producing streptomycetes by sensing and escaping from small molecules released by 

these bacteria19. Further, the strong aversion of Drosophila flies towards geosmin was 

speculated to help them avoid contaminated and potentially poisonous food sources6. It is 

therefore interesting that the F. candida springtails were not negatively affected when 

feeding on S. coelicolor as the only source of food. 

Springtails are adapted to exposure to various toxic organic substances and xenobiotics in 

the soil, and their genomes contain expanded gene families implicated in detoxification 

mechanisms32,33, presumably giving them the capacity to tolerate specialized metabolites 

produced by streptomycetes. Interestingly, exposure to Streptomyces also stimulated 

ecdysis (Extended Data Fig. 4b), which might be seen as a growth response to the 

availability of food, or act as a detoxification mechanism37. It seems likely that such 

mechanisms allow springtails to feed on streptomycetes, a resource that can be toxic to 

other organisms, such as nematodes19. In addition, apart from being food, Streptomyces 

spp. as producers of antibiotics might play a role in protecting springtails from pathogens, 

comparable to the relation described between Streptomyces and soil-dwelling beewolf 

larvae38.  

 

The Streptomyces genus is of an early origin39, and the broad distribution of geosmin and 

2-MIB production among streptomycetes indicates that both traits are ancestral. 

Interestingly, while Drosophila melanogaster uses an olfactory receptor (OR) to detect 

geosmin, Collembola, which separated from insects over 450 million years ago15, use a 

different chemoreceptor, which must be of earlier type since ORs and their associated co-

receptor Orco evolved relatively late in insect evolution and are not found in Collembola 
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(Supplementary Discussion) and other basal hexapods40,41. Overall, the VOC-mediated 

interaction between streptomycetes and springtails that we describe here is likely to be 

ancient. 

 

Our laboratory experiments suggest that streptomycetes benefit from emitting geosmin 

and 2-MIB as part of their developmental programme because these volatile scents guide 

springtails to sporulating microcolonies, and the animals serve as vectors for spore 

dispersal. The top layers of soil, where both streptomycetes and springtails are abundant, 

form a heterogenous and highly structured matrix, which may impede long-distance spore 

transport by water and wind. Vectoring by soil arthropods should provide a beneficial 

mode of dispersal in such belowground environments, and contribute to shaping the 

microbial communities therein42. Undoubtedly, chemical information in the soil 

ecosystem is not limited to geosmin and 2-MIB, and other volatiles that may act as either 

attractants or repellents, such as oxylipins, need to be considered for a comprehensive 

understanding of chemical ecological and specific trophic interactions between soil 

organisms43. Thus, the relevance of the Streptomyces-produced geosmin and 2-MIB in 

the interactions between the bacteria and springtails should be further tested in a 

community context. 
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METHODS 

Bacterial strains, plasmids, oligonucleotides and growth media. Strains, plasmids and 

oligonucleotides used in this study are described in Supplementary Table 1. Escherichia 

coli strain DH5α was used for plasmid and cosmid propagation. E. coli strain BW25113 

containing a λRed plasmid, pIJ790, was used to create disrupted cosmids44. Cosmids and 

plasmids were conjugated from the dam dcm hsdS E. coli strain ET12567 containing 

pUZ8002, as described previously45-47. Strains of S. coelicolor were cultivated on soya 

flour mannitol agar medium (SFM) and spores were prepared, as described previously47. 

Strains of S. venezuelae were cultivated on maltose yeast extract medium (MYM), as 

described by Bush et al.48.  

 

Construction of S. coelicolor and S. venezuelae mutants. Using ‘Redirect’ PCR 

targeting45,46, an S. venezuelae whiH mutant was generated in which the whiH coding 

sequence was replaced with an apramycin resistance (apr) cassette. Cosmid 1D05 was 

introduced into E. coli BW25113 containing pIJ790 and the whiH gene (vnz27205) was 

replaced with the apr-oriT cassette amplified from pIJ773 using the primer pairs 

whiH_DEL_F and whiH_DEL_R. The resulting construct was introduced into wild-type 

S. venezuelae by conjugation and null mutant derivatives, generated by double crossing 

over, were identified by their apramycin-resistant, kanamycin-sensitive and 

morphological phenotypes. A representative whiH null mutant was designated SV8.  

