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Abstract: The problem of univariate mean change point detection and lo-
calization based on a sequence of n independent observations with piecewise
constant means has been intensively studied for more than half century, and
serves as a blueprint for change point problems in more complex settings.
We provide a complete characterization of this classical problem in a gen-
eral framework in which the upper bound σ2 on the noise variance, the
minimal spacing Δ between two consecutive change points and the mini-
mal magnitude κ of the changes, are allowed to vary with n. We first show
that consistent localization of the change points is impossible in the low

signal-to-noise ratio regime κ
√
Δ

σ
�

√
log(n). In contrast, when κ

√
Δ

σ
di-

verges with n at the rate of at least
√

log(n), we demonstrate that two
computationally-efficient change point estimators, one based on the solu-
tion to an �0-penalized least squares problem and the other on the popular
wild binary segmentation algorithm, are both consistent and achieve a lo-

calization rate of the order σ2

κ2 log(n). We further show that such rate is
minimax optimal, up to a log(n) term.
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1. Introduction

Research on change point detection in time series data has a relatively long
history in modern statistics, covering both online (e.g. Wald, 1945; Page, 1954;
James, James and Siegmund, 1987) and offline (e.g. Vostrikova, 1981; Yao and
Au, 1989) search problems. It has been recently going through a renaissance
due to the routinely collected complex and large amount of data sets in the ‘Big
Data’ era. Change point detection problems in high-dimensional means (e.g. Cho
and Fryzlewicz, 2015; Cho, 2015; Aston and Kirch, 2014; Jirak, 2015; Wang and
Samworth, 2018), in covariance structures (e.g. Aue et al., 2009; Avanesov and
Buzun, 2016; Wang, Yu and Rinaldo, 2017), in dynamic networks (e.g. Gibberd
and Roy, 2017; Wang, Yu and Rinaldo, 2018), and in sequentially-correlated
time series (e.g. Lavielle, 1999; Davis, Lee and Rodriguez-Yam, 2006; Aue et al.,
2009) have been actively studied in recent years.

Arguably, the simplest and best-studied change point detection problem is
on univariate mean from independent observations. It is fair to say that this
is the most important ingredient in more complex problems. We formalize the
model in Assumption 1.

Assumption 1 (Model). Let Y1, . . . , Yn ∈ R be independent sub-Gaussian ran-
dom variables with continuous density such that E(Yi) = fi and ‖Yi−fi‖ψ2 ≤ σ1

for all i ∈ {1, . . . , n}.
Let {ηk}K+1

k=0 ⊂ {1, . . . , n + 1} be a collection of change points such that
1 = η0 < η1 < . . . < ηK ≤ n < ηK+1 = n+ 1 and

ft �= ft−1 if and only if t ∈ {η1, . . . , ηK}.

Let the minimal spacing Δ and the jump size κ be

min
k=1,...,K+1

{
ηk − ηk−1

}
= Δ

and
min

k=1,...,K

∣∣fηk
− fηk−1

∣∣ = min
k=1,...,K

κk = κ.

Assume Δ > 0 and κ > 0.
1For any random variable X, let ‖X‖ψ2

be its Orlicz-ψ2 norm, i.e.

‖X‖ψ2
= inf

{
t > 0; E exp(X2/t2) ≤ 2

}
.

See e.g. Definition 2.5.6. in Vershynin (2010).
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Remark 1. We do not need the condition that Yi’s have continuous densities.
We include it here for simplicity, so that the event that two sets of independent
random variables have the same sample mean has probability zero. This is the
only time this condition is used.

The model is completely characterized by the sample size n, the upper bound
σ on the random fluctuations in terms of Orlicz-ψ2-norm, the minimal spacing
Δ between two consecutive change points and the lower bound κ of the jump
size in terms of the absolute value of the difference between two consecutive
population means. All three parameters σ, Δ and κ are allowed to change as n
grows. Since the number of change points K is upper bounded by n/Δ, we will
not keep track of K.

The goal of a change point detection problem is to obtain consistent change

point estimators {η̂k} ̂K
k=1, with η̂1 < . . . < η̂

̂K , such that

K̂ = K and max
k=1,..., ̂K

∣∣η̂k − ηk
∣∣ ≤ ε(n) = ε, (1)

where ε/Δ → 0, with probability tending to 1 as n → ∞. In the rest of the paper,
we will refer to ε as the localization error and to the sequence {ε/Δ} as the
localization rate. Notice that the inequality in (1) can be seen as providing
an upper bound on the bidirectional Hausdorff distance between {ηk}Kk=1 and

{η̂k} ̂K
k=1, both viewed as subsets of {2, . . . , n}; see (4) below.

In order to quantify the difficulty of the problem, we rely on the quantity

κ
√
Δ/σ, (2)

which can be thought of as measuring the signal-to-noise ratio. As we will
see, the intrinsic statistical hardness of the change point detection and local-
ization problems is fully captured by this quantity. In particular, the difficulty
of the problem increases as κ and Δ decrease, and σ increases. The quantity
(2) is rooted in two-sample mean testing (with common and known variance),
resembling z-statistics used therein, and has counterparts in high-dimensional
mean, covariance and network change point detection problems (e.g. Wang and
Samworth, 2018; Wang, Yu and Rinaldo, 2017, 2018).

With the previously defined localization rate and signal-to-noise ratio, the
optimality of the estimators possesses two aspects.

(i) Consistency. The first natural question one might ask is under what con-
ditions localization is itself possible. We tackle this problem by identifying
combinations of the model parameters, which we express using the signal-
to-noise ratio (2), for which no estimator of the change points is guaranteed
to be consistent, in a minimax sense.

(ii) Outside the region of impossibility identified in the previous step, the
second natural question is to derive a lower bound on the localization rate
that holds for any estimator. Once the information-theoretic lower bound
is established, one may then proceed to demonstrate a computationally-
efficient algorithm whose localization rate matches such lower bound. This
algorithm is therefore minimax optimal.
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We would like to point out that the phase transition phenomenon in terms of
signal-to-noise ratio for the localization that we demonstrate below in Section 2
has been shown previously found in the literature. For instance, Theorem 1 in
Chan and Walther (2013) showed a phase transition for testing the presence of a
single change point that matches the one we obtain for localization. Frick, Munk
and Sieling (2014) have further generalized this type of detection results to allow
for an unbounded number of change points. Having said these, we would like
to emphasize that testing and localization are two different statistical inference
tasks, despite connection. In term of localization rate, Theorem 2.8 in Frick,
Munk and Sieling (2014) has also provided a localization rate that match the
minimax rate we derive in this paper. Similar results can also be found in other
papers including Dümbgen and Spokoiny (2001), Dümbgen and Walther (2008),
Li, Guo and Munk (2017), Jeng, Cai and Li (2012), Enikeeva, Munk and Werner
(2018), to name but a few.

In this article we will be focusing on two types of change point estimators,
one based on penalized least squares and the other on CUSUM statistics. Both
types of estimator have been thoroughly studied.

• There exist several results and algorithms for change point detection using
�0 penalization, including Liebscher and Winkler (1999), Friedrich et al.
(2008), Boysen et al. (2009) and Killick, Fearnhead and Eckley (2012).
It is worth comparing three papers providing theoretical results based
on �0-penalization methods. Lavielle and Moulines (2000) studied the �0-
penalization approach under general distributions, and showed that if one
chooses the penalization parameter λ properly, then one would get similar
asymptotic results to the case where the model assumes Gaussian noise.
The closest-related result there is Theorem 9, which only showed asymp-
totic results. In this paper, we obtain the lower bounds based on Gaussian
noise, but the upper bounds are achieved for sub-Gaussian noise, and
provide non-asymptotic results. Boysen et al. (2009) studied consistent
estimation of a general class of functions based on the solution to an �0
least squares problem (see (7) in Section 3 for details), which they referred
to as the Potts functional. In particular, under the assumption that the
mean function is piecewise-constant with a fixed number of change points,
the authors showed that a solution to the Potts functional can consistently
localize the change points if the minimal spacing satisfies Δ = cn for some
0 < c < 1 and the change size κ is a constant. We extend such results by
allowing all the parameters in the model – namely κ, Δ and σ – to change
with n at a nearly minimax rate, and will demonstrate the existence of
a phase transition in the space of model parameters. Furthermore, our
analysis is non-asymptotic. Fan and Guan (2017) studied the �0-denoising
on a general class of graphs including chains, i.e. piecewise-constant time
series signals, and provided a number of information-theoretic results. Our
paper and theirs have different targets – we focus on the change point lo-
calization but theirs focused on prediction, which are complementary to
each other.
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There are also a number of papers in 1980’s studying the univariate mean
change point detection problem from the least squares estimators perspec-
tive, for instance, Yao and Davis (1986), Yao (1988), Yao and Au (1989).
The change point estimators are derived from least squares estimators, and
the number of change points are chosen via the Schwarz information crite-
rion. It can be shown (e.g. Tickle et al., 2018) that the Schwarz information
criterion is asymptotically equivalent to the �0 penalization. Note that the
results obtained there are asymptotic, while ours are non-asymptotic and
allow all parameters to vary as the sample size n. Another related area
is the reduced isotonic regression problem, which assumes the monotonic
signal is piecewise-constant and which aims to recover the signal. Gao,
Han and Zhang (2017) has shown an iterated logarithmic lower bound
when there are multiple change points. Despite the close connection, the
focus and results thereof are different from ours.
It is worth mentioning that �0-penalization method is appealing from the
computational aspect, at least in the univariate case. Friedrich et al. (2008)
showed that the Potts functional can be computed using dynamic pro-
gramming and its computational cost is of order O(n2). Killick, Fearn-
head and Eckley (2012) introduced the pruned exact linear time (PELT)
method, which has the worst case computational cost of order O(n2); while
in the situations where the number of change points increases linearly with
n, the expected time of PELT is of order O(n). There are also other algo-
rithms, including Rigaill (2010) and Maidstone et al. (2017), which have
been shown to have an expected cost which is smaller than that of PELT,
but which have the worst case cost also of order O(n2).

• The CUSUM (see Definition 1 in Section 4) is short for the cumulative
sums, proposed in Page (1954) for an online change point problem, and
has been a cornerstone in numerous change point detection methods. We
will show in Section 4 that in the univariate situation, it is identical to the
likelihood ratio test statistics to test whether or not there exists a change
point. Binary segmentation (BS) (e.g. Scott and Knott, 1974; Vostrikova,
1981) based on CUSUM statistics has been shown to be consistent, yet
optimal, in localizing the change points. In the last few years, a consid-
erable amount of efforts have been made into developing variants of BS
in order to handle multiple change points scenarios, see e.g. Fryzlewicz
(2014), Baranowski, Chen and Fryzlewicz (2016) and Eichinger and Kirch
(2018).
An important reference is Fryzlewicz (2014), who put forward the wild
binary segmentation (WBS) algorithm, a variant of BS, and provided an
analysis of its performance. Unfortunately, the proof of Theorem 3.2 in
that reference suffers from critical errors. In this paper we rectify those
issues and present a more comprehensive analysis of WBS that keeps track
explicitly of all the relevant parameters and, in particular, allows to con-
clude that the localization rate afforded by WBS is nearly minimax rate
optimal. Although our efforts in this regard are non-trivial, we acknowl-
edge that the results we derive in Section 4 and the proofs in Appendix C
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borrow heavily from Fryzlewicz (2014). As a result, we provide optimal
results with all parameters being allowed to change with n and weaker
conditions.

The univariate mean change point detection problem has been studied inten-
sively, and we are aware that the results in this paper have been produced in
different forms in existing literature. However, we still see the need to produce
this paper merely focusing on this simple scenario, providing systematical anal-
ysis on various theoretical points, which can be served as benchmarks in more
modern challenges.

We summarize our contributions as follows.

(i) We describe a phase transition in the space of the model parameter that
separates parameter combinations for which consistent change point esti-
mation is impossible (in a minimax sense) from those for which there exist
algorithms that are provably consistent. Furthermore, we provide a global
information-theoretic lower bound on the localization rate that holds over
most of the region of the parameter space for which consistent estimation
is possible. It is worth pointing out that this same phrase transition could
be indirectly deduced from the existing literature on minimax change point
detection and on change point localization for univariate piecewise signals.
See, in particular, Chan and Walther (2013) and Frick, Munk and Sieling
(2014). Here we provide a direct proof of this phenomenon based on formal
minimax arguments.

(ii) We demonstrate that the �0-penalization method produces a minimax
rate-optimal estimator of the change points. In addition, we demonstrate
that the localization rate of �0-penalization method is locally adaptive to
the jump size at each change point, a desirable feature both in theory and
in practice (see Remark 5).

(iii) Among CUSUM-based methods, we show that the WBS algorithm (Fry-
zlewicz, 2014) is also minimax rate-optimal. While our analysis of the
WBS is heavily inspired by the proof techniques in Fryzlewicz (2014), we
are able to provide more refined results with optimal tracking of the un-
derlying parameters, thus obtaining optimal rates. We also require weaker
conditions than Fryzlewicz (2014).

The paper is organized as follows. The information-theoretic results are ex-
hibited in Section 2. Matching upper bounds provided by en �0-penalization
method and WBS can be found in Sections 3 and 4, respectively. Most of the
proofs and technical details are in the Appendices.

