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SUMMARY IV
Summary

This thesis consists of two distinct parts. The first part comprises the first three 
chapters and is largely of an expository nature. The second part comprises the last 
three chapters all of which are, to the best of our knowledge, original.

In the first part we cover the background material which we shall require in the 
sequel. Thus Chapter 1 deals with the theory of Kac-Moody algebras and is drawn 
from two main sources, namely [Kac90] and [BdK90]. Two enlightening examples are 
given at the end of this chapter.

Chapter 2 introduces the notion of the Kac-Moody group functor. This material 
is drawn largely, but not exclusively, from an extensive body of work on the topic by 
J. Tits. We give a presentation for Kac-Moody groups over fields and describe some 
of their properties.

In Chapter 3 we give an overview of some results on Kac-Moody groups. First 
we describe the work of J-Y. Hee generalizing the notion of twisted Chevalley groups 
to the Kac-Moody situation. We then give an exposition of the work of R.W. Carter 
and Y. Chen on the automorphisms of complex simply-connected affine Kac-Moody 
groups arising from extended Cartan matrices and we describe the classification of 
such automorphisms. In particular, we note that the family of diagonal automor
phisms of such groups behave in a manner which has no analogy in the classical 
theory. We conclude the Chapter with an example demonstrating the limitation of 
Hee’s results with regards to this type of automorphism.

Chapter 4 makes use of the results on Kac-Moody algebras described in §1.5 
to extend the results of Hee. Suppose A is a simply-laced extended Cartan matrix 
and let 0$(K ) be a Kac-Moody group associated to A. In Chapter 4 we extend the 
results of Hee to the fixed point subgroup, 0p(K ) say, of 0 p (K ) under a particular 
graph-by-diagonal automorphism. We then establish an isomorphism between the 
subgroup 0p(K ) so obtained and a Kac-Moody group associated to an affine Cartan 
matrix of type II or III.

Thus Chapter 4 contains our main contributions for two reasons. Firstly, it 
provides a realization of Kac-Moody groups of types II and III in terms of those 
arising from extended Cartan matrices. More precisely, Propositions 4.4.3, 4.5.6, 
and 4.6.4 prove the following result.

Theorem 0.0.1
For each affine Cartan matrix B of type II or III there exists a simply-laced affine 

Carton matrix A of higher rank with automorphisms 7, 7, 7' and r , t , T1 of the group 
functors 0 ^ ,  and 0 £  respectively, with fixed point subgroup functors 0|J;T, 0 ^ T.
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and respectively with group functor isomorphisms

-
# « d ® f d -
* , c K

where the group functors are defined on the category of fields K with char K  /  2 
satisfying the conditions that

x/2 € K if B =  'Ci and
rharK /  3 and K contains a primitive cube root of unity if B = ‘Gj.

Finally, Chapter 4 contains calculations which pave the way for the last two 
chapters.

Chapters 5 and 6 are both straightforward consequences of Hee’s theorem and 
calculations made in Chapter 4. In our sixth and final chapter we demonstrate how the 
fixed point subgroup of ©p(K) under an automorphism which is the composition of a 
graph, diagonal and field automorphism does yield to Hee’s approach. We conclude 
that the non-triviality of eigenspaces in the theory of automorphisms of fields plays 
a role in the applicability of Hee’s theorem.



Introduction

As is the case with many research projects, the nature of this thesis has un
dergone various changes during the course of its production. When we began this 
project in October 1989, our aim was to initiate a study of the fixed point subgroups 
of Kac-Moody groups under certain automorphisms. In particular-, we aimed to 
study the fixed point subgroups of Kac-Moody groups associated to affine Cartan 
matrices in an explicit manner such as that used for the Chevalley groups in [Ste67, 
§11]. In order to do this we first required a realization of the affine Kac-Moody 
groups of types II and III. We thus set about generalizing the results on Kac-Moody 
algebras in [Kac90, Chapter 8] to Kac-Moody groups.

It was at this point that we first became aware of the results of Hee announced 
in [H90]. These far-reaching results achieved many of the aims we had envisaged 
and had applications in more situations than we had anticipated. However, they 
did not, in their original form, apply in the situation we were studying at the time. 
They nevertheless gave us great insight into the methods we might use to prove 
some of the results we required.

Having completed the realizations of the affine Kac-Moody groups of types II 
and III. it seemed natural to add a field automorphism and to probe the applicability 
of Hee’s results further. We thus decided to study the extent to which Hee’s results 
applied to fixed point subgroups of Kac-Moody groups of extended type. Since 
Hoe's results on Kac-Moody groups were generalizations of results from the clas
sical theory of Chevalley groups, it seemed reasonable to consider automorphisms 
involving a non-trivial diagonal automorphism.

We tints turned our attention to an automorphism which was a combination of 
graph, field and diagonal automorphisms. Suppose that .4 is an extended Cartan 
matrix and that CVp(K) is a Kac-Moody group associated to A. We considered the 
graph automorphism, 7, o f ©$( K) inherited from an automorphism of the Dynkin 
diagram of .4 and as a preliminary stop studied the fixed point subgroup of ©p(K) 
obtained when combining 7 with a field automorphism. We then added a diagonal 
automorphism and studied the result. What we discovered was that tin- presence 
of a field automorphism removed the difficulties we had previously encountered and 
the existence of non-trivial eigenspaces in the theory of automorphisms of fields 
meant that Hee’s results were indeed applicable.

v A
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It remains to be seen what results are obtained when the graph automorphism 

is other than the one described. However, we note that only graph automorphisms 
induced by diagram automorphisms fixing the zeroeth vertex commute with non
trivial diagonal automorphisms. Furthermore, all such graph automorphisms have 
been covered in this thesis.



Chapter 1

Kac-Moody Algebras

We shall of necessity assume a familiarity with the theory of finite-dimensional 
semisimple Lie algebras. However, we shall not assume a great familiarity with the 
theory of arbitrary Lie algebras. Nevertheless, the well-established properties and 
notation (such as [•, •] for the Lie bracket and a d r  for the adjoint map of a Lie 
algebra 0 associated to an element a- € 0) will be assumed.

For the time being we shall be working over the complex field and shall denote 
by n and n0 the sets { 1 , . . . , » }  and { 0 ,1 , . . . , « }  respectively. Similarly, we shall 
denote by N the set of strictly positive integers and by No the set N U {0 }.

The first three sections of this chapter are expository. They rely heavily on 
[BdK90] and [Kac90]. Section 1.1 contains the general theory of Kac-Moody alge
bras with particular emphasis on the similarities and differences between the general 
theory and the finite-dimensional theory. Thus a perusal of this section should be 
enough to provide the necessary background in Kac-Moody algebras that I will re
quire. For the sake of brevity I have omitted proofs wherever proofs already exist 
elsewhere and have given references to those sources.

Part of the material in §1.2 should also be familiar from the classical theory, 
but the material relating to the general theory is of sufficient importance that we 
deemed it necessary to highlight it by giving it a section of its own. Section 1.3 
is an exposition of [Kac90, Chapter G] and considers the structure theory of affine 
Kac-Moody algebras, including explicit descriptions of their root systems.

The last two sections describe realizations, by which I mean explicit construc
tions in terms of structures already known, of all affine Kac-Moody algebras. Sec
tion 1.4 is an exposition of [Ivac90, Chapter 7] and is necessary background for 
§1.5. Tin1 latter is a description of the material introduced in [Ivac90, Chapter 8], 
presented in a more explicit form. The detailed examples provided in §1.5 have not, 
to the best of our knowledge, appeared elsewhere. The material introduced there 
will be of great importance in the development of our later work.

1
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1.1 General Theory
Basic Definitions

We start by defining the notion o f a generalized Cartan matrix. Let A =  
(A ,j),je „  be a real matrix of rank r. We call .4 a generalized Cartan matrix, or 
GCM  for short, if it satisfies the following conditions;

• .4,, =  2 for all i € n,

• Aij € Z,

• -4ij <  0 whenever i /  j ,

• .4,j =  0 <=> Aji = 0.
Note that we don't in general have det .4 > 0. When all the leading minors of A 
are positive, then .4 is simply an ordinary Cartan matrix.

We use the term Kac-Moody algebra to describe a Lie algebra associated to 
a generalized Cartan matrix. Despite the fact that a deep theory can only be 
developed for Kac-Moody Algebras, we develop as much of the theory as is possible 
for Lie algebras associated to an arbitrary square matrix. To this end we define the 
realization of an arbitrary complex matrix .4 =  (A tJ ),,jgn to be a triple ( f). II, Ilv ) 
such that

• t) is a complex vector space of dimension (2n — r) where r =  rank A,

• n v =  {a*, «2 , • • • i Qn } *s a se* ° f  11 independent elements in f),

• II =  {q i , q2, . . .  ,a „ }  is a set of n independent elements in the dual space I)’  
of t),

• Qj(o^) =  ( o j ,» ? )  =  Aij for all i , j  € n where (•,•): f)* x l) ►-* C is the dual 
contraction between 1) and 1)”.

We note that dim I) > n and hence IIV is a basis for f) if and only if A is non-singular.
Two such realizations (lj,II,IIv ) and (f)1. n 1,n * )  are said to be isomorphic if 

there exists a vector space isomorphism

<t> : I) -+ hi
stich that

<A(nv) =  and 0 ‘ (n ,)  =  n 
where is the dual map o f (ft.

Tin- following result can be found in [Kac90], though the proof we give is a 
corrected version of the original.

Proposition 1.1.1
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1. There exists a realization for every complex n x n matrix .4. Furthermore, 
such a realization is unique up to isomorphism.

2. Two complex n x n matrices .4 and D have isomorphic realizations if and only

We prove the existence of a realization by construction. Suppose rank A — r. 
Then, permuting the indices if necessary, we may assume that the matrix A takes 
the form

where A(r) is an r x r submatrix of rank r. We now extend the matrix .4 to a 
(2?i — r) x (2/i — r) matrix E  given by

where 7„_r is the (n — r) x (n — r) identity matrix. Then E  is non-singular as

We now take f) to be C2,1-r, a f , . . . ,  to be the first n rows of E, and a j , . . . ,  o n

Now, given a realization ((), II. IIV). we can extend II to a basis of 1)“ by adding 
elements a „+i , . . . ,  a^n-i 6 f)' so that we get

for some r x ( n - r )  matrix M  and some invertible (n — r) X (n — r) matrix N . Adding 
suitable linear combinations of r t i , . . . , o r to the elements a n+i , . . . ,  « 2 „ -r € 1)" we 
can make M  =  0. Then, replacing a n+i , . . . , a ] „ . r by their linear combinations we 
get N  =  /„ _ r.

Similarly, we extend IIv by adding elements o)(+1, . . . ,  o f u_r £ I). By analogous 
reasoning we get

if D can be obtained from .4 by a permutation of the index set.

Proof

E =
A(r) D 0 \

C D In- r
0 In-r 0

det E  =  ±  det A(r).

to be the first n linear coordinate functions. Then (f).II.IIv ) is a realization of the 
matrix .4.

.4(r) D 0 
C D In-r 
0 In-r 0

thus proving the uniqueness.
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For part b) we first suppose that .4 =  (.4,j) and B =  (B ,j) have isomorphic 
realizations (l).n = {a,..... a„},nv = a*})
and

(ih .n , =  { A ......../ i „ } ,n r  =  { # , . . . , / £ } )

respectively. So there exists a vector space isomorphism

4> : I) -*  •)!

such that <A(nv) = n* and <A*(n,) = n.
By permuting the indexing set of D if necessary, we may assume that 

<f>(a*) =  /3? and

However, then we have

So B can be obtained from A by a permutation of the indexing set. Also, from the 
proof of part a), it is clear that if a matrix B can be obtained from a matrix A by 
a permutation of the indexing set then their realizations are isomorphic. □

Example 1.1.2

1) The Cartan matrix of .4 ,̂

has rank 2. Consequently we have f) = C2 and

a* =  (2 . -1 )  and a* =  ( -1 ,2 ) .

2) The generalized Cartan matrix

/ 2 0 - 1 0 0
0 2 - 1 0 0

- 1 - 1 2 - 1 - 1
0 0 - 1 2 0

\ 0 0 - 1 0 2 /
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has rank 4. Hence h nd we extend D to the nor
2 0 -1 0 0 0 \
0 2 -1 0 0 0

-1 -1 2 _ 1 -1 0
0 0 -1 2 0 0
0 0 -1 0 2 1
0 () 0 0 1 0 /

E =

as described in the proof of Proposition 1.1.1. This gives 
a* =  ( 2 .0 . - 1 ,0 ,0 ,0 )
Oj =  ( 0 .2 . - 1 .0 .0 ,0 )
t»3 =  ( - 1 . - 1 . 2 , - 1 , - 1 , 0 )
atf =  ( 0 .0 . - 1 ,2 .0 .0 ) 
a'i =  ( 0 .0 . - 1 ,0 .2 ,1 )

o
Given two matrices .4i and .4i with realizations (l)i, ï ï j , II^) and 

respectively, we can construct a realization of the direct sum

( - 0  X)
of the two matrices . namely

(fh ® fo .n , x {0} u {o } x i ^ .n ;  x {0} u {0 } x n*),
which is called the direct sum of the realizations.

A realization is said to be decomposable if the corresponding matrix is de
composable. Note that if we have a decomposable matrix .4. then by a suitable 
reordering of indices we can decompose .4 into a direct sum of indecomposable 
matrices, and the corresponding realization into a direct sum of corresponding in
decomposable realizations.

As in the finite-dimensional theory we use the following terminology;
• II is called the root basis,

n v is called the coroot basis.

• elements from n are called simple roots,

• elements front n v are called simple coroots.
We also set

Q =  ¿ z « „  Q+ =  j r  N0o,, and Qv =  ¿ Z o * ,
i=i i=i i=i

where the Q is called the root lattice and is called the coroot lattice.
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Construction of Kac-Moody Algebras
Let .4 =  (A ,j) be an n x n matrix over C, and let ( f). II. IIV) be a realization of 

A. We first introduce a Lie algebra £u(<C) by means of generators and relations , 
namely

Generators: e ,,/ ,  for « € n,fi € b,
Relations: [fi,/*'] =  0 for fi, fi' G b,

[fi, e,] =  (a,,fi)e, 1 (1.1.2)
[fi,/.] =  —(<*.•, fi)/. } for i , j  G n.
[«.,/•]

> • C*<51II

We note that our approach varies slightly from that taken by both [Kac90] 
and [BdK90] and instead we adopt for later convenience the approach taken by 
Jacques Tits (see for example [Tit85]), often referred to as Tits' convention in the 
literature. The difference lies largely in our choice of the generators , i G n which 
vary from their original choice only by a factor o f —1. Thus we shall not reproduce 
any proofs of subsequent results where any changes that need to be made to the 
source quoted are simply to compensate for this fact. As far as our construction of 
a Kac-Moody algebra is concerned, we follow the approach originally to be found 
in [MooGT] and [MooGS]. However, by [Kac90. Proposition 5.12], the proofs of the 
results given in [Kac90] are still valid for this alternative definition.

By the uniqueness of the realization of .4 we note that 0.4(C) depends only on
A.

We denote by n+ ( respectively n_ ) the subalgebra of Ò.i(C) generated by the 
elements e,, i € n ( respectively /,,?  € n).

The proof o f the following structure theorem for 0.4(C) can be found in [Kac90, 
Theorem 1.2].

T heorem 1.1.3

1 . We have a triangular decomposition of 0,i ( C ) when considered as a vector 
space, viz

0,t(C) =  n_ e  I) ® n+.

2. The subalgebra n+ (respectively fl_ j is freely generated by the elements e,, i € n 
(respectively f , , i  € n), S.

S. The map interchanging c, with, f, for i G n and mapping U to —h for all 
elements /( G f), can be uniquely extended to an automorphism, u) of the Lie 
algebra 0.4(C).
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Jf. With respect to f) we get the root space decomposition:

0.4(C) = (  ®  0-c. ) © b © ( ®  0r> | ,
\ô O,a€Q+ /  \â O,a€Q+ /

where 0„ =  {a- € 0.4(C) : [/»,*] =  a(h)x} . Furthermore,

dim @a < 00, and 0n C n± for ±  a € Q+, o  ^  0.

5. The ideal of 04(C) defined by

m = (6+.o_ ),

where
o+ =  (x =  (ad ei)l~Al>(ej) : i , j  G n)

and
o_ =  (a- =  (ad f i)x~Aii( f j )  : i , j  G n), 

intersects t) trivially and satisfies

m fl n+ =  6+ and m fl n_ =  6_.

Corollary 1.1.4
The natural map I) —> 0.4(C) is an embedding.

Proof
This is a direct corollary of Theorem 1.1.3, part 1. CD
VVe are now in a position to define the Lie algebra, 0.4(C), corresponding to a 

complex n x n matrix A.
Let (b -IL IT ) be a realization of .4. 0.4(C) the Lie algebra given by the presen

tation 1.1, and m the ideal in 0,i(C) intersecting 1) trivially defined in Theorem 1.1.3. 
Then the Lie algebra corresponding to .4 is defined to be the quotient algebra

0a(C) =  0.t(C)/m .

We call n the rank of the Lie algebra 0.4(C) and the quadruple (0.4(C), b> n, IIV) 
the quadruple associated to the matrix .4.

Two quadruples (04(C), b- n . IIV) and (04,(C), bi ■ n ,. II*) are called isomor
phic if there exists a Lie algebra isomorphism

4> '■ 0,.(C) •—> 04,(C)

such that
<A(b) =  bi, 0 (n v ) =  n^, and 0 -(n ,)  =  n.
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Example 1.1.5
Before proceeding, we recall the well-known Lie algebra corresponding to the 

Cart an matrix .4i =  (2), namely the set of all traceless 2 x 2  complex matrices 
where the Lie product of two matrices M  and N  is defined to be

as generators for oI2(C).
We also recall that the simply connected C'hevalley group corresponding to

We return now to the general theory of Kac-Moody algebras. We get the 
following structure theorem for 0t(C ). For the proof we refer the reader to [BdKOO, 
theorem 10.4.3] and [KacOO. §1.3 and §3.3].

T heorem 1.1.6
Let 0/i(C) be the Kac-Moody algebra belonging to the generalized Cartan matrix 

.4 =  (Aij). Then

1. We have a triangular decomposition of 0,|(C) viewed as a vector space, viz

is called the root space corresponding to a. Note that 0o =  !)• Furthermore, 
dim 0„ < oo, and 0,, C n± for ± a  € Q+, o /  0.

[M, N] = M N  -  N M .
We know that

so that we can take the elements

ol2(C) is SLAC). o

0a(C) =  n_ ® i) 0  n+

where n+ is generated by the elements e, for i € n and n_ is generated by the 
elements f, for i € n.

2. With respect to () we get the root space decomposition:

0..(C) =  ®  0„,
<.60

where
0<. =  {J- € 0,i(C) : [h,J-] =  o(h)r }
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3. Let £j(j) =  Cf; +  Ccv)/ +  C/,-. Then 0(l) t.i isomorphic to ol2(C) as a Lie algebra. 
Under this isomorphism

et t—♦ and f, (
0 0

-1  0 )■
4- The Kac-Moody algebra 04(C) is given by the following presentation;

Generators:
Relations:

e,, /, for i G R,h G f),
[h,h') =  0 f o r h , h ' e  b,
[h.e,] =  (a,, h)ei )
[*,/<] 1II > for i , j  € n,
k / j ]

> - ci11
(ad e1),_/4©e> 
(ad f i Y ' ^ f i : : for i /  j.

Example 1.1.7
If A is indecomposable and the determinant of each of its leading minors is 

positive, then the above definition gives rise to a simple Lie algebra of known type 
from the classical theory. ©

The subalgebra f) of 0.4(C) is called the Cartan subalgebra. The elements

{et.f,  : i G If}

are called the Chevalley generators. In fact, the C'lievalley generators generate the 
derived subalgebra

04(C) = [04(C), 0.4(C)].

Furthermore,

0a(C) =  04(C) +  b With 04(C) =  04(C) det .4 ±  0 .

If we define
i)' =  E C n ,v

1=1
then we have

04(C) D f) =  •)', and 04(C) fl 0„ =  0„ if o  /  0. 

If {o „+i , . .. extends {o - '} ,eu to a basis of I), we call the set

{ « . , / . ,« >  : > € it. j  € 2» -  r )
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a Chevalley basis of 0 4(C).
The number mult a  =  dim 0„ in the root space decomposition of 0.4(C) is called 

the multiplicity o f a. We call an element a € Q a root if

a ^  0 and mult o  ^  0.

For a =  £ ,  A-,a; € Q we call lit «  =  £,■ A, the height of a. We induce a partial 
ordering > on f)_ bv setting

a > ¡3 if a — ¡3 £ Q+.

A root a >  0 (respectively a  < 0) is called positive (respectively negative). From 
the root space decomposition of 0.4(C) (see theorem 1.1.3) we deduce that every 
root is either positive or negative. We denote by <I>, 4>+ and (I>_ the sets of all, 
positive and negative roots respectively. We can then see that

<I> =  4>+ U 4>_, and #+ f~l 4>_ = 0.

For the simple roots we have

0o, =  Ce,. 0 -a, =  C /, and 0*.a =  0 if | A- |> 1.

Since every root is either positive or negative we get 

Lemma 1.1.8
If /3 6 $  + \ (o , ) ,  then (/3 +  Z oJ  Hi» C $ +,
This result means that the ideal m of 0.4(C) is ¿-invariant. Hence uj induces 

an involutive isomorphism w of 0.4(C), called the Chevalley involution of 04(C). It 
is determined by

w(e,-) =  /,, and w (/,) =  e, for i £ n. and w(/i) =  — h for li € f).

Note that since u>(0o) =  0_o , we deduce that mult a =  mult ( —a ) and in 
particular

4>_ =  -4>+.

When there is any danger of confusion, a symbol dependent on a matrix A may 
be followed by (.4). Thus we can denote by <I>('4) and Q(A)  the set of roots and the 
root lattice associated to .4 respectively.

Duality of Kac-Moody Algebras
If A is a generalized Cart an matrix, then it s transpose, '.4, is also a generalized 

Cartan matrix. Note that it follows from the definition of a realization that if
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(l),II,IIv ) is a realization of a matrix .4. then ( fj“, IIv , II) is a realization of '.4. So, 
if

(0.4(C), i ) .n .n v)

is the quadruple associated to A, then

(0-4(C),f)*,nv,n)

is the quadruple associated to 'A. The Kac-Moody algebras 0.4(C) and 0u(C) are 
said to be dual to each other.

Note that the dual root lattice of 0.4(C) is the root lattice o f ©^(C). Denote by 
<I>V C Qv C l) the root system <I‘ ('.4) of 0t.t(C). This is called the dual root system 
of 0.4(C).

In contrast to the finite-dimensional case, there is no natural Injection between 
4> and 4>v.

Gradations of a Kac-Moody Algebra
Given an abelian group G, a decomposition

V' =  ©  Va
ct£G

of a vector space V  into a direct sum of subspaces is called an G - gradation o f V'’. 
Elements from 1(, are called homogeneous o f de.gre.e. a. A subspace U C V' is called 
graded if

U =  ® ( C  n va ).
a€G

Example 1.1.9
Consider the vector space C o f Laurent polynomials in one variable /

C =  I ^2 c,t‘ : c, € C. m. 11 € Z, n > m >
li=m )

Tin'll C has a Z-gradation, namely

=  with C, =  Ctk.
■ €*

A G-gradation of a Kac-Moody algebra 0 is a decomposition

0 =  ® O r.
a€G

O
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of g considered as a vector space into subspaces such that

[fl«> O.f] Q 0<>+a

for all q ,/3 € G.

Example 1.1.10
From Theorem 1.1.G we have a Q( .degradation of the Kac-Moody algebra

0.i(C)
04(C) = ®  0„

ceO(A)
where Q(A)  is the root lattice associated to 04(C). o

Some Ideals of a Kac-Moody Algebra
We define the centre. C, of a Kac-Moody algebra 04(C) to be the ideal 

{a- e  0.t(C) : [j-, t/] =  0 for all y € 0.t(C)}.

We can in fact say quite a lot more about the centre of 04(C). To this end we have 
the following result.
P roposition 1.1.11

The centre c of 0.4(C) satisfies the following conditions;

1 . c =  j/i £ I) : (a,, h) =  0 for all i € n]

2. dim c = dim t) — n =  n — r where r =  rank .4

S. C is contained in the linear span of Ylv and is also the centre of 04(C ).

Proof
For proof see [BdKdO, Lemma 11.2.1] and [Kac90, Proposition 1.6]. □
We are now in a position to give a description of the structure of ideals of 

04(C). The proof of the following result can be found in [IvacDO, Proposition 1.7].

Proposition 1.1.12

1 . g .i(C) is simple if and. only if det A ^  0 and for each pair of indices i and j  
there exist indices k'r, r € s such, that

Ak, -4/t,k, ■ ■ ■ Ak,j ^  0.

2 . Provided the above condition on the indices holds, every ideal of 04(C) either 
contains 04(C) or is contained in C.
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The Invariant Bilinear Form on a Kac-Moody Algebra
For the remainder of this section all Lie algebras will he of the form 0,t(C) 

where .4 is a generalized Cartan matrix.
We note that if we replace the Chevalley generators

: » ' € « }  by {e ;,« ,/, : i 6 n}

for some e, € Cx , we would have to replace the set

{a ? : i € n } by {e;a* : « € « }

if we wished to preserve the relations in 0 i(C ). The map

V VQ( t-¥ 6,a(

extends to an isomorphism <?i>h : l> —► fj- though not necessarily uniquely since in 
general the set {o,v },<=„ does not span 1). However, given such an isomorphism </>„, 
we can extend it to an isomorphism

<t> '■ 0.4(C) —► 0/.m (C),

where D =  diag( f \, . . .  , f„ ).
We call a matrix .4 — (A<} ),,j€„ symmeirizable if there exists an invertible 

diagonal matrix
D  =  diag(fj....... in)

with entries in C and a symmetric complex matrix

S = (S,j)

such that .4 =  DS.
We then call 5  a symmetrization of .4 and 0 t(C) a symmetrizable Kac-Moody 

algebra.

Example 1.1.13

1) Consider the matrix *.4| = 

two symmetrizations of \4i:

(  2 0 \ (  1 - 2  \ „.  (  1 (  2 - 4  \
U  i ) V " 2 1 ) ■ u i ) v - 4 8 J

2 — 
-1 40 -

Then wo can obtain the following
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2) 'G 2 =
2 -1 0

-1 2 - 3
0 -1 2

has a svmmetrization

1 () 0 \ (  2 -1 0
0 1 0 - 1 2 - 3
0 0 h i V « - 3 6

Note that in both the above examples all non-zero entries in the diagonal 
matrices are in Q+ and all entries in the symmetric matrices are in Q.

Lemma 1.1.14

1. Given a symmetrizable matrix .4. a decomposition into a product of a diagonal 
matrix D and a symmetric matrix S as above exists such, that e, 6 Q+ for all 
i £ n and € Q for all i , j  € n.

2. If A is indecomposable as well as symmetrizable then the matrix D in the 
decomposition is uniquely determined up to a constant factor.

Proof
See §2.3 of [Kac90] for proof. a
Now let .4 — (-4,j)i,jin he an arbitrary symmetrizable generalized Cartan matrix 

and fix a decomposition .4 =  DS as described above. Let (1), II. IIV) be a realization 
of A and

i)' =  E Cf‘ .v S h .
i€n

Fix a complementary subspace l)r to [)' in h- Now define a symmetric bilinear 
<C-valued form (•, • )h on I) by letting

(o^,h)„  =  e,(a,, h) for i € n. h e  !)•

and
(h,l*/)i, =  0 for h.h' e  be-

Remark 1.1.15
Note that there is no ambiguity in the definition of (•,•)(, since Ilv is a linearly 

independent set and

=  eitjSji 
=  fjt.S.j
=  (<**,<*?)»
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for all i € n. o

Lemma 1.1.16
With the above notation we have that

1 . the kernel of the restriction of the bilinear form  (•,•)•] to f)' coincides with C,

2 . the bilinear form  (•, •)h is nondegenerate on f).

Proof
We refer the reader to the proofs of lemmas [KacOO, 2.1] and [B<1K90, 12.1.3].

□
Thus we can now establish a very natural isomorphism

and

» : f) -  I)-

whence we deduce that
(1.1.16)

We use v  to induce a bilinear form ( •. ■ )h’ 011 b" by defining

(o./f),,. =  (»/ ’ (ft),»/ ‘ ( /? ))h

for a, ¡3 € ()*■
Thus for a, and a3 in II we have

From this and ecptation 1.1.1G. we deduce the following facts:

• (a „  > 0 for i 6 n,
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• («,, Ofj V  < 0 for i ±  j ,

Hence we obtain the usual expression for the generalized Cartan matrix, namely
/ 2 K ^ \
\ (“ o ° i V  / , ,>€n

The proof of the following fundamental result can be found in the proofs of 
theorems [Kac90. 2.2] and [BdKOO, 12.2.1 and 12.2.2].

T heorem 1.1.17
Let 0/1(C) be a symmetrizable Kac-Moody algebra. Fix a decomposition A — DS 

of A as in Lemma 1.1.1J,. Then there exists on 94(C) a nondegenerate symmetric 
bilinear C -valued form  (• ,•) such that:

1. The restriction of (• , •) to 1) is precisely the bilinear form  (• , • )i, we defined 
earlier and is nondegenerate.

2. For all x, y ,z  € 9.4(C)
([* ,!/],* ) =  (*>(»,*]),

». e. (•,•) is invariant.

3. If 0 +  /J /  0 </ten (fl,,, 03) =  0.

4 . For q 6 <I> and a  ^  0 the restriction of (•,•) to the subspace 0a © 0-a *•* 
nondegenerate.

5. For x € 0f, and y 6 0_Q where a € $  we have

[*,y] =  - ( * . y ) " _1(o ).

The Weyl Group of a Kac-Moody Algebra
Before we define the Weyl group associated to a Kac-Moody algebra it is con

venient to introduce some results about 0-modules. To this end we let V be a 
module over a Kac-Moody algebra 0. Cur applications will entail considering 0 as 
a 0-module and the reader may read the relevant material as if that were the only 
example and omit the generalities. However, they have been included in order to 
emphasize the fact that the particular case we will consider can be placed in context 
in a more general setting.

We say that an element x  € 0 is locally nilpotent on V  if for any v 6 V' there 
exists a positive integer N  such that x N(v) =  0.

Lemma 1.1.18
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1 . Let { v, } i€/ ■ where. I  is some indexing set. be. a system of generators of a 04(C)- 
tnodule and let x 6 0.1(C) be such that (ad x) is locally nilpotent on 04(C) and 
x N'(vi) =  0 for some positive integers Ni, i £ I. Then x is locally nilpotent 
on V .

2. Let where I  is some indexing set, be. a system of generators for a
Kac-Moody algebra 0.4(C) and let x £ 04(C) be such that (ad x ) N,g, =  0 for 
some, positive integers Ni, i £ I- Then ad a- is locally nilpotent on 04(C).