 

The S. coelicolor Δ(mibA-mibB)::apr mutation was generated via the same approach, 

using λRed-mediated recombination to modify the 6D11 cosmid that carries the mibA and 

mibB genes (sco7700-7701). The mibA and mibB genes were replaced with a single apr-

oriT cassette amplified from pIJ773 using the primer pairs mib_DEL_F and mib_DEL_R. 
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The resulting mutant allele was introduced into the chromosome of the unmarked ΔgeoA 

mutant of S. coelicolor (J3003)45, and a representative ΔgeoA Δ(mibA-mibB)::apr double 

mutant was designated J2192. 

 

For in trans complementation of geoA and mibAB mutations, the eshA-mibA-mibB region 

was amplified from S. coelicolor genomic DNA with primers mib_F and mib_R and 

cloned between the HindIII and AvrII sites in the integrating vector pIJ10770, the geoA 

gene was amplified with primers geoA_F and geoA_R and cloned in the EcoRV site of 

the same plasmid, resulting in plasmid pIJ10646. 

 

Trap networks in the field. Sticky traps were used to test the attraction of soil 

arthropods to live cultures of S. coelicolor (strain M145, grown on SFM agar) at two 

woodland sites at Alnarp, Sweden (55°39'38.0"N 13°04'36.8"E). Both sites were divided 

into 5 plots and each plot received all treatments (sticky traps baited with S. coelicolor or 

controls). Cell cultures of S. coelicolor were prepared by streaking approximately 7 x 104 

CFU onto Petri dishes (3.5 cm diameter) with SFM agar. Plates were incubated in 

darkness at 27°C for 8 days before use in the traps. As control treatments traps baited 

with the substrate only (SFM agar) and unbaited traps were used. Petri dishes of the 

bacterial cultures or controls were uncovered and placed in the centre of white sticky 

traps (glue boards of 16 x 9 cm, Silvandersson, Knäred, Sweden) onto the ground of the 

study sites. A random number generator was used to decide upon the location of the 

treatments in the plots. After 24 hours the traps were collected and the number of 

captured insects, springtails and arachnids were counted. The experiment was repeated 

once more at the following day (resulting in 20 traps per treatment in total). 
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The attraction of springtails to cultures of S. coelicolor was also evaluated in a glasshouse 

with beds containing tropical plants, at the Swedish University of Agricultural Sciences, 

Alnarp. The same type of traps was used as described for the field experiment, with 

unbaited traps as control. The glasshouse was subdivided in 5 plots, with each plot 

receiving 5 replicates of bacterial baited trap and control. The traps were collected 4 days 

after their placement and the number of springtail captures was recorded. The experiment 

was repeated 4 times in consecutive dates, resulting in 100 traps per treatment in total. 

 

Generalized linear mixed models (GLMMs) were used to analyse the effect of trap bait 

on the captures of springtails, insects, and arachnids from the field experiment. A 

Negative binomial distribution was used to correct for overdispersion of data when 

initially analysed with a Poisson distribution49. Models included treatment as the 

explanatory variable (S. coelicolor, agar substrate and unbaited traps). The site and date 

of collection were included as random factors. Similarly, we also analysed the data from 

the glasshouse experiment using GLMMs, with negative binomial distribution. Treatment 

was included as the explanatory variable (S. coelicolor and unbaited traps), while plot 

and date were added to the models as random factors. Significance of the explanatory 

variable was tested with type II Wald x2-statistics. A Bonferroni correction was applied 

when pairwise comparisons were performed. All analyses were carried out in R (v. 3.3.3; 

R Foundation for Statistical Computing, Vienna, AT) with the packages lme4, MASS and 

multcomp. 