2. Phase transition and optimality minimax rates

Recall the two aspects of optimality we describe in Section 1: to identify param-
eter combinations for which consistent localization is possible and to determine
a minimax lower bound on the localization rate. In Lemma 1 we describe the
low signal-to-noise ratio regime for which estimating the location of the change
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points cannot be done. In detail, we show that if

κ
√
Δ/σ <

√
log(n), (3)

then no consistent estimator of the locations of the change points exists. On
the other hand, when κ

√
Δ/σ ≥

√
log(n), Lemma 2 demonstrates a minimax

lower bound on the localization rate of the form σ2

κ2Δ , for all n large enough.
The analysis of the localization procedures described in Sections 3 and 4 will
confirm that these results are in fact quite sharp. Specifically, we will verify both
the existence of a phase transition for the localization task as the signal-to-noise
ratio crosses the threshold

√
log(n), as prescribed by Lemma 1, and the near

minimax optimality of the lower bound of Lemma 2.
Below, for two subsets E1 and E2 of {1, . . . , n}, we let

H(E1, E2) = max
{
max
x∈E1

min
y∈E2

|x− y|,max
y∈E1

min
x∈E2

|x− y|
}

(4)

denote their bidirectional Hausdorff distance.

Lemma 1. Let {Yi}ni=1 be a time series satisfying Assumption 1 and let Pn
κ,Δ,σ

denote the corresponding joint distribution. For any 0 < c < 1, consider the
class of distributions

Pn
c =

{
Pn
κ,Δ,σ : Δ = min

{⌊
c
log(n)

κ2/σ2

⌋
,
⌊n
4

⌋}}
.

Then, there exists an n(c), which depends on c, such that, for all n larger than
n(c),

inf
η̂

sup
P∈Pn

c

EP

(
H(η̂, η(P ))

)
≥ n

8
≥ Δ

4
,

where the infimum is over all estimators η̂ = {η̂k} ̂K
k=1 of the change point loca-

tions and η(P ) is the set of locations of the change points of P ∈ Pn
c .

In the above result, it is possible to let c → 0 as n → ∞ (and in fact, the value
of n(c) is increasing in c). Thus, we conclude that, if κ

√
Δ/σ < �

√
log(n)� <

�n/4�, the localization rate is bounded away from 0, i.e. the estimator is not
consistent.

In our next result we complement Lemma 1 by showing that if instead

κ
√
Δ/σ ≥ ζn, (5)

for any sequence {ζn}n=1,2,... of positive numbers diverging to infinity at an
arbitrary pace as n → ∞, then the corresponding lower bound is at least of

order σ2

κ2 , for all n large enough. Of course, in light of Lemma 1, this lower

bound is interesting only when ζn is larger than
√
log(n). In the next sections,

we will further show that, provided that ζn is of the order
√

log1+ξ(n) or larger,

for any ξ > 0, then, up to a logarithmic factor in n, σ2

κ2 yields the asymptotic
minimax lower bound on the localization rate.
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Lemma 2. Let {Yi}ni=1 be a time series satisfying Assumption 1 with one and
only one change point. Let Pn

κ,Δ,σ denote the corresponding joint distribution.
Consider the class of distributions

Qn =
{
Pn
κ,Δ,σ : Δ < n/2, κ

√
Δ/σ ≥ ζn

}
,

for any sequence {ζn} such that limn→∞ ζn = ∞. Then, for all n large enough,
it holds that

inf
η̂

sup
P∈Qn

EP

(∣∣η̂ − η(P )
∣∣) ≥ max

{
1,

1

2

⌈σ2

κ2

⌉
e−2

}
,

where the infimum is over all estimators η̂ of the change point location and η(P )
denotes the change point location of P ∈ Qn.

The bounds in Lemma 1 and Lemma 2 are slightly sharper than the minimax
lower bounds obtained by taking p = 1 in Proposition 3 in the supplementary
material of Wang and Samworth (2018). Indeed, our analysis allows for a more
refined characterization of the phase transition for the localization task by ex-
hibiting the threshold value of

√
log(n) describing the transition from the low

to high signal-to-noise ratio regime.

3. �0 penalization

In this section we describe an estimator of the change point locations based on
the �0 penalty and demonstrate that it is minimax rate optimal.

We first formalize the �0-penalized optimization problem, and define the
change point estimators generated therefrom. For the sake of analysis, we will
provide an alternative objective function, which, we will show, generates iden-
tical change point estimators.

For fixed tuning parameter λ > 0 and data {Yi}ni=1, define the �0-penalized
sum of squares objective function as

H(u, {Yi}ni=1, λ) =

n∑
i=1

(
Yi − ui

)2
+ λ‖Du‖0, (6)

where ‖ · ‖0 is the �0-norm of a vector, D ∈ {±1, 0}(n−1)×n satisfies (Du)j =
uj+1 − uj , for j ∈ {1, . . . , n− 1}. Let

û(λ) = argmin
u∈Rn

H(u, {Yi}ni=1, λ). (7)

Let
{
η̂k
} ̂K

k=1
be the collection

J
(
û
)
=
{
i ∈ {2, . . . , n} : ûi

(
λ
)
�= ûi−1

(
λ
)}

.

We thus call
{
η̂k
} ̂K

k=1
the change point estimator induced by û

(
λ
)
, or the change

point estimator from the optimization problem (7). If one replaces the penalty
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term ‖Du‖0 with the �1-norm ‖Du‖1, then (6) is the fused Lasso objective
function, see e.g. Tibshirani et al. (2005) and Rinaldo (2009).

Alternatively, let P be any interval partition of {1, . . . , n}, i.e. a collection of
Pk disjoint subsets of {1, . . . , n} of the form

P =
{
{1, . . . , i1 − 1}, {i1, . . . , i2 − 1}, . . . , {iPk

, . . . , n}
}
,

for some integers 1 < i1 < · · · < iPk
≤ n, where Pk ≥ 1. In particular, if Pk = 1,

then P =
{
{1, . . . , n}

}
. For a fixed positive tuning parameter λ > 0 and data

{Yi}ni=1, let

P̂(λ) = argmin
P

G
(
P , {Yi}ni=1, λ

)
. (8)

where the minimum ranges over all interval partitions of {1, . . . , n+1} and, for
any such partition P ,

G
(
P , {Yi}ni=1, λ

)
=
∑
I∈P

∑
i∈I

(
Yi − Y I

)2
+ λ

(
|P| − 1

)
, (9)

with Y I = |I|−1
∑

i∈I Yi. The optimization problem (8) is known as the minimal
partition problem and can be solved using dynamic programming in polynomial
time (e.g. Algorithm 1 in Friedrich et al., 2008). The change point estimator
resulting from the solution to (8) is simply obtained from taking all the left

endpoints of the intervals I ∈ P̂ except 1. In general, without assuming any
conditions on the inputs, there is no guarantee that the minimizers are unique.

We now make the simple observation that the optimization problems (7) and
(8) with the same inputs yield the same change point estimators. To see this
equivalence we will introduce some notation that we will be using throughout.
For any vector v ∈ R

n and any i ∈ {2, . . . , n}, if vi �= vi−1, one calls i an
induced change point of v, and the collection of all the induced change points
of v is denoted as J(v). The set J(v) yields an interval partition, i.e., if J(v) =
{i1, . . . , iN}, then one can define the interval partition induced by v as

P =
{
{1, . . . , i1 − 1}, {i1, . . . , i2 − 1}, . . . , {iN , . . . , n}

}
.

Conversely, for any interval partition P and a sequence {Yi}ni=1, define their
induced piecewise-constant vector v as vi = Y I , for any i ∈ I and I ∈ P . Since
for I ⊂ {1, . . . , n},

Y I = argmin
x∈R

∑
i∈I

(Yi − x)2,

it follows that with the same inputs {Yi}ni=1 and λ > 0, the solutions to (7) and
(8) induce each other in the sense specified above.

Remark 2 (Tuning parameter). If we view any vector u ∈ R
n as a step function

with at most n− 1 jumps, then the tuning parameter λ penalizes the number of
jumps in u. For an integer interval I ⊂ {1, . . . , n}, the tuning parameter λ works
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in the following way. If an integer interval I is to be split into two integer sub-
intervals I1 and I2, then it follows from Lemma 5 that the sum of squares will
decrease by

|I1||I2|
|I1|+ |I2|

(
Y I1 − Y I2

)2
, (10)

but, at the same time, the penalty term will increase by λ. Therefore the trade-off
guiding the choice between refining a candidate integral partition of {1, . . . , n} by
introducing one additional split and leaving it unchanged (so that this partition
must then provide an optimal solution to (8)), is described by comparing (10)
to λ. In Theorem 3 we will provide a theoretically optimal choice for λ.

Remark 3. In the rest of this paper, when there is no ambiguity, we allow the
following abuse of notation. If s < e, s, e ∈ Z, we sometimes refer {s, . . . , e}
and {s, . . . , e− 1} as [s, e] and [s, e), respectively.

3.1. Optimal change point localization

Recall in Lemma 1 we have shown that if κ
√
Δ/σ <

√
log(n), then no algorithm

is guaranteed to produce consistent change point estimators. To demonstrate the
performances of (7), we thus require the signal-to-noise ratio κ

√
Δ/σ to be larger

than a diverging function of n, which we take to be of the form log(1+ξ)/2(n).
As remarked in the previous section, such choice is consistent with Lemma 2,
which in principle allows for a vanishing localization rate.

Assumption 2. There exists a sufficiently large absolute constant CSNR > 0
such that for any ξ > 0,

κ
√
Δ/σ ≥ CSNR

√
log1+ξ(n).

We introduce the parameter ξ > 0 in order to guarantee that even if Δ  n,
the resulting estimator remains consistent. We do not know whether the above
assumption can be relaxed by allowing for a rate of increase for κ

√
Δ/σ slower

than
√

log1+ξ(n). In our proofs, this seems to be the slowest rate that we can

afford.

Theorem 3. Let {Yi}ni=1 be generated from a distribution described in Assump-
tion 1 and, for any λ > 0, set

û(λ) = argmin
u∈Rn

H(u, {Yi}ni=1, λ). (11)

Let {v̂k(λ)}
̂K(λ)
k=1 be the collection of change points induced by û(λ). Under As-

sumption 2, for any choice of c > 3, there exists a constant Cλ > 0, which
depends on c such that, for λ = Cλσ

2 log(n), it holds that

P
{
K̂(λ) = K, and |ν̂k(λ)− νk| = εk ≤ Cεσ

2 log(n)/κ2
k, ∀k ∈ {1, . . . ,K}

}
≥ 1− e · n3−c,

where Cε > 0 is a constant depending on Cλ and CSNR.
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Recalling Lemma 2, we see now that the localization error bound we derived
in Theorem 3 is minimax rate optimal aside from possibly a log(n) factor. The-
orem 3 shows that with a proper choice of the tuning parameter, (7) provides
consistent change point estimators in the sense that with probability tending to
1 as n → ∞, it holds that K̂(λ) = K and for all k ∈ {1, . . . ,K},

εk/n ≤ Cε
σ2

κ2

log(n)

n
≤ Cε

Δ

n logξ(n)
→ 0,

as n → ∞. It is important to realize that Theorem 3 yields a family of rates,
depending on how the parameters κ, Δ and σ scale with n. The logarithmic
upper bound on the localization rate exhibited in the last display corresponds
to the worst case scenario in which the weakest possible signal-to-noise ratio
compatible with Assumption 2 is in effect. In fact, in most other cases, the
localization rate is significantly faster. For instance, when σ and κ are constants
(the classic scenario studied in the earlier change point detection literature),
then the localization error is, with high probability, of order log(n) provided
that Δ scales in n at a rate at least as fast as log1+ξ(n). As a second example,
assuming again σ to be constant, the estimator we study remains consistent

even as κ vanishes, as long as its rate of decay is no faster that
√

log(n)
n and Δ

satisfies the high signal-to-noise ratio condition in Assumption 2.

Remark 4 (Uniqueness). We mentioned earlier that the minimizers of the op-
timization problems (7) and (8) need not be unique. However, if the independent
errors have a continuous distribution, as assumed in Assumption 1, the min-
imizer is unique almost surely, for each n and each λ; if not, then any two
solutions, say P and P ′, are such that∑

I∈P

∑
i∈I

(
Yi − Y I

)2 − ∑
I′∈P′

∑
i∈I′

(
Yi − Y I′

)2
= λ

(
|P ′| − P|

)
.

This is a quadratic polynomial in the {Yi}ni=1. The set of its real solutions (if
exists any) has n-dimensional Lebesgue measure 0. In general, if there are mul-
tiple solutions (so that Assumption 1 does not hold), Assumption 2 guarantees
that, with large probability, the minimizer is unique almost surely.

Remark 5. Theorem 3 provides a separate localization error for each change
point. It is natural to expect that change point localization should be locally adap-
tive in a sense that, if the jump size κk gets larger, then it is easier to estimate
the location of the change point ηk. In fact, the error rate εk derived in Theo-
rem 3 matches this feature.

Proof of Theorem 3. Define the event

B =

{
max

1≤a<b<c≤n

√
(b− a)(c− b)

c− a

∣∣Y (a+1,b] − f (a+1,b] + Y (b+1,c] − f (b+1,c]

∣∣
≤ σ

√
Cλ log(n)

}
,
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where Cλ > 0 is a large enough constant only depending on c, and a, b, c are
integers. In the remainder of the proof we work on the event B. By Lemma 6 in
Appendix B, this occurs with probability at least 1− e · n3−c.