S. ad e, and a d /, are. locally nilpotent on 04(C).

Proof
See Lemmas [I\ac90. 3.4 and 3.5]. E
If a is a locally nilpotent operator on a vector space V we can define the 

exponential of a in the usual manner, i.e.

e° =  exp a =  I\ + a 4- — a* +  • • •

since its action on any particular v € V  will be given by a finite sum. If b is any 
other operator on 1’ such that (ad a ) '  b =  0 for some N  we can show that

(expa).fc.(expa)-1 =  (exp(ad a)).b

(see [I\ac90, §3.8] for proof). The following result will prove useful in later calcula
tions.

Lemma 1.1.19
Let V be a vector space, over a field of characteristic 0 and suppose a and b are 

operators on V such that a.b and

[a, /»] =  ab — ba

are locally nilpotent and [a, 5] commutes with a and b. Then a +  b is also locally 
nilpotent and

exp (a +  b) =  exp a. exp b. exp .

Proof
This is a special case of the Campbell-Hausdorff formula and various proofs 

exist. In particular, tin1 proof given in [C'ar72. Lemma 5.1.2] for the case when a 
and b are nilpotent generalizes in a natural fashion to the locally nilpotent case. □

A 04(C)-module V is called 1) -dtagonalitable if

V  = ©  va
o€h*
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where
K, =  {»  £ V : h(v) =  (a,h)v  for h £ f)} .

As usual, Va is called the weight space, a  € I)* is called a weight if Va 0, and 
dim Va is called the multiplicity of o and is denoted by inultv a.

An f)-diagonalizable module over a Kac-Moody algebra O.t(C) is called inte
grable if all e, and / ,  for i £ n are locally nilpotent on V .

R emark 1.1.20

1) The above definitions can also be made with 1)' replacing f) and 0',(C) replacing
0a(C).

2) By Lemma 1.1.18, the underlying module of the adjoint representation of a 
Kac-Moody algebra is an integrable module.

©

The following result can be found in [KacDO, Proposition 3.G a)]. 

P roposition 1.1.21
Let V  be an integrable 0^(C )-module.We recall our definition

0(i) =  Ce, +  Co^ +  C/ ; .

Then, as a Q^-module, V decomposes into a direct sum of finite-dimensional irre
ducible f)-invariant, modules.

This justifies the use of the term integrable since it essentially states that the 
action o f 0(i) on V  can be “integrated” to the action of the special linear group 
SLA  C).
Proposition 1.1.22

Let V be an integrable £J,.t(C) -module, l £ l)' a weight of V  and a, £ II. Define
the set of integers

M  =  (f  € Z : fi +  to,- is a weight, of V'}.

Then

1 . M  is a closed, interval of integers, in particular

M  =  [—p, i / ] f lZ where p, q £ N(i U oo

and
p — q = (fi.n'f) whenever p,q  € N().

2. If mult v /J < oo then p and. q are both finite.
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S. The map induced by the action of e, on V ,

ei : Vfi+u., —» l r/3+(f+i)Q,

in injective for

j. If we define a map m : Z  —>Z by

m(t) =  multv (ft +  ta<) =  dimV'/3+(aj, 

then m is a non-decreasing function on the interval

5. The map tn is symmetric with respect to the point

i0 = ~ \ { ft ,< * 1 ) ,

though (ft +  t0c*i) need not be a weight of V .

6. If both ft and ft +  a, are weights, then r,(Vfi) ^  0.

Proof
See [KhcOO, Proposition 3.6]. D
We now return our attention to the construction o f the Weyl group associated 

to a Kac-Moody algebra.
Let fl^dC) be a Kac-Moody algebra and II =  {o , : i £ n) its system of simple 

roots. For every a, € II we define a linear map

»■«,

by
rai(ft) -  ft -  ( f t .nf )o ,

for all ft £ ()". We call ra, the fundamental reflection corresponding to the simple 
root a,. When there is no danger of confusion we denote rni by r,. Note that r, is 
indeed a reflection since its fixed point set is

H,„ =  [ft £  I) ' : {ft,a ?)  =  0 } and r , ( a , )  =  - o „

The Weyl group, of Q.,i(<C) is defined to be the subgroup of GL( I)") generated
by all the fundamental reflections r, for i £ n.

Example 1.1.23
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1) The Cartan matrix -4i =  (2) has root system 'I1 =  { a , —o }  and the Weyl 
group W (A \ ) is generated by the single reflection ra. Thus W(A\)  is a cyclic 
group of order two.

2) Consider a Cartan matrix of type .4„, i.e. such that all the diagonal entries 
are 2, the superdiagonal and subdiagonal entries are all —1 and all other 
entries arc 0. Then W ( A „ )  is isomorphic to the full symmetric group on n  +  1 
elements.

3) The Cartan matrix Gi =   ̂ \ j  has Weyl group isomorphic to the
dihedral group of order 12.

o
Since Í) and I)’ are dual spaces, we also have an action of the Weyl group on f). 

This is given by
r¡(h) =  h -  (or,-, h)af

for /> € b-
As a consequence of Proposition 1.1.22 and Lemma 1.1.18 we have the following 

result.
P roposition 1.1.24

1. Let V be an integrable 0.4(C) -module. Then, for every a (E I)" and w € W

limitv q =  multv « ’(a).

In particular, the net of weights of V in W-invariant.

2. The root system $  of 0..t(C) is W-invariant and

dim 0„ =  dim 0„.(„>

for every a  £ 4' and w € W .

Lemma 1.1.25
If a  € 4*+ and r ,(a ) < 0. then a =  o,. That is to say. 4> + \ { n,} is r, -invariant. 
By considering lemma 1.1.8 we get the following result.

Lemma 1.1.26
The bilinear form. (■, ■ )h. on I)” is invariant under the action of the Weyl group 

W , so
( u>( a  ),u<(/?))„. =  (« ,/!)„ .
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/or all a, ¡3 £ f)*.
Proof

See [BdK90, Lemma 13.1.3] or [Kac90, Proposition 3.9]. □
In proposition 1.1.24 we showed that every fundamental reflection r, yields a 

permutation of *I> and that a  and r,(a) have root spaces o f the same dimension. 
Using the theory we developed earlier on 0..i(C)-inodules we can go further. We 
can show that there is an automorphism of 0.i(C) related to r, which induces an 
isomorphism from 0a to 0,■,(<»). This is achieved in the following manner.

Lemma 1.1.27
Let 7r be an integrable representation of 0.4(C) on a vector space V . For i € n, 

set
r? =  (exp e,)(exp /, )(exp e,).

Then

1 . Vi (V0 ) =  Ir,•((»)>

2. r f  £ Ant 0..,(C), and

S. rfd|h =  r¡.

Proof
The statement we give here differs slightly from that on which it is based, 

namely [Kac90, Lemma 3.8]. However the difference is superficial. We note that in 
the original we had

rf =  (exp f, )(exp -e .  )(exp /,) .
Given that our notation is different to the original this translates to

r* =  (exp —/.  )(exp - e ,  )(exp - / , )
in our notation. Finally we use the isomorphism between 0(,) and oI2 to show that

(exp —fi )(exp —e, )(exp —/,)  =  ((exp e,)(exp / , ) ( exp e,)) ‘ 1 .
However, since r, is an involution, we obtain the same results as the original by 
following the same processes. O

We continue by giving some more results about the structure of the Weyl group 
itself. We refer the reader to [Kac90, §§3.10 3.13] for the proofs of the remaining 
results in this section.

Consider an expression w =  r,, . . .  »•,, € IF. Define the length of w, denoted by 
f(n>), to be the smallest 1 for which such an expression exists and call the expression 
reduced, in that case.

L emma 1.1.28
Let w =  r,, . . .  r,, £ W  be a. reduced expression and let rv, £ n. Then vie have
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1. t(wri) < C(w) if and. only if ic(ati) <  0,

2 . u»(a„) < 0 ,

S. If ((torj) <  ( (w)> then there exists it 6 t tuck that

r‘»r‘»+l • • • r«i =  ri»+i ■ • • riir i-

The last part of Lemma 1.1.28 is the familiar exchange condition.
In order to study the geometric properties of the action of the Woyl group we 

introduce the notion of the fundamental chamber.
Since we are working with generalized Cart an matrices, which by definition 

have integer entries, we can define a realization of .4 over R by taking hi to be a 
vector space of dimension 2n — r over R. So if (hi, II, IIV) is a realization of A over 
R .then (h = co,hi.n.nv)
is a realization of A over C.

Note that hi is stable under the action of W  since Qv C hi- We then call the
set

C  =  [h € hi : ( o / i )  > 0 for i € « }
the fundamental chamber. The sets w(C)  for to € W  are called chamber.*, and their 
union

A' =  (J w(C)
w£\V

is called the Tit.* cone. We have corresponding dual notions of C v and A v in hi- 

P roposition 1.1.29

1. For It € C , the group

Wh =  {«• G W  : w(h) =  //}

is generated by the fundamental reflections it contains.

2. The fundamental chamber C' is a. fundamental domain for the action of IV on 
X . That is to say, any orbit W.h of It 6 A' intersects C in exactly one point. 
In particular. W  acts simply transitively on chambers.

S. It can be shown that

X  =  {/( G hi : (<*,/») < 0 only for a finite number of a £ *1’ +}.

So in particular, X  is a convex cone.
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4. We can also show that

C  =  {h € f)B : for every w € W, h — «>(/») =  where c, >  0 }.
•€n

5. The following conditions are equivalent;

(a) I W  |< 00.
W  X  =  I).,
('c; 1 <i> |< 00, 
fd ; 1 4>v |< 00.

6. If h 6 A’ , then | Wh |< oc if and only if h lies in the interior of X .

Finally, we can establish that fact that the Weyl group is a Coxeter group. 
Recall that a Coxeter group given by a presentation of the type

(r , , . .  ,r„ : r] =  1, (r,r} )mi‘ =  1. for i , j  € n)
where in,j € N U 00, and we use the convention that x°° =  1 for any a\ So strictly 
speaking, the above is not really a presentation, but a presentation may be obtained 
by omitting all those relations (r,r>)™,-> = 1 for which m,y =  00. However, it is 
convenient to give the presentation in this way as will become clear in the next 
result.

P roposition 1.1.30
The Weyl group ll" is a Coxeter group, vihere the numbers tn,j appearing in 

the presentation are given by the Curtail integers in the manner described in ta
ble 1.1.SI.

A.jA,, () 1 2 3 > 4
m,j 2 3 4 G OO

Table 1.1.31: Product orders in terms of C’artan integers.

1.2 Classification of Kac-Moody Algebras
In this section we investigate the classification of Kac-Moody algebras. We will 

see that these algebras fall into three disjoint classes which can be fully characterized 
by specific properties of their generalized Curtail matrices. We shall then give an 
explicit description o f the root system 4» of a Kac-Moody algebra.

The proofs of the results in this section can lie found in [KacOO] and [BdK90].
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Properties of Generalized Cartan Matrices
Unless otherwise stated, we shall be dealing with a real »i x n matrix .4 =  (-4,>) 

satisfying the following three properties;

• .4 is indecomposable.

• -4i> < 0 for / /  j ,

• .4,j = 0  <=> -4j, =  0.

We shall call a matrix satisfying these conditions a semi-Cartan matrix. Note that 
a generalized Cartan matrix satisfies the last two conditions and we can assume the 
first without loss of generality.

Let 'u  =  ( u i , . . . ,  u „) be a real column vector. We write

u > 0 if u, > 0 for all » € n, and
u >  0 if u, >  0 for all i € n.

WTe call u positive in the former case and non-negative in the latter case.

Lemma 1.2.1
Let .4 be a semi-Cartan matrix. Then Au  > 0 and u > 0 together imply that 

either u >  0 or u  =  0.

Lemma 1.2.2
Let .4 =  (.4,J ) be an arbitrary real ii x ii matrix. Then 

either there exists a vector u > 0. u /  0 such that 'Au >  0

or there exists a vector u > 0 such that Au <  0.

We can now present the central result of the classification theory.

T heorem 1.2.3
Let .4 be a semi-Cartan matrix. Then one and only one of the following three 

possibilities holds;

(F in) det .4 ^  0.
there exists u > 0 such that ,4u > 0. and 
.4u > 0 implies that either v > 0 or v =  0.

(A ff)  corank .4 =  1.
there exists u >  0 such that ,4u =  0. and 
.4u > 0 implies .4v =  0.

(In d ) There exists «  >  0 such that .4u < 0, and 
Av >  0 together with v > 0 implies v =  0.
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Example 1.2.4

1) Consider the matrix .42 =   ̂ ~ 17 )  Then det .4 =  3 and

U  - i ) O ) - ( l )
so that .4j satisfies the first, two conditions of case (Fin). To see that the last 
condition also holds suppose that there exists a vector v such that .42«  > 0 
but neither v >  0 nor v =  0 hold. So without loss of generality we may 
assume v is o f the form *(«, 0) for some non-zero a € 1R But then

contradicting the fact that .42u > 0. Hence .42 satisfies all the conditions of 
case (Fin).

2) Consider next the matrix ’.4i =   ̂ )  Then det ".4i =  0 and

( - ?  - i ) ( ? ) “ ( S ) -
Also, letting v =  ‘ (a, b) for arbitrary o.l> € C. we have 

( - ?  =

Thus if a — 2b ^  0 we must have *.4 it) 0. Hence ”.4i satisfies all the conditions 
for case (Aff).

3) Finally, consider A —  ̂  ̂ )  Then

( - 3  i ) ( l ) = ( : ! ) '
and, if v =  *(«,/)) where a and h are arbitrary elements in C,

(  2 a - 3 b \
\ - 3  2 )  \ l> )  \ -3ri +  2b )

In particular, suppose .4d > 0 and v > 0 but v ^  0. Then, without loss of 
generality, we may assume a >  0. However, solving the inequalities arising 
from Av > 0 then leads to the contradiction that 4« > 9a. Thus we must 
have v =  0 and A satisfies all the conditions for case (Ind).
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o
When referring to cases (Fin), (A ff), or (Ind), we shall say that .4 is of fi

nite, affine, or indefinite type, respectively. By convention, we use the set n0 =  
{0 ,1 , . . .  ,n } as an indexing set for the simple roots of a Kac-Moody algebra corre
sponding to an matrix of affine type.

C orollary 1.2.5
Let A be a semi-Cartan matrix. Then

.4 E (Fin) <=> there exists u > 0 such that .4« > 0.

.4 € (A ff) <=> there exists u >  0 such that Au =  0. and

A € (Ind) <=> there exists u >  0 such that. Au < 0.

Lemma 1.2.6
Let .4 be a semi-Cartan matrix. Then both .4 and '.4 are of the same type.

Generalized Cartan Matrices of Finite and Affine Types
We now proceed to classify all generalized Cartan matrices of finite and affine 

types. We recall that a matrix of the form ( .4tJ ),,jg.s, where S C n, is called a 
principal submatrix of .4 =  (A jj)ij^ W e  shall denote such a submatrix by As. 
The determinant of a principal submatrix shall be referred to as a principal minor.

Lemma 1.2.7
If .4 is of finite or affine type, then any proper principal submatrix o f A decom

poses into a direct sum of matrices o f finite type.
The following lemma ensures that Kac-Moody algebras corresponding to gen

eralized Cartan matrices are always equipped with an invariant bilinear form such 
as that introduced in §1.1.

Lemma 1.2.8
Generalized Cartan matrices of finite and affine type are. symmetrizable.

It is now convenient to introduce the concept of the Dynkin diagram of a 
matrix. Lot .4 — (AtJ) be a generalized Cartan matrix. We associate with .4 a 
graph A (.4), called the Dynkin diagram o f .4 as follows:

• The diagram has ii vertices, each corresponding to one of the simple roots.

• If A.jAj, < 4 the vertices i and j  are connected by

u,j =  max( | A,j \, \ AJt \ )
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bonds (lines). If
I A,j | >  | AJt | and |A<>|>1, 

the n,j bonds are equipped with an arrow pointing from j  to i.

• If A.jAjt > 4  the vertices i and j  are connected by a bold-faced line equipped 
with an ordered pair of integers | Au |, | . 4 |.

We note in particular that .4 is indecomposable if and only if A(.4) is a con
nected graph. Note also that that .4 is determined by the Dynkin diagram A (A ) 
and an enumeration of its vertices. We say that A(.4) is of finite, affine, or indefinite 
type, depending on the type of .4. We then obtain the following result.

P roposition 1.2.9
Let .4 be an indecomposable generalized Cartan matrix.

1. .4 is of finite type <=> all its principal minors are positive.

2. .4 is of affine type <=> all its proper principal minors are positive and det A =  0.

3. If A is of finite or affine type, then any proper subdiagram of A (.4) is a union 
of (connected) Dynkin diagrams of finite type.

J,. If A is of finite type, then A(.4) contains no cycles. If A is o f affine type and 
contains a cycle, then A(.4) is the cycle A/, with 1 > 1. from figure 1.2.12.

5. .4 is of affine type <=> there exists 6 > 0 such that .46 =  0. Such a 6 is unique 
up to a constant factor.

Classification of Generalized Cartan Matrices of Finite and 
Affine Types

We can now list all generalized Cartan matrices of finite and affine type. 

T heorem 1.2.10

1. The Dynkin diagrams of all generalized Cartan matrices of finite type are listed 
in figure 1.2.11.

2. The Dynkin diagrams of all generalized Cart.an matrices of affine type are 
listed in figures 1.2.12 1 .2 . 14 -

3. The number in brackets beside each Dynkin diagram in figure 1.2.11 is the 
determinant of the corresponding Cartan matrix.
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J,. The. numerical labels in figures 1.2.12 1.2.14 <lre the coordinates of the unique 
vector

'6 =  (a0,a u - ■ ■ .«>.)

such that .45 =  0 and the ri, are positive relatively prime integers.

The Dynkin diagrams given in figure 1.2.12 are often described as extended 
Dynkin diagrams.

We conclude this section with the following characterization o f Kac-Moody 
algebras associated with generalized C'artan matrices of finite type.

P r o p o s i t i o n  1.2.15
Let A be an indecomposable generalized Cartan matrix. Then the following 

conditions are equivalent:

1 . .4 is a generalized Cartan matrix of finite type.

2. A is symmetrizable and the bilinear form (•,•)!» positive definite.

3. \W\< oo.

4. 14> | < 00.

5. 0.1(C) is a. simple finite-dimensional Lie algebra.

6. There exists a 6 'I>+ such that a +  a, ^ $  for all i € n.

Proof
See [Kac90, Proposition 4.9]. a
The root mentioned in the last part of Proposition 1.2.15 is of course the 

highest root of the finite root system 'I>. In particular, it is unique and is given by 
the formula

0 =  «.o,
•€n

where the coefficients a, are the numerical labels on the corresponding extended 
Dynkin diagram from figure 1.2.12.

Real and Imaginary Roots
In this section we give an explicit description of the root system <I> of a Kac- 

Moody algebra O.i(C) corresponding to an arbitrary matrix. Our main instrument is 
the notion of an imaginary root, which has no counterpart in the finite-dimensional 
theory.
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Table of Affine Dynkin Diagrams of Type I.

A (À i)

A (B ,) d>3) i .» ' j
“ l-J tl|_L '  0|

A (Ci) ('>*) 1 .  2 2 2 2 ^ _____1
« 5   ̂«1  

1

« 2 a f—2 o / - i  Of 

1

A ( À )  <'>«>
2 2 2 ^ ' - ' ^ " ' -

OO
«a o T T ô ï - ^ s ^ ,

Of

A (£ e)

M È tì

A (È h)

A  (F ,)

1o—«1 A.Q 2
$

f » 3

2 »06

A.
« 4

■Oo&

1 6«o

I 2 3 4 3 2 1
Ô0 0 | Ô 2 r Ô4 «& O«

2ÄOT

1 ? 3 4 5 6 i 1
o o O l « 2 Ö3 Ô4 Jo& Ô 6 on

3 I 0 »

, 2 3
O0 Ô | 02 ♦ o , 04

Figure 1.2.12: Table Aff I
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Table of Affine Dynkin Diagrams of Type II.

A( ■À ,)

A( 'D,)V> 3) j - i1«1-2 <»/-!

A( 'C,)(i>2)

A( mC,)d>2)

A( ‘ F.) 1 ? 3  - 1

f> o O l o r « 3 « 4

Figure 1.2.13: Table Aff II

Talile of Affine Dynkin Diagrams of Type III.

A( <G2)

Figure 1.2.14: Table A ffili
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A root o  € ‘I* is called real if there exists an element w € W  and a simple root 
q , 6 II such that a =  « '(a ,). Denote by

$ ,r and

the sets of all real and positive real roots respectively. Note that ‘I’ "  is invariant 
under the action of the Weyl group W .

Let a be a real root such that a =  ie(a,) for some w € IV and a, 6 II. We 
define the coroot or dual (real) root o v by

a v =  «> K )-

This is independent of the choice of the presentation a =  te(a,) (see [KacOO, §5.1] 
for details).

Thus we obtain a canonical W -invariant Injection

<j>r'  _> $ Vre.

We can also show that
a > 0 <=> nv > 0.

Let o  be a real root and o  v be the corresponding coroot. We define a reflection 
ra by

ra(P) =  0 ~  </?,av)a
for 0  6 I)". Note that the reflecting hyperplane o f this reflection is

Ha =  { / i €  h* : ( /f ,a v> = 0}.

The relationship between a  and a, is reflected in the following relationship between 
ra and r,.

Lemma 1.2.16
If a € <hPe and a =  « ’(« , ) then

r„ = wr,w~l .

The following proposition shows that real roots have all the properties we 
associate with roots in the classical theory of Lie algebras.
Proposition 1.2.17

Let a be a real root of a Kac-Moody algebra fl i(C ). Then

1 . mult a = l .

2 . ko if a root if and only if k =  ± 1.
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S. If ¡3 € 4* then there exist non-negative integers p and q related by the equation

P ~ < I=  (/* i«V)>

such that

13 +  ka  € $  U {0} -O’ — p < k <  q, and k 6 Z.

4- Provided that ±rv 0 II. there exists i 6 n such that

| ht r,(a) | < | lit q | .

5. If A is symmetrizable and (-(Oh* is the bilinear form on 1)“ induced by a 
standard bilinear form  (•,•) on 0,.i(C). then

(a) (a ,a )* . >  0,

( b)

(c ) if a =  ^ fc ;a i ,  then k\(ai, a, )h. 6 Z (a , a )h. for i 6 n.
* € n

Let .4 be a generalized Cartan matrix, and let (•,•),,. be the bilinear form on 
t)' induced by a standard invariant bilinear form (• ,•) on p.i(C). Then, given a real 
root o  we have

(a ,a )„. =
for some simjile root a, . We call o a short, or long, real root if

(<*,<*)„. =  m i n ( a , , o r
• € n

( a ,a )h. =  max( a,,i€l*

respectively. These are independent of the choice of a standard form.
Note that if .4 is symmetric then all simple roots, and hence all roots, have 

the same square length. Such algebras will be said to be simply-laced. If .4 is not 
symmetric and A(.4) is equipped with m arrows pointing in the same direction, 
then there are simple roots of exactly in + 1 different square lengths.

It follows that if A is non-symmetric of finite type then every root is either 
short fir long. Furthermore, if .4 is lion-symmetric of affine type but not of type "C'i 
with / > 1, then every real root is either short or long. For the type t '/  with / > 1 
there are real roots of three different lengths.

We now turn our attention to roots which do not fall into the category of real 
roots. A root o  which is not real is called an imaginary root. We denote by

4>,m and <I>7
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the sets of imaginary and positive imaginary roots respectively. By definition we 
have the following disjoint union:

<l> =  $•" u

We can also decompose $ 'ra itself into its positive and negative constituents so that 
we get

=  <{,” '* (j <j>,m

where

Although imaginary roots do not behave in the same way as real roots do, they 
nevertheless satisfy some useful properties.

Proposition 1.2.18

1. The set <P'™ is W-invariant.

2. For each a € 4*”" there exists a unique root f3 6 — C v which is W-equivalent 
to a. In particular

</*.«*> < 0
for all i 6 n. If A is symmetrizable., this is equivalent to saying

(/? ,« ,)„. < 0

where (• , • )h. is the bilinear form on I)" induced by a standard invariant bilinear 
form on £)..|(C).

3. If A is symmetrizable and (•, • )h. is as above, then a root a is imaginary if 
and only if

( o .a )h. < 0.

However, imaginary roots have properties which differ drastically from those 
of real roots, as the following result testifies.

Proposition 1.2.19
If o  g <b‘"‘ and r € Q \ (()} is such that, ra  € Q. then ro € *I>"". In particular, 

no G •P"" for all n € Z \ { 0 } .

The next result is an existence proof for imaginary roots.

Theorem 1.2.20
Let A be. an indecomposable generalized Cartan matrix.
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1. If A is of finite type, then =  0.

2. If A is of affine type, then

$■;" =  {n i  : n € N},

with the coefficients a, being the numerical labels on the corresponding Dynkin 
diagram in figures 1.2.12-1.2.14- In this case we shall refer to (> as the fun
damental imaginary root.

S. If A is of indefinite type, then there exists a. positive imaginary root

A linearly independent set of roots II' =  {o '} ,g / ,  for some indexing set / ,  is 
called a root basis of 4> if each root a can be written in the form

Kac-Moody algebras since they are not relevant in the sequel. However, there are 
some results shared by generalized Car tan matrices of finite, affine and hyperbolic 
type so they have been included for the sake of interest and completeness.

Note that if .4 is symmetrizable, then a standard invariant bilinear form (•,•) 
can be normalized so that (a,, ay) are integers. Since the bilinear form is positive 
definite on the real roots we see that

a = ^  ft.«.
i€n

such that, for all i G n

k't >  0 and (a ,a f )  <  0.

a  =  ±  k,a', where k, € Z +.

Proposition 1.2.21
Let A be an mdecomposable generalized. Cartan matrix. Then any root basis II'

of $  is W-conjugate to II or — n.
II is W-conjugate to —n <=> .4 is of finite type.

Proof
See [KacOO, Proposition and Remark 5.9]. □

A generalized Cartan matrix .4 is said to be of hyperbolic type if it is indecom
posable of indefinite type and if every connected subdiagram of A(.4) is of finite or 
affine type. We do not mention all the results available on the topic of hyperbolic

a =  minoethM’ x)
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exists and is a positive integer.

Lemma 1.2.22
Let .4 be a generalized Cartan matrix of finite, affine or hyperbolic type, and 

let
a = H  hai e  Q .

• € f l

1 . I f \a\2 <  a, then either a £ Q+ or —a £ Q +■

2. If a satisfies
A-;(a,, £ ( o ,a ) h.Z  for all i £ n,

then either a £ Q+ or —a £ Q+-

Proof
See [KacOO, Lemma 5.10]. O
VVe can use this result to obtain a description of real and imaginary roots in 

terms of the square of their lengths.
Proposition 1.2.23

Let A be a generalized Cartan matrix of finite, affine, or hyperbolic type. Then

1 . the set of all real short roots is

{o  £ Q : | a |2 =  a =  min | a, |2 }.

2. the set of all real roots is

{ a  =  £  A-,o, £ Q : | a |2 > 0 and ■ £ Z  for all i j  .

3. the set of all imaginary roots is

{ < * € Q \ { 0 }  : | a |2 <  0}.

4- if A is affine, then there exist roots of intermediate squared length m if and 
only if A =  "Ci with l > 1.

Proof
See [KacOO, Proposition 5.10]. E
Suppose 7 is an automorphism of the Dynkin diagram A(.4). Then 7 induces 

an automorphism 7 of the root lattice Q by

7 ( 0 . )  =  a , , , ) .
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Denote the group of all such automorphisms by Aut(.4). The Weyl group IT is 
another subgroup of Aut Q. Note that

7 * r r '  =  rM0

and that
W  H Aut(A) =  1

by the second part of lemma 1.1.28. Thus

Aut Q D Aut(.4) tx \V.

The following result is a corollary of Lemma 1.2.22 and Proposition 1.2.23. 

Co r o lla r y  1.2.24

1 . If A  it indecomposable, then the group of all automorphisms of Q preserving
is ±Aut(.4) k W .

2. If  .4 is a symmetric matrix of finite, affine, or hyperbolic type, then the group 
of all automorphisms of Q preserving (■<•) is ±Aut(.4) K W .

Proof
See [I\ac90, Corollary 5.10]. O

1.3 Structure Theory of Affine Kac-Moody Alge
bras

In this section we shall describe in detail the standard bilinear form, the root 
system, and the Weyl group of an affine algebra 0 associated to an indecomposable 
generalized Cartan matrix .4 o f affine type in terms of the “underlying” simple 
finite-dimensional Lie algebra 0. The proofs o f all details in this section can be 
found in [KacOO. Chapter G], whereas [BdKOO] only cover the case when .4 is affine 
of type I.

Let A =  (Aij)i,j€no be a generalized Cartan matrix of affine type. So. in partic
ular rank .4 =  n. Let A(.4) be its Dynkin diagram. Let be the numerical
labels o f  A(.4). Then «0 =  1 unless .4 is of type A =  ’C| with / >  1 or "A\, in which 
case a0 =  2.

We denote by the labels of the Dynkiu diagram A('.4) of the dual
algebra which is obtained from A(.4) by reversing the directions of all the arrows 
and keeping the same enumeration of the vertices. Note that in all cases
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We call the numbers
h =  ^ 2  a, and /jv =

■ejio 'fHo
the Coxeter number and the dual Coxetcr number of the matrix .4, respectively. 
Recall that generalized Cartan matrices are symmetrizable (see Lemma 1.2.8). Sup- 
pose .4 =  DS where D is diagonal and S is symmetric. Let

'6 =  (a0....... <i„) and '5V =  (a%........ a*).

We know .45 =  0 and '.45 v =  0. Thus, since D  is non-singular, we have B 6 =  0 and

'(D D ) 5V =  BID S'') =  0.

Since both .4 and B have corank 1 we conclude

DS'' = A 5V

for some non-zero A (E R. 
for D\

If we stippose A =  1 we obtain the following expression

D  =  diag

Let 0 =  0..i(C) be the Kac-Moody algebra associated to an affine generalized 
Cartan matrix .4 =  (j4,^),j€lto. Let I) be its Cartan subalgebra. By definition 
dim f) =  n +  2. Recall that the set of simple roots

II =  {a 0, . . .  , « „ }  C f)‘

is linearly independent in I)’ , and the set of simple coroots

is linearly independent in 1).
It follows from Proposition 1.1.11 that the centre, c, of 0/i(C) is a one-dimensional 

subalgebra of 1) and that its elements satisfy (an h) =  0 for all i € n0. Thus c is 
spanned by

>6lin
which we shall refer to as the canonical central element.

Since n v is a linearly independent set in f). we can extend it to a basis of 1). 
We do this by selecting one more element, called the scaling element, denoted by <1. 
We fix an element d € f) such that

(ctj,d) =  0 for j  € » , and (n0,d) =  1.
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Note that such a d is unique up to a summand proportional to c. From the definition 
of d and consideration of its effect on the element

6 =  G Q
•€2o

we can show that {rv0, • • • , a » ,«!} is a basis for 1). It is worth noting that

0 =  [0- 0] ©Crf.

We define a non-degenerate symmetric bilinear C-valued form (-,')h  on b by 
setting

« . d )  = 0  
(Q^,d) =  fl0,
(<M) =  0.

for i , j  € Ho, 
for i € n, 

and

By Theorem 1.1.17, this form can be uniquely extended to a bilinear form (•,•) 
on the whole Kac-Moody algebra 0 such that all the properties described in the 
theorem hold. This is a standard form and will be called the normalize.d. invariant 
form. Henceforth we fix this form on 0.