 

Collembola. We established a rearing of the springtail Folsomia candida Willem (Terra-

Jungle, Cologne, Germany). Identity of the species was confirmed by sequencing of the 

cytochrome c oxidase subunit 1 (COI) showing 99% sequence similarity with F. candida 
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in a BLAST search on the NCBI database. Few experiments (tests involving non-

sporulating whiG strain or complemented double mutant strain J2192) were performed 

with a different colony of F. candida originating from a laboratory culture at Aarhus 

University, Denmark50. The rearing was maintained in darkness at 20°C, on a mixture of 

gypsum plaster and charcoal (Sigma) (9:1, v/v), kept in sealed Petri dishes. Once a week 

a pinch of semi-artificial springtail food (Terra-Jungle) was added to the dishes, while 

distilled water was added every second day to retain moist. Preliminary experiments 

indicated that F. candida was behaviourally more active when previously kept in a soil 

substrate. Springtails used for behavioural assays therefore were kept on commercial soil 

substrate (Kronmull, Weibull Trädgård AB, Hammenhög, Sweden) in high Petri dishes 

(6·5 cm high and 12 cm diameter) and transferred to gypsum-charcoal plaster without 

food 24 h prior testing. 

 

Volatile collections. Open plates of S. coelicolor cultures were individually enclosed in 

500-mL PET cooking bags (Toppits, Klippan, Sweden). A stream of charcoal-filtered air 

(50 mL min-1) was pulled over the headspace of the bacterial cultures, leaving the bag 

through an air filter adsorbing the emitted bacterial volatile compounds. Filters were 

made of glass tubes (40 mm length, 0.3 mm ID) containing 35 mg of Porapak Q (80/100 

mesh, Altech, Deerfield, IL, USA) held between glass wool plugs. Before sampling, 

filters were rinsed with 2 mL of redistilled methanol and 2 mL of redistilled heptane. 

Volatiles were collected for 23 h at 22°C ± 2ºC and then eluted from the filters with 0.8 

mL of redistilled heptane. For normalization of quantitative chemical analyses, the 

bacterial biomass, grown on agar medium covered with a cellophane membrane, was 

scraped off from the agar medium and the dry weight was determined after drying 

overnight at 80°C. Moreover, heptyl acetate was added as internal standard for 
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quantification of metabolites produced by mutants but not applied for material tested in 

the bioassays.  

 

Chemical analysis. Headspace collections were analysed by coupled gas 

chromatography-mass spectrometry (GC-MS; 6890 GC and 5975 MS; Agilent 

Technologies, Palo Alto, CA, USA), operated in the electron impact ionization mode at 

70 eV. The GC was equipped with a HP-5MS (Agilent Technologies Inc.) fused silica 

capillary column (60 m x 0.25 mm; df = 0.25 μm). Helium was used as the carrier gas at 

an average linear flow rate of 35 cm s-1. Two microliters of each sample were injected 

(splitless mode, 30 s, injector temperature 225°C). The GC oven temperature was 

programmed from 50°C (2 min hold) at 8°C min-1 to 230°C (10 min hold). The transfer 

line between the GC and MS was programmed to hold at 150°C and to track in 

synchrony with the GC oven above that temperature. Compounds were tentatively 

identified by matching their mass spectra with those in the MS Libraries (NIST 11, 

Wiley) using the software ChemStation (MSD Chemstation D.01.02.16 Agilent 

Technologies) and further verified by co-injection of reference compounds (except 

germacradienol) and comparison to published Kovats retention index (KI) values and 

mass spectra51-54.  