For simplicity we will remove the dependence on λ in our notation as it will
implicitly understood that λ = Cλσ

2 log(n). Let P̂ be the interval partition

induced by û (see (11)), and let {s, . . . , e− 1} be any member of P̂. The proof
is completed by showing the following four steps.

Step 1 The interval [s, e) contains no more than two true change points. This
is shown in Lemma 7.

Step 2 If [s, e) contains exactly two true change points, say ηk, ηk+1, then

ηk − s ≤ Cεσ
2 log(n)/κ2

k, and e− ηk+1 ≤ Cεσ
2 log(n)/κ2

k+1.

This is shown in Lemma 8.
Step 3 If [s, e) contains only one true change point, say ηk, without loss of

generality, let ηk − s ≤ e− ηk, then it must hold that

s ≤ ηk ≤ e ≤ ηk+1

and

ηk − s ≤ Cεσ
2 log(n)/κ2

k, and ηk+1 − e ≤ Cεσ
2 log(n)/κ2

k+1.

This is shown in Lemmas 9, 10 and 11.
Step 4 If [s, e) contains no true change point, then there exist two true change

points ηk and ηk+1 satisfying

ηk ≤ s < e ≤ ηk+1

and

s− ηk ≤ Cεσ
2 log(n)/κ2

k, and ηk+1 − e ≤ Cεσ
2 log(n)/κ2

k+1.

This is shown in Lemma 12.

4. CUSUM

As for the univariate mean change point detection problem, the �0-penalization
estimator is not the only one which achieves the minimax optimality. Binary seg-
mentation (BS) (e.g. Scott and Knott, 1974) based on CUSUM statistics is ar-
guably the most popular change point detection method. It has been shown that
BS is consistent yet not optimal (e.g. Venkatraman, 1992). Fryzlewicz (2014)
proposed a variant of BS, namely wild binary segmentation (WBS), which is
shown to lead to a better localization rate than the BS algorithm. In this section,
we will recall the WBS algorithm, and give refined results on its performance,
with a proof which has more careful tracking of all parameters and all the con-
stants involved. As a result, we prove that WBS, just like the method studied
in the previous section, also guarantees a localization error rate that is rate
minimax optimal. However, compared to the �0-penalization methods, WBS is
computationally more expensive and involves more tuning parameters.
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Definition 1 (CUSUM statistics). For a sequence {Yi}ni=1, any pair of time
points (s, e) ⊂ {0, . . . , n} with s < e−1, and any time point t = s+1, . . . , e−1,
let the CUSUM statistics be

Ỹ s,e
t =

√
e− t

(e− s)(t− s)

t∑
i=s+1

Yi −
√

t− s

(e− s)(e− t)

e∑
i=t+1

Yi.

For a collection of independent Gaussian random variables {Yi}ni=1 with
E(Yi) = fi and same variance, one can easily derive that

max
t=1,...,n−1

∣∣Ỹ 0,n
t

∣∣
is the generalized likelihood ratio statistic, which can be used to test the hy-
pothesis:

H0 : f1 = · · · = fn vs.

H1 : there exists t∗ such that f1 = · · · = ft∗ �= ft∗+1 = · · · fn. (12)

In particular, the BS algorithm searches for the time point which has the largest
absolute CUSUM statistics value, i.e.

t̂ = argmax
t=1,...,n−1

∣∣Ỹ 0,n
t

∣∣.
However, as noted in Fryzlewicz (2014), when there are potentially multiple

change points, their combined effect might cancel out and the BS is guaranteed
to be effective only when applied to intervals containing at most one change
point. WBS improves on BS by performing multiple CUSUM tests over ran-
domly chosen sub-intervals in such a manner that each change point will, with
high probability, be the only change point deep inside some selected interval and
can be identified using the BS algorithm within that interval. See Algorithm 1
for a formal description of WBS.

It has been shown under a set of slightly stronger conditions, Fryzlewicz
(2014) originally put forward the WBS algorithm and provided an analysis of
its performance. Below we refine such analysis and formally prove that WBS
is minimax rate-optimal in terms of the required signal-to-noise ratio and the
localization rate.

Theorem 4. For WBS algorithm detailed in Algorithm 1, assume the inputs
are as follows:

• the sequence {Yi}ni=1 satisfies Assumptions 1 and 2;
• the collection of intervals {(αm, βm)}Mm=1 ⊂ {1, . . . , n}, whose endpoints

are drawn independently and uniformly from {1, . . . , n}, satisfy

max
m=1,...,M

(βm − αm) ≤ CRΔ,

almost surely, for an absolute constant CR > 3/2;
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Algorithm 1 Wild Binary Segmentation. WBS((s, e), {(αm, βm)}Mm=1, τ)

INPUT: Independent samples {Xi}ni=1, collection of intervals {(αm, βm)}Mm=1, tuning pa-
rameters τ > 0.
for m = 1, . . . ,M do

(sm, em) ← [s, e] ∩ [αm, βm]
if em − sm > 1 then

bm ← argmaxsm+1≤t≤em−1 |Ỹ
sm,em
t |

am ←
∣∣Ỹ sm,em

bm

∣∣
else

am ← −1
end if

end for
m∗ ← argmaxm=1,...,M am
if am∗ > τ then

add bm∗ to the set of estimated change points
WBS((s, bm∗), {(αm, βm)}Mm=1, τ)
WBS((bm∗ + 1, e), {(αm, βm)}Mm=1, τ)

end if
OUTPUT: The set of estimated change points.

• the tuning parameters τ satisfies

cτ,1σ
√

log(n) < τ < cτ,2κ
√
Δ, (13)

where cτ,1, cτ,2 > 0 are sufficiently large and small absolute constants.

Let
{
η̂k
} ̂K

k=1
be the corresponding output of the WBS algorithm. Then,

P

{
K̂ = K and εk ≤ Cεσ

2 log(n)κ−2
k , ∀k ∈ {1, . . . ,K}

}
≥ 1− e · n3−c − e · n2−c − exp

{
log

( n

Δ

)
− MΔ

4CRn

}
, (14)

where c > 3 is an absolute constant and Cε > 0 is a sufficiently large constant.

Remark 6. For simplicity, we require Assumption 1 in Theorem 4, but in fact
we do not need continuous density functions condition.

Theorem 4 shows that with suitable choice for the tuning parameters, WBS
is optimal in the sense that:

• under the signal-to-noise ratio regime detailed in Assumption 2, it yields
consistent estimators of the change point locations that with probability
tending to 1: K̂ = K, and for all k = 1, . . . ,K,

εk/Δ ≤ Cεσ
2 log(n)κ−2

k /Δ ≤ Cε

C2
SNR

1

logξ(n)
→ 0,

as n → ∞; and
• it possesses a localization rate

ε/Δ = Δ−1 max
k=1,...,K

Cεσ
2 log(n)κ−2

k ≤ Δ−1Cεσ
2 log(n)κ−2,
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which is minimax rate optimal, save for a log(n) factor, according to
Lemma 2.

Remark 7. To guarantee that (14) tends to 1 as n → ∞, the number of random
intervals M needs to satisfy

M � n

Δ
log

( n

Δ

)
.

Remark 8 (Tracking constants). For readability, we refrain the pursuit of ex-
plicitly expressing all constants, and only show the hierarchy of the constants.
One would first choose c > 3 in (14) to make sure that the consistency re-
sult holds. This will determine cτ,1, which is the same as Cγ used in the proof,
and consequently cτ,2, which also depends on CSNR and CR. All these constants
finally determine Cε.

Remark 9 (Tuning parameters). The range displayed in Equation (13) is used
in Step 1 in the proof. Notice that, by Assumption 2 and with properly chosen
constants, such range is not an empty set for τ . As shown in the proof, over
an event of probability tending to 1, the lower bound of (13) serves as an upper
bound of the maximum CUSUM statistics when there are no change points, and
the upper bound serves as a lower bound of the maximum CUSUM statistics
when there exists a change point.

Remark 10 (Comparisons with Theorem 3). In Theorem 3, the only tuning
parameter is the penalization level λ, while in Theorem 4, we rneed to specify τ
and the number of random intervals M . In practice, Fryzlewicz (2014) suggest
an AIC-based method for picking these parameters.

Proof of Theorem 4. Since ε is the desired order of localization error rate, by
induction, it suffices to consider any generic interval (s, e) ⊂ (0, T ) that satisfies

ηk−1 ≤ s ≤ ηk ≤ . . . ≤ ηk+q ≤ e ≤ ηk+q+1, q ≥ −1,

and

max
{
min

{
ηk − s, s− ηk−1

}
, min

{
ηk+q+1 − e, e− ηk+q

}}
≤ ε,

where q = −1 indicates that there is no change point contained in (s, e).
Under Assumption 2, it holds that

ε = Cεσ
2 log(n)κ−2 ≤ Cε

C2
SNR

Δ

logξ(n)
≤ Δ/4,

with sufficiently large CSNR. It, therefore, has to be the case that for any change
point ηk ∈ (0, T ), either |ηk − s| ≤ ε or |ηk − s| ≥ Δ − ε ≥ 3Δ/4. This means
that min{|ηk − e|, |ηk − s|} ≤ ε indicates that ηk is a detected change point in
the previous induction step, even if ηk ∈ (s, e). We refer to ηk ∈ (s, e) as an
undetected change point if min{ηk − s, ηk − e} ≥ 3Δ/4.

In order to complete the induction step, it suffices to show that WBS (i) will
not detect any new change point in (s, e) if all the change points in that interval
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have been previous detected, and (ii) will find a point b ∈ (s, e) – in fact in
(s + δ(e − s), e − δ(e − s)) – such that |ηk − b| ≤ ε if there exists at least one
undetected change point in (s, e).

We will consider the events A1(γ), A2(γ) and M defined in (40), (41) and
(42), respectively. Set γ to be Cγσ

√
log(n), with a sufficiently large Cγ . The

rest of the proof assumes the event

A1(Cγσ
√
log(n)) ∩ A2(Cγσ

√
log(n)) ∩M.

which, in light of Lemma 13 from Appendix C, has probability tending to 1.

Step 1. In this step, we will show that WBS will consistently detect or reject
the existence of undetected change points within (s, e).

Let am, bm and m∗ be defined as in Algorithm 1. Suppose there exists a
change point ηk ∈ (s, e) such that min{ηk − s, e − ηk} ≥ 3Δ/4. In the event
M, there exists an interval (αm, βm) selected by WBS such that αm ∈ [ηk −
3Δ/4, ηk −Δ/2] and βm ∈ [ηk +Δ/2, ηk + 3Δ/4].

Following Algorithm 1, [sm, em] = [αm, βm] ∩ [s, e]. We have that min{ηk −
sm, em − ηk} ≥ (1/4)Δ and [sm, em] contains at most one true change point.

By choosing c1 = 1/2 in Lemma 14, it holds that

max
sm<t<em

∣∣f̃sm,em
t

∣∣ ≥ κk

√
Δ/4,

where em − sm ≤ 2Δ is used in the last inequality. Therefore

am = max
sm<t<em

∣∣Ỹ sm,em
t

∣∣ ≥ max
sm<t<em

∣∣f̃sm,em
t

∣∣− γ ≥ κk

√
Δ/4− γ.

Thus for any undetected change point ηk ∈ (s, e), it holds that

am∗ = sup
1≤m≤M

am ≥ κk

√
Δ/4− γ ≥ cτ,2κk

√
Δ, (15)

where the last inequality is from the choice of γ and cτ,2 > 0 is achievable with
a sufficiently large CSNR in Assumption 1. Then, WBS correctly accepts the
existence of undetected change points.

Suppose there does not exist any undetected change point within (s, e), then
for any (sm, em) = (αm, βm) ∩ (s, e), one of the following situations must hold.

(a) There is no change point within (sm, em);
(b) there exists only one change point ηk ∈ (sm, em) and either min{ηk −

sm, em − ηk} ≤ εk; or
(c) there exist two change points ηk, ηk+1 ∈ (sm, em) and ηk − sm ≤ εk,

em − ηk+1 ≤ εk+1.

Since cases (a) and (b) are similar and in fact simpler to the case (c), we will only
provide the analysis for (c) in the proof. Observe that if (c) holds, by Lemma 15

sup
sm≤t≤em

|f̃sm,em
t | ≤

√
em − ηk+1κk+1 +

√
ηk − smκk ≤ 2Cεσ

√
log(n).
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As a result,

sup
sm≤t≤em

|Ỹ sm,em
t | ≤ sup

sm≤t≤em

|f̃sm,em
t − Ỹ sm,em

t |+ sup
sm≤t≤em

|f̃sm,em
t |

≤ 2Cεσ
√

log(n) + Cγσ
√

log(n) < τ

where event A1(Cγσ
√

log(n)) is used in the first inequality and (13) is used in
the last inequality. Therefore WBS will always correctly reject the existence of
undetected change points.