We now use these results we have just obtained on 1) to determine a basis of 1)’  
and to induce a bilinear form on 1)". We extend II to a basis of l)‘  by introducing 
an element A0 € 1)*. We fix this element by demanding that

(A0, Oj) =  0 for j  € n, 
(A0, « 0) =  1. and
(A0.d) =  0.

Then {c*0i . • .,a/, A0} is a basis of b" and we have

(o ,, ^ A,j
(a ,, Ao)h’ =  9 
(«o , Ao)** =  flo,
(Ao. Ao)h* =  O'

for i , j  6 n0. 
for i € Hi 

and

The map i/ : f) —* b* defined by

(y(h ),h ') = (/», /»') for h,h' 6 b

satisfies
"(« ,V) = - ¿ « o  i'(c) = f>. and «/(</) =  noA0.
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It is also useful to note the behaviour of c and 6 under the normalized invariant 
form. This is given by the following formulae;

(c ,« } ')  =  0 for i 6 n0, (c ,c ) =  0, ( c ,d ) =  a0,
(6,<*;)„. =  0 for i € Ho' ( M V  = 0, (6, A0)h* =  1-

Denote by 0 the subalgebra of 0 generated by the set of elements

{e,, /, : i € n}.

Then g is a Kac-Moody algebra associated to the matrix A obtained from A by 
deleting the zeroetli row and column. Furthermore, by Proposition 1.2.15, 0 =  0(.4) 
is a simple finite-dimensional Kac-Moody algebra whose Dynkin diagram A(.4) is 
obtained from A(.4) by removing the zeroeth vertex. We give the following results 
for the structure of 0:

• The elements {e,, /, : i € u) are the Chevalley generators of 0.

• b =  0 0  1) is the Cartan subalgebra of 0.

• II =  {» ,  },£„ is the root basis of 0.

• *s the coroot basis of 0.

• 4> =  <I> n I)' is the root system of 0. This root system is finite and consists of 
real roots, the set 'I>+ =  <!> PI <I>+ being the set o f positive roots.

Denote by 4», and <!>; the sets of short and h>ng roots in ‘I’ , respectively. Then

<l> = 4MJ 4*;.

Put Q =  Z4> and let W  be the Weyl group of 4’ .
Recall that the set of imaginary and positive imaginary roots of 0 are

$ ,m =  { ± ¿ , ± 2$ ,. . . }  and <£"" =  {6 ,2 6 ....} .

respectively. The following proposition describes the set of real roots 'I’"  and posi
tive real roots in terms of <1> and 6.

Proposition 1.3.1
Let A be an affine matrix and k- =  1. 2. or 3. depending an whether .4 is of 

type I, II, or III. respectively.

1. If A is affine of type I then

<!>"' =  {a  +  n i : a € i>, n € Z }.
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2. If  .4 is of type II or III, but not of types ‘ C'i or then

4>r'  =  {a  + nf> : a € n € Z } U {o  +  nk6 : a € $i, n € Z }.

S. If .4 is of type.s *Ci or ‘.4i then

4>r'  = | -(o  + (2»  -  1)6) : ft € $ /, n € Z j  U { «  +  nh : a 6 n € Z} 

U {rv + 2n6 : a € &/, n € Z}.

I,. In all cases,
4>" + kf> =  $>re

and
=  {a € 4>r'  rnt/i n > 0} U #+.

We can also define

$ v =  4>v n 6 and 0 V =  Z $ v.

Since rty = 1 in all cases, we have an orthogonal direct sum, namely

Qv =  0 V ® Zc.

Also, by the definition of the forms ( •, • )h and ( •, • )h- ,

Qv(-4) S  Q('A)

is an isomorphism of lattices equipped with bilinear forms.

Remark 1.3.2
For a subset 5  of ()', denote by proj(S) the orthogonal projection of S onto I}*. 

Then

• 4> = proj(4>) \ {0} in all cases except when .4 is of types ’ C) or “A j.

• If .4 is of type ‘ C'i o r ’.4i then p ro j(t )  \ {()} is a non-reduced system and is 
the associated root system.

o

We now introduce the element

ft =  6 -  ao«o = XI a‘ai e $
•€»

which will prove to be of great importance in the sequel.
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By vising the formulae we know the normalized invariant bilinear form to satisfy 
we have

in all oases. Hence we have
0V _  2»/~1(fl) _  v~x(f> -  n0Oo) _  c -  « qOq

<io ao
from which we can easily deduce the following three relations:

0 =  aoi'(0v ), |0v |2= 2« qI, and » q =  c — ao0v.

Furthermore, we have 
Proposition 1.3.3

1. If A is affine of types I. *C'i or '.-ii, then 0 6 (4>+ )/ and 0 is the unique root 
in 4* of maximal height. This height is given by h — «o-

2. If A is affine of types II or III but not of types ’ C'i or mA\, then 0 6 (4>+ ), and 
is the unique root in 4', of maximal height. This height is given by h — 1.

Unless otherwise stated, in the case of a matrix .4 of finite type, we shall 
normalize the standard invariant form (•••) on £J t(C) by the condition

(«,«)(,• = 2  if a € 4»/.

and shall call it the normalized invariant form. We can now deduce the following: 

Corollary 1.3.4
Let (j be an affine algebra of type k. Then the ratio of the normalized, invariant 

form of p restricted to p to the normalized invariant form of p is equal to k.

Note that we have the following description of n and Ilv:

|f?|2 =  ( i  — <70Oo. 8 — UoQ'o)ll•
=  (ao«o,ao«oV

2 v — 1 A
—  aoao ao -4oo

Hence \0 |2 is equal to the square length of a long root if .4 is affine of types I, 
*Ci or *j4j, and is equal to the square length of a short root otherwise. Thus, by 
Proposition 1.2.23,

0 € 4>+
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We now turn our attention to the description of the Weyl group o f the affine 
algebra jj. Recall that W  is a Coxeter group generated by fundamental reflections 
{»v}.€no which act on ()* by

r,(/3) -  3  -  (3 ,o^ )n „  for f3 G 1)*.
Since (£, a?) =  0 for all i G n0, we see that

te(S) =  ft for all w G W.

We recall also that the invariant standard form is IT-invariant.
Denote by IT the subgroup of IT generated by the set { r, } ,e„. Since

»•i(A0) =  A0 for i G n,

we deduce that IT operates trivially on CA0 + Cf>. It also follows that 6‘ is IT- 
in variant.

We conclude that IT operates faithfully on ()". and wre can identify IT with the 
Weyl group of the Ivac-Moody algebra g. operating on f)" • Hence the group IT is 
finite.

Following [HuinOO. Chapter 4] we construct the so-called affine Weyl group 
Waf f  corresponding to IT. To each 0 6 6 * we associate the translation ta which
sends 3 G 6" to a 4- ¡3. Then for any w G If’ and a G 6"

wfQ1V — fu’(a)

showing that the group of translations is normalized by Tv . We define the affine 
group, Aff(f)"), to be the semidirect product of IT and the group of translations by 
elements of ()'.

For each o  € ‘I1 and each n G Z . define an affine hyperplane

Ha.n =  {¡3 G b‘  : ( a , /*)(;• =  «}•
Note that H,, „ =  and that H„,o coincides with the projection onto f)' of the
reflecting hyperplane

Ha : {3  € 6* : =  0} = [3  G 6’ : (o ,/J )s. =  0}
Note also that H,, „ can be obtained by translating H„ by ?jav. D<'fine the corre
sponding affine reflection as follows:

«o,n(/f) —3 -  ((<*. 3)f,' ~  « )  « v-
We can also write sQ„ as In particular .sn,o =  s„. Denote by 7i  the
collection of all hyperplanes Ha,n for a G d* and n G Z. The following result shows 
that the elements o f H are permuted in a natural way by IT’ as well as by certain 
translations in Aff(f)’ ).

P roposition 1.3.5
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1. If w 6 W , then

« ’He,,, =  and wsa,„w~l =

2. If 0 £ I)“ satisfies (a,/3) € Z  for all a € 4>. then

ttsH(*,n ~  Ha.n +(a,0) and tflSa,nt(} ^a,n+(a,/3)’

We define the affine Weyl group, Waj j  to be the subgroup of Aff(i)*) generated 
by all affine reflections where and n 6 Z. We can describe the structure
of W af f  in terms o f structures already familiar to us.

Proposition 1.3.6
W a ff”  the semidirect product of W  and the translation group corresponding to 

the coroot lattice QV(Â).
Finally we can give a description of the Weyl group W  associated to a gener

alized Cartan matrix of affine type.

Proposition 1.3.7
Let .4 be a generalized Cartan matrix of affine type and W  its Weyl group. 

Then, in the above notation

w  3  ” - i f

Proof
See [Kac90, §§G.5 G.G]. □

Example 1.3.8
Let A, = (  _2  )• Then, .4, =  (2) =  A\.

W  =  W { A X ) =  C2. Thus W  =  W aff S  D^. where D

As we saw in Example 1.1.23, 

ec denotes the infinite dihedral
group. o

1.4 Affine Kac-Moody Algebras of Type I
In this section we describe a realization of all the affine algebras of type I. 

Recall that such algebras have a one-dimensional centre, c. It transpires that such 
an algebra £| can lie realized entirely in terms of an “underlying” simple finite
dimensional Lie algebra fj. In particular, its derived algebra [O-O] >s the universal 
central extension of the Kac-Moody algebra of polynomial maps from Cx into j.
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Laurent Polynomials and Residues
Let C =  he the algebra of Lament polynomials in f. Recall that the

residue, Res P, of a Laurent polynomial

i€Z

where all but a finite number of m, are zero, is defined by

Res P  =  m_j.

This is a linear functional on C defined by the properties

dPRes t 1 =  1 and Res —— =  0df

Define a bilinear C-valued function p  on C by

p(P .Q ) =  - R e s ^ Q .  

This satisfies the following two properties:

ip(P .Q ) =  -<p(Q .P), and
p (P Q ,R ) +  p (Q R .P ) +  p (P P .Q )  =  0,

for P ,Q ,R e  C.

Realization of the Extended Kac-Moody Algebras
We first note that the generalized Cart an matrix .4 giving rise to an affine Kac- 

Moody algebra of type I is none other than the so-called extended Cartan matrix 
of the simple finite-dimensional Lie algebra jj — 0(.4). whose Cartan matrix .4 is a 
matrix of finite type obtained from A by removing the zeroeth row and column. 

Consider the loop algebra

£(6) = C®cb-

This is an infinite-dimensional complex Lie algebra with the Lie bracket [•, ]() defined 
by

[P ® a\ Q ® t/]u = PQ  © [a-, y)

for P,Q  € C and x ,y  € C- It can be identified with the algebra of regular rational 
maps

Cx -  fi.
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so that the element
£  t' 0  *,■
i € Z

corresponds to the mapping

Fix a nondegenerate invariant symmetric bilinear C-valued form (- ,- )  on 
Such a form exists and is unique up to a constant multiple. We extend this form 
by linearity to an £ -valued bilinear form on £( 0 ) by

(P  ® x ,Q  ® y), =  P Q (r, y).

We also extend every derivation D of the algebra £ to a derivation of the Lie algebra 
£(&) by

D (P  © x) =  D (P )  ® x.

Now we can define a C-valued 2-cocycle on £($) by

V>(a,6) =  -R e s  ( ^ , b j

for all a,b 6 £( 0 ). Recall that a C-valued 2-cocycle on a Lie algebra 0 is a bilinear 
function V’ satisfying the following two conditions:

V’(a ,6) =  — a), and
V>([a,6],c ) -(- t/>([fr,r],a) -f t/’([c,a],b) = 0

for a,b,c  € 0. It is sufficient to check these conditions for a =  P ® x , b = Q ® y ,  
and c =  R.Q z, where P. Q. R  € £  and x, y, z € 0- We have

=  (x,y)ip(P,Q).

Hence V’ can be shown to satisfy the necessary conditions by using the properties 
o f tp and the symmetry and invariance of (•. •).

Di-note by £ ($ ) the extension of £ (0 ) by a 1-dimensional centre associated to 
the cocycle V’ - In other words, as a direct sum of vector spaces,

£(8) =  £ (fi)® C r

and the Lie bracket on £(fi) is given by

[a +  Ac, I) +  pc] =  [a, fi]0 +  V’(", b)c

for a, b 6 £ (0 ) and A,/< € C.
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Finally, denote by £ (0 ) the Kac-Moodv algebra that is obtained by adjoining 
to £(fl) a derivation d which acts on C(0) as ijjj and which kills c. More explicitly, 
C( j )  is a complex vector space

£ (8 ) =  £(0)®<Cc ®Cd

with the Lie bracket defined by

[fm © r  +  AjC +  fi\d, tn ® y +  A2c +  —
( f m+n ©  [r . y] +  & y  -  P 2tntm ®  x) -  m6„,-„(jc, y)c  (1.4.0)

where r .y  6 0. Aj, A2./<i. /<2 € C and 6m>_„ is the Kronecker delta.
We show that £ (0 ) is an affine Ivac-Moody algebra associated to the affine 

Cartan matrix .4.
Let 4> C 6* be the root system of the Kac-Moody algebra 0. Let {o , },6„ be 

the root basis, { //,} ,£ „  the coroot basis, and {E ,, F, },g„ the Clievalley generators of 
0. Let 8 be the highest root of the finite system $  and

0 = ©  8«
a€̂ U0

be the root space decomposition of 0. Recall that

(a, 0 )5. /  0 and dim 0„ =  1

for o  € 4*. Let u> be the Chevalley involution o f 0. We choose Fo € 0» such that

(Fo,*(Fo)) =  (1-4°)(W. W)|j.

and set Fo =  ¿’(Fo). Then
[F o.Fo] =  0v (1-4-0)

by the last part of Theorem 1.1.17. Also, by [Kac90, §7.4], the elements {F ,}^ ,^  
generate the Lie algebra 0.

We now return our attention to £(0). Since j) is simple, we see that Cc is the 
centre of the Kac-Moody algebra ¿(0 ). and that the centralizer of d in £ (0 ) is a 
direct sum of Lie algebras, namely

(1 © 0) ® Cc ® O/.

In particular, 1 0 is a subalgebra of £(0), and we identify 0 with this subalgebra
in the natural fashion.

Furthermore,
1) =  f) ! O- ® O /
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is an (n 4- 2)-dimensional commutative subalgebra in £(fl). We extend (3 € 6* to a 
Unear function on () by setting

(/3, c) =  (/3,d) = 0 ,

so that 5* is identified with a subspace in ()’ . We denote by 6 the linear function 
on f) defined by

 ̂ U+Co= 0, and (6,d) = l.

Set
e0 = t Q E0, fo =  <-1 ® F0,
e; =  1 ® Eo and / ,  =  1 ® Ft, for i 6 n.

We deduce from equations (1.4.0), (1.4.0) and (1.4.0) that

[eo, /o] — —

The root system and root space decomposition of C( 0) with respect to t) are then 

<I> =  +  ¡3, where j  e  Z, /3 € U (j6, where j  € Z \ {0 }}  ,

and
¿ (fi)  =  b ® ( © £ ( 8 ) , . ) ,

V.€4* /
where

£ ( 8 ) j « + , 3  =  fJ ©  8 / 3 , and £($).,*
We set

n =  ( qo =  6 - 6 , Qi, . . . , a „ ) ,  and
n v = jo *  =  -  0V.« ) ' =  1 ® ....... « :  =  1 0 H „ j .

Note that the 0 used here is none other than that introduced in §1.2, i.e.

0 = e 0 -
*€n

where the a, are the labels on the Dynkin diagram of the affine matrix .4 we started 
with (recall that a0 =  1 in the eases currently under consideration). Tims

(0,a ? ) =  - ( « o , « ! ' )

for all i € n and so
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In other words (f).n .IIv ) is a realization of the matrix .4, since II and IIV are

affine matrix A, f) is its Cartan subalgebra. II and IIV the root and coroot basis, and 
{e;, /ijieiio the Chevalley generators. In other words.

As ail immediate consequence of this construction we have the following Corol
lary.

Corollary 1.4.2
Let be an affine Kac-Moody algebra of type I and rank n -|- 1. Then the

multiplicity of every imaginary root of fl.l(C) is n.
We can also give an explicit description of the rest of the notions introduced 

in the previous sections.
The normalized invariant form (•,•) on 0 can be described as follows. Take

The result is an invariant non-degenerate symmetric bilinear form, whose restriction 
to f) coincides with the form constructed in §1.3. We refer the reader to [Kac90, 
§7.5] for the verification of these claims.

linearly independent and f) is of the required dimension. This construction is heavily 
used in the proof of the following result.

Theorem 1.4.1
Let 0 be a complex finite-dimensional simple Lie algebra, and let A be its ex

tended Cartan matrix. Then £ ($ ) is the affine Kac-Moody algebra associated to the

(£ (0M ) .n ,n v

is the quadruple associated to .4.
Proof

See [Kac90, Theorem 7.4] □

the the normalized invariant form (• ,•) on 0 and extend it to the whole of C(0 ) by 
defining

(P  ® Q ®  y) =  (Res t 1P Q )(x .y  ), for x, y  6 6, P, Q € C, 
( c c +  c d ,c (d ) )  =  0,
(c, c) =  ((l. d) =  0. 
(c,d) =  1.

and

Note also that the element e g  £ (0 ) is then the canonical central element and 
that the element d is the scaling element.

Let

position of £ ($ ) can be expressed as follows:

¿(0) =  n_ f) 8 n+,
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where
n_ =  ( r ' q r 1] ®(ft+ + 6 )) +  C [ r '] ®  ft_,

and
n+ = (tC[f] © (ft_ + 6 )) +  C[/] ® ft+.

We can also express the Chevalley involution u> of £( 0) in terms of the Chevalley 
involution u» of g. We define

u: (P (t)  © x +  Ac + pd) =  ® w(x) + Ac +  //d,

where P(t) 6 £ , r  € jj. and A,// € C. Then u>(e,) =  /, and u>(/,) =  e, for all i £ n 
and u> fixes every element of h. Furthermore,

ui(eo) =  tk’if © Eq)
=  t~l ® u (E 0)
=  t~l © Fo =  fo

and similarly u>(fo) — ?u-

Structure Constants of Affine Kac-Moody Algebras of Type
I

Given a root space decomposition

fl =  ®  0a
a€»U0

of a Kac-Moody algebra g with respect to some C'artan subalgebra I) = g0, we have

[0o,0<i] C g„+/j

whenever a, ¡3, a  +  fi € 4>. In particular, when o , /), n +  ¡3 € <I>,r their corresponding 
root spaces are one-dimensional, generated by single elements ea, and ea+0 say, 
and the above relation implies that

[ett, =  A*(( ,

for some JVoj) € C. It is convenient to assume that N „ji =  0 if a,/3 € ‘h1' but 
o  +  /? £  4>rr.

The elements e„ for a € d> are called root vectors and the elements N„,0 for 
o ,/?  € <I,r'  are called the structure constants of the Kac-Moody algebra g.

We consider the structure constants of the affine Kac-Moody algebra £(0) 
constructed in §1.4. By virtue of the root system and root space decomposition of 
£( fi) given earlier, all real roots of £( 0 ) can be expressed in the form o  +  if) for some
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a € €*( 0 ) and i 6 Z. Suppose we have established root vectors e„ and structure 
constants Na^ for all a ,/? € •$( (j). Then, given a € $ ( 0) and i € Z , a root vector 
for £ (8 )Q+,i can be taken to be / ' ® ea .

Suppose now that we have two real roots a +  i6 and ¡3 +  jb  of £( 0) where 
a ,/? € *!>(&), i , j  6 Z and f3 +  jb  ^  ±cv +  i(>. Then, using equation (1.4.0), we obtain

[<' 0  ea,t3 ® e/)] =  t,+1 ® [ e a,e \̂ -  ibi^j(ea,en)c
=  f ’+J ©  Na.gea+0 

=  No,/} ( f ,+> ©  ea+0) .

Hence we have proved the following result .

Lemma 1.4.3
For all real roots a  +  ib and fi +  jb  of C( fa),

Na+i6,{i+jfi =  Na,/)'

Thus the structure constants of £((j) depend only on the structure constants
of g.

Structure Constants of Finite-Dimensional Kac-Moody Al
gebras

In this section we develop a systematic method for determining the structure 
constants of a simply-laced Kac-Moody algebra of finite type. We begin by giving 
some properties satisfied by the structure constants of an arbitrary simple finite
dimensional Lie algebra.

T heorem 1.4.4
The structure constants of a simple finite-dimensional Lie algebra O.t(C) satisfy 

the following relations for all a,/3,7  € <h(.4):

L Nfi'C — Na,/i'

2. If —pa +  /? , . . . ,  ¡3, . . . ,  qa +  /? is the n-chain through (3, then

No.gN-0.-g = (p + l)a.

S. 7 / q +  /J +  7 =  0 then

NnJi _ _ -̂/,a
(7 , 7 ) (a , a ) (13,(3)'
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4- Whenever a +  0 +  y +  iD =  O mid no pair are opposite, we have

+ -^a ,0 +( a + 0 , a  +  0) (0 +  y ,0  +  y) (y + a ,y  +  a)
=  0.

Proof
We refer the reader to the proof of [Car72, Theorem 4.1.2], bearing in mind 

that the proof of part 2, and consequently the result itself, must be altered to take 
into account the fact that we have adopted Tits' convention for the generators. □

We now proceed to develop a method for the systematic calculation of the 
structure constants in a simply-laced Kac-Moody algebra o f finite type. This work 
is a variation on similar calculations found in [Ivac90, §7.8].

Since we are only considering simply-laced algebras we can write the property 
in part 4 of Theorem 1.4.4 as

Na,/)Ny,0 -I- N,J_yNa,0 =  0

if
a, 0, 7 , i9, a +  0, a +  d G and a +  0 -f  7 +  =  0.

Using the fact that y +  d +  (a  +  0) =  0. a + i) +  (0  -|- 7 ) =  0 and part 3 of 
Theorem 1.4.4, we can further reformulate this as

N a , f ) N a "b J o ,(* — d*
We now define a map

£ : Q x Q
(a,0)

{ ± 1 }
£(<»,/*)

satisfying e(0,0) =  1 =  e(a ,0 ) and such that £ is bimultiplicative, i.e.

£ ( a ,+ o 2,/f) =  s(n\, 0)e(ai, 0) and 
e ( a ,0 i + 0 2) = s(n, 0t)s(a,02).

Thus E is determined by its action on the fundamental roots, in particular by the 
elements

«y = e(n,■,<*>).
We show that taking N „ =  e(o ,0 )  gives rise to a consistent set of structure 

constants for 0. This entails showing that e satisfies the following conditions;

E(a,a)  =  - 1,
£(0,a) = s ( a , 0 ) ,  
e( - q, - 0 )  =  e(a,0),
e(q ,0) =  e(0, - a  -  0) =  e( - a -  0,a),  and 
E(a,0)E(a +  /3,y) =  e(0, y)s(a , 0 A y)
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whenever a , ¡3,7 , a +  /?, ¡3 +  7 € $.
We introduce the notation i <-> j  to indicate that the nodes corresponding to 

a, and in A(.4) are connected by a bond. Similarly i +/* j  denotes that the 
corresponding nodes are not connected in A(.4). We now choose £tJ in the following 
manner:

£■ it — 1 1
£ij =  1 if •' <  j ,
£ji =  — 1 if * <  j ,  i *-* j ,  and
£ji =  1 if *' <  j ,  »' < /j.

We claim that choosing the elements {£i>}i,>gn in this manner ensures that £ satisfies 
the necessary conditions.

We begin by verifying that £ satisfies the condition

£(/?,<*) = -c (o ,/J ) .
Suppose a,/3 £ ‘I’ with

a = ta II M tljCtj
»€n i€n

and a + f3 £ 4». Then

£(a,/3) = £ ( y  m<0 , . H  J =  n c nj\*€c J€ri / •,>€a
= I k - i r 1 ri| n ( - i r "j

*6n <>]•—]
= ( _ ! ) & - uni+£<> m‘n>

Similarly, we have
e(P, « )  =  ( - ! ) E. min/

Thus in order to verify that £(/?,<*) =  —£(n ,/i) it is sufficient to show that
y  rtiitij is odd

since i i. Note that
(o , /J) =  —1 and ( o . o )  = 2 =  (/?,/?)

where (•,•) denotes the normalized invariant form. Thus

y  , n - a - 1 I I  « > « >  ]
\ i € m j € u  /

2  ^  i n , n ,

i € f l

-1



§2.4 Affine Kac-Moody Algebras of Type I 54

Hence
Y" m.rij =  2 52 >»,»!, +  1
t*-+j * € n

and so is odd as required.
From the above calculation of s(n,/3) it is also clear that

£ ( - a , - f j )  =  e(a,/3).

We next consider the condition e (o ,a )  =  —1 for all a  € *1'. It is sufficient to 
show this for a  6 4>+ and so we proceed by induction on lit o. If a  =  o, € II then
s (a ,a )  =  —1 by our choice of the t „.

Now suppose a (E 'I)+ \ II with a =  ¡1 +  7 and the usual induction hypotheses. 
Thus

=  -1  =  £(7,7),

whence

e(a,o)  =  e(/3 +  7 , /? +  7 )
= ¿r(/i,/i)t-(7,7)£(/3,7)£(7,/3)
=  - £ ( / ? ,  7 ) 2 =  - 1

as required.
Note that we can now exploit the fact that e(a, 0 ) =  1 and the bimultiplicativity 

of £ to obtain the fact that £(«, —a) =  —1 . Using the bimultiplicativity of £ again 
and the fact that £ satisfies

£(0 ,0 ) =  -1  =  £ (o ,— n)

we can easily verify the remaining two conditions required of the map. 
Thus we have shown that given any

a  =  5 2  m >Q > 1 /3  =  5 2  n ,n ' e ^
•€n »€2

such that a 4- (3 € 4’ , defining

JVo,i =  ( -  l ) £ ‘ m'" ‘+E ‘W

gives rise to a consistent set of structure constants satisfying the required conditions 
for compatibility with Tits' convention.
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1.5 Affine Kac-Moody Algebras of Types II and 
III

We now describe a realization of the remaining “ twisted” affine Kac-Moody 
algebras. These turn out to be closely related to the algebra of equivariant polyno
mial maps from Cx to a simple finite-dimensional Lie algebra with the action of a 
finite cyclic group.

Unless otherwise specified, proofs of the results in this section can be found 
in [KacOO, Chapter 8].

Construction for a General Automorphism
Let 0.4(C) be a simple finite-dimensional Lie algebra and let n be an automor

phism of 0.4(C) satisfying tr"‘ =  1 for a positive integer m. Set

Then each eigenvalue of a has the form fJ for some j  € Z /m Z  and, since a is 
diagonalizable, we have the decomposition

0i(C ) = ®  0j,
j £ Z / t n Z

where, 0j is the eigenspace of 17 for the eigenvalue eJ. This decomposition is a 
Z/niZ-gradation of 0.4(C). Conversely, if a Z/mZ-gradation as above is given, 
the linear transformation of 04(C) given by multiplying the vectors of 0j by f] is 
an automorphism rr of 04(C) which satisfies tr"‘ =  1 . We shall use the notation 
s G Z /m Z  to denote the residue of .1 modulo in.

Let f)o be a maximal ad-diagonalizable subalgebra of the Lie algebra 0O.

Lemma 1.5.1

1 . Let (•,•) be a non-degenerate invariant bilinear form on 04(C). Then

(Bo 0j) — 0 if • +  j  & 0 m odm , 

and 0, and. 0, are nondegenerately paired if i +  j  =  0 mod in.

2 . The centralizer J of hi, in 0.|(C) u a Cartan sulialgebra of 0.4(C).

S. 0d t.i a reductive .nilmlyebra of 0,.i(C).
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It follows that f)y contains a regular element of 04(C), say x. Hence the cen
tralizer f)' of x in 0..|(C) is a a-invariant Cartan subalgebra. Let

o^(C) =  ( ©  c n  ) 0  b 'e  ( ©  c e '„
\ae4>+ /  \a€<̂+

be the root space decomposition of 0..1(C) with respect to f)' and some root vectors 
E'a and =  E'_a. Let 7 be an automorphism of Q(A). Then 7 induces an 
automorphism 7 of 0.4(C) defined by

7 («i0  =  (7 (o .))V and l ( K )  =  E 'na)

for i £ u  and a € ‘I1.
This enables us to give the following description of a.

P roposition 1 .5.2
Let 0 be a simple finite-dimensional Lie algebra, let f) be its Cartan subalgebra 

and let Ü' — be a set of simple roots. Let cr 6 Aut 0 be such that er"‘ — 1 .
Then a is conjugate to an automorphism of 0 of the form

7 exp(ad--/»)•m h € bo,

where 7 is a diagram automorphism preserving 1) and n ', ()o is the fixed point set 
of  7 in 1), mid (aj, h) € Z for all i 6 n.

Define C( 0 ) as described in §1.4 . We associate a subalgebra £(0.«r, m) of £ (0 ) 
to the automorphism a of 0 as follows:

£( 0. <r. m ) = ©  £( 0. /T. m)j ( 1.5 .2 )

where
£ ( 0 , a , m ) j  =  11 ®  0 j .

This decomposition is a Z-gradation of £( 0. cr. in).
Constructed in this way. £(0.(7, m) is the fixed point set of the automorphism 

cr of £ (0 ) defined by
fr(iJ ®  * )  =  ( f ~1t 1 ) Q  <t ( x ),

for j  G Z and x € 0. Hence £ (0 .cr. m) may be identified with the algebra of 
equivariant maps (with respect to the action of Z //»Z ):

(Cx ; multiplication by e~x ) —> (0: action of a). 

Define £ (0 ) = £(0) 0  Cr' 0  Cd' as described in §1.4 . Set 

£( 0. ct, m) = £( 0. ct. m ) 0  Cr' 0  Cd'.
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This is a subalgebra of £ ( g). C(g.tr,m) is the fixed point set of an automorphism 
a of £( 0) defined by

à |£((,„,ra)= à, à(c') =  c', and à(d’ ) =  d’ .

The derived subalgebra of £( 0. <r, m) is

£(0 . a, m) =  £(0 , <r, m) ® Ce'.

Note also that

£ (0 .1 ,1 ) =  £ (*), £ (0 ,1 ,1 ) =  £(</), and £ ( 0. 1,1) =  £(</)•

Setting degc' =  0 =  deg d' together with the decomposition described in equa
tion ( 1 .5 .2 ) defines a Z-gradation of £(g,<r,m), namely

£(0,«r,m ) =  0 £ (0 .< r ,m )7.
j€S

Construction of the Twisted Affine Kac-Moody Algebras
Following Kac, we begin with a simple finite-dimensional Lie algebra 0, gener

ated by elements E[, F[, and H' for i 6 n, and equipped with a lion-trivial diagram

E} , Fj, Hj of 0j in terms of the generators of 0 and give a result describing some 
specific properties these elements satisfy. Finally, we use the information gained to 
construct an affine Kac-Moody algebra of type II or III, depending on l-, culminat
ing in the main theorem of this section. We then give two enlightening examples of 
the calculations involved.