 

Electroantennography. Coupled gas chromatographic-electroantennographic detection 

analysis (GC-EAD) was performed to identify the key bacterial odour components that 

elicit antennal responses in F. candida. Agilent 6890N gas chromatograph (Agilent 

Technologies Inc., Santa Clara, CA, USA), equipped with a HP-5 capillary column (30 m 

× 0.32 mm, df = 0.25 μm, J&W Scientific, Folsom, CA, USA), was used with on-column 

injection mode. The oven temperature was programmed as follows: 50°C for 1 min, then 
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15°C min-1 up to 230 °C and 5 min isothermal. Helium was the carrier gas at constant 

flow rate of 45 cm s-1. The GC effluent was split equally (Gerstel Graphpack 3D/2 

crosspiece) in half allowing simultaneous signal detection at a FID (280°C) and a heated 

EAD port (220°C) (transfer line: Syntech, Kirchzarten, Germany). At the EAD port, the 

capillary effluent was delivered to the antennal preparation in a stream of charcoal-

filtered and humidified air (1 L min-1) in a glass tube (150 mm x 8 mm). The head of 

randomly selected adult female F. candida was excised and inserted into a pulled glass 

capillary (ID 1.17 mm, Syntech) filled with Ringer solution55 and attached to a reference 

silver/silver chloride electrode held in a micromanipulator (MP-15, Syntech). The 

antennal signal was amplified 10 times, converted to a digital signal by a high input 

impedance DC amplifier interface (IDAC-232, Syntech) and recorded simultaneously 

with the FID signal using a GC-EAD software (GC-EAD 2000, version 1.2.3, Syntech). 

For every recording a new antennal preparation was used and 2 µL of S. coelicolor strain 

M145 volatile collection extract was injected to the GC. In total six GC-EAD recordings 

were averaged to analyse for consistent antennal responses. The GC-EAD active 

compounds were also compared with authentic standards. The quantity of each 

compound was calculated on the basis of the peak area and calibrated by comparison with 

decyl acetate as internal standard. 

 

Antennal responses of geosmin and 2-MIB from bacterial headspace collections were 

further verified by electroantennography (EAG), puffing ng-amounts of authentic 

compounds onto antennae. Geosmin and 2-MIB were applied at 10 and 100 ng in n-

hexane on a filter paper disk (12.7 mm Ø; Schleicher & Schnell GmbH, Dassel, 

Germany), which was then placed into a Pasteur-pipette. The blank (empty filter paper), 

solvent blank (filter with n-hexane) and the test compound stimuli were randomized and 
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tested in 8 replicates on female antennae. The stimulation time was 0.5 s followed by a 

one-minute recovery period. For the analysis the same instrument, odour delivery system 

and mounting technique was used as described above. EAG amplitudes to the tested 

compounds were log-transformed, to meet the assumptions for parametric tests and 

analysed using linear mixed effects models. Models included stimulus as the explanatory 

variable, while antenna was added as a random factor. Tukey’s post hoc test was used to 

perform pairwise comparisons within the different stimuli, with a Bonferroni correction. 

Wald tests were carried out to test the significance of the explanatory variable, while all 

statistical procedures were conducted using R packages lme4, MASS, car and multcomp. 

 

Y-tube olfactometer assay. Before testing, springtails were starved for 24 h in new Petri 

dishes lined with the mixture of gypsum plaster and charcoal (9:1, v/v), moistened with 

distilled water. Springtails were tested for attraction to volatile collections of different S. 

coelicolor strains, geosmin and 2-MIB in a Y-shaped olfactometer (schematic drawing in 

Fig. 1d) made of glass tubing (8 mm ID) designed on the basis of a similar type of 

olfactometer described by Bengtsson et al.56. The olfactometer had a 30 mm long base 

and 40 mm long arms (in an angle of 45°). Each side arm was connected to a glass 

cylinder (60 mm long, 20 mm ID), which served as odour release compartment. Both 

arms were connected to a charcoal filter. The base of the Y-tube was connected with 

Teflon tubing to a flow meter and then to a suction pump generating a flow of filtered air 

(12 mL min-1) through the two arms, with the odour-release compartments to the base. A 

piece of gauze was interjected between the tip of the base and the Teflon tubing to 

prevent animals from escaping. On the top, at a distance of 1.5 cm from the base end, the 

olfactometer had a hole of 3 mm ID through which springtails were introduced. After 

introducing a single springtail, the hole was closed with a Teflon plug. The position of 
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the springtail was recorded for 10 min or until the springtail entered into a side arm, 

which was counted as response. Assays were performed in a climate chamber at 25°C 

and 60% ± 5% RH, under diffuse dim light (5 lux). All headspace samples and geosmin 

were diluted in redistilled heptane, while 2-MIB was diluted in redistilled hexane. 