Step 2. Assume that there exists a change point ηk ∈ (s, e) such that min{ηk−
s, ηk−e} ≥ 3Δ/4. Let sm, em and m∗ be defined as in Algorithm 1. To complete
the proof it suffices to show that there exists a change point ηk ∈ (sm∗, em∗)
such that min{ηk − sm∗, ηk − em∗} ≥ Δ/4 and |bm∗ − ηk| ≤ ε.

To that end, we are to ensure that the assumptions of Lemma 22 are verified.
The proof of Lemma 22 relies on a number of results, the relationship of which
is shown in Figure 2. Observe that (52) is straightforward from Assumption 2,
(50) and (51) follow from the definition of A1 and A2, and that (49) follows
from (15).

Thus, all the conditions in Lemma 22 are met, and we therefore conclude
that there exists a change point ηk, satisfying

min{em∗ − ηk, ηk − sm∗} > Δ/4 (16)

and
|bm∗ − ηk| ≤ C3γ

2κ−2 ≤ ε,

where the last inequality holds from the choice of γ and Assumption 2.
The proof is complete by noticing the fact that (16) and (sm∗ , em∗) ⊂ (s, e)

imply that
min{e− ηk, ηk − s} > Δ/4 > ε.

As discussed in the argument before Step 1, this implies that ηk must be an
undetected change point.

5. Conclusions

In this paper we have provided a complete characterization of the classical prob-
lem of univariate mean change point localization for a sequence of independent
sub-Gaussian random variables with piecewise-constant means. We have con-
sidered the most general setting in which all the parameters of the problems
are allowed to change with the length n of the sequence. We have identified a
critical function of the model parameters that is able to discriminate the por-
tion of the parameter space in which consistent localization is impossible from
the part in which it is feasible. We have further specified, up to a log(n) term,
the minimax optimal localization rate for this problem and showed that two
computationally-efficient methods achieve such a rate.
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We would like to point out that the �0-penalization methods can also be
used in handling change point detection for more complex data types, such
as high-dimensional mean, covariance and networks. The developments rely on
feasible algorithms for their corresponding problems, but we conjecture that
�0-penalization methods on complex data types would also enjoy the same op-
timality with fewer tuning parameters than those in CUSUM-based methods.

Finally, we conjecture that the upper bounds on the localization rate exhib-
ited in both Sections 3 and 4 can be sharpened by replacing the log(n) term
with a smaller quantity of order log log(n), thus further reducing the gap with
the lower bound in Lemma 2.
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Appendix A: Proofs of the results in Section 2

Proof of Lemma 1. Without loss of generality, suppose that n/4 is an integer.
For l ∈ {1, . . . , n/4}, let ũl ∈ R

n be such that the ith coordinate of ũl(i),
i = 1, . . . , n, satisfies

ũl(i) =

{√
cσ2 log(n), i = l;

0, otherwise,

where 0 < c < 1. Let ṽl ∈ R
n be such that ṽl(i) = ũl(n − i + 1), i =

1, . . . , n. Let P̃l and Q̃l be the multivariate Gaussian distributions N (ũl, σ
2In)

and N (ṽl, σ
2In), respectively and set

P̃ =
1

n/4

n/4∑
l=1

P̃l and Q̃ =
1

n/4

n/4∑
l=1

Q̃l.

Note that for each l ∈ {1, . . . , n/4}, P̃l has two change points, at locations
l−1 and l, and therefore, Δ = 1. Furthermore, the jump size is κ =

√
cσ2 log(n)

and the fluctuation is σ2. As a result,

κ
√
Δ/σ =

√
c log(n),

which implies that all P̃l ∈ Pn
c . The same arguments show that Q̃l ∈ Pn

c ,
for all l. For each l and l′ in {1, . . . , n/4}, we have that, by constructions,

H(η(P̃l), η(Q̃l′) ≥ n
2 , where η(P̃l) and η(Q̃l′) denote the sets of change point
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locations of P̃l and Q̃l′ , respectively. Then it follows from Le Cam’s lemma (e.g.
Yu, 1997) that

inf
η̂

sup
P∈Pn

c

EP

(
H(η̂, η(P ))

)
≥ n

4

{
1− dTV(P̃ , Q̃)

}
, (17)

where dTV(·, ·) is the total variation distance between two probability measures

and the infimum is over all estimators η̂ = {η̂k} ̂K
k=1 of the change point locations.

Above, η(P ) is the set of locations of all the change points of P ∈ Pn
c .

Let ul ∈ R
n/2 be a sub-vector of ũl consisting of the first n/2 entries of

ũl. Let Pl and P0 be the multivariate Gaussian distributions N (ul, σ
2In/2) and

N (0, σ2In/2), receptively. Due to the symmetry between ũl and ṽl, it holds that

dTV(P̃ , Q̃) ≤ 2dTV(P, P0), (18)

where P = 1
n/4

∑n/4
l=1 Pl. Since dTV(P, P0) ≤

√
χ2(P, P0), where χ2(·, ·) is the

χ2-divergence between two probability measures (see, e.g., Equation 2.27 in
Tsybakov, 2009), it suffices to provide an upper bound for χ2(P, P0). We have

χ2(P, P0) =

(
1

n/4

)2 n/4∑
l,m=1

EP0

(
dPldPm

dP0dP0

)
− 1

=

(
1

n/4

)2 n/4∑
l,m=1

exp

(
u�
l um

σ2

)
− 1

=

(
4

n

)2
⎡⎣n/4∑

l=1

{
exp

(
c log(n)

)}
+ (n/4)(n/4− 1)

⎤⎦− 1

= 4n−1(nc − 1),

where the third identity follows from the observation that for l,m = 1, . . . , n/4,

u�
l um = 1{l = m}cσ2 log(n).

Therefore for any 0 < c < 1, there exists a sufficiently large n(c) such that for
any n ≥ n(c), 4n−1(nc−1) ≤ 1/16. This combining with (17) and (18) provides
the desired result.

Proof of Lemma 2. Let P0 denote the joint distribution of the independent ran-
dom variables {Yi}ni=1, where

Y1, . . . , YΔ
i.i.d.∼ N (0, σ2) and YΔ+1, . . . , Yn

i.i.d.∼ N (κ, σ2);

and, similarly, let P1 be the joint distribution of the independent random vari-
ables {Zi}ni=1 such that

Z1, . . . , ZΔ+δ
i.i.d.∼ N (0, σ2), and ZΔ+δ+1, . . . , Zn

i.i.d.∼ N (κ, σ2),
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where δ is a positive integer no larger than n− 1−Δ. Observe that η(P0) = Δ
and η(P1) = Δ + δ. By Le Cam’s Lemma (e.g. Yu, 1997) and Lemma 2.6 in
Tsybakov (2009), it holds that

inf
η̂

sup
P∈Q

EP

(
|η̂ − η|

)
≥ δ

{
1− dTV(P0, P1)

}
≥ δ

2
exp (−KL(P0, P1)) ,

where KL(·, ·) is the Kullback–Leibler divergence between two probability mea-
sures.

Since both P0 and P1 are product measures, it holds that

KL(P0, P1) =
∑

i∈{Δ+1,...,Δ+δ}
KL(P0,i, P1,i) = δ

κ2

σ2
,

where P0,i and P1,i are the distributions of Yi and Zi, respectively and the last
identity follows from the fact that, if P and Q are the normal distributions
with common variance σ2 and means μ1 and μ2, respectively, then K(P,Q) =
(μ1−μ2)

2

σ2 . Thus,

inf
η̂

sup
P∈Qn

EP

(
|η̂ − η|

)
≥ δ

2
exp

(
−δ

κ2

σ2

)
. (19)

Next, set δ = min{�σ2

κ2 �, n− 1−Δ}. By the assumption on ζn, for all n large

enough we must have that δ = �σ2

κ2 �. Indeed, if n − 1 − Δ ≤ �σ2

κ2 � then, as

Δ < n/2, we must have that κ2

σ2 ≤ 1
n−2−Δ < 1

n/2−2 , and, therefore, that

κ2Δ

σ2
<

Δ

n/2− 2
<

n

n/2− 2
< 10,

where we may assume that n > 4. Since κ2Δ
σ2 ≥ ζ2n by assumption and ζn is

diverging as n → ∞, the above bound can only hold for finitely many n. The
claimed bound now follows from (19), for all n large enough.

Appendix B: Proofs of the Results in Section 3

In this section, we provide technical details of the proof of Theorem 3. Recalling
Assumption 1, for any change point ηk, observe that the interval I = {ηk−1 +
1, . . . , ηk} contains one change point, but the signal {fi}ni=1 is unchanged in I.
For convenience, in this section, any interval I is said to contain a true change
point if there exists k ∈ {1, . . . ,K} such that {ηk, ηk+1} ⊂ I, where |I| ≥ 2. This
convention ensures that if I contains a true change point, then it is necessary
that there exist i, j ∈ I satisfying fi �= fj .

Lemma 5. Let I1 and I2 denote any two disjoint intervals of {1, . . . , n} and
I = I1 ∪ I2. For any sequences {Xi}ni=1, {Yi}ni=1 ⊂ R, it holds that∑

i∈I

(
Yi−Y I

)2
=
∑
i∈I1

(
Yi−Y I1

)2
+
∑
i∈I2

(
Yi−Y I2

)2
+

|I1||I2|
|I1|+ |I2|

(
Y I1−Y I2

)2
, (20)
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and ∑
i∈I

(
Xi −XI

)(
Yi − Y I

)
=
∑
i∈I1

(
Xi −XI1

)(
Yi − Y I1

)
+
∑
i∈I2

(
Xi −XI2

)(
Yi − Y I2

)
+

|I1||I2|
|I1|+ |I2|

(
XI1 −XI2

)(
Y I1 − Y I2

)
. (21)

Proof. Without loss of generality, let I1 = {1, . . . , n1} and I2 = {n1+1, . . . , n =
n1+n2}. For simplicity, denote X = XI , X1 = XI1 and X2 = XI2 . The results
(20) and (21) can be proved by similar arguments. We will only show (21) here.

Observe that

n∑
i=1

(
Xi −X

)(
Yi − Y

)
=

n1∑
i=1

{
Xi −X1 +

n2

(
X1 −X2

)
n1 + n2

}{
Yi − Y 1 +

n2

(
Y 1 − Y 2

)
n1 + n2

}

+
n∑

i=n1+1

{
Xi −X2 −

n1

(
X1 −X2

)
n1 + n2

}{
Yi − Y 2 −

n1

(
Y 1 − Y 2

)
n1 + n2

}

=

n1∑
i=1

(
Xi −X1

)(
Yi − Y 1

)
+

n2∑
i=n1+1

(
Xi −X2

)(
Yi − Y 2

)
+

n1n2

n1 + n2

(
X1 −X2

)(
Y 1 − Y 2

)
.

Lemma 6. Assume that the sequence {Yi}ni=1 ⊂ R satisfies Assumption 1. It
holds that

P

{
sup

1≤a<b<c≤n

√
(b− a)(c− b)

c− a

∣∣Y (a+1,b] − f (a+1,b] + Y (b+1,c] − f (b+1,c]

∣∣
≤ CBσ

√
log(n)

}
≥ e · n3−cB ,

where cB is an absolute constant chosen to satisfy cB > 3 and CB > 0 only
depends on cB.

Proof. It follows from Assumption 1 that for all i ∈ {1, . . . , n}, Yi−fi is a centred
sub-Gaussian random variable with maxi ‖Yi − fi‖ψ2 ≤ σ. Due to Hoeffding
inequality (see e.g. Vershynin, 2010), it holds that for any non-empty set I ⊂
{1, . . . , n} and any ε > 0,

P
{∣∣Y I − f I

∣∣ > ε
}
≤ e · exp

(
−c|I|ε2

σ2

)
,
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and for any triple i1 < i2 < i3 chosen in {1, . . . , n}

P

⎧⎨⎩
√

(i2 − i1)(i3 − i2)

i3 − i1

∣∣Y (i1+1,i2] − f (i1+1,i2] + Y (i2+1,i3] − f (i2+1,i3]

∣∣ ≥ ε

⎫⎬⎭
≤ e · exp

(
−cε2

σ2

)
,

where c > 0 is an absolute constant only depending on σ. The result follows
from a union bound.

For simplicity, in the rest of the proof, we will let CB = 1 and set cB > 3.
This will only affect the constant Cλ, and in the statement of Theorem 3, we
require Cλ > 0 to be large enough.

Since the change points of û are our change point estimators, with the error
rate

εk = Cεσ
2 log(n)/κ2

k,

we refer to ηk as an undetected change point, if ηk ∈ (s, e] ∈ P̂(û) and

εk − s = εk − εk−1 − (s− εk−1) ≥ Δ− Cεσ
2 log(n)/κ2

k > Δ/3, (22)

and similarly e− εk > Δ/3. The first and second inequalities of (22) follow from

Assumptions 1 and 2, respectively. In the rest of this section, let P̂ = P̂
(
û
)
.

Step 1: no more than two true change points

In order to show that no I ∈ P̂ contains more than two true change points, it
suffices to show that no I ∈ P̂ contains undetected change points, due to the
minimal spacing Δ condition in Assumption 1.

Lemma 7. Let {Yi}ni=1 satisfy Assumptions 1 and 2, and λ satisfy the condition

σ2 log(n) ≤ λ ≤ κ2Δ/48. (23)

Then, in the event B, it holds that no I ∈ P̂ contains any undetected change
point.