We begin by letting

agram automorphism, with E'a,F,\ being the Chevalley generators of 0, and with 
(■,•) denoting the normalized invariant form on 0. Let 7 be an automorphism of 
A (X n) of order k- (=  2 , or 3 ). and let 7 be the corresponding diagram automorphism 
of 0.

we shall consider the case when (A'„, k-) =  {Dt+1,2) rather than ( -V„, k-) =  ( D/, 2) for

automorphism 7 of order k. We do a case by case analysis to establish generators

be a simple finite-dimensional Lie algebra of type A’„ admitting a non-trivial di-

reasons that will become clear as we progress. We have the corresponding Z/A-Z- 
gradations

0 = 0.1® 0i. »»“ 1 I) =  1)0® bi
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O =  0 o ® fli® 0 ^  »»<1 f) =  bo ® ® hi

if k — 3 . Let II' =  {« ,}cen  C f)/ he the set of simple roots of g. enumerated as 
in figure 1 .2 .11. Let E[ =  E'0., F- =  F'a. and H[ =  ( o ') v be its Chevalley basis. 
Introduce the following elements 0" £ f)' and E,, F,. Hi £ g for i £ n0.

Case 1: (X „ ,k ) =  (A n ,2). In this case the diagram automorphism is induced 
by the automorphism

«1 «2 «1 «1 +1 «21-1 «2/

of A  (An), and the elements mentioned earlier are given by 

^° =  Ol +  ■•' +  021,
H ,-i =  Hi +  / f ',_ l+1 for i £ 1= 1 , Ho =  2(HI +  H,'+l),
E, .i  =  E\ +  E'2l_i+l for « £ 1 - 1. E0 =  \/2 (E; +  El+t),
F, _. =  F! +  for « € / - ! .  F0 =  y/2(F[ +  F(+1),

=  - ( 6 ° ) \  
Ei =  f ;
F0 =  E'go.

Case 2 : ( X n,k) =  (A 2i-\ ,2 ). In this case the diagram automorphism is induced 
by the automorphism

o o— — — — — o  o  o — -------—- —o o
C*1 « 2  O i l - 1 « 1  « 1  + 1 « 2 1 - 2  « 2 1 - 1

of A(.42/_ i ), and the elements in question are given by

0° =  «!+••• +  0 2l-2,
= H't + for i £ l —1, fit =  HI, Ho

£, =  F ' + for i £ l —1, e , =  f ;, Eo
F, =  F ' +  f 2',_, for i £ 1 - 1, F, =  F/, F0

ro°

Case 3 : (-Vn. k) =  (D/+1,2). In this case the diagram automorphism is induced 
by the automorphism

oi
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of A(Z?i+i), and the elements in question are given by

8° =Q i +•• • +  0/,
H, =  H[ for i e l - i . Hi =  HI +  J?/+1, / f o =  - ( ^ ) V- (7 ( 0 ° ) ) V
E , =  E[ for i e l - i . Ei =  El +  F/+1, £-0 =  -̂ 00 — F^goy
F, =  F,' for * € / — 1, *1 =  *7 + *7+.» Fo =  F̂ o — E^goy

Case 4: (A'n. k) =  (D ,. 3). In this case the diagram automorphism is induced 
by the automorphism

of A(Z?.|), and the elements in question are given by

0 °  =  O ' !  +  0 2  +  O 3 ,

Hi =  H [+  H  ̂+  H ’4 H2 =  H'2, H0 =  ~( (F )V ~ (7 (0 °))V ~ ( 7 i(ff°))V, 
Ei =  E\ +  +  E\ E2 =  E'2, Eo =  Fgo 4- ( 2 F^go) +  tF ^ ^ y
Fi =  F[ +  FI +  F' F2 =  F ', F0 =  E'go +  e E ' ^  +  e2F ;J(fl0),

, 2jliwhere 6 =  e * .

Case 5: (X „ ,k )  =  (F6, 2). In this case the diagram automorphism is induced 
by the automorphism

of A (F 6), and the elements in question are given by

=  <*! +  2o2 + 2O' 3 + 0 4 +  O5 +  Oe,
Hi = H \ + HI H2 =  H'2 +  HI,, / / t =  HI. H< = Ho
Ei = E\ + EI E2 =  E'2 +  E[. E3 = El. F 4 =  Fi, Eo
Fi =  f ; + Fi F2 =  FI +  F[, F, = FI, =  FI, Fo

We now define 80 =  0° in case 1 and

0°
71''0° IT1'

=  -1------- h
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in tlio remaining cases. Let

Q = { in case 1, 
in cases 2-5,

and let I  =  /0 \ { o}. 

Proposition 1.5.3

1.

2.

The elements {E, generate the Lie algebra 0.

The elements F ,},€/ are Chevalley generators of the Lie algebras 0q, with 
the elements

a  2 H ,  . T  

(H ..H .Y  ‘ 6
being the simple roots. The types of 0(l and the decompositions

do — E  W i
■ el

are listed in table 1.5.4-

3. [Ea,F e] =  - H t . (Ee.F e) =  k/b0 and (6^.9») =  2h0/k. where.

b0 =
in case 1, 
in cases 2-5.

4- The representation of £),, on 0j is irreducible and is equivalent to the represen
tation on 0_i.

5. F0 is the highest weight vector of the Q,,-moduli: 0, with weight 9a. Similarly, 
Eo is the lowest vieight vector of the Qq-module 0_j with weight —9U.

Note that hv letting — —9U and bg =  1. we can write

E b.H, =  0.
•eL>

where the b, are the labels in figures 1.2.13 1.2.14.
The restriction of (•, •) to f)(j = t) D 0(, is non-degenerate, and hence defines an 

isomorphism
»' : f)„ -»  f)J.

For each m £ k — 1„. let i»,,, be the set of non-zero weights of f)() on 0,„. Let

©  0rfi.il0  m  —



§2.5 Affine Kac-Moody Algebras o f Types II and III 01

A- B flu b,

2 A2 ¿1
20

An, (1 >  1)
2 2 2 .22

1 2  2 ^ 12 -¿21-1» (/ >  2) c ,

2 D1+1, (/ > 1) » » 1 > 1

3 d 4 g 2
1  ̂2

1 2 . 3  22 Ee f 4

Table 1.5.4: Types of g(, and values of b,

be the weight space decomposition o f g,„ with respect to ()ô- Proposition 1.5.3 
implies that

(/J ,/? )^ 0 , dim flm,/3 =  1, and fl-m.-ia] =

if ft €
We now turn to the algebra C(Q.'y.k). Set

() =  1)0 + Ce' + Cd'

and define 6 £ t)~ by
6 | h0 + C c - =  0 ,  (6,d') =  1 .

Set
et =  t © Et , f„  =  t~x® F e, e, =  1 ® E,, and / ,  =  1 ® f i ,  

for i € I. Tin'll we have

[e.,/.] =  - 1  ® H, for i € I, and [etf,/„ ]  =  -  ^ c< +  1 ® •

The root system and the root space decomposition of £( 0, 7, A ) with respect 
to fi are then

4» =  {jfi +  d, where j  € Z . /I € d»«,. j  =  m mod k. 111 G k — 1 ) 
U {j )», where j  € Z, j  0}
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and

where 

We set

¿ (0 ,7 ,* )  =  ft® © ¿ ( 0
/)€*

1, 7 ,k)ff \ ,

¿ (0 ,7, k)jS+0 =  t1 <8) 0;>(4, and ¿ (0 ,7 ,* )jí =  t1 ® 0>,o

n = {/?e = Í — ft., A(i G /)},
and

nv = { #  =  ^ c ' +  1 ® /?,v = 1 0 JETi(i 6 /)} .
Using Proposition 1.5.3, we see that if 0 is of type X „  and k ( =  2 or 3) is the order 
of 7 , then the matrix

a  =  m ^ n h , J€la

is of type X jf\  given by table 1.5.5, and the integers bo,. . . ,  b/ are the labels on the 
diagram of this matrix in figures 1.2.13 1.2.14.

A n A2 A21, (/ >  1 ) A21-1, (/ >  2) A + 1 ,  (/ >  1) D.x Ea

■'vn ‘A, mCi % ‘C i 2 *F<

Table 1.5.5: Matrices A’,*,** in terms of those used in the classification.

Finally, we can state the second of the realization theorems.

Tl l EO KEM  1 .5 .6
Let 0 be a complex simple finite-dimensional Lie algebra of type X „  =  A21, 

A21- 1, Di+1, D,\, or E,j and let k =  2,2,2, 3, or 2, respectively. Let 7 be a diagram, 
automorphism of 0 of order k. Note that for k =  3 there are two such automor
phisms which are equivalent: We choose one. of them. Then

• the Lie algebra
¿ ( 0 . 7 , * )

is an affine Kac-Moody algebra 0,t(C) associated to the affine matrix A of type 
A**1 given by table 1.5.5 and figures 1.2.15 1.2.I f

• I) is its Carian subalgebra.
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• the root system,

• II and n v the root basis and the coroot basis respectively, and

• {pii/ijieio are the Chevalley generators.

In other words
(£ (0 ,7 , *),!), II, IIV)

is the quadruple associated to A.
From this result we can deduce the following informative corollary. 

Corollary 1.5.7
Let 0.4(C) be an affine algebra of rank I +  1 and let .4 be of type X^kK Then for 

all imaginary roots jS where j  € Z , j  ^  0

mult jS =  i /(„_<)
l <*-D

if j  =  0 mod k, 
if j  ^  0 mod k.

The Chevalley involution ui anil the triangular decomposition of the Kac-Moody 
algebra £ (0 ,7, k) C £( 0) are induced by those from £(0). The normalized invariant 
form (•, •) on £ (0 , 7, k) is given by

(P  ® x ,Q  ® y) =  A_1Res (t~lP Q )(i , y )t for i , i / 6  0. P,Q  € £,
(Cc' © O /',£ (0 .7 , A-)) = 0 ,
(c\c') =  (d',d') =  0
(c',d') =  1,

where (•,•)« is the normalized invariant form on g.
The canonical central element and the scaling element of £( 0, 7, A1) are given 

in terms of those of £ (g ) by

=  At ', and

respectively.
Remark 1.5.8

The algebra 0,, is isomorphic to the algebra (j introduced in § 1.3 in all cases 
except for when =  .4*, .̂ in which case 0 is of type C\ whereas 0O is of type D¡.
o

We note that since £ (0 .7 . A-) is the fixed point subalgebra o f £ (0 ) under the 
automorphism 7 defined by

7(<J ® x  +  Ac' fid1) =  e H* ® 7(.r) +  Ac' +  pd'
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for j  G Z , x € £), and A,/i € C, Theorem 1.5.6 provides us with a canonical 
isomorphism between affine Kac-Moody algebras of types II and III and fixed point 
subalgebras of corresponding affine Kac-Moody algebras o f type I. This justifies the 
use of the term twisted, when referring to affine Kac-Moody algebras of types II and 
III. We give two detailed examples of the constructions described in this section.

Examples

Example 1.5.9
Let be an affine algebra of type D, with Chevalley basis

&CX0 ? Q̂2 1 «̂3 ’ 0̂4
fotQ 1 fox ? fo-2 1 fo 3 t f a ,

«r , °2 ' o 4v.
where, for each i € 40,

,
and tf is the scaling element. Let 7 be the diagram automorphism of 0(D.t) induced 
by the automorphism

a .

of A (D ,). Denote by the fixed point subalgebra of 0 (D\) with respect to 7.
Let 0CG2) be a twisted affine Kac-Moody algebra of type ‘ G j with Dynkin 

diagram
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whenever a, +  Oj is a root. Let 7 be the diagram automorphism of £) induced by 
the automorphism 7

of A (D 4 ) .  Then we have the decomposition

0 =  00 ® 01 ® 0/
of 0 into eigenspaces where 0,h is the eigenspace corresponding to the eigenvalue e"' 
for e =  e2? .  By Proposition 1.5.3 we have that

B(Gj) S  0o

where 0 (f72) >s a Kac-Moody algebra o f type Gj with Dynkin diagram

X  *  .5.
and with Chevalley basis { ,  Hp-} such that

H H * ) =  H '0, +  H'ni +  H'at M Ho, ) =  H 'at,
H E a  ) =  E'a t+  E'a¡ +  E'at H E,}, ) =  E'at,
v-( ) =  r at +  K , +  F'a t m f a ) =  n ,  ■

This construction is simply a variation on the classical construction of 0( G2 ) 
from 0(Z?.|). We refer the reader to [B011O8], [KacOO, §7.9], and [SteG7 , §11] for 
details of the original construction. We point out that we have chosen our labeling 
of A  (Gì ) so that the set II =  { /?i, /f2} of fundamental roots of 0O is given by

0\ =  g(ai +  »3 +  0.1), and 02 =  a 2.

Thus the diagram
3/3, +  id,

- 3 / 1 ,  -  2D,
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shows the roots of 0(G2) as integral combinations of fundamental roots.
The 7-stable subalgebra

t)o =  C ( K +  H'ni +  H'nt) © CH'at

is a Cartan subalgebra of g0, with respect to which g(l has the following Cartan 
decomposi tion,

Do =  bo ®  ©  C (E'ai +  E'aa +  E'at) ©  Q F ^  +QJ — E'ai+ai — E'a7+at)
© C (E'at +«2+03 _1_ e ' }■̂ 02+03+«4 ' aj +«2 +f»4 '
® ^ ' a 1+ar2+o,+Q, ® c  E'ai + 2«2 +f»3 +C»4
© CF'tt7 © Q F ',  +  K ,  +  F'at) © q F ; +ai -  F ' ,+ai -  F ' j+Q4)
© Q^oi+oj+aj © ^aa+aj+a* © Fai+a2+04)
© CF„i +aj+QJ+„4 © CFai +2oj+„j+Q4 •

The eigenspaces 0, and 02 both have weight space decompositions with respect 
to f)o> namely

0, =  Q  H'a i+ f H'a, + e2H'at)
© Q  E'ai +  eE'a) +  c2F ;4 ) © Q  E'ai +a7 -  eE'a — f2E' ’<*2+«3 «2+04 ;
© Q f ;  1 +ai+os © ^EQ7+ai+Qi © C F ni+aj+Q4
© Q f ; +  < 3 +  SF'a t) © Q F ' ,  +aj - <F'J+0,
© q F 0, +Qj+aj +  f -̂ r»2+«a+c»4 f ■̂ ai+c»2+or4

• «2+04 1

and

02 'a i+ e 2H'a,+ eH 'at)
(E'ai +  ^ f : ,  +  c f ;,4 ) © Q F I ,  +a, -  c2f ; j+„s -  c f ; j+„4 ; 
(F ai+tt2+C(3 ©£ F aa+a3+(14 © fE ltl 4.a,4.a i)
(f :, + ^ F :3 + ' F ; j ® q F '

'ai +03+04 '
-  F '

Consider
G'2 = (G,j),,j£2 =

This is the Cartan matrix corresponding to the root system of typo Gj of 0(l. The 
fundamental roots of 0,, then satisfy

A = Y -G j.^ j
J€i
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where tpy denotes the fundamental weight defined by

( I f  ¡i, ) —

with 6j, denoting the Kronecker delta. Tims the weight /?, is given by the corre
sponding column of the Cartan matrix G2.

We note also that

— (Aj)t.j€4 —
/ 2 - 1 0 0 \

- 1 2 - 1 - 1
0 - 1 2 0
0 - 1 0 2 /

is the Cartan matrix of the Lie algebra 0 =  fl(D.t). 

Lemma 1.5.10
For m =  0,1,2. the weights associated to

F.' —“ 01+OJ
F.' 4- f n

E'ai +  mE'a t,

EL

rv _  *2m P^aj+o3 c ^02+04 ’
+  e2mEL« 2 + a 3 +  C*4 «1 +Q2+«4 ’

are /ii, f)i +  f32, and 2/?i + ft2-  respectively.

Proof
We consider the case of E'ai +  f'"E'a, +  f2’"E'at- Note that

[ K ,  +  K ,  +  K t • E'ai +  e"‘ E'a, +  S"'E'a]

=  [/f;, +  [ f£ . , e- E'ai\ +  [H 'at, e2"1̂ , ]
=  (aua^E L,  +  (a3,aZ)e"'E'a, +  (o 4,^ 4)e2mE'at 

=  2 {E'a i+ f mE'0 i + f 2mK t)

K E'ai +  «" E ' +  e2Q3 r 'E'a t\ ( o u ^ ) E ' ai +  (03,0 ?)< mE'a, +  (a 4, ^ ) t 2mE'at 

- l ( E ' ai +  c "E 'a, + e 2mE'at) .

This demonstrates that E'ai +  f"‘ E'n> + ( 2mE'at lias weight f3 \ .

The other parts of the result follow from similar calculations. CD
Thus the highest weight appearing is 2/ii 4- /32. Note that when expressed in 

terms of the roots of 0 this is precisely

ff0 =  -  ((«i +  a 2 -t- 03) + (at2 +  «3 +  04) +  (f*i +  02 + 04)) •s)



§1.5 Affine K ne-Moody Algebras of Types II and III 68

Hence we take
^00 ^'„,+nj+n, +  f *̂aj+t»j+a4 +  * ^»i+ai+iii ' ailil
0̂0 ^«1+aj+aa f ' '̂os+oa+o» +03+04 ‘

We introduce th<' symbols Em,o to denote the weight vector in the given weight 
space decomposition of 0,„ with weight ¡1 6 <f>(G2). Each ErnJi will be a linear 
combination of root vectors of 0 over Z (f ).

We also note that, in the notation introduced earlier in the section,

{•b(Gi) if m =  0 mod 3 
<!>„( G'2 ) otherwise

where, <Ï>.,(C?2) denotes the set of short roots in the root system of type G 2-
We now turn our attention to the Kac-Moody subalgebra £ (0 ,7 ,3 ) of £( 0 ).We 

note that £(0) is a realization of the Kac-Moody algebra 0(D4 ) constructed earlier 
and that, under the isomorphism so induced, £ (0 ,7 ,3 ) corresponds to 07.

We set
h' =  ho +  o '  +  o r

= C(H'ai +  H'at +  H'at) e  CH'ai +  Cc' +  Cd'
and define 6' € f)'" by

k+Ce— 0, (S'.d') =  1.
We define

C/3o =  i  0 E , i 0, e 9 i =  1 ® £,),, =  1 0  E ^ ,

f,% =  i - ‘ © *A>» /a, =  1 ® 1 all<1 / *  =  1 0
Thus straightforward calculation using the definition of the Lie product on £(0) 
given by equation (1.4.0) in §1.4 leads to the equalities

[e/hJih] =  - 1  © and [«/*,, /a, ] =  - 1  0  H&.
We proceed to verify that

leao- / a j  =  -  (3c' +  1 0  tfao).
where

=  —  ( « I  +  0 2  +  0 3 ) V —  ( 0 2  +  Q . l  +  r » 4 ) V —  ( O l  +  « 3  +  t » 4 ) V .

First we note that

[ *  ©  ’  *  ©  ^ i + n i + n , ]  + [ /  * F a i + a i + a i  »

+  [ i 0 f ' ^ 1 + „ I + „ ,  ,  < " * ^ ^ 0 | +  r» 2 + « 4  ]

1 0 I f '  F '
[ f»| + e » 2 + « 3  1 f * l  + ' » 2 + « 3  J ( ■ ^ o i + o a + o * E '» ^ O i  + « 2 + 0 »  >k

+  1 0 ^ 0 ’2 + f» a + « 4  ’  f  ^ » 2 + 0 »  * f « 4 , ( ■ ^ « 2 + « » + « 4 ’  ^ » 2 + « 8 + « 4  ] k

+  1 0 [ f  * 0 | + « 2 + « 4  ’  f  + ' » 2 + « 4 —  ( f *\  « 1  + " 2 + « 4 E '1 ^ n i  + f » 2 - f f *4 )k -
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»1 +Q2+OJ ’ ^01+02+03) =  ( [ * : , .  n ,n

=  K - K  

=

E' D

by the last part of Theorem 1.1.17. Thus

[eflo'/ft>] = — 3c' + 1 ® ((«i + <*2 + f»3)v + (a2 + 03 + a<)v + (<»i + <»2 + o.i)v) 
=  — (3c' +  1 0  Hfo)

as required.
Thus the root system of £ (0 ,7 ,3 ) with respect to f)' is given by 

$ = {/0 + tn6' : f)  € m € Z } U {fi + 3mb' :  fl € m € Z }

£( 0,7 ,3 W  =  ̂c (<m ®(H'a i +  'H'nt +  )) for m € z \ {0 }, m =  1 m od3

U {»16' : m e  Z \  {0 }}

and the root space decomposition of £p with respect to I)' is

where
¿(0,7,3)^+™«. =  Q / ra ® Em,a) for $  € m € Z,

£ ( 0 , 7 , 3 W  = Q *3"' ® Em.a) for /? € m € Z,
and

for m € Z \ {()}, »11 =  0 mod 3

is the corresponding set of fundamental coroots of £( 0 ,0 ,3 ).
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By Theorem 1.5.6, (£ (g , 7,3), !)'• II' . II'*) =  , II'*) is a quadruple
associated to ‘G2.

Recall the Kac-Moody algebra 0('G 2) introduced earlier. The set

n =  { f a  0i, 0i]

is its fundamental root system and it has Chevalley basis

e0o, efli ’ e/h, 
fflo, ffii, f  (h,
f t ,  f t ,  f t ,  d

where, for each « € 20,
[ e * , / * ]  =  - 0 ? ,

and d is the scaling element. Denoting by 1) the Cartan subalgebra o f g('G 2) gen
erated by the fundamental coroots and <7 we have that

(0 ('G 2) ,f ) ,n ,n v )

is also a quadruple associated to ‘ Gj. We proceed to describe an explicit isomor
phism tj> between these two quadruples.

We first note that from the results of §1.3 we can describe the root and coroot 
system of 0('G2) entirely in terms of the underlying finite root system of type G2 
and the fundamental imaginary root. f>. and the canonical central element, c. of 
0('G2). By virtue of this description we have

0o =  6 — (20i +  0t) and 0% =  c — (2/7, +  /72)*.

Now,

(2/7, +  ft)* 2(2/7, +  02)
(20i -f /72 ,2/7, +  /72)„.

- 1 / 7 ) ______202
(0\,0t )n* l /3 ( /7 2 ,/72)h.
2/7* +  3/7*,

whence we obtain.
0o =  c -  (2/7* + 3/7*).

We now define a vector space isomorphism

<A : 0('G i) — 0̂
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by taking the action of <t> on the root vectors of 0 (fG'2) to be

e0, l—► 1 ® (̂ Ql “t” Ôj “1“ «̂4 )
C01 l—► 1 ® eo2
¿0, +0i 1—► 1 ® ( 1 -fa 2 <̂*2 +<*3 0̂3+04 )
¿30, +0i 1—► 1 ® (̂ c*i+«2+c*3 +«2+04 )
¿3/3, +0i 1—► 1 ® eoi+a2+c»3+«4
¿30, +30i 1—► 1 ® Cai +2a2+a3
¿0,+nS 1—► in ® (eai +  f"eaj +  e2neo t)
€ 01+3n6 I—► t3n ® ea2
0̂,+01+n& l—► tn ® (^oi+a2  ̂ ĉr2+os  ̂ ^02+04)

¿30, +0i+n6 l—► tn ® ( âi+C»2+a3  ̂ Ĉ»2+Q3+tt4 * <̂*1+C*2+C»4
¿30,+0i+3nS l—► f3n ® eOi +C*2+tt3+<*4
¿30,+301+3nt l—► f3n ® âi 4-2c»2+c»3 +«4
¿-0,+nS 1—► tn ® (/« i +  en/a 3 +  fa4 )
¿—0i+3n6 l—► t3n ® fot 2
€—01 —0i+n6 l—► tn ® (/oi+a2 f f 03+03  ̂ /f»2+i»4 )
¿-30,-0i+n6 t—► tn ® (/«l+»2+a3  ̂ /«2+«3+C»4  ̂ foi +O2+O14
¿-30,-01+3 nS 1—► f3n ® fo i+03 +03+04
¿-30,-30i+3n6 (—> t3n ® /«I +2c*2 +C»3 +«4
fib I—► 1 ® (/« l +  / qj +  fo  4)
fih 1—► 1 ® fo2
f 0i +02 I—► 1 ® (/ai-fc*2 /c*2+c»3 f 03+04 )
f 2/3i +03 I—► 1 ® {fa i+£>2+°3 fO3 +O3 +C»4 “t” ./c»!+C*2+C»4 )
f*0i +02 H-► 1 ® /ai +«2+«3+«4
f30\ +2(h 1 ® /ir*i +2«2+«3 +<*4
fth -f n6 1—► ® (/« , +  *"/a, +  *2" / « J
f03+3n6 1—>  ̂— 3 n ® fa3
fPi +02 + nS (—► t~n ® (fai+03 f f 03+03 f /a  2+04)
f20\ +fo +n6 1—► t~n ® (/f»l +«2+C»3  ̂ fo3+03+04 “f*  ̂ foi+03+04
f30X+(h+Snt> 1—> t-3n ® fa \ +«2 +f»3+f»4
f 3/3, +2/1j-f 3nA 1—► f-3n ® /f»| +2o2+f»3 +«4
f —0\ +n6 1—► t~n ® (eai 4- *"eaa 4- f irV 04)
f-02+3n6 t—► t-3u ® *̂C»2
f —01 "ifc+ni 1—► i~n ® (^ai-f«2  ̂ '̂C*2+«3  ̂ «̂2+f»4 )
f  — 20i —03+ n6 I—► t~" ® (̂ ai+C»2+t»3  ̂ 0̂2+C»3+C»4  ̂ t̂tl+«2+«4
f —30i —03+3n6 1—► t~3" ® i’a, -f«2 +«3+Q,4
f  —30\ —703+3n6 I—► t~3n ® t̂tl +2«2+«3+C*4
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for n 6 N. and by letting the action of <p on 1) be given by

f t  ~  f t
f t  Oy +  «£ + < *?
f t  H-4 3c' — 1 <8) (2a^ +  3 f t  +  2«3 +  2a^)
d i—► d'/3.

Note that we have chosen our notation for the root vectors of 0( ) so that, the
elements e# for d € $ ('(* 2) generate n+('G 2) (see Proposition 1.3.1) and fo =  e_,j. 
Also note that the image of d under <t> is forced by the image of f t  and the fact that

f t  =  c -  (2 f t  +  3 f t )  and (c\ d')i{Dt) =  1 =  (c, d ),(,G-,,,

where (•, )j(D,) and (• 1 ■),(•«,) denote the normalized invariant forms on 0(D4) and 
Q(*(j2). respectively.

Straightforward calculations show <p to be a Lie algebra isomorphism. Since

= f)'. </>(nv ) =  n ,v and </>*(n') =  n

<j> satisfies all the conditions for an isomorphism between quadruples.
o

Example 1.5.11
Let 0(A|) be an affine algebra of type A , with Chevalley basis

where, for each i € 4„,

eOo 1 1 Q̂j * e<u
/«O 1 fai i 1 " fa 3 * /«  4> - c

f t ’ f t ’ a 4.

and d' is the scaling element. Lot. 7 be the diagram automorphism of 0( A ( ) induced 
by the automorphism

r>0

of A (A ) .  Denote by £p the fixed point subalgebra of 0(A|) with respect to 7.
Let of'C'-j) be a twisted affine Kac-Moody algebra of type *Ca with Dynkin 

diagram
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and with root system as described in §1 .3 . We shall construct an explicit isomor
phism between 0CC2) and 07.

We begin by taking 0 =  0( A|) to be a Kac-Moody algebra of type A 4 with 
Chevalley basis

E'*01’ E'■C/C»2 ’ jr• E'^«4
F' , F' , FL , F ' ,a 2 ’ as ’ «41
H'a„ * 4 .. H 'o*

where, for each » € 4 ,

Note that since 0 is a simply-laced algebra we have that for all roots o , , o } € 4>( 0)

( a , + a , ) v = 0 ^  + a ?

whenever a, +  Oj is a root. Let 7 be the diagram automorphism of 0 induced by 
the automorphism 7

of ¿\(A|). Then we have the decomposition

0 = 0 0 $  01

of 0 into eigenspaces where 0,„ is the eigenspace corresponding to the eigenvalue 
( —l ) rfl. By Proposition 1.5.3 we have an isomorphism

00

where g(Bj)  is a Kac-Moody algebra of type Bj  with Dynkin diagram

X
and with Chevalley basis [Efc, F&, H such that

W  H l%) =  2( H'ni + H'„t ) W  H a , ) =  +  K t
t H E lio) =  s/2(E'at +  E'a t) W E  a ,) =  E'a, +  E'at
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This construction is simply a variation on the known construction of a root 
system of type DC2 from one of type A 4. We refer the reader to [Bou68], [Ivac90, 
§7.10], and [Ste67, §11] for details of the original construction. We point out that 
we have chosen our labeling of A (B 2) so that our set II =  {/10, d i} of fundamental 
roots of is given by

is a Cartan subalgebra of 0,,. with respect to which 0() has the following Cartan 
decomposition,

The eigenspace 0| has a weight space decomposition with respect to l)o. namely

and /Ji =  - (a i  +  a 4).

Thus the diagram

0o + 01 200 + 01

-00 «  0 0

-200 -  01 -0o -  01 -01

shows the roots of 0 ( ) as integral combinations of fundamental roots. 
The 7-stable subalgebra

t)6 =  C(H'ai + K t )®C(H 'a j +H'ai)

«1 +«2+«3 «2+«3+«4

« 1  + C * 2 + « 3 + C * 4

where
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Consider

=  (B.j)i,jelo =  (  _ 2  " 2  )•

This is the Cartan matrix corresponding to the root system of type B-j of 06- The 
fundamental roots of g0 then satisfy

Pi = H B ji& i
j€lo

where cpj denotes the fundamental weight defined by

zZj(Hll;) =  Sjt,

with 6j, denoting the Kronecker delta. Tims the weight ¡3, is given by the corre
sponding column of the Cartan matrix B-j.

We note also that

t 2 - 1 0 0 \

(Aij  ) i ,j €4 —
- 1 2 - 1 0

0 - 1 2 - 1
< 0 0 - 1 2 /

is the Cartan matrix of the Lie algebra 0 =  £l( .4.)).

Lemma 1.5.12
For m = 0 ,1 ,  the weights associated to the vectors given in the above decornpo 

sitions are. given in table 1.5.13.

vector associated weight

E ' „  + ( - 1 P i
K ,  +  ( - 1  ) m E'at 00

F '  _  / _  1 y "  F '"01 +a* V l ) ^Oj+a« Po +  Pi
E'£ / f » 2 + « 3 2 p 0

^ « l + « 2 + « 3  ' ' A ' ^ 0 2 + 0 3 + 0 4 2 pa  +  Pi
E'at i +c*2 + « 3  + « 4 2  Pa +  2 /!i

Table 1.5.13: Weights associated to certain vectors

Proof
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We consider the case of £ ,',1+aj+a3+a<. Note that

K  +  H 'o, -

and

+ « 2 + « 3 + « 4

[■ ^ai ’ ^ o i + a j + a j + Q i ]  [ ^ « 4  ’ ^ a i  + a j + a j  + a <
=  ( ( » l +  «2 +  »3 +  <*4,0^) +  ((a i +  a 2 +  a 3 +  « 4 , «4 )) ^ 0 ,+o,+a,+o4 

OF'“' a I +02+03 +(»4

\H a ,  +  H 'ct  > ^ 0 , + o , + a , + o , ]
= ((<*1 + a2 + C*3 +  «4, «2) + ((«1 + «2 +  a3 + a4, C»3)) E'ai+a7+n,+at

OF'£̂»1 +«2+ct3+°4

This demonstrates that E'„l+aj+at+at has weight 2/l0 4- 2/)\-
The other parts of the result follow from similar calculations. □

Thus the highest weight appearing is 2/lo +  2/?i. Note that when expressed in 
terms of the roots of 0 this is precisely

0o =  (^ ( ° i  +  a 4) + 2^°2 a3 )̂ '

Hence we take
Elh =  f ’o1+o2+f>J+a< au<1
■p _ rvr  lh ^1+02+03+04*

Denote by $ (E )  the set (±2/30 , ±(2/io + 2/?i)}. We note that

j  if in =  0 mod 2
U 4>(E) i fm  =  lm o d 2 .