Headspace samples were diluted to certain concentrations of geosmin, 2-MIB or 

chalcogran (used to equilibrate samples of the ΔgeoA ΔmibAB mutant) and tested at the 

doses shown in Extended Data Fig. 2. Five microliter of odour sample or solvent (heptane 

or hexane) as a control were loaded onto filter papers (1 cm2) and inserted into the odour 

release chambers. Each day the arms delivering the odour samples or control were 

switched and each olfactometer was used for only 60 min (approx. 5-7 replicates). The 

total number of replicates for each test is given in Extended Data Fig. 2. Odour attraction 

of springtails was analysed by an exact binomial test for the hypothesis that the true 

probability of success equals 0.5. 

 

Performance tests of F. candida. Survival was measured for individual F. candida 

adults, which were kept for 10 days in glass tubes (1.6 x 10 cm) sealed with metal lids 

(Kapsenberg caps) containing 1-week-old cultures of S. coelicolor strain M145 covering 

completely the SFM agar medium (inoculation with 6.6 x 107 CFU; n=31). All springtails 

were kept without food for 24 h prior experimentation. A control group was tested in 

glass tubes with pure SFM agar medium (n=23). To reduce development of microbial 

contamination in the control treatment the springtails were transferred every third day to 

glass tubes with fresh SFM medium. Preliminary experimentation revealed no mortality 

of springtails due to the transfer process. In addition to survival, the time of ecdysis, the 

time of oviposition, and the total number of eggs produced per adult were also recorded 

and analyzed. Average survival, oviposition and ecdysis times were calculated and the 
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treatment vs control was compared by the Kaplan-Meier survival analysis57. Average 

numbers of eggs were compared by Likelihood Ratio tests produced by (GLM) 

procedures, with a negative binomial distribution, for a level of significance α=0.05, 

while all statistical procedures were conducted with R packages MASS, car and survival. 

 

RNA isolation and DNA microarray analysis. RNA isolation and microarray 

transcriptional profiling of the S. venezuelae developmental RNA time courses were 

performed as described previously58,59. The resulting data were processed as described by 

Bush et al.48.  

 

Chromatin immunoprecipitation, library construction, sequencing and ChIP-seq 

data analysis. For WhiH, wild-type S. venezuelae (ATCC 10712) and its derivative SV8-

pIJ6793 (whiH::apr attBΦBT1::whiH-3xFLAG) were grown in MYM liquid sporulation 

medium and ChIP was conducted using anti-FLAG M2 gel suspension (Sigma-Aldrich 

A2220), as described previously48. For BldM, wild-type S. venezuelae and its congenic 

bldM null mutant (SV13) were grown in the same way, and ChIP was conducted using an 

anti-BldM polyclonal antibody, as described previously20. Library construction and 

sequencing were performed as described previously48 by The Earlham Institute, Norwich 

Research Park Norwich, UK. The ChIP-seq data were analyzed as described by Bush et 

al., 201348.  

 

Spore vectoring, feeding, and dispersal assays. We investigated the possible mode of 

spore dispersal by F. candida. First, we studied if springtails transmit spores via their 

outer body. Two groups of F. candida adults, kept without food for 24 h prior 

experimentation, were exposed for 1 h at 25°C to sporulating cultures of S. coelicolor on 
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SFM substrate. Individuals of the first group were used for scanning electron microscopy. 