Proof. We first point out that due to Assumption 2, (23) is not an empty set.

For the sake of contradiction, suppose that there exists I ∈ P̂ containing an
undetected change point ηk, i.e.,

min{e− (ηk + 1), ηk − s} > Δ/3. (24)

Denote

I1 = (s, ηk −Δ/3], I2 = (ηk −Δ/3, ηk], I3 = (ηk, ηk +Δ/3]
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and

I4 = (ηk +Δ/3, e],

none of which is empty due to (24).

Let P̃ be such that

P̃ = P̂ ∪ {I1, I2, I3, I4} \ {I},

and ũ be the piecewise constant vector induced by P̃. By the definition of û, it
holds that

H
(
û, {Yi}ni=1, λ

)
≤ H

(
ũ, {Yi}ni=1, λ

)
.

Since P̃ is a refinement of P̂ and we have assumed in Assumption 1 that the
distributions of Yi’s have continuous density functions, it follows that

λ(
∥∥Dû

∥∥
0
−
∥∥Dũ

∥∥
0
) = −3λ.

Then

0 ≥ H
(
û, {Yi}ni=1, λ

)
−H

(
ũ, {Yi}ni=1, λ

)
= −3λ+

∑
i∈I

(Yi − Y I)
2 −

∑
i∈I1

(Yi − Y I1)
2 −

∑
i∈I2

(Yi − Y I2)
2 −

∑
i∈I3

(Yi − Y I3)
2

−
∑
i∈I4

(Yi − Y I4)
2

≥ −3λ+
|I2||I3|

|I2|+ |I3|
(Y I2 − Y I3)

2

= −3λ+
|I2||I3|

|I2|+ |I3|
{
(Y I2 − fηk

)− (Y I3 − fηk+1
) + (fηk

− fηk+1
)
}2

≥ −3λ+
Δ

12
(fηk

− fηk+1
)2 − |I2||I3|

|I2|+ |I3|
{
(Y I2 − fηk

)− (Y I3 − fηk+1
)
}2

≥ −4λ+
Δ

12
κ2
k

> 0, (25)

where the second inequality follows from (20) by first splitting I = {I1, I2, I3}∪
{I4}, then {I1, I2, I3} = {I1} ∪ {I2, I3} and {I2, I3} = {I2} ∪ {I3}; the third
inequality follows from the observation that (x + y)2 ≥ x2/2 − y2 and letting
x = fηk

− fηk+1
, y = (Y I2 − fηk

) − (Y I3 − fηk+1
); the fourth inequality follows

from the definition of B and (23); and the last inequalities is due to (23).
Since (25) is a contradiction, we conclude that there is no interval containing

undetected change point.

Step 2: exactly two true change points

Lemma 8. Let {Yi}ni=1 satisfy Assumptions 1 and 2 and set λ = Cλσ
2 log(n),

where Cλ > 1. In the event B, it holds that if I = (s, e] ∈ P̂ contains exactly
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two change points, say ηk and ηk+1, then

ηk − s+ 1 ≤ 12λ/κ2
k, and e− ηk+1 ≤ 12λ/κ2

k+1.

Proof. Let I1 = (s, ηk], I2 = (ηk, ηk+1] and I3 = (ηk+1, e]. Since I contains
exactly two true change points, none of I1, I2 or I3 is an empty set, and {fi}ni=1

is constant on I1, I2 and I3. Denote by û the solution of (6) with inputs {Yi}ni=1

and λ, and by P̂ the interval partition induced by û.
Let P̃1 and P̃2 be

P̃1 = P̂ ∪ {I1, I2 ∪ I3} \ {I}, and P̃2 = P̂ ∪ {I1, I2, I3} \ {I},

respectively; and let ũ1 and ũ2 be the piecewise-constant vectors induced by P̃1

and P̃2, respectively.
It follows from Lemma 5 that

H
(
ũ1, {Yi}ni=1, λ

)
−H

(
û, {Yi}ni=1, λ

)
= λ− |I1||I2 ∪ I3|

|I1|+ |I2 ∪ I3|
(
Y I1 − Y I2∪I3

)2
and

H
(
ũ2, {Yi}ni=1, λ

)
−H

(
ũ1, {Yi}ni=1, λ

)
= λ− |I2||I3|

|I2|+ |I3|
(
Y I2 − Y I3

)2
.

Then,

0 ≤ H
(
ũ2, {Yi}ni=1, λ

)
−H

(
û, {Yi}ni=1, λ

)
≤ 2λ− |I2||I3|

|I2|+ |I3|
(
Y I2 − Y I3

)2
≤ 2λ− 1

2

|I2||I3|
|I2|+ |I3|

{(
fηk+1

− fηk+2

)2 − 2
(
Y I2 − fηk+1

− Y I3 + fηk+2

)2}
≤ 2λ− 1

2

|I2||I3|
|I2|+ |I3|

κ2
k+1 + λ,

where the third inequality uses the same argument in the third inequality of
(25), and the last inequality follows from the definition of B and Assumption 1.

If |I2| ≤ |I3|, then

Δ/2 ≤ |I2|/2 ≤ |I2||I3|
|I2|+ |I3|

≤ 6λ/κ2
k+1,

which contradicts Assumption 2. Therefore it must hold that |I2| > |I3|, which
implies

|I3|/2 ≤ |I2||I3|
|I2|+ |I3|

≤ 6λ/κ2
k+1.

Then e− ηk+1 ≤ 12λ/κ2
k+1. It can be shown similarly that ηk − s+1 ≤ 12λ/κ2

k.
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Step 3: one and only one change point

Let I1 = (s, e1] ∈ P̂ contain exactly one true change point, namely ηk. With
our convention set at the beginning of Appendix B, it holds that

ηk−1 + 1 ≤ s ≤ ηk < ηk + 1 ≤ e1 ≤ ηk+1. (26)

Denote δ = e1 − ηk and ε = ηk − (s− 1). Without loss of generality, we assume
that

0 < ε ≤ δ. (27)

We are to show that there exists an absolute constant C > 8 such that

ε = |ηk − s+ 1| ≤ Cλ/κ2
k (28)

and
ε1 = |ηk+1 − e1| ≤ Cλ/κ2

k+1. (29)

Equation (28) will be shown in Lemma 9. To show (29), we rely on the
following arguments (see Figure 1 for an illustration):

(i) Let I2 = (e1, e2] be the interval to the immediate right of I1 in P̂ . It must
hold that

e1 ≤ ηk+1 < ηk+1 + 1 ≤ e2. (30)

This will be shown in Lemma 10.
(ii) It follows from Appendix B that there are at most two true change points

in (e1, e2]. If there are exactly two true change points, then due to Ap-
pendix B, (29) holds.

(iii) If e2 ≤ ηk+2, then we let ε1 = ηk+1−(e−1) and δ1 = e2−ηk+1. Lemma 11
shows that δ1 < ε1 is impossible. Thus, ε1 ≤ δ1 and we then rely on
Lemma 9.

Lemma 9. Let {Yi}ni=1 satisfy Assumptions 1 and 2 and set λ ≥ Cλσ
2 log(n),

with Cλ ≥ 1. In the event B, it holds that if I1 = (s, e1] ∈ P̂ contains exactly
one change point, say ηk, then

min
{
|J1|, |J2|

}
≤ 8λ/κ2

k,

where J1 = (s, ηk] and J2 = (ηk, e1].

Proof. Observe that neither J1 nor J2 is empty by definition, and that {fi}ni=1

is constant within J1 and J2, respectively. Let P̃ be such that

P̃ = P̂ ∪ {J1, J2} \ {I1},

and let ũ be the piecewise-constant vector induced by P̃.
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ηk−1 s ηk e1 ηk+1 e2

ε δ ε1 δ1

I1 I2

I′1 I′2

I′′1 I′′2

Fig 1. Illustrations of the interval constructions used in the Step 3 in the proof of Theorem 3.

Recall that E(Y J1) = fηk
and E(Y J2) = fηk+1

. Without loss of generality,
assume fηk+1

= fηk
+ κk. Thus,

0 ≥ H
(
û, {Yi}ni=1, λ

)
−H

(
ũ, {Yi}ni=1, λ

)
= −λ+

∑
i∈I1

(Yi − Y I1)
2 −

∑
i∈J1

(Yi − Y J1)
2 −

∑
i∈J2

(Yi − Y I2)
2

= −λ+
|J1||J2|
|I1|

(Y J1 − Y J2)
2

= −λ+
|J1||J2|
|I1|

{
(Y J1 − fηk

)− (Y J2 − fηk
− κk)− κk

}2
≥ −λ+

|J1||J2|
2|I1|

{
κ2
k − 2(Y J1 − fηk

− Y J2 + fηk+1
)2
}

≥ −2λ+
|J1||J2|
2|I1|

κ2
k,

where the second identity follows from (20), the second inequality from the fact
that (x− y)2 ≥ y2/2− x2 with x = κk and y = (Y J1 − fηk

)− (Y J2 − fηk
− κk),

and the last inequality from the definitions of the event B and the choice of λ.
Therefore,

min{|J1|, |J2|}κ2
k/8 ≤ |J1||J2|

|I1|
κ2
k/4 ≤ λ.

Lemma 10. Let {Yi}ni=1 satisfy Assumptions 1 and 2 and set λ = Cλσ
2 log(n),

with Cλ > 85. Assume that I1 = (s, e1] ∈ P̂ contains exactly one change point
namely ηk. Denote δ = e1 − ηk and ε = ηk − (s− 1). Assume that ε ≤ δ. In the

event B, if I2 = (e1, e2] ∈ P̂, then it must hold that

e1 ≤ ηk+1 < ηk+1 + 1 ≤ e2.

Proof. Let I ′1 = (s, ηk] and I ′2 = (ηk, e2]. Then I1 ∪ I2 = I ′1 ∪ I ′2. Let P̃1 and P̃2
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be

P̃1 = P̂ ∪ {I1 ∪ I2} \ {I1, I2}

and

P̃2 = P̂ ∪ {I ′1, I ′2} \ {I1, I2},

respectively. Let ũ1 and ũ2 be the piecewise-constant vectors induced by P̃1 and
P̃2, respectively.

We proceed by contradiction. We assume that e2 ≤ ηk+1. Without loss of
generality, assume fηk+1

= fηk
+κk. Due to Assumption 1, it holds that E(Y I′

1
) =

fηk
, E(Y I′

2
) = fηk+1

= fηk
+ κk, E(Y I1) = fηk

+ δκk/|I1| and E(Y I2) = fηk+1
=

fηk
+ κk. Then,

0 ≤ H
(
ũ1, {Yi}ni=1, λ

)
−H

(
û, {Yi}ni=1, λ

)
= −λ+

|I1||I2|
|I1|+ |I2|

(Y I1 − Y I2)
2

= −λ+
|I1||I2|

|I1|+ |I2|
{
Y I1 − E(Y I1)− Y I2 + fηk+1

+ (δ/|I1| − 1)κk

}2
≤ −λ+

|I1||I2|
|I1|+ |I2|

{
5(Y I1 − E(Y I1)− Y I2 + fηk+1

)2 +
5

4
(δ/|I1| − 1)2κ2

k

}
≤ −λ+ 5σ2 log(n) +

5

4

|I1||I2|
|I1|+ |I2|

ε2κ2
k

|I1|2
(31)

where the second inequity follows form the fact that (x + y)2 ≤ 5x2 + (5/4)y2

and the last inequality follows from the definition of the event B.
In addition, we have

H
(
ũ2, {Yi}ni=1, λ

)
−H

(
ũ1, {Yi}ni=1, λ

)
= λ− |I ′1||I ′2|

|I ′1|+ |I ′2|
(Y I′

1
− Y I′

2
)2

= λ− |I ′1||I ′2|
|I ′1|+ |I ′2|

{
Y I′

1
− fηk

− Y I′
2
+ fηk

+ κk − κk

}2
≤ λ− |I ′1||I ′2|

|I ′1|+ |I ′2|

{
3

4
κ2
k − 3(Y I′

1
− fηk

− Y I′
2
+ fηk

+ κk)
2

}
≤ λ− 3

4

|I ′1||I ′2|
|I ′1|+ |I ′2|

κ2
k + 3σ2 log(n),

where the first inequality follows from the fact that (x − y)2 ≥ (3/4)y2 − 4x2,
and the last inequality follows from the definition of the event B.

Then

0 ≤ H
(
ũ2, {Yi}ni=1, λ

)
−H

(
û, {Yi}ni=1, λ

)
≤ 8σ2 log(n)

+
5

4

|I1||I2|
|I1|+ |I2|

ε2κ2
k

|I1|2
− 3

4

|I ′1||I ′2|
|I ′1|+ |I ′2|

κ2
k
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= 8σ2 log(n) +
κ2
kε

4(|I1|+ |I2|)

{
5|I2|ε
ε+ δ

− 3(δ + |I2|)
}

≤ 8σ2 log(n)− κ2
kε

4(|I1|+ |I2|)
(3δ + |I2|/2),

therefore
κ2
kε ≤ 64σ2 log(n).

Combined with (31), this implies that

λ ≤ 5σ2 log(n) + 64σ2 log(n)
5|I2|ε

4(|I1|+ |I2|)|I1|
≤ 85σ2 log(n),

which contradicts with the assumption that λ > 85σ2 log(n).