We introduce the the symbols E„K)3 to denote the weight vector in the given weight 
space decomposition of 0,h with weight /) € <!>( Dx) U ‘I’ ( E).

We now turn our attention to the Kac-Moody subalgebra £ (0 ,7 ,2 ) o f C( 0). We 
note that £ (0 ) is a realization o f the Kac-Moody algebra 0(.4|) constructed earlier 
ami that, under the isomorphism so induced, £ (0 .7 ,2 )  corresponds to £p.

We set

I)' =  bo +  C c '+ 0 /'
=  Q  H'ai +  H'at ) © Q  H'a, + H'a, ) +  O ' +  o r

and define f>' G b'” l>y
k +< v= 0 . (6\<t) =  1.
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We define
eft, =  1 ® Eft, e/3, =  1 ® Ent , ¿0, =  * ® Eo „
//*, =  1 ® F^,, /a, =  1 ®  Fa  , and fa, =  t~x ® F^.

Thns straightforward calculation using the definition of the Lie product on ¿ (0 ) 
given by equation (1.4.0) in §1.4 leads to the equalities

[e&./ao) = - 1  ® Ha,, and foi, , / a  ] = - 1  ® tf/3, •

We proceed to verify that

leth’ f/h\ = -  (c' + 1 ® Ha,),

where
Ha, =  —(« i  +  »2 + 03 +  «4 )v.

First we note that

[^0,, fa, ] ■ ^ai+ai+oj+a4 ’  ̂ "̂rti+Qj+Qj+o*]
1  [ ^ o i + o j + a j + O i  ’ ^ f i | + o j + o j + 0 | ]  ( ^ a i + o i + o a + a i ’ ^ Q i + Q i + o j + a * )  **

However,

( F ' F'
\ r < » l  + £ » 2 + 0 3 + 0 4  ’  ^ O i  + - 0 2 + - 0 3 + - 0 4 ) = ( \ K „ K  

=  { K r [ K  

=  { K r K t)

E'0 2 + 0 3  +-f»4 J ? ■ * ^ t » | + Q 2 + 0 3 + 0 4

F*
O j + O j  + a <  1 ^ 0 1  + t » 2  + - (* 3  + - « 4 ])

=  1

by the last part of Theorem 1.1.17. Thus

[e0,'flh\ ~  — c' +  1 0 («1 +  «2 + «3 +  0-1 )V
= — (3r' +  1 © Ha,)

as required.
Thus the root system of £ (0 ,7 ,2 ) with respect to t)' >s given by

<I> =  { /i  +  mb' : /) 6 * (D 2), in € Z }U  {¡i +  (2m -  1)F : fl 6 <I*(F), m € Z )
U [mfi1 : in € Z \ {()}}

ami the root space decomposition of 0" with respect to I)' is

¿ (0 .7 .2 )  =  I)'®  ¿ (9 ,7 .2 ) , j  ,
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where

£ ( f l ,7 ,2 W m<- =  Q fm © E * j )  for /? € <I>(i?2), ™ € Z,

-¿(0-7,2)^+(2„1_i)<. =  Q i 3m- t ® E j j ) for f) G $ (E ), m € Z,

and

£ ( 0 < 7 - 2 )m* ■ t
® l)0 for m G Z  \ {0 }, in =  0 mod 2 
® hi for m 6 Z  \ {0 }, m =  1 m od2.

The set
n ' =  {/So, A  , /*2 =  i ' - 2 / i 0 -2 /? , }  

is a set of fundamental roots for £ (0 ,7 ,2 ) and

n 'v =  {/9q =  1 © , /J,v =  1 © Hp, , /?2V =  c' +  1 ® Hlh}

is the corresponding set of fundamental coroots o f £ (0 ,7 ,2 ).
By Theorem 1.5.6, (£ ( 0 ,7 .1). h'. n ' . ITV) =  (fl^.h'.II' , ITV) is a quadruple 

associated to "C2.
Recall the Kac-Moody algebra 0("C'2) introduced earlier. The set

If =  {/3o, d\, fli}

is its fundamental root system and it has C'hevalley basis

eA>- e/3i •> e/Jj) 
f'io 1 ffl 1 1  f>h '
ay, dr, dr, d

where, for each i 6 20,
[«A ,/A ] =  - t f ,

and d is the scaling element. Denoting by I) the Cartan subalgebra of 0(’ C2) gen
erated by the fundamental coroots and d we see that

( o r c 2) . h . n . n v )

is also a quadruple associated to *C2. We proceed to describe an explicit isomor
phism <j> between these two quadruples.

We first note that from the results of §1.3 we can describe the root and coroot 
system of 0(’ C2) entirely in terms of the underlying finite root system j)('C 2) of 
typo Cj, obtained by omitting the y.eroeth vertex from A (*C2), and the fundamental 
imaginary root, ft, and the canonical central element, r, of 0(*C2). Note that fi(*C2) 
has Dynkiu diagram
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and root system

02 0\ + 02 201 + 02

which we shall denote by $(C i).
By virtue of the aforementioned description in §1.3 we have

f t  =  \ ( 6 -  (2/3, +  ft)) and f t  =  c -  2(2/3, +  /3a)v.

Now,

(2/3, +  /32)v = 2(2/3, +  A )
(2/3, +  A , 2/3, +  di)h‘ 

4/3, , 2ft
+2(/3, ,/3,)(,. (ft,ft)t)'

f t  +  /32\

whence we obtain,
f t  =  c — (2 f t  +  2 ft ) .

As another consequence of the results in §1.3, we have the following expression 
for the root system of g( 'C'-j) in terms of C'i) and b\

4» =  j i ( /3  +  (2m — 1)£#) : 0 e  * i ( C a), m € z }  U {(/3 +  mb' : /3 € * .(C a), m € Z ) 

U{/3 +  2m«' : 0  G 4»,(C2), m 6 Z }U  {m/>' : m € Z \ { 0 } } .

We note that we can re-arrange our expression of f t  in terms of /?,, /?2, and f) 
to obtain

f t  =  6 — (2ft +  2/3,).

Using this substitution for f t ,  we obtain

d’dC^) =  { - 2/3q — 2/3, -f- f>, —2ft ■+■ ft, 2ft -t- 2/3, — 6 , 2ft —



§1.5 Affine Kac-Moody Algebras of Types II and III 80

and
$»(£-2) =  { /? i , — di — 2/lo +  6 1 -  P i» d\ +  2/3o — 6}

as alternative expressions for the set of long and short roots of C’2, respectively. 
We now define a vector space isomorphism

*  : 0CC2) -  r

by taking the action of <j> on the root vectors of o i'C ?) to be

e 0i 1--► 1 0 (ea| +  e a i )

e 03 i--► t 0 fa 1 +«2 +03+04
^01 + 0 2 1--► t 0 (/ari+aa+ar* «/c*2+a3+’»4 )
e 2 0 ,+ 0 . 1--► t 0 f »2+«3
ei/2(A+(2" - l  )S) 1--► tn © v/2 ( /a l+« , - ( - l ) n/a ,+a J
ei/2(2/J,+/J,+(2n-l)*) 1--► tn v/2 ( /a 2 + ( - l ) 7 a3)
«•l/2(-i3,+(2n-l)i) 1--► <"-i 0 >/5 (cai+aa -  ( - l r ^ e a . + a j
e \ / 2 (-2 0 l - f a + ( 2 n - \ ) 6 ) t--► ® v/2 (ea, +  ( - l ) " - 1eQ3)
e/3l +ni 1--► t" 0 (eai +  ( —1 )neQ4)
eA+/3j+n* 1—► f n+1 0 (/«i+aj+aj “f” ( 1) f c»2+«3+a4
e- 0,+ni 1— ► r 0 ( /oj + ( - l ) n/ « J
€ —0t —0 3+nS 1—> t — 1 0 (^ai+c*2+a3 ^) ea2+«3+«4
^ 0 3 + 2n6 1—► f2n+\ 0 f a  1 +02 +«3+«4
e 2 0 ,+ 0 , +  2nS 1— ► t'2n+\ 0 f a i + a ^

C —02 +  2n6 1—► t 2 n - l ® Ct»l +C»2+«3+C»4
e - 2 0 , - ( h  +  2ni 1—► y2 n— 1 0 f 02+«3
u 1—► 1 ® ( f a  1 +  /«« )
ft* 1—► <-• 0 âi +02+03+04
f 01 + (* 1—► r * 0 (^Ql+«2+03 ^a2+‘Q,3+_a4 )
/Wi+A i—► t ~ l © 0̂2+03
/ l / 2(/J, + (2n-l)«) 1—► r n 0 \ / 2  (ea ,+Q2 ( 1 ) eaa+a4)
/ l / 2(2/3,+ft(2ri-l)*) 1—► t — ® v / 2 ( e Q ,  + ( —l ) " e O J )

/ l / 2(-/3, + (2n-l)i) 1—► <i~" 0 %/2 - ( - l ) ' - n/«.+a4)
/1 / 2( — 2/3i - 0 i + ( 2 n - l  )A) 1—► f t-n 0 n/ 2 ( / „ ,  + ( - D 1- " /a 1)
//3| +nA 1—► r B 0 (/a , + ( - D n/a J
f 01 + 0 3  + ’ *6 1—► /-(n+l) ® (^»i+nj+iis “b ( 1 ) cos+ai+tn
f - 0 1 +ni 1—► 0 ( « « .  +  ( - l ) " e „ 4)
f - 0 1 -/3j +  iii 0 (/ni+«l+ffl “b (  1 ) /nj+oj+o*
f0 3 + 2 n 6 (— ► i - (2n+l)

0 ^ « 1  + 0 2 + 0 3 + f »4

f20\ + 0 3  +2nA 1— ► #-(2n+1)
© ^ » 2 + O j

f —0 3+  2n6 H—► Jl-2n
0 / « I  +03+03+04

f - 1 0 , - 0 t + 2 n 6 1— ► il-2n
0 / o 2 + 0 3
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for ii € N. and by letting the action of <j> on f) be given by

1—► 2 («?  + « £ )
p?

1—► c' — 1 ® (a* +f»j +  a
d 1—► d'.

Further lengthy but straightforward calculations show <f> to be a Lie algebra 
isomorphism. Since

<A(f)) = b\ ¿(ir) = n,v and ¿*(ir) = n,
<j> satisfies all the conditions for an isomorphism between quadruples.

o



Chapter 2

Kac-Moody Groups

In this chapter we consider the construction o f certain groups associated to 
Kac-Moody algebras. We shall be drawing our material almost entirely from an 
extensive body of work on the topic by Jacques Tits, consisting largely o f [TitSl], 
[Tit82], [TitS5], [Tit87b], and [Tit87a].

We recall that whenever -4 is a Cartan matrix Clievalley and Demazure asso
ciated to each root datum T> -- (A, {d,},-6„, { o ^ w i t h  Cartan matrix .4 a split 
reductive group scheme (ftp such that A is the character group of a maximal split 
torus, {d ,} ,6„ is a basis of the root system with respect to this torus and a* is the 
coroot associated to d,. The importance of these group schemes lies in the fact that 
if K is an algebraically closed field, the correspondence V  <-> (ftp(K) is a Injection 
between root data of the types envisaged and connected reductive groups over K. 
The groups defined in this chapter are a generalization of this construction to the 
case when A is a generalized Cartan matrix.

We begin by covering some background material which will be relevant in the 
development of the theory of Kac-Moody groups. Using the theory o f Kac-Moody 
algebras developed in Chapter 1, we introduce the notion of prenilpotent sets of 
roots and define a Z-fonn for the universal enveloping algebra of a Kac-Moody al
gebra. This Z-form will be fundamental to the developments in §2.3 and, although it 
is not a priori clear that different Z-form sof the universal enveloping algebra would 
not lead to different groups, it has been shown that this is not the case for general
ized Cartan matrices of finite and affine types (see [GarSO], [Tit82] and [Tit85] for 
the affine case). We also introduce the concepts o f a group scheme and of a group 
with a (B ,N )-\)air in §2.1.

The notion of a root datum is introduced in §2.2. In this section we also 
discuss how to construct the Weyl group and real root system corresponding to a 
generalized Cartan matrix .4 without having to refer to fi,t(C).

The construction of the Kac-Moody groups takes place in §2.4, though §2.3 
paves the way with the introduction of the root group schemes and the toral functor. 
Finally, in §2.5, we give an explicit system of generators and relations for Kac-Moody

82
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groups over fields and we describe some of their properties. In particular, we give 
a description of a homomorphism from the simply-connected Kac-Moody group 
associated to a particular generalized Cartan matrix to the minimal adjoint Kac- 
moody group associated to the same matrix. In [Tit87a], Tits mentions that the 
notion of an isogeny has been generalized to Kac-Moody groups by Hee. However, 
to the best of our knowledge it remains unpublished and we have not seen details 
of the work. Nevertheless, we have avoided the temptation to extended the notion 
of an isogeny in its full generality and present instead only the particular cases we 
will require. We note that a generalized isogeny need not necessarily be surjective 
or have a finite kernel.

Throughout we shall assume A =  (Aij )lj€n to be a generalized Cartan matrix, 
and we shall draw on notation introduced in Chapter 1 whenever necessary.

2.1 General Background
In this section we introduce some well-known concepts and results which we 

will make use of during the course of this chapter.

Prenilpotent Sets of Roots
The material in this subsection can be found in [Tit 87b]. Let $  be the full root 

system of 04(C). We say that a set of roots 'k C <I> is closed if

a, /? € 'P and o  +  /J € 4> =► a -(- /I 6

Recall that is the set of real roots of 0.4(C). We say that a set of roots 'I' C 
is prenilpotent if there exist w,w' 6 H’ (.4) such that

«>( * )  C $ 7  and « ’'(tf) C

Note that if >P = {o ,/J } C <I>r<‘ then 'P is prenilpotent if and only if for all i , j  € No 

in -(- j/3 6 4’ => in +  j/3 6 4>re.

Whenever {a , ft) is a prenilpotent pair of roots, define

#[«,/j] =  (Nlla +  Nll/i ) n r ,

and let
ti (nj l)  =  \ {'»./*}•

These- will be finite sets.
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The Universal Enveloping Algebra of a Kac-Moody Algebra
Denote by 11(1) the universal enveloping algebra of a Lie algebra /. Unless 

otherwise stated, details of results quoted on the enveloping algebra of a Kac-Moody 
algebra can be found in [Tit87b, §4].

Recall that by part 1 of Theorem 1.1.6 the Kac-Moody algebra 0.4(C) has a 
triangular decomposition with respect to a Cartan subalgebra 1), namely

0 4 (C ) =  n_ ©  f) ®  n+

where n+ is generated by the elements e, for i € n and n_ is generated by the 
elements f, for » € n. It follows from this that the product mapping

W ( n _ ) ® W ( l ) ) ® W ( n + ) - ¿ / ( 0 4 (C ) )

is bijective.
For any u € tl( 0.t(C) ) and any m € N we set

u \ _  «(w — 1) • • • (w — m +  1) 
m ) m!«M  =  —  and

For t € n let llz,i and 11%-, be the subrings

Zel’"1 and £  Z f }m]

of ¿/(0 .4 (C )  ) respectively, let ¿/z(l)) be the subring of ¿/(f)) generated by all 

for o v € f) and m 6 N, and let ¿/-,( f) ), be the subring

of Ui( f) ). We have 

From this and [Bou75,
¿/*(f))¿/±1 =U ±,U i( I))-

§12.5 Lemme 4], we deduce

¿/z,-it/i(f))//z.i =  ¿/z.i/'/z(f))//z,-e

Let ¿ /j(n _) and ¿/z(n+ ) be thè suhrings of ¿ /(n_) and ¿/(n + ) generateci by 
all ¿/z - , and all ¿Z*., respectively. Denote by ¿/z(0.t(C)) thè subring of ¿/(0 i(C) ) 
generateci by U%( n_), ¿/*(f>) and ¿/*(n+ ).

P roposition 2.1.1
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TTie product map

U i(n_ ) ® Ut ( f)) ® Uz( n+ ) -  « , ( 0 4(C) )

m bijective.
We say that a subring A* of a C-algebra «Ve is a Z -form of «Ve if the canonical

map
«Vj C —i «Ve

is bijective. 22z(n_) and ¿2Z( n+ ) are Z-form sof 2/(n_ ) and ¿/( n+ ) respectively. Hence, 
by Proposition 2.1.1, Uz( fl.-i(C) ) is a Z-form of U(Q\(C)). We note that in the 
classical case ¿2i(fl^(C) ) is called the Ko.tl.ant TL-form of 22(0t(C)).

Recall that fl i(C) has a (®,Zn,)-grading by virtue o f its root space decompo
sition. For i € R and w € W(A),  the free Z-module u’(Z c,) depends only on the 
root a  =  iv(a,). We denote this module by 0„(Z ) and let Un be the subring

of U( 0.4(C)) for a € 4>r' . Recall also that ad c, is a locally nilpotent on 0.4(C) 
(by the last part of Lemma 1.1.18) and hence also on ¿i(0.i(C) ). Thus, by [Bou75, 
VIII.12.5 Lemme 2], it follows that Uz(0a(C) ) is stable under the action of

for all 111 G N, hence is also stable under the action of exp ad e, . Similarly, Uz( 0 \(C) ) 
is stable under the action of ex p a d /,, whence we deduce that Uz( 0.4(C)) is stable 
under the action of the element

introduced in Lemma 1.1.27. By a slight abuse of notation, denote by s, the auto
morphisms r"'1 of 0 i(C) and of UiX 0 . 4 (C )). Let W ad be the subgroup o f Ant 04(C) 
generated by the elements {.<(, },6„. The map ►—> r, extends to a homomorphism

for ea<-h k £ l. By Lemma 1.1.25, th<‘ elements ¡i 1, . . .  , /2| arc- precisely those elements 
of i>+ which w~l transforms into negative ones. Set

(ad e,)"1

r'lfl =  exp ad c,. exp ad /, .  exp ad e, 
=  exp ad /,. exp ad e,. exp ad /,

W.

Let ii> =  rj , .........r1( be a reduced expression of w 6 W . Set

fa  =  (»V, • • • )(a,J
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This is an automorphism of g .((C), and, by abuse o f notation, of 0.4(C )), depend
ing only on w and not on the chosen reduced expression. Set

Ui,». =  % (n + ) n u>“d ) ) ,  U'ltW =  Uz(n+ ) n «-»d (% (n + )) ,
and nu. =  n+ fl u»“ * (n_).

For each i € n, set

Ui'i =  U'Ti =W ,(n + )n j,(W *(n + )) , and n' =  n+ n st(n+ ).

Denote by UW(C), Up(C) and U[(C) the universal enveloping algebras of nu,, g.« and 
n' for 1 € n and d G <I>r' . By the remarks just made about a} and /3k- we have

n+ =  <Ce, 0  n' and nu, =  0
k€[

as vector spaces, from which it follows that the product maps

and

are bijective.

Lemma 2.1.2

UzAC) 0W '(C ) -  U(n+ ) 

£/*( C ) ® - - - 0 t t A(C) — WU.(C)

1. For i € n, the product maps

Hi,, (dU'n —» ¿/+ and ; 0  —* ¿7+

are bijective.

2. The product maps

and

are bijective.

Hlj3t ■) ‘ * ‘ 1 Hl.ui

H l.tl, 0 • ■ • ¿Vt./J, —* U l.w

Proof
See proof of [Tit87b, Lemma 1], □
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Group Schemes
We say that (ft is a group functor on the category C if 0  is a functor from the 

category C to the category of groups, i.e. if

• for every 7? € Ob(C), 0(7?) is a group,

• every morphism 0 : 7 ?—* S for 7?, S  € Ob(C) induces a group homomorphism 
0 (0 )  : 0 (7Z) -»  0 (5 ) ,

• given T  € Ob(C) and a morphism 0  : 5  —► 7" then

0 (0 0 * )  =  0 ( 0 ) 0  0 (0 ) ,

and finally

o the identity map j : 7? —► 7?. induces the identity map 0 (t )  : 0 (7?) —► 0(7?) 
for every 7? € Ob(C).

Example 2.1.3
For each AC-algebra A  the functor Hom/c(.4, •) is a group functor on the category 

o f AC-algebras. O
A functor which is naturally isomorphic to one of the type described in Exam

ple 2.1.3 is said to be representable.
A representable functor from AC-algebras to groups is called a group scheme 

over AC. Unless otherwise specified, we shall be considering group schemes over Z. 
For more details of the following examples we refer the reader to [Wat79],

Example 2.1.4
The most straightforward example of a group scheme is 2100. This is often 

referred to in the classical literature as G„, a notation which we have not adopted 
so as to avoid confusion later. For any ring 7?, 2100(7? ) is simply 7? itself considered 
as a group under addition. If <f> is a ring homomorphism between two rings, 2100(0) 
is simply 0 considered as a group homomorphism. O

E xample 2.1.5
For the same reasons as in the previous example we use the notation OTuIt, 

instead of the more standard G ,n, to denote the group scheme defined by taking 
9JluIt(7?) to be the invertible elements of 7? under multiplication. The action of 
OTult on a ring homomorphism 0 is simply the restriction o f 0  to a group homo
morphism defined on the invertible elements o f its domain. o

Example 2.1.G
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The special line.ar group scheme of degree 2, S £ 2, is defined by taking 

6 £ 2(7£)=  : a ,6, c ,d € Tl , ad -  be =  l j

and by defining

e £ 2(<A) : © £ 2(-K) — © £ 2(5 )

( a b \ ~ 4>(b) \
( c <7 J V <A(c)

whenever <j) : ~R —♦ S  is a ring homomorphism. ©

Groups with a (B,iV)-pair
Proofs o f results quoted in this subsection can be found in [Car72, §8.1—§8.3], 

although alternative expositions o f the material can also be found in [Hum75] and 
[Tit74]. We note that in some sources, for example [Hum75], (B  , 7V)-pairs may be 
referred to as Tits systems.

A pair of subgroups {B ,N }  of a group G is called a (B  , N)-pair of G if the 
following axioms are satisfied;

B N 1 G =  {B  . N).

B N 2 B n  N  <1 N.

NB N 3 The group W  =  is generated by a set of elements 7? = {c, },g/. for
some indexing set 7, such that r, -  1.

B N 4 If n, 6 N  maps to r, tinder the natural homomorphism of N  into W  then

n,Bn, B.

B N 5 If n, is as above and n 6 TV, then

B n,B .B nB  C Bii,iiB  U B iiB.

We say that a (B  . 7V)-pair is saturated if

B  n N  =  f l  n B ir 1.
.1 e/v

The groii]> IT is called the Weyl group of the (B  , 7V)-pair. The generating 
set 7? is entirely determined by the ( B , JV)-pair, and the elements r, are called the 
distinguished generators of W . For each subset .7 C 7, let W j be the subgroup of
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W  generated by the elements { r, },e j  and let N j be the subgroup of N  mapping to 
W j under the natural homomorphism n : N  —* W .

Proposition 2.1.7
Let G be a group with a (B  , N)-pair. Then

1. For all J C I , P j =  B N jB  is a subgroup of G.

2. G =  BN B .

S. Let n ,n' 6 N . Then

BnB  =  Bn'B  ■<=> n(n) =  ir(n').

Thus there exists a natural one-to-one correspondence between double cosets 
of B in G and elements of W .

The decomposition G — B N B  is called the Bruhat. decomposition o f G. We 
introduce the notation N'g( H ) to denote the normalize! in G o f a subgroup H of G.

T heorem 2.1.8
Let G be a group with a (B  , N)-pair. Then

1. the subgroups P j are the only subgroups of G containing B,

2. P j =  A fciP j), and

3. distinct subgroups Pj and P^ can't be conjugate in G.

This leads to the following result.

T heorem 2.1.9
Let G be a group with a (B  , N)-pair. Then the subgroups Pj for distinct subsets 

J C I  are all distinct and
Fj fl Pk =  PjnK-

Thus the subgroups Pj form a lattice isomorphic to the lattice of subsets of I .

Example  2.1.10
The group 6 £ 2(K). where K is a field, has a ( B , N)-\mir, where B  is the 

subgroup of © £ j(K ) o f upper triangular matrices and N  is the subgroup of 6 £-dK) 
of monomial matrices. The subgroup B  PI N  is then the subgroup of diagonal 
matrices and W  is isomorphic to the symmetric group on two elements. o
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2.2 Root Data
Definition of a Root Datum

We define a root datum, P , associated to .4 to he a system

v =  (A ,{d ,}16a, { « n * a)

consisting o f a free abelian group A, whose Z-dual shall he denoted by A*, and two 
sets of elements « ¡ e A  and ct? G A ' indexed by n, such that

«> («* ) =  («> =  Aij

for all i . j  G a. where (•■•) is the dual contraction between A and A*.
We note that the realization of .4 mentioned in §1.1 is an example o f a root 

datum associated to .4. However, unlike realizations of .4, there may he numerous, 
essentially different, root data associated to a given generalized Cartan matrix .4. 
We mention some standard examples.
Example 2.2.1

The first example is the timply-connected root datum, denoted P <r. This is 
characterized by the relation

A* = ® Z o r .

Example 2.2.2
The next example is the adjoint root datum, denoted P,,,/. This is obtained by 

taking , for each i G n,
o , =  {A,j )je „ G Z"

and A to be the subgroup of Z " generated by the d, for ? G 1». The group A" and 
the elements o,v for i G a  are then determined by the general properties of root 
data. Note that if .4 is invertible then the vectors a , are linearly independent in Z" 
and so

A = ® Z d , .

E xample 2.2.3

P „
Related to the adjoint root datum is the minimal adjoint root datum, denoted 
This is characterised by

A = ® Z
jtu
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The group A* and the elements for i 6 n are then determined by the general 
properties of root data. If .4 is invertible then T>aj and T>,„ are equivalent. ©

Example  2.2.4
The final example I shall give is that of the universal root datum, denoted

respectively. Letting uj — a} and v' =  a'f, we put A and A* in Z-duality by means 
of the bilinear form represented by the matrix

Construction of the Weyl Group and the Real Root System 
from Root Data

an affine Cartan matrix, that the elements {n ,} l€a need not be linearly independent. 
Thus, if we were to define a reflection group associated to a datum D in a manner 
analogous to that described in §1.1, we would not necessarily obtain the Weyl group 
associated to the generalized Cartan matrix .4. In order to construct the Weyl group 
W  and the real root system 4‘ "  associated to .4 from an arbitrary root datum X>(.4), 
we must follow the procedure described below.

We first introduce symbols a, in one-to-one correspondence with the d, in D. 
Let A be the free abelian group generated on these symbols and let II = { o , } l6l!. 
Thus we have a group isomorphism

isomorphic to the Weyl group of .4 and 4>'r(.4) = U’ ( II) is the real root system 
associated to A. Define

P „n. This is obtained by taking A and A” to be copies of Z 2n, with canonical bases 
denoted by

(uj i vj)j€n and €n

o

We emphasize the fact, demonstrated by example 2.2.2 in the case when .4 is

tl

under which the canonical basis { b, } ,€n of Z " is identified with { o 1}i€„. 
Define fundamental reflections
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and let =  — $|jf. These are the sets of positive and negative real roots, respec
tively.

We note that the Weyl group, W , corresponding to A will nevertheless act on
A by

r,(A) =  A -  < (A )d ,

for i £ n. For any root a =  w(a,) £ <f>re, where i £ n and u> £ W , set a  =  ie(d,). 
This is an element o f A depending only on «  and not on the particular choice o f i 
and w.

2.3 The Root Group Schemes and the Toral Func
tor.

For each a € <$>’ *, we denote by Ur, the group scheme isomorphic to 21DD whose 
Lie algebra is 0„ (Z ) . This characterizes up to unique isomorphism. We note 
that given a ring 7Z. the group Ua( 1Z) can be identified with the additive group of

0<,(Z)® i n .

Thus the group Uf,(C ) can be identified in a canonical manner with its Lie alge
bra, 0„, which is a one-dimensional subalgebra of 0.4(C). We can immerse 0„ in 
Ant 0.4(C) by the application of exp ad . In this way, the groups U „(C ) for o £ $ rr 
can be viewed as subgroups of Ant 0.4(C) which are permuted amongst themselves 
by the action of IT*d .

Let {o ,/? }  C <!>" be a prenilpotent pair of roots. Choose a total order on the 
finite set 6(a,/3). Then there exists a unique Z-morpliism

V- : U „ x  U , -  I ]  U-r

where 7 runs over $(rv,/i) in the prescribed order, and such that the diagram

U„(C) x U„(C) ------- ------------- ► n  U,(C)

Ant 0.4(C)

commutes, where [•, •] denotes the commutator map. This is an extension to Ivac- 
Moody algebras of the fundamental theorem of Chevalley on the integrality of the 
coefficients appearing in the commutator relations.
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However,
Thus

we can go even further. Let 'I' be a finite nilpotent subset of <$r'.

0* =  ©  0«
ae*

is a nilpotent Lie algebra. Let [/* denote the unipotent (hence simply-connected 
by [Wat79, §8.5]) complex algebraic group whose Lie algebra is fl*. This character
izes Uq, uniquely. The proof of the following result relies heavily on the Z-form of 
U(0A(C )) introduced in §2.1.
P r o p o s i t i o n  2 .3 .1

There exists a uniquely defined group scheme. 11* containing all tl„ for  a  £ $ 
such that U*(C) =  U<t and. for any total order put on ’i .  the product morphism

n -  u*
06*

is an isomorphism of the underlying group schemes.

We define the toral group functor. Tp, to be Hoiiiz( A . OTlilt). Thus, for any 
ring H,

Tp(71) =  Homz( A , 'll*)

where 7?.x denotes the multiplicative group of invertible elements of 1Z. For every 
r £ 7?. we denote by ra‘ the element of Tp(7?.) defined by

A ~  , - « A>

for all A G A.
Note that since we have an action of W  on A we have an induced action of 

W  on Tp(7£). By a certain abuse of notation, denote by w the automorphism of 
Tp(7£) induced by an element w £ ]V.

2.4 The Kac-Moody Group Functor
In his paper [TitSTb], Tits shows that, provided we define the Kac-Moody 

group functor in such a way that it satisfies a few reasonable axioms described in 
detail below, (9p(K) is uniquely determined up to isomorphism whenever K is a 
field. Furthermore, lie gives a set of generators and defining relations for liVp(K).