The animals were immersed in aceton for 15 minutes and then left for air drying. The 

dried samples were carefully glued onto SEM stubs, and sputter-coated with gold 

(Cesington 108 auto, 45 seconds, 20mA). The preparations were examined using a 

scanning electron microscope (SEM; Hitachi SU3500) at 5 kV. Individuals of the second 

group (10 replicates) were transferred singly to 50 µL of 0.05% Tween-20 and vortexed 

gently for 30 s to obtain suspensions of spores that were washed off the springtail 

bodies60. The suspensions were diluted, plated on SFM substrate and incubated to 

estimate the number of spores (CFU) that were attached to the body surface of the 

springtails.  

 

Next, we tested if springtails disperse viable spores through their faeces. S. coelicolor 

cultures were grown on SFM medium covered with cellophane membranes47 to provide 

springtails with sporulating S. coelicolor biomass free from remnants of nutrient agar. 

From sporulated S. coelicolor cultures (8 days incubation at 27°C), the bacterial biomass 

was scraped off the cellophane surface using an inoculation loop. Groups of F. candida 

adults previously kept without food for 24 h were transferred onto a Petri dish lined with 

plaster and provided with a wad of S. coelicolor biomass corresponding to a quarter of 

the culture from a cellophane disk (providing ad libitum biomass to feed upon). 

Springtails were left to feed on the bacteria for 48 h. As F. candida is whitish and to large 

extent transparent, feeding activity could be confirmed by a colour change of their 

intestines to dark grey of the bacterial biomass (Extended Data Fig. 3a). After the feeding 

period, single springtails were transferred to 1.5 mL Eppendorf tubes containing 50 µL of 

0.05% Tween-20 and vortexed gently for 30 s in order to remove spores from their 

cuticle60. No significant number of spores was detected after repeated Tween-20 
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washings, showing that the washing procedure was efficient. The springtails were then 

transferred individually into Petri dishes (3.5 cm diameter) lined with SFM agar and 

incubated for 3 h at 20°C in darkness. Subsequently faecal pellets produced by each 

individual were collected and smeared onto new SFM agar plate. After incubation period 

for 8 d at 27°C, colonies of S. coelicolor deriving from the faecal pellets were recorded.  

 

To compare dispersal of a sporulating to a non-sporulating strain, S. coelicolor strain 

M145 and the congenic whiG mutant strain J2400 were cultivated on SFM medium for 

10 days. Both strains had formed dense lawn of mycelium, but only strain M145 had 

formed spores while strain J2400 only produced vegetative and aerial hyphae. A 2x2 cm2 

piece of the mycelial lawn of each strain was scraped off and used to feed 12 springtails 

(starved for 24 hours) for 3 days in a plaster-lined Petri dish. Each springtail was then 

washed in 0.05% Tween-20 as described before. The washing liquid was plated on SFM 

medium to determine number of CFU washed off per animal. The washed springtails 

were then kept individually on mannitol minimal medium agar for 20 hours to allow time 

for defaecation. Springtails were then removed and the number of excreted CFU per plate 

that formed upon incubation at 30°C was determined. Numbers of CFU originating from 

treatment with sporulating and non-sporulating strains were compared by Mann-Whitney 

test. 

 

Furthermore, we monitored grazing by F. candida on S. coelicolor in soil microcosms. S. 

coelicolor strain J2192/pJ10646 was grown to a sporulating lawn on mannitol minimal 

medium, and agar plugs with bacterial lawn on surface were excised and placed in 18 g 

autoclaved potting soil (Weibulls, Sweden) in plastic cups (9 cm diameter). Ten F. 

candida individuals were added to the soil of one set of cups, and no springtails to the 
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other. Appearance of the bacterial lawn was monitored and photographed after 6 days of 

incubation at room temperature. 