Lemma 11. Let {Yi}ni=1 satisfy Assumptions 1 and 2 and set λ = Cλσ
2 log(n)

with a sufficiently large Cλ > 0. Assume that there exists an interval partition
P with induced piecewise constant vector u such that I1 = (s, e1] ∈ P and
I2 = (e1, e2] ∈ P, where I1 and I2 satisfy (26) and (30). Let ε = ηk − s + 1,
δ = e1 − ηk + 1, ε1 = ηk+1 − e + 1 and δ1 = e2 − ηk+1 + 1. Assume ε < δ and
ε1 > δ1. Then in the event B, u is not a minimizer of (6).

Proof. For notational simplicity, let

fηk
= μ+ ω1, fηk+1

= μ and fηk+2
= μ+ ω2.

Let I ′1 = (s, ηk], I
′
2 = (ηk, e2], I

′′
1 = (s, ηk+1] and I ′′2 = (ηk+1, e2]. Then I1 ∪ I2 =

I ′1 ∪ I ′2 = I ′′1 ∪ I ′′2 . Let P̃1, P̃2 and P̃3 be such that

P̃1 = P ∪ {I1 ∪ I2} \ {I1, I2}, P̃2 = P ∪ {I ′1, I ′2} \ {I1, I2}

and

P̃3 = P ∪ {I ′′1 , I ′′2 } \ {I1, I2}.

Let ũ1, ũ2 and ũ3 be the piecewise constant vectors induced by P̃1, P̃2 and P̃3.
The population means are

E(Y I1) = μ+
εω1

ε+ δ
and E(Y I2) = μ+

δ1ω2

ε1 + δ1
.

Let 0 < α < 1 be a fixed constant to be specified later. We have the following:

H
(
ũ1, {Yi}ni=1, λ

)
−H

(
u, {Yi}ni=1, λ

)
= −λ+

|I1||I2|
|I1|+ |I2|

(Y I1 − Y I2)
2

=− λ+
|I1||I2|

|I1|+ |I2|
{
Y I1 − E(Y I1)− Y I2 + E(Y I2) + E(Y I1)− E(Y I2)

}2
≤− λ+ 2(1 + α)α−1σ2 log(n) + (1 + α)

|I1||I2|
|I1|+ |I2|

(
εω1

ε+ δ
− δ1ω2

ε1 + δ1

)2

,
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H
(
ũ2, {Yi}ni=1, λ

)
−H

(
ũ1, {Yi}ni=1, λ

)
= λ− |I ′1||I ′2|

|I ′1|+ |I ′2|
(Y I′

1
− Y I′

2
)2

=λ− |I ′1||I ′2|
|I ′1|+ |I ′2|

{
Y I′

1
− E(Y I′

1
)− Y I′

2
+ E(Y I′

2
) + E(Y I′

1
)− E(Y I′

2
)
}2

≤λ− (1− α)
|I ′1||I ′2|

|I ′1|+ |I ′2|

(
ω1 −

ω2δ1
δ + ε1 + δ1

)2

+
2(1− α)

α
σ2 log(n),

and

H
(
ũ3, {Yi}ni=1, λ

)
−H

(
ũ1, {Yi}ni=1, λ

)
= λ− |I ′′1 ||I ′′2 |

|I ′′1 |+ |I ′′2 |
(Y I′′

1
− Y I′′

2
)2

=λ− |I ′′1 ||I ′′2 |
|I ′′1 |+ |I ′′2 |

{
Y I′′

1
− E(Y I′′

1
)− Y I′′

2
+ E(Y I′′

2
) + E(Y I′′

1
)− E(Y I′′

2
)
}2

≤λ− (1− α)
|I ′′1 ||I ′′2 |

|I ′′1 |+ |I ′′2 |

(
ω2 −

ω1ε

ε+ δ + ε1

)2

+
2(1− α)

α
σ2 log(n).

For the rest of the proof, we proceed by contradiction by assuming that u
is the minimizer of (6). We will consider the cases ω1ω2 > 0 and ω1ω2 < 0
separately in Steps 1 and 2, respectively.

Step 1. Suppose ω1ω2 > 0. Without loss of generality, assume ω1, ω2 > 0 and
for some 0 < β ≤ 1, it holds that

δ1ω2

ε1 + δ1
= β

εω1

ε+ δ
.

We have

0 ≤ H
(
ũ1, {Yi}ni=1, λ

)
−H

(
u, {Yi}ni=1, λ

)
≤ −λ+ 2(1 + α)α−1σ2 log(n) + (1 + α)(1− β)2

|I1||I2|
|I1|+ |I2|

(
εω1

ε+ δ

)2

, (32)

and

H
(
ũ2, {Yi}ni=1, λ

)
−H

(
ũ1, {Yi}ni=1, λ

)
≤λ− (1− α)

|I ′1||I ′2|
|I ′1|+ |I ′2|

(
ω1 −

ω2δ1
δ + ε1 + δ1

)2

+
2(1− α)

α
σ2 log(n)

≤λ+
2(1− α)

α
σ2 log(n)− (1− α)(1− β)2

|I ′1||I ′2|
|I ′1|+ |I ′2|

ω2
1 , (33)

where the last inequality of (33) follow from the observation that

ω2δ1
δ + ε1 + δ1

=
ω2δ1

ε1 + δ1

ε1 + δ1
δ + ε1 + δ1

= βω1
ε

ε+ δ

ε1 + δ1
δ + ε1 + δ1

≤ βω1/2.

Equations (32) and (33) lead to that

0 ≤ H
(
ũ2, {Yi}ni=1, λ

)
−H

(
u, {Yi}ni=1, λ

)
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≤ 4

α
σ2 log(n) +

ω2
1ε(1− β)2

{
(1 + α)ε(ε1 + δ1)− (1− α)(ε+ δ)(δ + ε1 + δ1)

}
(ε+ δ + ε1 + δ1)(ε+ δ)

≤ 4

α
σ2 log(n)− ω2

1(1− β)2ε

4
, . (34)

Plugging in (34) into (32) with a choice of α = 1/4 yields that

λ ≤ 50σ2 log(n),

which is a contradiction.

Step 2. Suppose ω1ω2 < 0. Without loss of generality assume that with γ ≥ 1
it holds that ∣∣∣∣ εω1

ε+ δ

∣∣∣∣ = γ

∣∣∣∣ δ1ω2

ε1 + δ1

∣∣∣∣ .
Since δ + ε1 = ηk+1 − ηk + 1 > Δ, we have max{δ, ε1} > Δ/2.

case 1. Suppose ε1 > Δ/2. It follows from Lemma 9 that δ1 < 8λ/κ2
k+1. Then,

0 ≤ H
(
ũ1, {Yi}ni=1, λ

)
−H

(
u, {Yi}ni=1, λ

)
≤ −λ+ 2(1 + α)α−1σ2 log(n) + (1 + α)

|I1||I2|
|I1|+ |I2|

(
εω1

ε+ δ
− δ1ω2

ε1 + δ1

)2

≤ −λ+ 2(1 + α)α−1σ2 log(n) + (γ + 1)2(1 + α)
|I1||I2|

|I1|+ |I2|

(
δ1ω2

ε1 + δ1

)2

(35)

and

H
(
ũ3, {Yi}ni=1, λ

)
−H

(
ũ1, {Yi}ni=1, λ

)
≤ λ− (1− α)

|I ′′1 ||I ′′2 |
|I ′′1 |+ |I ′′2 |

(
ω2 −

ω1ε

ε+ δ + ε1

)2

+
2(1− α)

α
σ2 log(n)

≤ λ− (1− α)
|I ′′1 ||I ′′2 |

|I ′′1 |+ |I ′′2 |

(
1− γ

δ1
ε1 + δ1

ε+ δ

ε+ δ + ε1

)2

ω2
2 +

2(1− α)

α
σ2 log(n).

(36)

Equations (35) and (36) lead to

0 ≤ H
(
ũ3, {Yi}ni=1, λ

)
−H

(
u, {Yi}ni=1, λ

)
≤ 4σ2 log(n)

α
+ (γ + 1)2(1 + α)

|I1||I2|
|I1|+ |I2|

(
δ1ω2

ε1 + δ1

)2

− (1− α)
|I ′′1 ||I ′′2 |

|I ′′1 |+ |I ′′2 |

(
1− γ

δ1
ε1 + δ1

ε+ δ

ε+ δ + ε1

)2

ω2
2 . (37)

Then there exists a sufficiently small c > 0 such that (37) yields

cω2
2δ1 < σ2 log(n),
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which can be plugged into (35) and shows that for a sufficiently large C1 > 0,

λ ≤ C1σ
2 log(n).

This contradicts the assumed condition on λ.

case 2. Suppose ε1 ≤ Δ/2. It follows from Lemma 9 that ε1 < 8λ/κ2
k+1. Then,

H
(
ũ2, {Yi}ni=1, λ

)
−H

(
ũ1, {Yi}ni=1, λ

)
≤λ− (1− α)

|I ′1||I ′2|
|I ′1|+ |I ′2|

(
ω1 −

ω2δ1
δ + ε1 + δ1

)2

+
2(1− α)

α
σ2 log(n)

≤λ− (1− α)
|I ′1||I ′2|

|I ′1|+ |I ′2|

(
1− 1

γ

ε

ε+ δ

ε1 + δ1
δ + ε1 + δ1

)2

ω2
1 +

2(1− α)

α
σ2 log(n).

(38)

Equations (35) and (38) lead to that there exists a sufficiently small c > 0 such
that (37) yields

cω2
2ε1 < σ2 log(n),

which can be plugged into (35) and shows that for a sufficiently large C1 > 0,

λ ≤ C1σ
2 log(n).

This again contradicts the assumed condition on λ.

Step 4: no changes

Suppose I = (s1, e] ∈ P̂ contains no true change point. By symmetry, it suffices
to show that there exists a large enough constant C > 0 such that

s1 − ηk + 1 ≤ Cλ/κ2
k. (39)

Assume I0 = (s0, s1] ∈ P̂. We are to show the following.

(i) It is impossible that there is no true change point in I0 ∪ I. This will be
shown in Lemma 12.

(ii) If there exist exactly two true change points in I0, then (39) follows from
Lemma 8.

(iii) If there exists one and only one change point ηk ∈ I0 and s1−ηk < ηk−s0,
then (39) follows from Lemma 9.

(iv) If there exists one and only one change point ηk ∈ I0 and s1−ηk ≥ ηk−s0,
it follows from Lemma 10 that this is impossible in the event of B.

Lemma 12. Assume the inputs {Yi}ni=1 satisfying Assumptions 1 and 2 and

λ = Cλσ
2 log(n) with a sufficiently large Cλ > 0. Assume that I = (s1, e] ∈ P̂

contains no change point. Assume that I0 = (s0, s1] ∈ P̂. Then in the event B,
there must exist a change point in I0.
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Proof. Let J = I0 ∪ I, P̃ be the interval partition such that

P̃ = P̂ ∪ {J} \ {I0, I},

and ũ be the piecewise-constant vector induced by P̃.

Prove by contradiction, assuming that J contains no change points. Denote
μ = E(Y I0) = E(Y I). Then

0 ≤ H
(
ũ, {Yi}ni=1, λ

)
−H

(
û, {Yi}ni=1, λ

)
= −λ+

|I0||I|
|I0|+ |I| (Y I0 − Y I)

2

≤ −λ+
|I0||I|

|I0|+ |I| (Y I0 − μ− Y I + μ)2

≤ −λ+ σ2 log(n),

where the last inequality follows from the definition of the event B, and results
in a contradiction with the condition on λ.

Appendix C: Proofs of the results in Section 4

C.1. Large probability events

Define the events

A1(γ) =

{
sup

0≤s<t<e≤n

∣∣Ỹ s,e
t − f̃s,e

t

∣∣ ≤ γ

}
, (40)

A2(γ) =

{
sup

0≤s<e≤n

∣∣∑e
i=s+1(Yi − fi)

∣∣
√
e− s

≤ γ

}
, (41)

and

M =

K⋂
k=1

{
sm ∈ Sk, em ∈ Ek, for some m ∈ {1, . . . ,M}

}
, (42)

where {sm}Mm=1 and {em}Mm=1 are two sequences independently selected at ran-
dom in (s, e) and satisfying em − sm ≤ CRΔ, Sk = [ηk − 3Δ/4, ηk −Δ/2] and
Ek = [ηk +Δ/2, ηk + 3Δ/4], k = 1, . . . ,K.

Lemma 13. For {Yi}ni=1 satisfying Assumption 1, it holds that

P
{
A1(γ)

}
≥ 1− e · n3 exp

(
−cγ2/σ2

)
,

P
{
A2(γ)

}
≥ 1− e · n2 exp

(
−cγ2/σ2

)
and

P
{
M
}
≥ 1− exp

{
log

( n

Δ

)
− MΔ

4CRn

}
.
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Proof. Since for any suitable triples (s, t, e), both
∣∣Ỹ s,e

t − f̃s,e
t

∣∣ and
(e− s)−1/2

∣∣∣∣∣
e∑

i=s+1

(Yi − fi)

∣∣∣∣∣
can be written in the form

∣∣∑e
i=s+1 wiXi

∣∣, where Xi’s are centred sub-Gaussian
random variables and wi’s satisfy

∑e
i=s+1 w

2
i = 1.