The Definition of the Kac-Moody Group Functor
We shall be interested in Kac-Moody group systems,

5  =  (© p , tl+ . U_ , (<̂ , )i€n, »/) ,
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consisting o f a group functor two subgroup functors U±, homomorphisms

<fii : 0 £ 2 —► 0 x>

and a homomorphism
t ] : Tp —> 0 j>

such that 5 satisfies the following conditions; 

K M G 1 For every ring 7?., the homomorphism

»/(ft) : -  0 t>(TC)

is injective.

K M G 2  For all i 6 n and r g K ,

where ra? denotes the element A i—+ ra *̂A* o f Tp(7?).

K M G 3  If i is an injection of a ring 7? into a field K. then

0 p(/) : 07,(7?) — 0 p(K)

is injective. Furthermore, the groups U+(7?) and U_(7?) are the inverse images 
under 0 p(i) of U+(K) and U_(K). respectively.

K M G 4  For every field K,

• the group 0 t>(K) is generated by the images of i/(K) and ^ ,(K ) for i € n,
• the groups U±(K) are pronilpotent, and
• the kernel of

V5,(K) : 0 £ 2(K) - i 0 j>(K) 

is central in 0 £ 2(K) for all » € ».

K M G 5  There is a homomorphism

Ad : 0 7 ,(0  -»  Aut, 0.4(O

whose kernel is contained in i/(Tp(C)), such that for :  € C,
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Acl  ̂ \ j ) )  =  exp ad (-* /,-) ,

and, for t 6 Tp(C)
A d(ij(f))(e ,) =  <(d,)e;,

and
A d (i7 (0 ) ( / i )  =  -< (5 .) / . .

Tims Ad endows 0 p (C ) with an action on g..|(C). We further assume that 
under this action the groups il+(C) and U_(C) are the derived groups of the 
stabilizers in 0p (C ) o f n+ and n_, respectively.

The following result will be useful in calculations involving the homomorphism 
Ad described in condition KMG5.

Lemma 2.4.1
Let gA(C) be a Kac-Moody algebra and r  an element in 0.4(C) such that ad r  

is locally nilpotent. Then for all 0 € Aut 0.4(C).

0exp(ad x)0~' =  exp (ad Ox).

Proof
This is a direct extension of [Car72, Lemma 5.1.1] with the condition of local 

nilpotency replacing that, of nilpotency. The original proof extends in the usual 
way. CD

I11 order to investigate such Kac-Moody group systems, we introduce the Stein
berg group functor ©t =  ©t(.4), which depends only on the generalized Cart an 
matrix .4. and not on the full root datum T>.

The Steinberg Group Functor
We define ©t as the inductive limit of the functors U(1 and Ue(j,7], where o  € $ rr 

and {/3,7 } runs over all prenilpotent pairs of roots, relative to all canonical injections

Ha *

for q 6 O[0, 7].
A11 alternative way of describing ©t is as follows. For each root r> 6 $ + , let ea 

and f „  be the root vectors corresponding to n and —o, respectively. Associated to 
these root vectors are well-defined isomorphisms

•T—a a  •: 210 0 —♦ U0 and : 2100 U_,
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For every prenilpotent pair of roots { « ,  ¡3}, choose a total ordering on 0(a, (3). Then 
there are well-defined integers Ca such that, for any ring 7? and any r t, r2 € It 
the commutation relation

[a-Q( r , ) , a - /3 ( r 2 ) ]  =  I J  x i  { C°H ir \ r i )
7=io+j/3

holds inside Uo[Qi/3)(7̂ ), where 7 runs over # («,/?) in the prescribed order. We then 
define ©t(7?) to be the quotient of the free product of the groups ilf,(7?) for o  € $ re 
by the smallest normal subgroup containing all the elements

*/>(r2)*a (r i)* /}(-r2)*a( - r , ) . n 7=,<,+>/j*7 {Cafar\rty , (2.4.1)

for 77, r2 6 7?, {o , /7} a prenilpotent pair and 7 as above.
For every i € n the automorphism .s, of 0,.»(C) introduced in §2.1 induces an 

automorphism of the functor ©t, which we shall again denote by a, by a slight abuse 
of notation.

An Approximation to the Desired Group Functor
Set il, =  Ua, and U_, — U_ai for each i £ n and let

Xi : 2100 U, and *•_, : 2100 -> U_,

be the isomorphisms associated to e, and /, respectively. Denote by n,(r) the 
canonical image of the product

xi(r )x - i ( r~t )*i(r )

in ©t(7?.) for r € 71* and i € n and set n, =  «,(1 ).
We define a group functor <&/> by taking 0p(7?) to be the quotient of the free 

product ©t(7?) * Tp(7?) of ©t(7?) and T/>(7?) by the smallest normal subgroup 
containing the canonical images of the following elements, where i € n, r € Tt, 
i € 'I-p(TZ), and r“  ̂ is defined as in §2.3:

1x,(r)t lx ,(t(o ,)r ) ' , (2.4.1)
" , t", 1 (n,(t))~' , (2.4.1)

for r ^  0, (2.4.1)
n,un~' for u £ U„(7?), a  £ fl*'1’ . (2.4.1)

The canonical liomoinorphisms

U„(7?) -  ©1(7?)
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can be shown to be injective and we shall thus identify the groups Ua(TZ) with their 
canonical images in St(7Z) and thence in 0 p(7?.). Similarly, the image o f ?», in 
<St(7Z) will also be denoted by n<.

Let i £ n, and a £ <I>rc. Suppose

Let @, denote the set of all roots n such that the elements of the form (2.4.1) are 
already equal to the identity in (5t(7?). That is to say, 0 ,  consists of all roots o for 
which the relations (2.4.1). hence in particular the relations (2.4.1), are consequences 
o f the relations (2.4.1). The following result, whose proof can be found in [TitSTb. 
§3.7], highlights the relevance of the set (-),.

L emma 2.4.2
Suppose 0 ; =  <I>’ '  for all i £ n. Then the kernel of the canonical homomorphism

is central. Furthermore, if T> is a simply-connected root datum then the above ho
momorphism can be shown to be surjective and so we can deduce that <5t(7?) is a

Thus it would be interesting to know when 0 , =  for all i £ n. The following 
result, from the same source as above, provides a partial answer to this question.

L emma 2.4.3
Suppose that all m,y, defined in Table 1.1.31. are finite. Then, for any given i,

ea £ 0O and er,-(a) €  0r,-(a) 

are chosen so that er|.(„) =  s,(ea) and let

xa : 2100 -♦ U„Cft) and ^^(0) : 2150 —► Ur.(Q)(7l)

be the corresponding isomorphisms. Using equations (2.4.1 )-(2 .4.1) we can deduce 
that the element

(2.4.1)

of <5t(7? ) is an element of the kernel of the canonical map

St(7?) — 0p(-fc)

and so is a relation in 0 p ( K).

<51(7?) 0p(7?)

central extension of

<K' \ { ± 0 , } */ Mij =  2 for all j  ^  i,
otherwise.
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The Main Theorem on Kac-Moody Group Functors
Let U+(7?) (respectively U_ (7?.)) denote the subgroup o f © p(7Z) generated by 

all U0(7?) for a 6 <!>" (respectively a € 4>'_e), and let x+ and J'_ be the homomor- 
phisms

of 2100 in S i }2- respectively.

Theorem 2.4.4
Let 3  =  (© p . U+ , i l-  , (*?,),<=„. '/) a Kac-Moody group system correspond

ing to some root datum T> =  T>(A), as defined at the beginning of §2.4-

1. There exists a unique homomorphism of group functors

7r : ©p —+ ®p

such that

• the canonical map
T -  ©p

followed by n coincides with i),
• the composed map

2100 -»  U±, -> ©p -> ©p
is </ie tame a.« *p, ox±. and

• 7 r ( (75-)) C H±(7i) for all rings 7Z. with equality holding whenever 7? is 
a field.

2. If K is a field, then
tt(K) : ©p(K) -+ ©p(K)

is an isomorphism.

Using highest weight modules and the Z-form i/* of U( 0 /»(C)) described in §2.1. 
we can show that there exists a Kac-Moody group system 3 for all root data T> =  
T>(A).

2.5 Kac-Moody Groups over Fields
In the preceding sections, we have shown that a Kac-Moody Group ©p(K) over 

a field K can be constructed by means of generators and relations. We summarize 
this construction with more familiar notation and state a few properties satisfied
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where throughout £ £ K* , //, i) £ K. and a ,ß  € i ’ " .  The coefficients C0la7 are the 
integers defined earlier depending on a, ß, and the order in which the x7 are taken, 
but not on p or i], and Ca-t1,0+0 =  Nag where [e„, eg] =  Naßea+ß. The coefficients 
T)itc are the integers such that

^i(^a) — V*.cr̂ r,-(a)

where s, =  r"d is the automorphism of fl.i(C) introduced in Lemma 1.1.27.
Lemma 2.5.1

With the. above notation, the relations

hra(p)h~i =  r a(a(h )p) and n,-(0 *a(/Oni(0 -1 =  *r¡(a)

for a  g p <E K and £ 6 Kx are consequences of those already given above. 
Proof

We first prove the result for the first relation. Sine«' i>r'  = W (II), it is sufficient 
to check that

hxrpa)(n)h 1 =  xri(Q)(r1(a)(/i)/<) given that hxa(p)h  1 =  xQ(o(/i)/i).

But we have,

**r,(o)(/i)h-1 = hnixa(fi)n~1 h ~ l
n,(n~1 /in, )xa(p )(n" 1 h~'n, )n~
n,r,(/i)x0(/i)r,(Ä)- 1n1_1
n ,ra(a i(ri (h))p)n~1
*r,(o)(a.(r,(h))/i).

So the problem is reduced to showing that o (r ,(/i)) =  r,(a)(h). It is sufficient 
to do this in the case h =  A ® ( ,  so we get

o ( r , (A ® 0 )  =  « (r ,(A )© £ )
_  f(a,*«(*))

and
r,(a )( A © 0  =

So the problem is further reduced to showing that (r»,r,( A)) =  (r,(a ), A), but

(a,r,(A )) =  (a. A -  (a ,, A)a*)
=  (o, A) -  (« ,, A)(a,rt,v)
=  (a -  (a ,a * )a ,, A)
=  (r,(a),A ).
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Thus hr„((i)h  1 =  xa(a(h)p) is a consequence of the relations in the presentation 
o f 0 p(K).

For the second part of the result we note that

n.(0 *«.0 i)n.(0 -1 =  hi(()n ,r „ (p )n - 'h i( 0 " '

=  *r, (o)( V.,a »•.(«)( /l, ( £ ) )/l)

=  *r,<a)(*.ar<0’0iV ) .
□

Note that the elements of the form r n(/i) for a given a € <I>r'' and any /< £ K 
he in a subgroup

-Y„ ={><,(/<) : / i e K )
of 0p(K ). Furthermore, there is a homomorphism

V? : © £ 2(K) -»  (X a , -Y_Q)

tinder which

(i l)^X“(//) an<1 ( -i
Consider the group Ba = (X a,H ). We have

H C . ^ v{K)(X a)

for each a £ <!>’ ' ,  whence
Bn =  A'„ x // .

Let N  =  ( / f , n,- : i £ a).
L emma 2.5.2

f. For any w £ W. there exists an element n £ jV such that

nBan =  Hyijo)

for all a £ <I>re.

2. If a and o ' are two distinct roots, B„ Ba>.

S. There exists a unique homomorphism u> : N —* W  such that for n £ N  and. 
o  €

nB„n  Hu'(ri)(a)‘
Furthermore, the kernel of uj is H .
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We define

U+ =  (X a : a e *;•) and U- =  (X a : a  € $1').

These are subgroups of 0 p ( K) and U+ fl U- =  {1 }.
For each a £ <&, H C Ar&v^ )(X a) and so

H  C Ai9vW (U+) and H  C A^o(K)(tf_ ).

Consequently we have subgroups D+ =  tr+ tx H and Z?_ =  tx H of 0 p (K ) with 
fl+ n f l . =  if.

T heorem 2.5.3
TVie pairs (B + ,N ) and (B - , N ) are. saturated (B ,N )-pa irs of 0 p (K ). Both 

(B  , N)-pairs satisfy
B+ C\N =  H =  B . n  N,

whence we see that they share the same Weyl group, W  — N/H. Furthermore

B+ H B - =  H.

When W  is finite there is a unique te0 £ IT' whose length is maximal. An 
element n € N  such that n(n) =  te0 will conjugate B+ into Z?_ and vice versa. 
However, when W  is infinite no such word of maximal length exists and in this case 
no conjugacy exists between the two ( B , N )-pairs.

Thus, by Proposition 2.1.7,

B+NB+ =  0p (K ) =  B -N B ..

are two Bruhat decompositions of 0p(K ). However, since B± =  U± tx H and 
H C N , we can further refine this decomposition to obtain

U+NU+ =  ©p(K) =  U -N U -.

Proposition 2.5.4
The map w >—► Z?_u B + is a bijection of IT' onto B~\&p(K.)/B+ . 

This gives rise to a Birkhoff decomposition

0p(K) = B .N B +

of 0p(K ), which we can again further refine to

0p(K) = U -N U +.
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We now consider some of the consequences of condition KMG5. We thus con
sider the group tftp(C) and the homomorphism

for all a £ 3»+ and z £ C.
Proof

Recall that each «  € 3,'e is the image of at least one fundamental root under 
some element of the Weyl group W  and that W  is generated by the elements 
r,. Suppose a =  a i(o j) for some j  £ R and some w £ W . We prove the result 
by induction on the length of w. The result is true for all fundamental roots by 
condition KMG5.

Suppose now that a 6 \ II and n =  it'(atj) =  for some k € n and
some w' £ W  with ((re') < ((re). Let o ' =  rv'(atj). Suppose o ' £ Then o ' £ 
but ric(a') £ 3,,+l and we use Lemma 1.1.25 to conclude that o ' =  — o* and therefore 
o  =  or- contradicting our choice o f o. Thus o ' £ and

Ad (xai(z)) =  exp ad zea> and A d (*_„<(*)) =  expad z fa> 

by induction. Now. the defining relations imply that

Ad : &p(C) -*  Ant 0.4(C).

Recall that

and

for all Oj £ II. We note that this implies that Ad(nt) =  for all i £ n. 

Lemma 2.5.5
With the above notation

A d (r 0( : ) )  = e x p a d ;e „

and.
Ad ( x - a(z)) =  exp ad z fa

•To(i) =  ' a,,(1 * - o ( * )  =  r r k r - a ' ( i l k . - a ' i ) n k

and so we deduce from Lemma 2.4.1 and the fact Ad(n^) =  »k that 

A d (xa(z ))  =  expad sfc(j/*iQ.*e0.)
=  expad iik,a'*Sk(ea') 
=  exp ad zea

and similarly Ad(.r_0 (r)) =  exp ad zf„. □
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Examples
We begin by considering some refinements of the description o f 0j>(K) in terms 

of generators and relations for particular root data 'D. We note that since

where »/li0 € { 1, —1}. we may omit the elements xa(p) where a §? ±11 from the list 
of generators.

Example  2.5.6
Consider the group associated to the simply-connected root datum T>,e intro

duced in Example 2.2.1. Since

n,xa(p)n; =  x ri(a)(t/,,a/i)

I €n

H is in fact generated by elements of the form

M O  =  o,v ® i

for t € n and (, € Kx . However, one of the relations in 0 p JC( K) is that

MO =  MOM1
and

n,(t) =  * a M ) x - „ . ( O ')•<•«. (0 -  

Thus 0 p <r(K) is generated by the elements

xa,(p) and 0 0

for i € u. And // 6 K. o

Example 2.5.7
Suppose .4 = (Aij)itjga is a C'artan matrix and let .4 =  be the

extended Cartan matrix obtained from it. Consider the group associated to the 
adjoint root datum. introduced in Example 2.2.2. Recall that

where
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Now, since .4 is singular, its columns are linearly dependent. However, since ,4 has 
column rank n and no two of its first n columns are linearly dependent we see that

A =  0 Z «i.
ien

Thus A* has a basis defined by

=>,y(à>) =  Sij

where 6t] is the Kronecker delta and so

{ * < ( 0  :=  ® (, : * € € Kx }

is a basis for H . We shall refer to {x ,tv },€!i as the fundamental coweights of T)aj(A ). 
Note that we can express a)' in terms of this basis, namely

a 7 =  T . A->a }j€a

for each i £ Uu- Consider the n equations we obtain if we consider the above 
expression for i £ n. The matrix for these equations is A. Since A is invertible, 
we may solve the system of equations and thus express the elements { zzf } l£„ as 
Q-linear combinations of the elements { o / } , €l!. Suppose that, for each i £ n,

w f = Y . Bo a )
jen

where D,, £ Q. Then
fc- r ( 0 ® 0

jeu
for all £ 6 Kx . If B,j £ Z for all i , j  £ n then

jeu

is well-defined and in such cases we may omit li £ H from our list of generators. 
However, in general, the elements

for i £ Ho, j  £ n , fi £ K and £ £ Kx generate ©pnrf(C). ©

Example 2.5.8
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Suppose .4 and .4 air as in the previous example. Consider the group associated 
to the minimal adjoint root datum, 'Dm(A ), introduced in Example 2.2.3. Recall 
that

T>,n(A) =  ( ©  a „  {a ,} .€ao, {«n .e n . ) •V'es« J
Thus A =  ©.gno a,- and A* has a basis {co/J.gn,,, given by

t®,y( « i )  =  hj,

which we shall refer to as the fundamental coweights o f Hence H is generated
by the elements

for i G rig and { £ K* and the set

: i e n0,£ e Kx ,// G K}

is a set of generators for ® p,„ (C).
An important feature of the minimal adjoint root datum is that the action of 
(C) on the Kac-Moody algebra 0 ,j(C) induced by condition KMG5 is faithful. 

For, suppose there is a lion-trivial element h G H which acts trivially on 0 .-,(C). 
Such an element h G H has a unique expression of the form

It =  l>w%(io)l>a,?((l) - • ■ I'rvXU")

for some £, £ K* , i G n0. Since the action of li on 0 ,j(C) is trivial we must have

£ < a . « ° 0  > £ < “ ■“ ’ 1V > . .  .  £ { a ,w X )  _  J

for all G Kx , i G n0, an<l a  G 4>,e(.4). Since h is non-trivial by assumption, there 
must be at least one k G nu for which £* ^ 1. Choose k so that it is minimal with 
respect to this property. Thus our original condition on the i G n0 yields the 
equation

_  f-(o.W.'i) 1
S (h —  S r i  S J t + 1

for all a  G $ " ( .4 ) .  However, if we now consider the particular case where o  =  a*, 
this equation implies the triviality of which is a contradiction.

Thus we have shown that H . and hence ©pm(C), acts faithfully on 0 ,j(C). O
In the following examples we use the notation and © £ to denote the group 

schemes corresponding to X>,„/(.4) and T>,C(A) respectively.

Examim.k 2.5.9



§2.5 Kac-Moody Groups over Fields 107

When A is a Cartan matrix, the definition given coincides with that of Chevalley- 
Demazure group schemes. Thus if .4 =  A„ we see that

<S.4C"(K) Si 6 £ n+1(K) and 0 a4d"(K) 95 <P0£„+1(K),

where ip 0 £ n+1 denotes the projective general linear group functor. Similarly, if 
.4 =  D n, then

0?r"(K) 35 6pin.2n(K) and 0^"(K ) 3! P (C 0 2n(K r  ),

where 6 p in 2n(K) denotes the spin group and P( f D 2„(K )“ ) denotes the projective 
group of the connected component of the conformal orthogonal group of degree 2n. 
We note that, in the case of £)„, the special orthogonal group of degree 2n appears 
as the Kac-Moody group corresponding to a root datum which is neither adjoint 
nor simply-connected. ©

E xample  2.5.10
Consider the extended Cartan matrix of type .4,,. It can be shown that there 

is a normal subgroup K of 0 ,)n(K) isomorphic to Kx such that

0.i"(K)/AC S  © £ n+1(K [M -1 ]).

This is in fact a special case o f  the following example. ©

Example  2.5.11
Let .4 be a Cartan matrix and denote by .4 the corresponding extended Cartan 

matrix. Then there is a normal subgroup K. of 0 £ (K ) isomorphic to Kx such that

0 . i (K ) /K  35 0 4 {K [M -1 ]).

©

Some Generalized Isogenies
Suppose now that .4 = ( A,j )( €n is an arbitrary generalized Cartan matrix. Let 

<J> = $ " (A )  and suppose II is a set of fundamental roots for 'I>. Denote by 0 ,„ , 0,,,/ 
and 0 „c the Kac-Moody group functors 0p„,(^), 0f>ni((A) and 0p„(,4| respectively. 
Suppose that

0„,(K ) =  (r „ (/i). : o  € 4>,p € K, » 6 n ,(  € Kx )

and
0 ,r (K )  =  (x'a(fi) : n  €  4>,/< €  K ).
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We note from §2.4 that the subgroups ll±(K) C <5„r(K) are isomorphic to the 
subgroups U±(K) C ($,„( K).

We define a map i(K) on the generators of © „ ( K) by letting

In order for the map /( K) to extend to a group homomorphism it must preserve 
the defining relations of 0«.(K ). Thus we must show that the relations

We note that i(ft ') (»»'(£)) =  « ,( ( )  and i\fk)(h'i(£)) =  /i,(£), so that the first two 
relations are clearly preserved.

Since the restriction o f /(K) to U'±(K) is an isomorphism onto U± ( K), it follows 
that any relation involving only positive or negative roots is preserved by i( K). 
Furthermore, the construction involving 6t( K) of all Kac-Moody groups associated 
to .4 over fields implies that the structure constants Cai)~, are the same in the cases 
in question. Hence the commutator relations are preserved.

Similarly, the relations of the form

are preserved since the constants are also independent of the particular root

j(K) : r'Jp) -> xa(p)

for each a £ $  and p G K. 

Lemma 2.5.12
The map i(K) extends to a group homomorphism

.(K ) : <S.c(K) -  © m(K).

Proof

hteW A  C) =
K U W M ) =  m e m o
x'civW J 1')  =  xa(f‘  +  " )
h 'x\ (p )h '~ x = x 'A a A h ')^ )

ye*rr, o#±/3, 
{a ,/3 } prenilpotent

and
ymia+j0*j€ *

nÎ*o(/*X 1 =
are preserved, where

and

= XrAn)('l..nP)

datum in question. Since the action of the Weyl group is also common to all Kac- 
Moody groups associated to .4, the relation
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is also preserved.
Finally, it remains to show that the relation 

is preserved, for which it is sufficient to show that the relation

is preserved. This is the case since all the root data in question are associated to
A.

a
Analogous arguments show that the map

*.n(K) : <S,r(K) <S,lrf(K)

defined in a similar way is also a group homomorphism.
Similarly, we can also construct a group homomorphism

»o„,(K) : 0 „ rf(K) -  © m(K)

though its definition varies with the type of the GC'M .4.



Chapter 3

Automorphisms of Kac-Moody 
Groups

The aims of this chapter are twofold. Firstly, we describe the work of Hee on 
the fixed point subgroups of groups with root data under particular automorphisms, 
of which Kac-M oody groups over fields are an example. This allows us to give a 
generating set for the fixed point subgroup of a Kac-Moody group in terms of the 
fixed point subgroups of the root groups and the stable elements in the maximal 
torus. This will prove to be of great importance in our later work. Throughout this 
exposition, we shall denote by R +, R_ and R x the set of elements of R which are 
> 0, < 0, and /  0 respectively.

Finally, we describe the work done by Carter and Chen regarding the automor
phisms of affine Kac-Moody groups in [CC91], In particular, we give a classification 
of the automorphisms of affine Kac-Moody groups.

3.1 Root Bases
Let B = ( I .Woc .  g)  he a quadruple consisting of a set / .  a real vector space 

V , a basis a  =  { n , } ,e / o f V', and a family q — { o, },e/ o f automorphisms of V. We 
call B a root prebasis if. for each i £ / ,  there exists a linear form <j>, on V  such that 
<t>,(o ,)  =  2 and pj(v) =  v — for all r € V,  so that g, is a reflection in the
hyperplane perpendicular to o, for each i € I .

An automorphism of B is a permutation •> of I  such that if we denote by ■> the 
element of GL( V)  defined by

a.' *-» «MO
for each i £ I, we have

t e n ' 1 =  PMO
for each i £ / . 110
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The Cartan matrix of B is defined to he

A(B)  =  .4 =  (A ij)ijei

where .4,j =  4>,(a} ). For each i £ / ,  .4,, =  2. Two prebases sharing the same Cartan 
matrix are isomorphic. Conversely, suppose that

A =

is a matrix with coefficients in R. satisfying .4,, =  2 for all » £ / .  We shall call 
such a matrix a weak Cartan matrix. Then any weak Cartan matrix is the Cartan 
matrix of a root prebasis of the form

B(A)  =  ( / .  R |71, or', q ' )

where | I  |= card /, ex' is the canonical basis o f the restricted product and the 
family q' is entirely determined by .4.

Suppose that, for each i , j  £ J, mtJ is the order of q,Qj in GL(V) .  Then we 
define the Weyl group of B to be the group given by the following presentation;

W( B)  =  W  =  <(r,)i6/ : (r,ri )m-> =  1 if m i} ±  oo).

The pair (W,  {r, : i £ / } )  is a Coxeter system. The group W  acts on V  via the 
representation

f>e =  p : W  -  GL( V)

defined by 

for each i £ I.

P(rt) =  Qi

We then define the action of W  on V  by taking

« ’(«’ ) =  (/>( « ))(* ’ )

for w £ W  and v £ V.
The roots of B are then defined to l»1 the elements of the set

= $ rr = {«-(o .) : «< € ir,» 6 / } .

A prebasis B is said to be reduced if for every i £ I

«F’’1' ft Roj =  {o ,,  — o , }.

Suppose we have a subset .7 Ç / .  Associated to .1 is the subgroup

W j =  (r, : i 6 J)
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of W . Note that ( W j , {r ,} ,€j)  is a Coxeter system. Let Vj be the subspace of V 
generated by the set { o , } ,€j, and denote by £>Jv the automorphism of Vj induced 
by Qi for each i € I ■ Then

B j  =  ( J ,  Vj ,  {ei|v>}>6j)

is a root prebasis with Weyl group W j. Let

$ 7  =  V' ( B j ) .

We say that J C I  is spherical if W j is finite, in which case we denote by wj the 
unique longest element of Wj.

For every subset $  o f V, we denote by 'I' + and _ the set of elements of 'I' 
whose coordinates with respect to the basis or are > 0 and <  0 respectively. Note 
that

<!>'_' =  and <*■;* n =  0.
We say that a prebasis B is a root basis if

<£re =  $ 7  U $ 7 .

Lemma 3.1.1
Suppose B is a root basis. Then the following statements are true.

1. If w G W  and w(ai)  € f OT then w =  1.

2. The representation p : W  —► GL( V)  is faithful.

S. For i , j  G I and to G W  we have

w(ati) G R oj <=> wriW~l = r3.
J). For each a G <hr<: there exists at least one pair (to,i) G W  x I  such that

O =  M '(o,),

and the element
r„ = tor.-to-1

is independent of the particular choice of such a pair («>,«).

Proof
See [H!ha, 2.13] f< >r proof. D

Lemma 3.1.2
Suppose B is a reduced spherical root basis. Thus W( B)  has a unique longest 

element, which we shall denote by to/.
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1. The element wj interchanges i>+ and. <!>_ and is fixed by Ant (B).

2. If Ant (B) acts transitively on I, then there exists an element 7 6 Aut (B) 
such that for all i 6 /

«>/(«;) =  -«•*(■)•

Proof
See [H91a, 2.27]. □

Suppose that B is a reduced root basis. A subset 'P of V will be referred to as 
a B-root system if it satisfies the following conditions;

• «P C {Ao : A € R x,a  6 $ } ,

• for each i € / ,  the set <P fl Ro, is finite and non-empty, and

• <P is stable under the action of W(B).

Thus <P'r is an example of a B-root system.
If $  is a B-root system, a subset C $  is said to be B-prenilpotent if there 

exist elements w and «>' of W  such that

u) (9 ' )CV+  and u>'('P') C V_.

Action of a Finite Group on a Root Basis
Suppose B is a root basis. The group Aut(f?) of automorphisms o f B can be 

made to act on W  by defining
?(»•.■) =  r ,(j)

for 7 € Aut($) and i 6 / .
Let r  be a subgroup of Aut(B). Denote by W l the subgroup of W  consisting 

of elements of W  fixed by I\ Let V  be the set of spherical orbits of I  under the 
action of r.

Proposition 3.1.3
The pair (W 1 . {»rjJ./g/>) a Coxeter system.

Proof
See [Hi)la, Proposition 3.4] for proof. O

Suppose r  is finite. For each v € V, let

1 = H  7(f)-
■ver

V
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Given any J £ /*, the element a} where i £ J is independent of the particular 
choice of »' £ J. Define a j  =  a }, i € J. Let V 1 be the subspace of V  generated by 
the vectors { o j } ; 6/i,

Proposition 3.1.4
1. For each J £ P , w j induces on V'1 a reflection qj corresponding to the vector

o j .

2. The quadruple
B' =  (/* , V 1, [q j } j€p , { e j } j e n )

is a root basis.

S. The groups W r and ll (Z)1) are isomorphic. More precisely, the homomor
phism of H'r into G U V 1) which associates to every element »<> € W 1 the 
restriction of pe(tv) to V 1 is an isomorphism from W l to p î (XV(B1 ))■

Proof
See [H91a, 3.11] for proof. O
Suppose now that B is a reduced root basis, and let 4* be a B-root system 

which is stable under the action of T. Denote by 'Pp-prm the set of elements of <P 
whose orbit under the action of T is prenilpotent. Define

= { o ’ : a £ 'Pp-pr™}-

Lemma 3.1.5
1. =  U Je/1 { « ’( a 1) : a  €  *P+ 0 V j . t r  £  VPr }.

2. The. set ty1 is a B 1-root system.

Proof
See [H91a, 3.12] for proof. □

3.2 Root Data Associated to Groups
Throughout this section we assume B to be a reduced root basis, with root 

system 'P" and VVeyl group YV. We suppose furthermore that >P is a B-root system.
Suppose that the subgroup F of Aut( B ) introduced in §3.1 stabilizes *P We 

say that <P' is an N-c/o.icrf subset of <P if <P' contains the set
<P f~l {Acv + / < / * :  A,p € N , « , / * e  >P'}.

For each o ' € i*1 denote by the smallest N-closed subset of *P containing the
set

{ / i  €  » P - p r r n  * f l '  =  O * } .
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Positive Root Systems Associated to Groups
Consider a group G and a family (A'0 )q6* + of subgroups of G. For each subset 

! l C i + let
An = (A a : a  G R)

and define
Rred =  {a  g ft : /» € R ./m  € ÎÎ =» /* > 1).

For each a € Slred let
la ,n =  (-Y„a : /< G R ,pa G R)

and for each w G IV define

X *  =  (A „ : a  G 'P + ,«>(a) G ’!'+), and X ~  =  (A a : a  G ^  + ,u>(o) G 'Î - ) .

Finally, let
Ya =  (X „0 : / . G R , / » a G * )

for each a G $ + .
We say that (X a)a€<t,+ is a positive root system of type (5 , ^ + ,N) in G’ if 

P R S1 for all prenilpotent pairs {n, / i }  of distinct elements of ’Î  +

[A0, A,j] Ç (A.a+j/3 : ¡ J  G N, «o +  j/3 G 'I'), and

P R S 2  for each w G IV, X +  0  X~  =  {1} .