 

Finally, we monitored the effect of geosmin and 2-MIB emitted by S. coelicolor bacteria 

on spore dispersal by springtails. A droplet (5 µl) of spore suspension (5 x 108 CFU mL-1) 

of either S. coelicolor M145 (wild type) or J2192 (ΔgeoA ΔmibAB) was added at a 

distance of 3.5 cm from the centre onto a Petri dish (9 cm diameter) containing SFM 

agar. The droplet was left to soak into the agar for 30 min to form a round film of spores 

on the surface of the SFM agar. Three F. candida adults that were kept without food for 

24 hours were transferred to the centre of the dish and left to move freely for 30 min, in 

dark at room temperature. Springtails were then removed and plates were incubated at 

27°C for 5 days. Each treatment was replicated 25 times and after the incubation period 

the number of newly formed colonies (not contacting the area of the initial 5-µl 

inoculum) and the distance between inoculum and the farthest newly formed colony were 

measured. For the comparison between different treatments General Linear Model 

(GLM) procedures were used to produce Analysis of Deviance for both the number of 

newly formed colonies and the distance, with a normal distribution for distance data and 

quasi-Poisson distribution to correct for overdispersion for the number of newly formed 

colonies data. Data corresponding to the distance were initially analyzed with Bartlett's 

test to check for homogeneity of variances, while normality of the residuals and the Q‐Q 

plots were checked through visual inspection. 

 

To determine whether in trans complementation with geoA and mibA-mibB improved the 

ability of the double mutant strain J2192 to be dispersed by springtails in agar plate 

assays, strain J2192/pIJ10770 (carrying an integrated empty vector) and J2192/pIJ10646 
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(with same vector carrying geoA and eshA-mibA-mibB genes) were inoculated with same 

amount of spores (5 x 103) in a 10 μL drop on mannitol minimal medium agar plates and 

incubated to allow formation of sporulated patch in the middle of the plate. The two 

strains were found to produce similar amounts of viable spores in such patches, and 

harvested spores of the strains germinated with the similar efficiency (77 +/- 20% and 74 

+/- 17% viability, respectively). To each plate 2 starved springtails were added and 

allowed to roam for 2 hours, before they were removed. Plates were incubated for 8 days 

to allow new colonies to develop, and number of dispersed colonies per plate were 

determined and compared by Mann-Whitney test.  
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FIGURE LEGENDS 

 

Figure 1  

Attraction of springtails to Streptomyces headspace, geosmin or 2-methylisoborneol. 

a, Number of springtails captured with sticky traps baited with wild-type S. coelicolor 

strain M145, compared to control traps that were kept without bait or held a non-

inoculated plate of culture medium (n=19) in a 1-day field experiment. b, Number of 

springtails captured with sticky traps baited with S. coelicolor strain M145 (n=93) 

compared to unbaited traps (n=100) in a glasshouse experiment over a period of 4 days. 

Traps baited with S. coelicolor attracted significantly more springtails in the field (a, X2
2, 

57 =19.389, P<0.001) as well as in the glasshouse (b, X2
1, 193 =6.049, P=0.014) than 

control traps. The boxplots show medians, upper and lower quartiles as well as the span 

of data points that are within 1.5 times the interquartile range. c, Schematic drawing of 

sticky trap with bait.  d, Schematic drawing of Y-tube setup. e-g, Odour-mediated 

attraction of the springtail F. candida tested in a Y-tube. Headspace volatiles of S. 

coelicolor strain M145 (0.2 ng geosmin, 0.021 ng 2-MIB) induced significant attraction 

of F. candida (e, P<0.001 **) whereas the equivalent headspace of the geosmin-deficient 

mutant J3003 (ΔgeoA; 0.021 ng 2-MIB) was not attractive (e, P=0.69, ns). Accordingly, 

geosmin (1 ng) alone was sufficient to attract F. candida (f, P<0.001 **) and F. candida 

preferred S. coelicolor M145 to the ΔgeoA mutant when having the choice between the 

two strains (g, P=0.024 *). Attraction to 1 ng of 2-MIB was not significant (f, P=0.061, 

ns) but absence of 2-MIB reduced attraction (g, P<0.001 **) when headspace of the 

double-mutant J2192 (ΔgeoA ΔmibAB) was tested against the equivalent headspace from 

J3003 (ΔgeoA, 3.15 ng 2-MIB, which is 150x concentration as compared to e). For each 

treatment, preference for one of the two arms of the Y-tube was examined by an exact 

binomial test. The bars show the ratios of attraction of springtails to the two arms of the 
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Y-tube. Error bars show the 95% confidence intervals (C.I.). Equal volumes of the 

corresponding solvent (double distilled heptane or hexane) were offered as control in e 

and f.  