It follows from Hoeffding inequality that there exists an absolute constant
c > 0 only depending on σ such that

P
{
Ac

1(γ)
}
≤ e · n3 exp

(
−cγ2/σ2

)
and P

{
Ac

2(γ)
}
≤ e · n2 exp

(
−cγ2/σ2

)
.

Since the number of change points are bounded by n/Δ, it holds that

P
{
Mc

}
≤

K∑
k=1

M∏
m=1

{
1− P

(
sm ∈ Sk, em ∈ Ek

)}
≤ K{1−Δ/(4CRn)}M

≤ n/Δ(1−Δ/(4CRn))
M ≤ exp

{
log

( n

Δ

)
− MΔ

4CRn

}
.

C.2. Technical details for Step 1

Lemma 14. Under Assumption 1, let 0 ≤ s < ηk < e ≤ n be any interval
satisfying

min{ηk − s, e− ηk} ≥ c1Δ,

with c1 > 0. Then,

max
s<t<e

∣∣f̃s,e
t

∣∣ ≥ (c1/2)κΔ(e− s)−1/2.

Proof. See Lemma 2.4 in Venkatraman (1992).

Lemma 15. Let [s, e] contain only two change points ηk, ηk+1. Then

sup
s≤t≤e

|f̃s,e
t | ≤

√
e− ηk+1κk+1 +

√
ηk − sκk.

Proof. Consider the sequence {gt}et=s+1 be such that

gt =

{
fηk

, if s+ 1 ≤ t < ηk,

ft, if ηk ≤ t ≤ e.

For any t ≥ ηk,

f̃s,e
t − g̃s,et
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16 17 18 19 20 21

22 Pre S1 S2 S3 S4

Fig 2. Road map to complete the Step 2 in the proof of Theorem 4. The circles are lemmas,
and the squares are the steps in the proof of Lemma 22. The directed edges mean the heads
of the edges are used in the tails of the edges.

=

√
e− t

(e− s)(t− s)

⎛⎝ t∑
i=s+1

fi −
ηk∑

i=s+1

fηk
−

t∑
i=ηk+1

fi

⎞⎠
−
√

t− s

(e− s)(e− t)

(
e∑

i=t+1

fi −
e∑

i=t+1

fi

)

=

√
e− t

(e− s)(t− s)
(ηk − s)(fηk

− fηk−1
).

So for t≥ηk, |f̃s,e
t − g̃s,et |≤√

ηk − sκk. Since sups≤t≤e |f̃s,e
t |=max{|f̃s,e

ηk
|, |f̃s,e

ηk+1
|},

and that

max{|f̃s,e
ηk

|, |f̃s,e
ηk+1

|} ≤ sup
s≤t≤e

|g̃s,et |+
√
ηk − sκk

≤
√
e− ηk+1κk+1 +

√
ηr − sκk

where the last inequality follows form the fact that gt has only one change point
in [s, e].

C.3. Technical details for Step 2

In this section, eight results will be provided. Before we go into details, we show
the road map leading to complete the proof of Theorem 4 in Figure 2.

Lemma 16. Suppose (s, e) ⊂ (0, n) is a generic interval satisfying

ηk−1 ≤ s ≤ ηk ≤ . . . ≤ ηk+q ≤ e ≤ ηk+q+1, q ≥ 0.

Then there exists a continuous function F̃ s,e
t : [s, e] → R such that F̃ s,e

t = f̃s,e
t

for every t ∈ [s, e] ∩ Z with the following additional properties.

(i) |F̃ s,e
t | is maximized at the change points within [s, e]. In other words,

argmax
s≤t≤e

|F̃ s,e
t | ∩

{
ηk, . . . , ηk+q

}
�= ∅.
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(ii) If F̃ s,e
t > 0 for some t ∈ (s, e), then F̃ s,e

t is either monotonic or decreases
and then increases within each of the interval (s, ηk), . . . , (ηk+q, e).

The proof of Lemma 16 can be found in Lemmas 2.2 and 2.3 of Venkatraman
(1992). We remark that if F̃ s,e

t ≤ 0 for all t ∈ (s, e), then it suffices to consider
the time series {−fi}ni=1 and a similar result as in the second part of Lemma 16
still holds.

Our next lemma is an adaptation of a result first obtained by Venkatraman
(1992), which quantifies how fast the CUSUM statistics decays around a good
change point.

Lemma 17 (Venkatraman (1992) Lemma 2.6). Let [s, e] ⊂ [1, n] be any generic
interval. For some c1, c2 > 0 and γ > 0 such that

min{ηk − s, e− ηk} ≥ c1Δ, (43)

f̃ηk
≥ c2κΔ(e− s)−1/2, (44)

and suppose there exists a sufficiently small constant c3 > 0 such that

max
s≤t≤e

|f̃s,e
t | − f̃s,e

ηk
≤ 2γ ≤ c3κΔ

3(e− s)−5/2. (45)

Then there exists an absolute constant c > 0 such that if the point d ∈ [s, e] is
such that |d− ηk| ≤ c1Δ/16, then

f̃s,e
ηk

− f̃s,e
d > cf̃s,e

ηk
|ηk − d|Δ(e− s)−2.

Proof. Without loss of generality, assume that d ≥ ηk. Following the argument
of Venkatraman (1992) Lemma 2.6, it suffices to consider two cases: (1) ηk+1 > e,
and (2) ηk+1 ≤ e.

Case 1. Let El be defined as in the case 1 in Venkatraman (1992) Lemma 2.6.

There exists a c′ > 0 such that, for every d ∈ [ηk, ηk+c1Δ/16], f̃s,e
ηk

− f̃s,e
d (which

in the notation of Venkatraman (1992) is the term El) can be written as

f̃s,e
ηk

|d− ηk|
e− s

√
e− ηk

√
ηk − s+ (d− ηk)

× 1√
(ηk − s+ (d− ηk))(e− ηk) +

√
(ηk − s)(e− ηk − (d− ηk))

.

Using the inequality (e − s) ≥ 2c1Δ, the previous expression is lower bounded
by

c′|d− ηk|f̃s,e
ηk

Δ(e− s)−2.

Case 2. Let h = c1Δ/8 and l = d−ηk ≤ h/2. Then, following closely the initial
calculations for case 2 of Lemma 2.6 of Venkatraman (1992), we obtain that

f̃s,e
ηk

− f̃s,e
d ≥ E1l(1 + E2l) + E3l,
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where

E1l =
f̃s,e
ηk

l(h− l)√
(ηk − s+ l)(e− ηk − l)

× 1(√
(ηk − s+ l)(e− ηk − l) +

√
(ηk − s)(e− ηk)

) ,
E2l =

((e− ηk − h)− (ηk − s))((e− ηk − h)− (ηk − s)− l)√
(ηk − s+ l)(e− ηk − l) +

√
(ηk − s+ h)(e− ηk − h)

× 1√
(ηk − s)(e− ηk) +

√
(ηk − s+ h)(e− ηk − h)

,

and

E3l = −
(f̃s,e

ηk+h − f̃s,e
ηk

)l

h

√
(ηk − s+ h)(e− ηk − h)

(ηk − s+ l)(e− ηk − l)
.

Since h = c1Δ/8 and l ≤ h/2, it holds that

E1l ≥ (c1/16)f̃
s,e
ηk

|d− η|Δ(e− s)−2.

Observe that

ηk − s ≤ ηk − s+ l ≤ ηk − s+ h ≤ 9(ηk − s)/8 (46)

and
e− ηk ≥ e− ηk − l ≥ e− ηk − h ≥ 7(e− ηk)/8. (47)

Thus

E2l =
((e− ηk − h)− (ηk − s))2 + l(h+ ηk − s)− l(e− ηk)(√
(ηk − s+ l)(e− ηk − l) +

√
(ηk − s+ h)(e− ηk − h)

)
× 1(√

(ηk − s)(e− ηk) +
√

(ηk − s+ h)(e− ηk − h)
)

≥ −l(e− ηk)

(ηk − s+ h)(e− ηk − h)
≥ −l(e− ηk)

(ηk − s)(7/8)(e− ηk)
≥ −1/2,

where (46) and (47) are used in the second inequality and the fact that l ≤
h/2 ≤ c1Δ/16 ≤ (ηk − s)/16 is used in the last inequality.

For E3l, observe that

f̃s,e
ηk+h − f̃s,e

ηk
≤ |f̃s,e

ηk+h| − f̃s,e
ηk

≤ max
s≤t≤e

|f̃s,e
t | − f̃s,e

ηk
≤ 2γ.

This combines with (43) and that l/2 ≤ h = c1Δ/8, implying that

ηk − s ≤ ηk − s+ l ≤ ηk − s+ h ≤ 9(ηk − s)/8
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and
e− ηk ≥ e− ηk − l ≥ e− ηk − h ≥ 7(e− ηk)/8.

Therefore, with a sufficiently small constant c′′ > 0, it holds that

E3l ≥ −2(d− ηk)γ

c1Δ/8

√
(9/8)(ηk − s)(e− ηk)

(ηk − s)(7/8)(e− ηk)
≥ −32(d− ηk)γ

c1Δ

≥ −(c′′/4)f̃s,e
ηk

(d− ηk)Δ(e− s)−2,

where the first inequality follows from (46) and (46), and the last inequality
follows from (44) and (45). Thus,

f̃s,e
ηk

− f̃s,e
d ≥ E1l(1 + E2l) + E3l ≥ (c′′/4)f̃s,e

ηk
|ηk − d|Δ(e− s)−2.

Lemma 18. Suppose [s, e] ⊂ [1, n] such that e− s ≤ CRΔ, and that

ηk−1 ≤ s ≤ ηk ≤ . . . ≤ ηk+q ≤ e ≤ ηk+q+1, q ≥ 0.

Denote
κs,e
max = max{ηp − ηp−1 : k ≤ p ≤ k + q}.

Then for any k − 1 ≤ p ≤ k + q, it holds that∣∣∣∣∣ 1

e− s

e∑
i=s

fi − fηp

∣∣∣∣∣ ≤ CRκ
s,e
max.

Proof. Since e − s ≤ CRΔ, the interval [s, e] contains at most CR + 1 change
points. Observe that∣∣∣∣∣ 1

e− s

e∑
i=s

fi − fηp

∣∣∣∣∣
=

1

e− s

∣∣∣∣∣∣
ηk∑
i=s

(fηk−1
− fηp) +

ηk+1∑
i=ηk+1

(fηk
− fηp) + . . .+

e∑
i=ηk+q+1

(fηk+q
− fηp)

∣∣∣∣∣∣
≤ 1

e− s

ηk∑
i=s

|p− k|κs,e
max +

ηk+1∑
i=ηk+1

|p− k − 1|κs,e
max + . . .

+

e∑
i=ηk+q+1

|p− k − q − 1|κs,e
max

≤ 1

e− s

e∑
i=s

(CR + 1)κs,e
max,

where |p1−p2| ≤ CR+1 for any ηp1 , ηp2 ∈ [s, e] is used in the last inequality.

Lemma 19. If ηk is the only change point in (s, e), then

|f̃s,e
ηk

| =
√

(ηk − s)(e− ηk)

e− s
κk ≤

√
min{ηk − s, e− ηk}κk.
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Lemma 20. Let (s, e) ⊂ (0, n) contains two or more change points such that

ηk−1 ≤ s ≤ ηk ≤ . . . ≤ ηk+q ≤ e ≤ ηk+q+1, q ≥ 1.

If ηk − s ≤ c1Δ, for c1 > 0, then

|f̃s,e
ηk

| ≤ √
c1|f̃s,e

ηk+1
|+ 2κk

√
ηk − s.

Proof. Consider the sequence {gt}et=s+1 be such that

gt =

{
fηr+1 , s+ 1 ≤ t ≤ ηk,

ft, ηk + 1 ≤ t ≤ e.

For any t ≥ ηr, it holds that

f̃s,e
ηk

− g̃s,eηk
=

√
(e− s)− t

(e− s)(t− s)
(ηk − s)(fηk+1

− fηk
) ≤

√
ηk − sκk.

Thus,

|f̃s,e
ηk

| ≤ |g̃s,eηk
|+

√
ηk − sκk ≤

√
(ηk − s)(e− ηk+1)

(ηk+1 − s)(e− ηk)
|g̃s,eηk+1

|+
√
ηk − sκk

≤
√

c1Δ

Δ
|g̃s,eηk+1

|+
√
ηk − sκk ≤ √

c1|f̃s,e
ηk+1

|+ 2
√
ηk − sκk,

where the first inequality follows from the observation that the first change point
of gt in (s, e) is at ηk+1.

For a pair (s, e) of positive integers with s < e, let Ws,e
d be the two dimen-

sional linear subspace of R(e−s) spanned by the vectors

u1 = (1, . . . , 1︸ ︷︷ ︸
d−s

, 0, . . . , 0︸ ︷︷ ︸
e−d

)� and u2 = (0, . . . , 0︸ ︷︷ ︸
d−s

, 1, . . . , 1︸ ︷︷ ︸
e−d

)�.

For clarity, in the lemma below, we will use 〈·, ·〉 to denote the inner product of
two vectors in the Euclidean space.

Lemma 21. For x = (xs+1, . . . , xe)
� ∈ R

(e−s), let Ps,e
d (x) be the projection of

x onto Ws,e
d .