R emark 3.2.1
Suppose that condition PRS2 is satisfied. Then, since ^ is a 5-root system, this 

means that for any pair { o 0,/fo} of distinct elements of there exists a partition 
(V . Q) of such that o 0 G V. /)0 G Q and

(V„ : a  G P) n (1', : / i G C >  =  { l } .

Since 5  is reduced, this means that there exists an element te G IV which distin
guishes between o () and /i0, i.e. such that one of the elements » ’(oq), w(fi0) is in 
and the other is in ©

Root Data Associated to Groups
Let G' be a group and suppose (A’„ ) „ elj is a family of subgroups of G, A  is a 

subgroup of G  and H is a subgroup of N . Define

U =  (Xa : a G *  + ), U-  =  (-Y,, : a G ¥ - ) ,
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and

for each n £ 4>re.
Y„ =  ( X Xa : A € R . A >  0,Aa 6 i )

For each w £ W , let

Y~ =  X -  =  (X„  : a  € * + , « ’( « )  € #->
We say that

((* « )«€ * , N , H )
is a root datum, o f type (B. ^ . N) associated to the group G if the following conditions 
are satisfied;
R D G 1 G =  (H,U,U_) and UH fl U- =  {1 } =  U n U - H .

R D G 2 For each prenilpotent pair {o , 3 } o f elements of 'I'.

\Xa,Xn\ C (A aq+̂ /3 : A./< € N, A« +  p/3 £ '!’ )•

R D G 3 There is a surjective homomorphism
* : N  -*  W

n i—» «>„
with kernel H , such that for each ti £ N  and a £ ^

o A ((it — -Yu.„(o)-

R D G 4 For each i £ I. K_0( /  {1} and
,\ {1 } C YatN,Yai

where
N, =  {n € N  : u>„ =  r,}.

The following result establishes a connection between the theory of positive 
root systems and that of root data.

Lemma 3.2.2
Suppose ((JY0 )0g#, N, H ) is a root datum of type N) associated to the

group G. Then the family (-Yn)o€>|i+ is a positive root system of type (fJ.’J' + .N) in
G.
Proof

See [H91b, Leinme 4.3] E
Tin- following result illuminates some o f the structure of a group equipped with 

such root data.

Proposition 3.2.3
Suppose ((A ’a )0£<ii , N , H )  is a root datum of type N) associated to a

group G. Let B  =  UH and =  U-H.
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1. (B . N ) and, ( B - , N )  are two (B,  N)-pairs in G.

2. For each x 6 G there exists a unique triplet

(u , ,n,u)

such that «i € U, n £ N, u 6 Y~n and r  =  utnu.

3. The map w ►—> B -w B  is a bijection from W  to the set B-\G/B, where W is 
identified with N/H via tt. In particular

G  =  U-NU

and so G has a Birkhoff decomposition.

Proof
See [H91b, Propositions 2.8-2.10]. E
We refer to a decomposition x =  u \ n it as in the previous result as a Bruhat 

decomposition of x.
The following result is a generalization of [H91b, 2.12], though the proof is 

analogous.
L emma 3.2.4

Let B be a reduced root, basis, <I>" =  '!>" (B), and

( ( X n )oe*r,i N, H)

be a root datum of type (B . $ pe, N) corresponding to a group G. Suppose A is a 
spherical subset of <!>"'. Let Vs be the subspace of V’ spanned by the elements of A 
and index K  by \ K  |. Let

Bk =  (\k  \,vk . k ' , { e „ } „ CA)

where g„ denotes the reflection in the hyperplane perpendicular to o . Let

$ a  =  $ " ( S a ) and H a =  W( B k ).

We identify <1* and H’/, with the corresponding subgroups of <I>rr and \Y(B) respec
tively. Define

La =  (H, X 0 : o  S <1>a )
X K = (X a : o  € (4>a )+), -Y .a =  (-Y„ : a € ( * * ) - )

N s  =  tr- , (^ A ') and Ps =  B N s B.
Then

( ( Xa ) „e*K, NK' H )
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is a root datum of type. ( B/, . <I>, N ) corresponding to Lk - and

Lk =  X k N k X k =  X - k N ^ X - k -

Proof
For each o  € K  denote by ra the element of W  corresponding to ga. Let

Na =  7r~'(ra ).
Then

Nk =  (H,Na : «  € K) .
However, H  Ç Lu and

Na C ( H , X 0 , X - a) Q L k

and so Nk Q Lk - Furthermore
$ r'  n  Vk  =  * ( 0 a )

since B is reduced. Tims the restriction of tt to Nk satisfies the first of the properties 
for condition RDG3.

The remaining root data properties follow from the fact that

( ( -Y0 )o€*r' yN,H)
is a root datum of type (B. , N) corresponding to a group G.

Thus (.Yk H ,N k ) is a (B . A’ )-pair in L and we deduce that
Lk =  (Xk H)Nk (Xk H) =  X k NkX k

from Proposition 2.1.7. Similarly we deduce that

Lk =  X - k X k X - k -
□

We shall refer to Lk as the Levi subgroup corresponding to K.

E xample  3.2.5
Consider the case of a Kac-Moody group as defined in Chapter 2. Recall 

that we can define a group functor (Py on the category of commutative rings such 
that tft/;(K) is the Kac-Moody group corresponding to the root datum D  = D(A)  
associated to the GCM .4 whenever K is a field.

We construct a root basis B =  B(A) associated to .4. We now define
-Y„ =  U„(K), H =  T d(K) and N  =  (H. m : * e I)

where n, =  j-,(1)j-- i(1)j-. (1) in the notation introduced in Chapter 2. Let <I>r‘ =  
4>'r(A). Then, from tin- results in §2.5. we see that

((-Y0 N ,H )
is a root datum of type corresponding to <ft»(K). ©
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3.3 Twisted Groups
Throughout this section we suppose T to be a finite group of automorphisms 

of B as introduced in §3.1 which stabilizes 'P.

Twisted Positive Root Systems
Suppose that (-YQ)oe*+ is a positive root system of type (B. ) in a group

G.
Let E be a set and

(7<r)<res £
be two families of endomorpliisms of the group G such that for all a € S

• for all o  € 'P+ , r„(.Y„) C .Ya and

• there exists a 7„ € T such that, for each a € <P + , 7„(-Ya ) C JYi(,(ffl).

Denote by G 1 the set o f elements r  6 G such that

7<r(-0 =  t„ ( x )

for each a €E S. Let
x'at =  G ' n x K l

for each a 1 6 ('Pl )+.
Suppose that, for each prenilpotent pair of elements { o 1, / }1} of (fl*1)+ , at least 

one of the following holds: 'P„i C i  iti , <P ji C 4>0i, or every pair consisting of one 
element from $„i and one from 'Pl,i generates a free abelian subgroup of 1 of rank 
2.

P roposition 3.3.1
Under the above conditions we have:

1. For each Bl -prenilpotent. N-closed subset ft1 o / ( ’P*)+, the set

ft =  {n G 'Pr-pr,n : «' E ft'}

is a B-prenilpotent N-closed subset of stable under the action of T and

A'nO G' =  (X'ai : o '  € ft1).

2. (-Y t̂ )ai6(#i)+ a positive root system of type (Bl , ( )+, N) in G .

Proof
See [H91b, Proposition 3.6]. ^



§3.3 Twisted Groups 120

Twisted Root Data
Suppose that ( (Xa)a^ ,  N, H)  is a root datum of type (B , , N) associated to a

group G. We begin by describing some properties of certain endomorphisms o f G .

Lemma 3.3.2
Let p be. an endomorphism of G satisfying

• P(N)  Ç N, and p(H) Ç H

• there exists an automorphism 4>p of B such that, for all « Ç  Î

{1} * p(Ya) Ç n ,(o).
Then

1. p(U) C U, p(U-)  C U-, p ( B ) C B. and p (B . )  C

2. If we identify <f>p and each element of W  with the elements of GL(\ ) they 
define then, for all n € N ,

«V(n) =  4>PU’n<t>p\ and P(Yw„) ^  Y~ain).

S. If x 6 G has Bruhat decomposition (iit, n,u) then the Bruhat decomposition 
of p(x) is

(p(ut) .p(n) ,p(u) ) .

Proof
See [H91b. Lemme 4.3, 2.11]. °
Suppose now that S is a set and that we have two families

(0<r)ff€E and (?*)«€£

of endomorphisms of the group G satisfying the following conditions for all € E;

• > (J V )U t.(JV) C N, and ) U r , (H )  C H.

• "ìAYa) i  { 1} and r„{Yn) /  { 1} for each 0 6 *

• For all a € 'I'. r„(X„ ) C A'a .

• There exists a %  such that C -Y „̂(0) for all o  € 'it.

• The elements so defined satisfy the property

r  =  : <T € E).
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Note that the first two conditions mean that 7„ is unambiguously defined for 
each <t 6 E (see [H91b, 2.11] for details).

We now define

G7,r =  (x G G : 7ff(x) =  ra(x)  for all a G E).

For each a 1 G it1*, let
x l  =  G7r n ( x 0 : / 3 e * ai)

and for each .7 G / 1, let

YJ =  G7,T n (Ya : a G 4>;e n Vj).

Let G'1 be a group such that

(-Ŷ i : o ' G # ')  < G1 <  G7 r

and define N 1 =  G'1 fl N  and H ' =  G'1 Cl H . The following theorem may be referred 
to as Hee 's Theorem.

T h e o r e m  3 .3 .3
Suppose the following conditions hold;

• For each J G /*. Y] ^  {1}.

• For each S' -prenilpote.nl. pair ( a 1,/)1} of elements of ( IJ?1)+, we have either

C 4'(J1 or C \P„i

or every pair consisting of an element of and an element of 'I' d generates 
a free abelian subgroup of V of rank: 2.

Then the following are true.

1. For each ir G S, ) ,  and T„ re strict to endomorphisms o f U, U-, B . and Z?_.

2. For each n G N and each, it G S. we have

MS»(n) =  7»**’ »7<? 1 M’r»(n) =  u,»i

7<r(X~n) C X~^tn). and r „ ( X ~n) C X~n

where the elements and w„ are identified with the elements o f GL(V)  they 
induce. Furthermore, we have

G W r

for each n G N  O G'7,r.
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S. Let x be an element of G and (u\,tl,u) be its Bruhat decomposition. For each 
<x €  E

(7*(«i).7#(«).7*(“ ))
is the Bruhat decomposition of -)„(x). and

), r„(n), r„(u))

is the Bruhat decomposition of r„(x). In particular, if x G Gl, 

ui, u e G ' r T, n G N l and w„ € W r.

4. For all J € / ' .  let JVj =  TV1 fl Nj. Then

Y ) =  {X I  : a 1 € * '  n R+arj) C G\

Y lj  =  {X I  : o* € * '  (7 R _a 7> C G\

Y lj \ {1} C Y ]N }Y ] ,

and tv j  € ^{N *).

5. The homomorphism
tt1 : N' — W (B ')

n h-» u-i
induced by the composition of it : N  —► W  and the canonical isomorphism

W r - »  W(B')
tv 1—» w1

w surjective and ker(jr') =  H 1.

6. For all n € N  fl G",,T and all o ' € i*1 vie have

n(\"t )w 1 =

7. For each w £ W'1 ,

•Y- D GT’T =  <-Y‘ i : a ' € (¥')+, «-(a1) € ( * ' ) - ) C G ' .

8. We have

G ' - T r\U  = (-Ŷ i : a 1 € ( f ')+), G ' T n V .  = (JYj, : a ' 6 (¥ ' ) - } ,

and
GT<T =  ( / / n G ^ . X ,  : n'  € * ' ) .
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Thus

is a root datum of type (S '. 'P '.N ) associated to G '. So

Gl =  € / ' )

and, in particular
GTr =  (G'»•' n H , Y } , Y l j  : J € / ’ ).

Proof
See [H90] and [H91b, Théorème 4.5]. E

3.4 Automorphisms of Affine Kac-Moody Groups
Finally, we give ail exposition o f the work of Carter and Chen on the au

tomorphisms o f complex simply-connected affine Kac-Moody Groups arising from 
extended Cart an matrices. All of the results mentioned in this section, together 
with their proofs, can he found in [CC91].

Let
A  =  (dij)i,j{n

be an ordinary Cartan matrix. Let II =  {o ,} ,en be a set of simple roots correspond
ing to .4 and denote by »1»(.4.) the finite root system generated by II. Let

7? =  a1a j +  • • • +  a„a„

be the expression for the unique highest root of 4>(.4) as a linear combination of the 
simple roots. Denote by ® j*,.(C) and 0 (1',(C) the simply-connected and adjoint Kac- 
Moody groups over C associated to .4. Let (&£.(C ) and ©„</(£) be the corresponding 
groups of rational points over the ring C of Laurent polynomials.

Let
A =  (Aij)i,j€!lo

be the extended Cartan matrix obtained from .4 and let {n ,} l€Uo =  II U {o 0} be a 
set o f simple roots for the real root system 4>rr(.4) associated to .4. Recall that by 
Propositions 1.3.1 and 1.3.3. $ rr( .4) can lx* expressed as

<I»"'(.4) =  {a  4- mb : n € ${A), tn £ Z]

where (i =  a 0-\-"R,. Let <ft;'r(C) be the simply-connected Kac-Moody group associated 
to A.
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Let 0 be the Kac-Moody algebra with GCM .4 and let 3 be the centre of 0 and 
0' =  [0. 0]. By the results of Chapter 1

3 C 0', dim3 =  1, and dim 0/0 ' =  l.

Bj’ the results of Chapter 2 we have a homomorphism

© ¿(C ) Aut(fl')

such that
) •-+ expad/te;

T-i(p) >—> expad pfi

for each i £ n0 and // £ C.
From Chapter 1 we also know that there is a homomorphism

o '-+  o(£)

with kernel 3 from which we deduce that

0V 3 =  0(C).

Thus we have a series of homomorphisms

© ¿(C ) Aut(fl') Aut(0'/3) -  Aut(0(£)).

Combining these homomorphisms, we obtain a homomorphism

© ¿(C ) -  © ¿ ,(£ )

under which
*0+mi(/0 fa it ’" 0 / 0

for each o  £ 4’ (.4), m £ Z , and // 6 C. Using this homomorphism we can obtain 
relations between structure constants of © ¿(C ) and ©¿/(C).

Consider first two relations which hold in © ¿(C ). For each a £ <I>,r(-4) and 
p £ C we have

U,J„ ( f t )n i —

for some € {1. — 1}. Also, for each prenilpotent pair {o , / f }  of distinct roots and 
any fi,u € C,

[r„ ( f l ) ,T f , (v )\  = [I f ia+j f l iCa/hjf i 'l j ) ,

t.J «s
for some C„tj,j £ Z.
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Now consider the corresponding relations which hold in ©,)',;(£)• We define 
numbers t)'ia G { 1 , - 1 }  for i G & and o  € 4>(-4) and C'af)ij G Z for a, ¡3 G $(-4), 
», j  G N with ia + j (1 G 4>(-4) as follows. Let

n.a-ai/i)«,"1 =  *r.<a)(»7i,a/t)

for ft G C(<) and

*/j(|/)] =  n  *ia+jii(C'0a <iJp'l*’), a*±0,
¡o+jae*<A)■jes

for ft, v G <C(<).
P roposition 3.4.1

4. For a// a G $(.4), m G Z. and. i G n. _ /Vi-Q+mi — *7,,a‘

,2. F o r all a  € $ ( -4 ) an<f m  € Z _ /*70 ,a+m6 —

where r /^  Q w given by the formula

n-nJ-a(p)nZii =  •rr_«(a)(V-w,o/<)

where n_* =  r_^ (l)j-^ (l)a -_^ (l).

3. For a// a +  mb, f3  +  n6 G 4>rc(.4) with ¡3 /  ± o

Co+mi./J+ni.l,,; =  Ca.O.i

where the order of the terms on the right hand side in the commutator formulas 
for 0(C) and (&^(C) are chosen to be compatible in an obvious sense.

Proof
See the proof ( >f [CC91, Proposition 3.1]. D

Tin1 following result shows that the homomorphism &£c(C) —* ® aj(£) factors 
through © £ (£ ).

P roposition 3.4.2
There is a surjective homomorphism

H : es;!(C) -  & U O
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under which
*a+mi(/l) *a(<"‘ ©  h )

for all a  € <I>(A), m £ Z . and /i E C. Furthermore, the kernel of this homomor
phism, ker#, is a characteristic subgroup of <3,c(C).
Proof

See Propositions 3.2-3.G of [CC91]. E
This allows us to define a map

v  : Aut((8^(C)) —» Aut(<S^(£))

since each automorphism of <S,4(.(C) leaves ker 0 invariant and therefore induces an 
automorphism of © ¿(C ) /  ker 9 =  One o f the aims in [CC91] is to prove the
following theorem.

T heorem 3.4.3
The map i> : Aut(<5^c(C )) —* Ant((&£(£)) is an isomorphism.

In order to do this, the authors classify the automorphisms o f £V'c(<C), so pro
ducing a result analogous to the well-known result of Steinberg for Chevalley groups 
(see [Ste67, Theorem 30]).

Classification of the Automorphisms of Extended Kac-Moody 
Groups

In order to describe an automorphism of 0j*r(C), it is sufficient to give its effect 
on the generators

*_ ,(/!) : i € Ho,p 6 K} 
of

Inner A u tom orph ism s

For each g € <&'4c(C) we have a corresponding inner automorphism

Tt : t  h  g x g ~ l .

Let r(0^',(C) =  { t „  : g £ ®i*r(C )} be the group of inner automorphisms.

D iagonal A utom orph ism s

Consider the group Hom(Zn,Cx) of homomorphisms from the free abelian 
group ZII to the multiplicative group of C, where II =  We have

Hom(Zn,Cx ) =*<CX x ••• x C
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where there are n +  1 factors on the right hand side.
For each 0 g Hom(ZII,Cx ) there is a corresponding automorphism d(0) of 

® £(C ) given by
d(9) : Xi{p) -* Xid.p)

X - i ( p )  - *  X - i ( ( ~ t p )

where = 0(ct, ). Note that d(0) transforms n, to h,(£,)n, and fixes /i,(C) for (  € C*.
Some of the automorphisms d(0) so defined are in fact inner automorphisms. It 

can be shown (see [CC91. pp. 23-25] for details) that d(0) is an inner automorphism 
induced by an element of H if and only if

where 7Z =  ^ l€„ a ,«,. It is therefore natural to define a diagonal automorphism to 
be one in which

=  1 ,. . .  =  1 and (o is arbitrary.
Thus for each ( g C *  we define the diagonal automorphism d(()  of © ,c( 0  by

J(t) * .(/0  
* -.(/«) 
x0(p) 
*-o  (/<)

The diagonal automorphisms

*<(/*) \ 
* -.(/* ) /  
•TO (0 0
* - o ( O V )

i g n

D =  {d(t)  : t e  c x}
form a subgroup of Aut( (5''c(C )) isomorphic to C x .

Field A utom orph ism s

Let /  be an automorphism of the field C. Then /  induces an element

« ( / )  g Aut (© ¿ (C ))

given by
«(/) = *a(p)  -* * a ( f ( p ) )

for o  g 4>'c and p g C. The automorphism n(f )  transforms »,(/<) into »¡(/(ft)) and 
/»,(O  into /» ,( /(C)) for each i g n0, p g C. and C, g Cx . Let

.4(C) =  { « ( / )  : /  g Aut(C)}.

Then -4(C) is a subgroup of Aut(©j'r(C )) isomorphic to A u t(0 -
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G raph  A utom orph ism s

Let 7 be a permutation of the set no such that

Aij =

for each i , j  G Bo- We call 7 an automorphism of the extended Car tan matrix .4 . 
Then, by [CC91 , Proposition 4 .2], there is an injective homomorphism

Aut(,4 ) — Aut(0 ¿ ( Q )

mapping 7 to 0(7) where

a*-Mote/*) j
€ no

with c; G { 1, —1 }. Note that <1(7) transforms n,(/i) to and /i,(C) to /» (̂,)(C)
for each t G no- P € C and (  G C* .

Furthermore, we have £, — 1 for each i G no except when A is of type An. In 
that case let 71,77 G Aut(.42i) be defined by

7i(0) =  l , f , ( l )  =  2 , . . .  7-1(2/ -  1) =  2/, 7‘ i (2/) =  0

and
72(0 ) =  0,7-2(1) =  2/, 71(2 ) =  2/ -  1 ,.. .  7-2(2/ -  1) =  2,7-2(2/) =  1

respectively. If 7 =  71 then e, =  1 for all »' G no- If 7 =  72 then c, =  1 for all » G n 
but e0 =  — 1.

Alternatively, we may define 11(71), 0(77) G Aut ( 0 ¿*r(C)) by

«(7 i) :. x¡(n)

and

respectively. Tin'll

"(72 . *.•(#*)
' *-<(#*)

l i e  a ,
r- 7i(<)(/') J

I« G no
•*•—>»<.)(—/0

a( l i ) a( l i )« (7-2) =  fl(7"i ' )  
and the group (n(7i),0(72)) generated by <1(7)) and «("fi) is isomorphic to

(fi«72) =  Aut(i4 j/).

Let Á  be the Dynkin diagram of 0 ,*r(C). For each symmetry 7 of A we have an 
automorphism of the extended Cart an matrix .4 and hence a corresponding graph 
automorphism «(7 ) of 0 ^(C). Let

r (A )  =  {«(7 ) : 7 G Aut(A)}.
Then r (A )  is a subgroup of Aut(0 ĉ(C )) isomorphic to Aut(A).
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Sign A utom orph ism s

The group 0^c(C) has an automorphism w, which we shall refer to as the 
Chevalley involution, such that

w : *„(/«) -*  r - a(p)

for all a 6 <I>r' . The automorphism uj transforms n ,(/t) to n,(p-1 ) and /i,(C) to 
/ i ; « " 1) for p € C  and ( e € x .

Note that the corresponding type of automorphism for a Chevalley group is 
an automorphism involving the inner automorphism induced by the unique longest 
element of the Weyl group. However, in the affine case the Weyl group is infinite 
and has no longest element, so the Chevalley involution is not expressible in terms 
of the automorphisms described hereto.

The Chevalley involution uj satisfies u’2 =  1 and the group it =  { l ,u ’ } it 
generates will be referred to as the group of sign automorphisms of 0 ''f (C ).

C lassification T h eorem

T heorem 3.4.4

1. We have a fac.torisation

A u t(0 .| (Q ) =  r(0^(C ))Z?.4(C )r(A )n .

Moreover, we have a series of normal subgroups

r (0 .t (C ))  <1 r( 0.|(C) )D < r(<S>i(C))DA(C)
<  r ( ® i ( C ) ) D A ( C ) r ( A )  <  A u t(0 i(C )) .

2. Every element, of Aut( 0'*r(C )) is uniquely expressible as a product of auto
morphisms corresponding to the factorisation given above.

S. Define ()ut( 0j'r(C )) =  Aut( 0j'r(C) )/r{ 0^r(C )). the group of outer automor
phisms of © ¿ (C ). Then

Out(0;'r(C )) 3  Aut(£) x Aut(A ).

Proof
See Proposition S.3, Theorem 8.4. and Corollary 8.5 of [CC91]. □
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3.5 Examples
VVe shall give two examples to illustrate some of the applications and limitations

associated to the generalized Cartan matrix of type Z),|. Thus there will be some 
details common to both examples and we shall introduce these first.

described in §3.1 and suppose ((-V„ N, H) is the root datum of type (B. <I>" . N) 
corresponding to GVp(C) introduced in §3.2.

Suppose that we are considering a single pair of automorphisms of ©p(C). 
Hence, in the notation of §3.3, | H |= 1 and we may omit the indexing subscripts 
on 7 and r since no confusion need arise.

Suppose that the automorphism denoted by 7 is the graph automorphism of 
©p(C) induced by the automorphism

and we see that ~i(H) C H and “y(N)  C JV. Consider T -  {1 ,7 ,7 2}. This is a finite 
subgroup of Aut(B) and stabilizes Also,

for all
Since <!>"■ is reduced, Ya =  A\, for all o  € d*re and therefore Ya /  {1} for all 

o  6 $ rc.
Now, as a permutation of the indexing set of II. 7 has three orbits, namely

where we shall denote the last by A'. All of these orbits are spherical, since the first 
two give rise to root systems of type .4| and K  gives rise to a root system of type 
A| x A\ x Ai. Similarly, they are all prenilpotent (to see this for A’ simply take 
w =  r„0 and w' =  ra ira,rat in the definition of prenilpotency).

Then o{o} = n0, r»{3) =  03 ami o/,- = oi + n j +  04. Thus, to use the notation 
of Theorem 3.3.3,

of Theorem 3.3.3. Both examples will involve the complex simply-connected group

Let D  denote the root datum D ,c(D,t) corresponding to D., introduced in §2.2, 
<I>" =  $ re(£)4), and n  — {or ,},-d en ote  a fundamental system of type D t as labeled 
on A (¿>4) in figure 1.2.12. Let B =  B(D.t) be a root bases associated to D., as

of A ( D t). Thus

7 (An) — -YMq,

{()}, {2 }, and {1 ,3 ,4 }

»k1 =  {i»o, n j, rt/v-}
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and hence,

*aj =  {«<)}, ^„1 =  {« ¿ } .  an<l * « [ =  *<,> = * o ‘ = *a,K =  K.

Thus
(X „  : 0  € * „ . )  =  -Y„0, (X ,  : 0  € i 0j) =  -YOJ,

and
(X 0 : 0  € 'I'c.kH-Yq, A'o, .Y„,> =  .YQl.YQ1.Y„,.

We now proceed to consider two particular cases.

Example 3.5.1
Suppose r is a field automorphism of ©p(C). Let r be induced by the auto

morphism /  of C. Thus
r(*a(p)) =  •»•«(/(/'))

for all o  € d>", from which we may deduce

t(N )  C  N, t( H ) C H ,  and t (Y0 ) =  r ( X a) =  X a.

Recall that G~' T =  (r  € G : 7 (x)  =  t(x )). Thus

-Y‘0 = G', T n -Y„0
=  (*a0(/‘ ) : /' e C, p =  /(/<)),

-Yq, =  GyT n x ai
=  (*c.,(p) : / i € C , / i =  /(/<)), and

-Y^ = (T'r n Y 0lY 0,.Y0)
=  (*o,(/<l )•**«,0<3).Ta,(/<l) ! Pi.Pi ,Pi  € C,

3*ai (/L| )3*a3 (/i 1 )j*a4 (/*3 ) 3*oi (/(/*  I ) )•* n* (/(/*3))* «4 ( fUu)) )
=  ( * „ , ( / / ,  )3*o,(/<3 )a*„, ( /m ) : p t ,  P i .  P a 6 C . / ( / < i ) =  P * , f ( P i )  =  P t . f ( P t )  =  / ‘ 3>-

Recall that any automorphism of C must fix Q. Hence y'*o and 1 ,,'2 are always 
nontrivial. Similarly

-Y^ 2  { r n i{p) jrn, { p ) r nt( p )  : /< € Q) /  {1} 

and st) V'/J- /  1. We can thus use Theorem 3.3.3 to conclude that

Gy,T =  ( Y 1 Y 1 Y 1 1\‘ ‘ n0 » ''t ij ’ / •

O
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Example 3.5.2
Suppose now that t  is a diagonal automorphism o f  0p(C ).

form
dtf)

•ro(/0
•r-o(/<)

*.'(/*) \ 
*-.(/*) ) 
*o(£/i)
* - o  ( C l M)

i e  4

Thus t  is of the

for some £ € C * . We know that r fixes n, for i 6 4 and transforms n0 into 
/»0(^)n0 G TV. Tims r(TV) C TV. Since r fixes each A,-(0 for (  € C.K we also have 
t(H)  C / / .  Furthermore

r(Ya) =  7-(.Y„) =  X a.
Consider now the groups A"^,.

X l
«0 G ' T n a O0

(*c.o(f‘ ) : P € C./< =  0«),

X 1a2 Gr-r n ArOJ
(xa,(/i)  : P G C> = A'OJ, and

-V ‘ „  =  G 'r,T n  X atX atX ai
=  (*o,(/‘ i)a-Q,(/i3)-i-n4(pi) : PuP3,f ‘ 4 G C.

)*<»,(/* l)*a4(/<3) =  *o ,( /il)*c (f ‘3)*o«(/i4)>
=  • /« S C).

Thus A’,1 and A’1 are never trivial, but A"‘ is trivial whenever r is non-trivial. Sowfi «2 «0
Theorem 3.3.3 is only applicable in the degenerate case when t  is the identity, o



Chapter 4

The Fixed Point Subgroup of a 
Graphx Diagonal Automorphism

This chapter is, to the best of my knowledge, entirely original.
In sections 4.1 and 4.2, we extend the results of Hee so that they apply in the 

case when

• .4 is a siniplv-laced extended Cartan matrix.

• 7 is a graph automorphism of (K ) induced by an automorphism of A(.4) 
inherited from an automorphism of A(.4), and

• t  is a diagonal automorphism of ® p(K) of the same order as 7.

We do this by first considering the twisted root system constructed following Hoe’s 
methods and by omitting all those twisted roots whose associated root subgroups 
prove to be trivial. We then show that if we restrict our attention to roots with 
noil-trivial root subgroups we can obtain results similar to those of Hee.

Section 4.3 is then concerned with a detailed study of the fixed point subgroup 
corresponding to G~' T obtained in this manner.

In §4.4 we construct isomorphisms between fixed point subgroups of minimal 
adjoint groups of the types envisaged and certain other Kac-Moody groups of min
imal adjoint type. We conclude this section with two brief examples. Section 4.5 
then generalizes the results of }j4.4 to the simply-connected case.

For the sequel, we suppose .4 =  (-4,^).,jgr.n to be a simply-laced extended Cartan 
matrix of type A',, with fundamental system

n =  { o i } ,6ao,

and
B = B(A) =  (n0 .V .a .Q)

133
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to be a root base constructed from -4. Without loss of generality, we may assume 
that A =  (Aij)ijea *s ^le matrix of type A'„ o f which A is an extension. Denote by 
1Z the unique highest root in '!'(.4). Note that

H =  a !« ! -f • • • +  a„a„

where the a, are the labels on the respective nodes of A(.4) in Figure 1.2.12. Since 
A is simply-laced, this also means that

TV' =  a1o]' 4- • • ■ 4- ana*.

4.1 A Twisted Root System with Non-Trivial Root 
Subgroups

The aim of the next two sections is to describe an approach which, in some 
particular cases, allows us to give a set o f generators for Gl even when the condition 
Yj ^  {1} fails to be satisfied for some .7 € 71.

A Comment on Root Bases
Let B — (I,V,at .g)  be a root basis. Suppose

P —

is such that, for each i € 7,
«• =  c,A

for some c, € R x. Then P  is also a basis of V . Since n, is a reflection in the hyper
plane perpendicular to n,. it is also a reflection in the hyperplane perpendicular to 
/?,. Hence

B' =  (7, V’,/9, q )

is a root prebasis satisfying W(B')  =  W(B),  and there is a natural one-to-one 
correspondence between <!>(#') and i ' (B ), namely that associating « ’(/!, ) with ie(n,). 
Furthermore, if c< 6 N for all i € 7, then B' is a root basis.