 

Figure 2  

Antennal responses to Streptomyces headspace components in F. candida. Gas 

chromatogram of sampled S. coelicolor volatiles (upper trace) and electroantennogram 

(lower trace) showing the mean responses (n=6) of F. candida springtail antennae 

towards the volatiles eluting from a HP-5 column of a gas chromatograph (GC). The 

sketch illustrates the GC with flame ionization detector (FID) and coupled 

electroantennographic detection (EAD). The inserted photograph shows an immobilized 

female of F. candida fixed into a glass capillary having a precise head dissection for 

antennal recording.  

 

Figure 3 

Developmental regulation of the geosmin and 2-MIB biosynthetic genes. a, 

Microarray transcriptional profiling data for geoA, encoding geosmin synthase (upper 

panels) and the three co-transcribed genes eshA, mibA, and mibB (eshA in blue, mibA in 

red, and mibB in green) (lower panels; the latter two genes encode the 2-MIB 

biosynthetic enzymes), during submerged sporulation in wild-type S. venezuelae (wt) and 

congenic mutants lacking the key regulators of sporulation bldM (strain SV13), whiA 

(strain SV11), whiB (strain SV7), whiG (strain SV6), whiH (strain SV8), and whiI (strain 

SV10). In each panel, the x axis indicates the age of the culture in hours, and the y axis 

indicates the per-gene normalized transcript abundance (log2), based on three 

independent cultures. For the wild type, 10 to 14 h corresponds to vegetative growth, 14 
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to 16 h corresponds to the onset of sporulation (fragmentation), and 16 h onwards 

corresponds to sporulation. b, BldM binding to the 2-MIB biosynthetic locus (right 

panel). Anti-BldM polyclonal ChIP-seq data for wt S. venezuelae are shown in brown and 

anti-BldM polyclonal ChIP-seq data for the ΔbldM control strain are shown in black. The 

equivalent data for the geoA locus are shown as a negative control (left panel). c, WhiH 

binding to the geoA locus (left panel). Anti-FLAG ChIP-seq data for the strain expressing 

a functional C-terminally 3xFLAG-tagged WhiH are shown in brown and anti-FLAG 

ChIP-seq data for the control strain (wt S. venezuelae) are shown in black. The equivalent 

data for the eshA-mibA-mibB locus are shown as a negative control (right panel). Genes 

running left to right are shown in green, and genes running right to left are shown in red.  

 

Figure 4 

Dispersal of S. coelicolor spores mediated by springtails. a, Adherence of short chains 

of spores to setae on springtails that had been exposed to sporulating S. coelicolor 

culture, visualised by scanning electron microscopy. Representative results from two 

independent experiments are shown. Size bars, 5 μm. b, c, Effect of geosmin and 2-MIB 

on springtail-mediated spore dispersal from S. coelicolor colonies. The presence of 

geosmin and 2-MIB in S. coelicolor strain M145 (wt; n=24) colonies resulted in higher 

numbers of newly formed colonies due to springtail dispersal (b, X2
1, 49 =4.872, 

P=0.0273) and greater maximal distance (c, X2
1, 49 =6.467, P=0.011) of dispersal from the 

initial inoculum, in comparison to double mutant colonies (ΔgeoA ΔmibAB; n=25), in an 

assay on agar plates. The boxplots show medians, upper and lower quartiles as well as the 

span of data points that are within 1.5 times the interquartile range. 
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