(i) The projection Ps,e
d (x) satisfies

Ps,e
d (x) =

1

e− s

e∑
i=s+1

xi + 〈x, ψs,e
d 〉ψs,e

d ,

where 〈·, ·〉 is the inner product in Euclidean space, and

ψs,e
d = ((ψs,e

d )s, . . . , (ψ
s,e
d )e−s)

�
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with

(ψs,e
d )i =

⎧⎨⎩
√

e−d
(e−s)(d−s) , i = s+ 1, . . . , d,

−
√

d−s
(e−s)(e−d) , i = d+ 1, . . . , e,

i.e. the i-th entry of Ps,e
d (x) satisfies

Ps,e
d (x)i =

{
1

d−s

∑d
j=s+1 xj , i = s+ 1, . . . , d,

1
e−d

∑e
j=d+1 xj , i = d+ 1, . . . , e.

(ii) Let x̄ = 1
e−s

∑e
i=s+1 xi. Since 〈x̄, ψs,e

d 〉 = 0, it holds that

‖x− Ps,e
d (x)‖2 = ‖x− x̄‖2 − 〈x, ψs,e

d 〉2. (48)

Proof. The results hold following the fact that the projection matrix of subspace
Ws,e

d is

P s,e
Ws,e

d
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/(d− s) · · · 1/(d− s) 0 · · · 0
...

...
...

...
...

...
1/(d− s) · · · 1/(d− s) 0 · · · 0

0 · · · 0 1/(e− d) · · · 1/(e− d)
...

...
...

...
...

...
0 · · · 0 1/(e− d) · · · 1/(e− d)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Lemma 22. Under Assumption 1, let (s0, e0) be an interval with e0−s0 ≤ CRΔ
and contain at lest one change point ηk such that

ηk−1 ≤ s0 ≤ ηk ≤ . . . ≤ ηk+q ≤ e0 ≤ ηk+q+1, q ≥ 0.

Suppose that there exists k′ such that min{ηk′−s0, e0−ηk′} ≥ Δ/16. Let κs,e
max =

max{κp : min{ηp − s0, e0 − ηp} ≥ Δ/16}. Consider any generic [s, e] ⊂ [s0, e0],
satisfying

min{ηk − s0, e0 − ηk} ≥ Δ/16 for all ηk ∈ [s, e].

Let b ∈ argmaxs<t<e |Ỹ s,e
t |. For some c1 > 0 and γ > 0, suppose that

|Ỹ s,e
b | ≥ c1κ

s,e
max

√
Δ, (49)

sup
s<t<e

|Ỹ s,e
t − f̃s,e

t | ≤ γ, (50)

and

sup
s1<t<e1

1√
e1 − s1

∣∣∣∣∣
e1∑

t=s1+1

(Yt − ft)

∣∣∣∣∣ ≤ γ. (51)

If there exists a sufficiently small 0 < c2 < c1/2 such that

γ ≤ c2κ
s,e
max

√
Δ, (52)

then there exists a change point ηk ∈ (s, e) such that

min{e− ηk, ηk − s} > Δ/4 and |ηk − b| ≤ C3γ
2κ−2

k .
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Proof. Without loss of generality, assume that f̃s,e
b > 0 and that f̃s,e

t is locally
decreasing at b. Observe that there has to be a change point ηk ∈ [s, b], or

otherwise f̃s,e
b > 0 implies that f̃s,e

t is decreasing, as a consequence of Lemma 20.
Thus, if s ≤ ηk ≤ b ≤ e, then

f̃s,e
ηk

≥ f̃s,e
b ≥ |Ỹ s,e

b | − γ ≥ c1κ
s,e
max

√
Δ− c2κ

s,e
max

√
Δ ≥ (c1/2)κ

s,e
max

√
Δ. (53)

Observe that e− s ≤ e0 − s0 ≤ CRΔ and that (s, e) has to contain at least one

change point or otherwise |f̃s,e
ηk

| = 0 which contradicts (53).
We decompose the rest of the proof in four steps. Step 1 shows that ηk is

far enough away from end points s and e. Step 2 utilizes Lemma 17 – the
machinery originally developed for BS in Venkatraman (1992) – to show that b
is not far away from ηk. This is actually a consistent estimator, but not optimal.
Step 3 brings in the WBS techniques to refine the error bound, which is de facto
optimal. The proof is completed in Step 4.

Step 1. In this step, we are to show that min{ηk−s, e−ηk} ≥ min{1, c21}Δ/16.
Suppose ηk is the only change point in (s, e). So min{ηk − s, e − ηk} ≥

min{1, c21}Δ/16 must hold or otherwise it follows from Lemma 19, we have

|f̃s,e
ηk

| < c1
4
κk

√
Δ ≤ c1

2
κs,e
max

√
Δ,

which contradicts (53).
Suppose (s, e) contains at least two change points. Then ηk−s ≤ min{1, c21}Δ/

16 implies that ηk is the first change point in [s, e]. Therefore,

|f̃s,e
ηk

| ≤ 1

4
|f̃s,e

ηk+1
|+ 2κk

√
ηk − s ≤ 1

4
max
s<t<e

|f̃s,e
t |+ c1

2
κk

√
Δ

≤ 1

4
|Ỹ s,e

b |+ γ +
c1
2
κs,e
max

√
Δ ≤ 3

4
|Ỹ s,e

b |+ γ < |Ỹ s,e
b | − γ,

where the first inequality follows from Lemma 20, the fourth inequality fol-
lows from (49), and the last inequality holds when c2 is sufficiently small. This
contradicts with (53).

Step 2. By Lemma 17 there exists d such that d ∈ [ηk, ηk + γ
√
Δ(κs,e

max)
−1] and

that f̃s,e
ηk

− f̃s,e
d > 2γ. For the sake of contradiction, suppose b ≥ d. Then

f̃s,e
b ≤ f̃s,e

d < f̃s,e
ηk

− 2γ ≤ max
s<t<e

|f̃s,e
t | − 2γ ≤ max

s<t<e
|Ỹ s,e

t |+ γ − 2γ = |Ỹ s,e
b | − γ,

where the first inequality follows from Lemma 16, which ensures that f̃s,e
t is

decreasing on [ηk, b] and d ∈ [ηk, b]. This is a contradiction to (53). Thus b ∈
[ηk, ηk + γ

√
Δ(κs,e

max)
−1].

Step 3. Let fs,e = (fs+1, . . . , fe)
� ∈ R

(e−s) and Y s,e = (Ys+1, . . . , Ye)
� ∈

R
(e−s). By the definition of b, it holds that∥∥Y s,e − Ps,e

b (Y s,e)
∥∥2 ≤

∥∥Y s,e − Ps,e
ηk

(Y s,e)
∥∥2 ≤

∥∥Y s,e − Ps,e
ηk

(fs,e)
∥∥2.
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For the sake of contradiction, throughout the rest of this argument suppose that,
for some sufficiently large constant C3 > 0 to be specified,

ηk +max{C3γ
2κ−2

k , δ} < b. (54)

(This will of course imply that ηk +max{C3γ
2(κs,e

max)
−2, δ} < b). We will show

that this leads to the bound∥∥Y s,e − Ps,e
b (Y s,e)

∥∥2 >
∥∥Y s,e − Ps,e

ηk
(fs,e)

∥∥2, (55)

which is a contradiction.
To derive (55) from (54), we note that min{e− ηk, ηk − s} ≥ min{1, c21}Δ/16

and that |b− ηk| ≤ γ
√
Δ(κs,e

max)
−1 implies that

min{e− b, b− s} ≥ min{1, c21}Δ/16− γ
√
Δ(κs,e

max)
−1 ≥ min{1, c21}Δ/32, (56)

where the last inequality follows from (52) and holds for an appropriately small
c2 > 0.

Equation (55) is in turn implied by

2〈εs,e,Pb(Y
s,e)−Pηk

(f (s,e))〉 < ‖fs,e −Pb(f
s,e)‖2 − ‖fs,e −Pηk

(fs,e)‖2, (57)

where εs,e = Y s,e − fs,e. By (48), the right hand side of (57) satisfies the
relationship with sufficiently small absolute constants c, c′ > 0,

‖fs,e − Pb(f
s,e)‖2 − ‖fs,e − Pηk

(fs,e)‖2 = 〈fs,e, ψηk
〉2 − 〈fs,e, ψb〉2

=(f̃s,e
ηk

)2 − (f̃s,e
b )2 ≥ (f̃s,e

ηk
− f̃s,e

b )|f̃s,e
ηk

| ≥ c|d− ηk|(f̃s,e
ηk

)2Δ−1

≥c′|d− ηk|(κs,e
max)

2,

where Lemma 17 and (53) are used in the second and third inequalities. The
left hand side of (57) can in turn be rewritten as

2〈εs,e,Pb(X
s,e)− Pηk

(fs,e)〉 = 2〈εs,e,Pb(X
s,e)− Pb(f

s,e)〉
+2〈εs,e,Pb(f

s,e)− Pηk
(fs,e)〉. (58)

The second term on the right hand side of the previous display can be de-
composed as

〈εs,e,Pb(f
s,e)− Pηk

(fs,e)〉 =

⎛⎝ ηk∑
i=s+1

+

b∑
i=ηk+1

+

e∑
i=b+1

⎞⎠
× εs,ei (Pb(f

s,e)i − Pηk
(fs,e)i)

= I + II + III.

In order to bound the terms I, II and III, observe that, since e− s ≤ e0− s0 ≤
CRΔ, the interval [s, e] must contain at most CR + 1 change points.
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Step 3.1. We can write

I =
√
ηk − s

(
1√

ηk − s

ηk∑
i=s+1

εs,ei

)(
1

b− s

b∑
i=s+1

fi −
1

ηk − s

ηk∑
i=s+1

fi

)
.

Thus, ∣∣∣∣∣ 1

b− s

b∑
i=s+1

fi −
1

ηk − s

ηk∑
i=s+1

fi

∣∣∣∣∣
=

∣∣∣∣∣ (ηk − s)(
∑ηk

i=s+1 fi +
∑b

i=ηk+1 fi)− (b− s)
∑ηk

i=s+1 fi

(b− s)(ηk − s)

∣∣∣∣∣
=

∣∣∣∣∣ (ηk − b)
∑ηk

i=s+1 fi + (ηk − s)
∑b

i=ηk+1 fi)

(b− s)(ηk − s)

∣∣∣∣∣
=

∣∣∣∣ (ηk − b)
∑ηk

i=s+1 fi + (ηk − s)(b− ηk)fηk+1)

(b− s)(ηk − s)

∣∣∣∣
=
b− ηk
b− s

∣∣∣∣∣− 1

ηk − s

ηk∑
i=s+1

fi + fηk+1

∣∣∣∣∣ ≤ b− ηk
b− s

(CR + 1)κs,e
max

where Lemma 18 is used in the last inequality. It follows from Equation (51)
that

|I| ≤
√
ηk − sγ

|b− ηk|
b− s

(CR + 1)κs,e
max ≤ 4

√
2

min{1, c1}
|b− ηk|Δ−1/2γ(CR + 1)κs,e

max,

where (56) is used in the last inequality.

Step 3.2. For the second term II, we have that

|II| =

∣∣∣∣∣∣
√
b− ηk

⎛⎝ 1√
b− ηk

d∑
i=ηk+1

εs,ei

⎞⎠⎛⎝ 1

b− s

b∑
i=s+1

fi −
1

e− ηk

e∑
i=ηk+1

fi

⎞⎠∣∣∣∣∣∣
≤
√

b− ηkγ

⎛⎝∣∣fηk
− fηk+1

∣∣+ ∣∣∣∣∣ 1

b− s

b∑
i=s+1

fi − fηk

∣∣∣∣∣+
∣∣∣∣∣∣ 1

e− ηk

e∑
i=ηk+1

fi − fηk+1

∣∣∣∣∣∣
⎞⎠

≤
√

b− ηk(κ
s,e
max + (CR + 1)κs,e

max + (CR + 1)κs,e
max),

where the first inequality follows from (56) and (51), and the second inequality
from Lemma 18.

Step 3.3. Finally, we have that

III =
√
e− b

(
1

e− b

e∑
i=b+1

εs,ei

)⎛⎝ 1

e− ηk

e∑
i=ηk+1

fi −
1

e− b

e∑
i=b+1

fi

⎞⎠ .
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Therefore,

|III| ≤
√
e− bγ

b− ηk
e− b

(CR + 1)κs,e
max ≤ 4

√
2

min{1, c1}
|b− ηk|Δ−1/2γ(CR + 1)κs,e

max.

Step 4. Using the first part of Lemma 21, the first term on the right hand side
of (58) can be bounded as

〈εs,e,Pd(X
s,e)− Pd(f

s,e)〉 ≤ γ2.

Thus (57) holds if

|b− ηk|(κs,e
max)

2 ≥ Cmax
{
|b− ηk|Δ−1/2γκs,e

max,
√
b− ηkγκ

s,e
max, γ2

}
.

Since γ ≤ c3
√
Δκ, the first inequality holds. The second inequality follows from

|b− ηk| ≥ C3γ
2(κk)

−2 ≥ C3γ
2(κs,e

max)
−2, as assumed in (54). This completes the

proof.
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