Let 7 be an automorphism of order k o f A(.4) inherited from an automorphism 
of A(.4), i.e. such that the zeroeth vertex is fixed by 7. Thus the pair (.4. A-) will 
be one of (.4/,2), (£>;,2), (75 ,3 ) or (£ ’,¡.2) and the automorphisms 7 will be the 
automorphisms induced by those considered for Proposition 1.5.3.

We consider first the case when .4 is not of type .4 /̂.
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The Twisted Root System For A ^  Aoi
By Proposition 1.3.1

$ r'( g )  =  { o  +  mS : o  6 4>(A), m <E Z }

where 6 =  o 0 +  7?.. We note that 7? is fixed by 7 since the height of a root is 
preserved, whence we deduce that 6 is fixed by 7.

Thus the root system of the root basis

B' =  (n i ,V 1, { a j } J€fl. , { e j } J€n.)

described in Proposition 3.1.4 is of the form

<F'(£ ‘ ) =  {o> +  I A '(o) I m6 : o 1 e  $ (A )\ tn  € Z }

where A"(a) denotes the 7-orbit of a.
For each orbit J 6 nl take a minimal representative j  € J, and let

ßj
n j _  a)
I J\ \J\

:=  a7
J

except for when .4 =  £,-> and J =  {G}, in which case we let /?4 — o 6. Denote 
the set o f such representatives j  by A/. From Proposition 1.5.3, Table 1.5.4 and
Tables 1.2.11-1.2.14 we see that {/Jj } j€a/ is a fundamental root system of type A'O' 1, 
where X ^  is given by Table 1.5.5. Denote the set of roots of this system by d»’’ . 
Thus

4>‘' is a root system of type XÜ'K

Denote by S the unique highest root in the root system of type „Vi** generated by 
and let P  be the extended matrix obtained from X!,k\ Note that

«5 = £  1>'A
jZM

where the 6' are the corresponding labels on the relevant nodes of A (P )  in Fig
ure 1.2.12.

Let ß0 =  a 0 and define Mo =  M  U {()}. Let

ß  =  { ßj } j€A/0

and
ß"' =  {L>J } . /€» ■ •

B' =
Since
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is a root basis by Proposition 3.1.4, we see that

B '  =  (M 0, V \ / 3 , e ' )

is also a root basis.
In order to show that (3 is a fundamental system of type P, it is sufficient, by 

Theorem 1.2.20, Proposition 1.3.1, and Proposition 1.3.3, to show that R' =  S. 
Since R  is fixed by 7, it is sufficient to show that

K  =  E  “ •
•eJ

which a case by case analysis verifies. Thus Z?7 is a root basis, entirely determined 
by M0 and (3. which we have shown to be isomorphic to B(P).  Furthermore,

$ re(B7) =  {o'» +  mb ¡ o ’ e ^ m e z } .

We state the types of P  explicitly in Table 4.1.1.

.4 Àìi-\, (l >  2) A + i, >  i ) d 4 ¿6

P c , D, G> F*

Table 4.1.1: Types P of root systems <I>(.4)1 when .4 ^ .4-2/.

We note that we have a natural correspondence

o 7 +  mb « -+ o '+  I K(ot) I mb

between and <I>"(ZP). where o € .4) ami A (o )  is the 7-orbit of o.

The; Nature of the Graph Automorphism When A /  A>i
For each root datum T> = T>(A) associated to an extended C'artan matrix .4 of 

the type under consideration, let <1»" =  <1>"(.4) and

((-Y„ )„€«»r, ,JV. H)

be the root datum of type (i?,<I»",N) associated to tf'p(K) constructed in Exam
ple 3.2.5.
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Recall that a presentation for ®p(K) was given in §2.5. Hence in order to de
scribe an automorphism of ®p( K) it is sufficient to give its effect on the generators. 
We shall be concerned only in the cases where 23 is a root datum of minimal adjoint, 
adjoint or simply-connected type. Recall that we determined specific generators for 
groups ®p(K) of these types in Examples 2.5.6 2.5.8. In all o f these cases ®p(K) 
is generated by a specified subset of elements h £ H and the elements xQj(/i) and 
z_a{(/x) for i £ Ho an(l / ' G K.

For each root datum 23 in question, we let

ilp(K ) =  (U+(K),U_(K)>
=  ■ * 6 Ho, 6 K) £  ® p(K ).

Note that /ia, ( 0  G Ut>(K) for all o, £ II and £ £ K * .
We define a map 7 on the generators of Up(K) by letting

7 : >-> a^(,)(/i)
* - . ( / ')  * * f  _,(,)(/!)

for i £ n0 and // £ K. Note that if

a =  m0a 0 -I- mjOi +  • • • +  tn„a„
=  m06 +  (m i -  « im 0)« i H-------- 1- (m „ — anm0)a„ £  <$"(.4)

then
7(a ) =  m0a0 +  m ,7 (o ! ) +  ••• +

=  m06 +  (m , -  npno^ini )  + ----- 1- (m „ -  n„i?i0)i(0 n ) € 4>rr(.4)

since 7 fixes a 0. Thus the coefficient of f> in 7(0 ) is the same as that in o  for all 
a £ <l>re.

Now, for each m =  (m i,. . . .  m„) £ Z" such that m, =  m^,), the set

n ra =  {o ,

is a fundamental root system of type A'„. Since y is an automorphism of .4 fixing
«0

7 (n m) =  {7 (« .)  +
is also a fundamental root system of type A",,. Hence the complex Lie algebras 
associated to these systems, which we shall denote by pm and 7(flm) respectively, 
are isomorphic. Under this isomorphism

 ̂«^(aJ + riiA

where 111 £ Z and />•„ £ { —1,1} is uniquely determined by o  as a result of Lemma 1.4.3. 
We also note that k_„ =  Ka.
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Consider the subgroup schemes of 0 p  given by

®m(K) =  (ra(n), : a G G K)

and
7 (0 m)(K) =  (xa(p), T-a(p) : a  G i(I Im),// G K).

We have natural actions o f <Sm(C) on 0m and of -y( ® m)(C) on 7 (0m) respectively. 
By [Car72, Proposition 12.2.3] the map

for a G i>(.4) extends to a group scheme isomorphism

© n,-*7 («m ).

Furthermore, the Kn can be chosen so that Ka =  1 if a  G ±11. Note that if we have 
an orbit of size two, the symmetry of this construction implies that

Ka —-

We then extend the map 7 to the remaining elements of Up( K) by letting 

7 * **'o+mi(/0 1 * ^(o(+mi(^alt) 

for all o  G $(-4), m G Z and /< G K. I11 order for the map

7 : U-p(K) —► Up(K)

so defined to be an automorphism, we must check that 7 preserves the defining 
relations of Up(K). When K =  C this follows directly from the calculations for an 
arbitrary graph automorphism in [CC'91]. However, all the conditions that need 
to be checked involve equalities of integers and hence the ¡»roofs given in [CC91] 
extend directly to an arbitrary field. Note that 7 (/»«,(£)) =  ^ ( « d (0  f°r o, G n 
and ( G K X.

If T> is the* simply-connected root datum then Up(K) =  CVp(K) ami 7 is an 
automorphism of ©p(K). If 27 is of adjoint or minimal adjoint type we extend 7 to 
a map on 0p (K ) by defining

7 :

where 7(tu,v ) =  In order to show that the map

7 : 0p(K ) — > 0p(K )

so defined is an automorphism, we must show that it is well-defined on H flUp(K) 
and that the relations in 0p (K ) which are not defining relations for Up(K) are 
¡»reserved.
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Since 7 is a graph automorphism and 7 (hai( 0 )  =  2*7(0,) ( 0  f<n all «1 € n  and 
£ £ Kx it follows that 7 is well-defined. The remaining relations all hold because 7 
is a graph automorphism.

Defined in this way, straightforward calculations show

7 : 0 P(K) ----♦ 0p (K )

satisfies 7 (H)  =  H and 7 (N)  =  N. We also see that

7  (-̂ -q) — -^7(0)

for all a G •

The Nature of the Diagonal Automorphism
Recall that we are considering the cases when 27 =  T>,C(A),  27 =  T>aj (A)  or 

27 =  V m(A). For each £ 6 K* we define a map r/(£) on the generators of Up( K) by 
letting

d (0  : * °(p )  -  i o i r v )
where

a  =  m0a 0 +  »»Mai +  • • • +  n i„on
=  m0£ +  (mi -  a i)a i -)--------h (mn -  an)an € <fcre(.4)

and // G K. Note that d (0  acts on the elements r a(p)  as multiplication of /* by 
£ taken to the power of the coefficient of ft in a. In particular, since 6 is fixed by 
7, d(0  affects elements of Up(K) in the same 7-orbit in the same manner. When 
K = C this is precisely the diagonal automorphism of 0® „(C ) introduced in (¡3.4. 
Hence d(£) extends to an automorphism of U-p(K) since all the structure constants 
are integers.

If 27 is the simply-connected root datum, then Up(K) =  ®p(K) and d(f) is an 
automorphism of 0p (K ). If 27 is of adjoint or minimal adjoint type, we extend the 
map d({)  to the rest of ®p(K) by defining

d (0  : /».v(C) ~  h„ r(O

for all < G Kx .
L em m a  4.1.2

The map d (0  is an automorphism of 0 p (K ) satisfying

d (0 (H )  =  H , d ( 0 ( X a ) =  -Y„, and d (0 (N )  =  N.

Proof
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Note that the restriction of d(£) to Up(K) is an automorphism. We may use

The fact that d(£)(Xn) =  X a follows from the condition £ € Kx . We note that for 
all

n ,(() for all i € n and £ € Kx . Thus d(£)(N) — N  since £ € K* . Furthermore,

for all £ Ç Kx . Thus d(£) is well-defined on © p( K) since it is well-defined on 
H fl llp(K). The defining relations of ©p(K) are now easily seen to be preserved 
and so d(£) extends to an automorphism of ©p(K). Furthermore, since d(£) fixes

Note that d(£) 1 =  d(£ *).
Suppose that char K ^  2 and that

IK. Was fbcec cubi rooVs c-̂  U(u'«

if (A ,k)  =  (¿4 ,3 ). , . •,
Let t e w  be pr.*A.Wvc UWv cool

and consider the automorphism r =  d(e) of ©p(K). By the conditions imposed on 
K such an automorphism exists and is non-trivial.

Constructing Another Twisted Root System When A ^  A->t
We begin by considering the root subgroups associated to roots in the original 

twisted root system <I>r' (B'). We then consider the set obtained by omitting those 
roots whose root subgroups fail the non-triviality condition. We show that those 
roots retained form a root system of type

Since all the original root systems under consideration are reduced, we have 
Y„ =  X n for all o  6 <I>"\ Furthermore, all the 7-orbits of roots form root systems 
of types At , .4) x Ai, or .4) x .4i x .4i and so are prenilpotent. Hence, for each
o ' € 4 > "(i) '

this fact to prove the last two equalities, since N , X a C Up(K) for all a € $ rr(A).

a =  m0S -I- (mi — « j)a i H----- 4- (m„ -  an)on € $ re
we have

¿ ( 0  (* _ „(/!))  =
whence we deduce that d(£) transforms n0(O  into n0(££) for each (  £ K and fixes

=  »o (£C )»o( - 0
=  ha 0 « )

every element o f H . the condition d(£)(H) =  H is trivially satisfied. □
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is just the 7-orbit of a. Also, given any 7-orbit K  and any two (not necessarily 
distinct) elements a , / 3  £ K  we have

*a(/< )*£(*') =

for all p , v  £  K. Hence
(X0 : ( 3 e  «*;*.) =  I I

a 1

is abelian for all o 1 € $ re(A)*.
We now consider the elements

* € (Xu : 13 £ *;*,}

which satisfy 7(x)  =  r(x).  Let

^  r(K) = { r  £  (5p (K) : 7(*) = r(*)}.

Denote 7 (0 ) by a for all q £ an<l let K ( a )  =  be the 7-orbit, of a £
Suppose o  4-m i € i ’ "  with a 6 'I> (A).  Recall that by Theorem 1.5.G the subset 

of ) consisting of roots a 7 4- mb such that

either | K ( a )  |> 1
or | A '(a) |= 1 and m  is divisible by k

is a root system of type A’,***. We denote this subsystem of <I>" (13~‘ ) by or by 
^" (A)  if there is any risk of confusion.

We also exploit the one-to-one correspondence between ‘I’ "  (B1) and ) to
define

+ X al +|/\ (o)|m6*

Proposition 4.1.3
Suppose A ^  An, a 4- mb £ 4>,r with o  £ ‘H-d), 0 = 0.4(C) and 9,, is the 

subalgebra of 0.4(C) described in §1.5. Then

X „ i+„,t ^  {1} 4=> o '1 4- mb £ ft" .

Furthermore, we ran describe the. elements o f X ai+mh.

1. If K (n  4- mb) =  { «  +  n»A) then

v  _  ( X „+ ,nt if m =  () mod k 
“  \ 1 otherwise.



2. I f  K (a  +  m i) =  {o  +  mb, d +  »»¿} then

Hal+mS ~  ^

where k G { — 1,1} is uniquely determined by the condition

ea +  Ke6 G go-

3. If I\(a +  mb) =  {a  +  mb, a +  mb, a  +  mb), then

+m6 =  {j't»+mi(^)^6+mi(^^  ̂ /0  • /* ^ ®̂ }

where k, k' G { — 1,1} are uniquely determined by the condition

ea +  ne6 +  n'es G 00-
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Proof
We begin by making some general comments which we will find of use in our 

calculations. We first note that the actions of 1!±(C) on 0 .4 (C) are faithful.
We also note that in all cases under consideration Naip G { 1 , - 1 } .  Hence, by 

Theorem 1.4.4
Na,fi =  N-a,-tJ-

Furthermore, the structure constants involved in the calculations for A (— a +  mb) 
whenever a G and m G Z depend only on those for K ( —ct) by Lemma 1.4.3, 
which by the above observation depend only on those for A’ (« ) . Thus it is sufficient 
to consider 7-orbits of the form A’ (o +  mb) for o  G 4’ ”  and m G Z. We are now in 
a position to proceed with the proof.

Suppose A '(o +  mb) =  (0  + mb). Then in all cases

7 (^*a+riii(/0) = ®o+mi(^o/^) aild T(xn + /0

for each fi G K. Tims

*«+n.i(/i)€  ® 1T(K) « .  /.-„c-™ = 1.

Hence either
Ka =  1 and m =  0 mod k

or
k„  =  — 1. f =  — 1 and in =  1 iiuxl 2.

Now, property KMG5 endows tftp(C) with an action 011 0,((C) such that, for all 
:G C ,

•Tn+rni(i) corresponds to the application of expad : ( t " ‘ r„)
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under the realization of 0.4(C) given in §1.4. Thus

7(*o+m «(*)) acts as expad ZKa ( t m ® eQ)

and
r (i<,+mi ( : ) )  acts as expad z t m ( t m ® e„).

Hence we obtain the implication

(xa+mS(z))  G 0^-r (K) =► Kae~m(tm 0  e„) =  tm 0  eQ.

We note that, in the notation o f §1.5, this is precisely the necessary condition that 
ensures

tm ®  ea G ¿(0,7»*)a->+mi-
Thus in particular either

ea € 0o and a ’  +  kmS G $ re for all m € Z

or

e0 G Oi and a 1 +  (2m -  1)6 € * re (X<*>) for all m G Z but a  £ $ re (X**') .

By Proposition 1.3.1 only the first of these cases occurs whenever .4 /  .4j|. Hence 
the result follows.

Suppose next that

K ( a  + m 6 )  = (a + m6 ,  d + mfi } .

Then
7 (Xa+mó(M )*Cf»+r»iA(t̂ )) — (tto/t )

and

for all //.i / G K. However, orbits of size two only occur if A- =  2 and thus f =  — 1 
and fm =  Also, since we must have

Kä -  Aq,

we obtain the single condition

€ 0 ‘,'T(K) O  V  =z K , , f  ’"/<•

When //,i/ G K* , this is once again precisely the condition for 

t'n ® (e „  +  K„«_mea) G £ (0 ,7 .*-)«^+.»a
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and so
a1 +  mS e  $ re .

Considering the case of m =  0 we also obtain the condition

ea 4- € 0O.

Finally, consider the case when

A '(o  +  mb) =  {a  4- m6, a  4- m6, a 4- m i}.

Then

7  ( ) ^* ä+r nÄ( ^ d + n i ^ (  V ) )  — V )^*ä+mA( S 'a P  )^*d+r»A(

and

T  ( f a + m i i p  )***d+mi ( ̂ )***d+niA( V ) ) — £ a + m 6 ( f  /0***d+rn/> ( ̂  ty)

for all /i, is € K. Hence

*Q+m«(M)*d+mi(i,)a;s+rai(v) € ©'l'T(K) «• v = Kae~mp and i] = nae~mv
where we note that once again this is precisely the requirement that 

im © (Cq 4" Naf "" e6 4- KnKaf 2"'eg,) 6 C(2,~f, k)a-,+mg.

Once again this implies that

a*  4- mS  € <I*,r ( X l k>)

and consideration of the case m =  0 yields

en 4" 4“ 6 0o-

Thus the result is proved. D
We now proceed to consider the remaining case, namely .4 =  .4̂ /.

The Case A =  A^i
We first make an observation about the root system of type ‘ C'i. VVe note that 

there are several ways in which this root system could be expressed in terms of root 
systems of finite type. We concentrate on two, namely the expression in terms of t) 
and the roots of the finite system of type C'i obtained by omitting the zeroeth node 
(as in Proposition 1.3.1), and that, in terms of ft and the roots of the finite system
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obtained by omitting the /th node (as would seem natural from the construction in 
Proposition 1.5.3). Suppose

by Proposition 1.3.3. By using these equalities we can substitute for /3/ and thus 
yield the following alternative expression of the root system <Prr("Ci);

$ r'(-C ,)  ={/3 +  m6 : 0 £ $ (£ ,) . m € Z } U {2 /Î+  (2m -  1)6 : /3 £ <P(B,)„™ 6 Z }

where <P(B/) is the root system of type Bi generated by the elements

{/?■}*€<—I.-

We shall be concerned with the automorphism

is a fundamental root system of type "Ci conforming with the labeling of A (“C/) in 
Figure 1.2.13. Then, by Proposition 1.3.1, the roots of <h " ( 'C /)  are given by

$ rT Ci) =  { ; ( / ?  + (2m -  l)tf) : 0  € &i, m £ z j u { / 9  +  m6 : 0 £  m € Z }

U {/Î + 2m i : 0 £ $i, m £ Z j .

where 4>i and <i>, are the long and short roots, respectively, of the root system of 
type .4] if / as 1 or C{ if / >  1 generated by the elements

of A (.42(). We recall that our initial root basis is

By Proposition 1.3.1

<Prr(B) =  { «  +  m6 : «  6 4>(.42i), m £ Z }

where
6 =  « I  =  « O  +  5 Z ( ° i  +  « 2 1 - i + l  ) i  

•€2io •€/
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obtained by omitting the 1th node (as would seem natural from the construction in 
Proposition 1.5.3). Suppose

Figure 1.2.13. Then, by Proposition 1.3.1, the roots of <ï>r,'("C'/) are given by

6 — 2/Jo +  • • ■ +  2/3/_i +  0 i

by Proposition 1.3.3. By using these equalities we can substitute for 0i and thus 
yield the following alternative expression of the root system <h"’ (*C'/);

$ r' ( mC,) =  {0  +  m6 : 0 G $>(£,),»» G Z }  U {20  +  (2m — 1)6 : 0  G G Z)

where $ ( Bi ) is the root system of type Bi generated by the elements

{/?■ •

We shall be concerned with the automorphism

$ "( T i )  = |^(/3 + (2m -  1)6) : 0 G $/, m G z } u { / ?  +  m6 : 0 G m G z }

where 4>/ and 3», are the long and short roots, respectively, of the root system of 
type .41 if / =  1 or C/ if / > 1 generated by the elements

{/*}.€!

and

of A (A i/). We rerall that our initial root basis is

By Proposition 1.3.1

= {n+mf>  : o  G $ M 2/),m  € Z)

6 =  a, =  o0 +  +  °at-<+i)i
<62io

where



§4.1 A Twisted Root System with Non-Trivial Root Subgroups 14G

and so is fixed by 7. Thus

$ rt(B l ) =  { o ‘ +  I A '(a ) I mS : a 1 G $ (A 2, ) \ m  g Z , }

where B 1 is the root basis identified in Proposition 3.1.4 and K ( a )  denotes the 
7-orbit o f q . Let

ft =  +  a (+l+i ) =  «7

for i G / — 1 and /do=“<-*a},l We denote by Ù the root basis corresponding to jn , } 
which embeds into B in the natural manner and by Ô1 the twisted root basis induced 
by 7. Then we can use the set

¡3 =

to construct a new root basis B1 such that W(B1) =  TF($'). By [Ste67, Theorem 
32] we know that (3 is a fundamental system of type Q and

4>7 =  $(£■»)

is a 11011-reduced root system of type T  given by Table 4.1.4.

Q T
l =  1 -4, -4,
/ > 1 B, DC,

Table 4.1.4: Types of root systems $ 7.

Furthermore
f) — Oo + <5>

where S is the unique highest root in the system <i>7. Hence, by letting ft =  o 0 we 
can construct a root basis 0 7 from B 1 such that W(B~I) =  W ( 4?1),

V - 'W )  =  {o '1, -I- m6 : o'* G <l>7,m  G z }

and there is a one-to-one correspondence between <I>r'(H 7) and $ rr(B l) such that

a 7 +  mS «-* « ’ +  | A '(a ) | mf>.

For each root datum V  = T>(A2i ), let i>r'  = $ ,r(An)  and

(( -VQ Ini*'-. N . H)
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be the root datum of type N) associated to 0r>(K) constructed in Exam
ple 3.2.5. Once again, we limit ourselves to the cases when ~D is of simply-connected, 
adjoint, or minimal adjoint type. In these cases we define a graph automorphism 7 
such that

07>(K) 0 p ( K )
1--► *+(()(/*)
1—► *-+ (•)(/* )

*o(p) 1—► x o (-h )
t - o(r ) »--► x -o ( -p )
hmJ( O 1—►

for p  € K, £ € Kx and fundamental coweights tcj. Thus the coefficient of 6 in 
7(a) =  a is the same as that in a for all a  € 4*"’. Also, given a +  mS 6 with 
a 6 <!>( .42/), we define Ka in a manner analogous to that used for the previous cases. 
We note that

*'<»¿ + •••+£»21- 1+1 1
for all t € / and Ka =  Ka for all a  6 $ re. We once again deduce that 7 is an 
automorphism of 0 p (K ) such that

7 (^Q+mi(/0) — ^á+m¿(*’a/í)'

We assume charK ^  2 and define a diagonal automorphism d( — 1) of ®p(K) as for 
the other cases where 7 has order 2.

Since <I>’ f (.42,) is a reduced root system we once again have Ya =  X a in the 
notation of §3.2. All the 7-orbits o f 4>r< form root systems o f types A\, ,4i x .4) or 
.42, and hence are prenilpotent. Define

A '(a) =  { 7 j(o )}j€2-

Suppose o  6 4>rc. Whenever A”(a ) forms a root system of type .4i or .4| x A\,

* 3  = A '(a)

and the root subgroups corresponding to the roots in the orbit generate an abelian 
group. However, if A '(o ) forms a root system of type .42, then

$"t =  {a, a, o  + ö}

and the group
-V =  (Xa : ß  e * ” .)

is not abelian. Nevertheless, since r„  +„(//) commutes with both r„{fi)  and (»-') 
for all »/.//, v 6 K. every element o f X  may be expressed as a product of the form
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for some f i , v , i f  £ K. Furthermore, by Proposition 2.3.1, such an expression is 
unique.

Suppose a-\-m6 £ $"■(.42/) with a £ $(.42/). Recall that by Theorem 1.5.G the 
subset of $ ’ '(£?"') consisting of roots ay 4- mS such that

either | A '(o) |> 1
or | A '(a) |= 1 and m is odd

is a root system of type ’ 4̂/ if / =  1 or of type “Ci if / > 1. Denote this subsystem 
of ) by $ " or $ "(.4 ) if there is any danger of confusion. We again exploit the
one-to-one correspondence between $(S*) and $( ) and define

AaS+m6 A al +|/v (a)|m6 ‘
We are now in a position to prove the following result.

Proposition 4.1.5
Suppose a  +  mb £ $ ’'e(.42/) with «  £ 4,(-4,>;). Then

-Y„s+rai ^  {1} <=> o 1 +  m i € i " .
Furthermore, we can describe the elements of X a-*+m(.

L // $ ae+m«‘ = { «  +  ” *«} <Aen
V _  /  A 0+mi if m =  1 mod 2

“ 1+"'4 { 1 otherwise.

2. If =  {or 4- m i, q +  m i} then

Aol+m f =  {•I'a+mA (/0*I*S + nirf( ( “""1 ) • P ^

where k 6 { — 1,1} is uniquely determined by the condition

ea +  Ke6 € 0o-

S. If $^+raii = { «  +  mS, d 4- mi. o 4- d 4- 2m i} then

AoT+nii =  { ^n+HiA(li)rd+rni(( 1) ( —1) N// /2 )  . // G K}
where K £ { — 1 ,1 } is uniquely determined by the condition

ea 4- xe6 £ 0().
Furthermore, if we define

— ■fa+mfl (/* l-Tft + niA (( 1) K H )*J*fl+f,.,2mrt( ( 1) /2 )
for each ft £ K, then

^ a ^ + m b it l  )*I’CTS +  n i / i ( p )  =  4" V  )
for all ft, v g K.
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Proof
All the comments we made at the beginning of our proof of Proposition 4.1.3 

are still relevant and so we once again restrict our attention to 7-orbits of the type 
I\(a +  mS) where a £ and m £ Z.

We prove the result about the root systems by constructing the elements of the 
groups X a-,+m6.

We begin by noting that any single element orbit is of the form

{a, +  • • • +  « 2 3- 3 + 1  4- m6} 

for some i G /. Let «  =  « ;  +  ••• +  « 2 3- 3 + 1 . Then

» + m f i ( / 0 )  ”  ^ o + n i t f i  P )

and
”  ^Q+»ii(( 1) /* )

for any ¡1 £ K. Thus

*a+mi(/0 6 <S"' r(K) <=> m is odd.

We note that this is precisely the condition that

t 0  CQ € -̂( 0. 7i 2)2/3o-i—+2/3|_/ + (m — 1 )6-

Any orbit of type .4] x At is of the form

{a, +  • • • +  otj +  in i ,  a 2f-j+i +  • • • +  « 2/—1 + 1  + ui6}

for some i € / — 1. j  € 21 \ {/}• Let «  =  « , +  ••• +  a> and «23-2+1 +  • • • +  o 2 3- 3+1 - 
Then

'y(% a+in6  ( / O - ^ a  +  n i t f i  ^ ) )  =  ^ o + m i i i  1 )  / 0 - * * A + m i ( {  1 )

and
T~{ Xa + ntfiifl )̂ *A + m6( ̂ )) “  2*rt+nii(( 1) / 0  ̂ '<5 + mtf(( 1)

for any /i, v € K. Thus

*o+m«(/<)*a+mi(t/ ) € 0 7 'T(K) u  =

We note that this is precisely the condition that a 7 -+- mS £ 4," '("Ci) and consider
ation of the case m =  0 yields

eQ + ( - l ) J-‘ ca € 00-

For the last of the cases, we note that any orbit of type .42 is of the form 

{a , H--------1- «3 +  m6, «3+] -)----- -f «23-3+1 + tn6]
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for some i E /. Let a =  a* +  • • • 4- oj and a =  o /+i + • • ■ + 021-1+1 • Then

7(*<*+mi(/*)**+m«(«')*a+a+2mi(»?))
~  ^6+mi(( 1) /0^Q+nii(( 1) ^)^a+d+2mi( V)
— ^o+tniit 1) ^)^Q+mi(( 1) P )^o+d+2mi ( /^)^o+(»+2mi( ty)
=  *a+ m «((-l)'" '« ')*d+mi( ( - l ) ' _*/i)a-0-M»+2mi(-l7  ~  Z'*')

)^a+mi(^)^Q+6+2mi(^)) — ^o+mi(( 1 ) /O f̂i+raAii ^)^a+it+2mi(^)

for any p,v ,i) E K. Thus

We note that ij is uniquely determined by // and u. Furthermore, the condition 
imposed on /< and u corresponds precisely to the condition

Thus it remains only to show that the necessary condition is satisfied by any two 
generators of - Y „ L e t  k' =  ( — Then

— Xa+ntsiP 4“ i'/ )^6 + r»6 ( ̂  {P 4“ t )̂)2*c+A+2mi( ^ (P /— 4“ P^ 4“ V / —)) 
=  ^a + tnsiP 4" t/)'T6+ni6 ( ̂  {.P 4" i*') )*Ca+<5+2r?iA ( ti (p 4“ V) /2 )

4.2 Groups Fixed by the GraphxDiagonal Auto
morphism

and

<t=> v =  ( - l ) m+' - / i  and q = - ( - i ) m+ * - y
2

eQ 4- ( —l)* “Cfi € 0o-

since char K /  2, and the result is proved. □

We now return to the general situation, where .4 is any simply-laced extended 
Cartan matrix.
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The Root Base and Weyl Group of the New Twisted Root 
System

Lot r  be the subgroup of Aut(£?) consisting of the powers of 7 and I f '1 be the 
subgroup of consisting of elements fixed by I\ By 3.1.4,

ffrr S  W (B l ) =  W (fT ).

The following result is essentially a more general form of the first statement in 
Proposition 3.1.4. The proof is nonetheless entirely analogous.

Lemma 4.2.1
For any 7 -orbit K  C 4>r' ,  let Bk denote, the spherical root basts constructed 

from. it. Let wk denote the unique longest element of W (B s). Then U’k induces on 
V 1 a reflection in the hyperplane perpendicular to the vector a 1.
Proof

By Lemma 3.1.2, Wk (o 1) =  —a 1. So it is sufficient to show that for any 7 € n0

t> =  w k (oij ) — a j  G Kr»1.

Now v € Vk and is fixed by T since T fixes w k  and a j. Hence v € K n1 . □
Consider the subsystem F" of 4>’ e(B‘>) we constructed in §4.1. Recall that 

) is a root system of type XjfK  The reflections corresponding to these roots 
form a Coxeter group of type X ^ \  which we shall denote by W °. Thus, in partic
ular,

tv"(o'1) € 4>'T whenever wa € If™ ,«'1' G ‘I),T.
We note that in all cases <I,'T is a reduced root system. Let

IF =  {/), =  6 -  Y  2/i. , B, i G f - l n  
l -eLA.

if .4 = .42/ and

n" = (/Jo = f> - Y  - ft « e m
l ,e .M

if .4 An, where the elements l>, are the labels on the corresponding nodes of 
A (*<*>) in Figures 1.2.13 1.2.14.

Lemma 4.2.2
Suppose j  G Mo represents the ~f-orbit. J in n " and let r^ =  Wj for each 

j  G Mo. Then the pair
( l f r", [rpj} >eA/0)
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M a Coxeter system. In particular

W j G W  =

for all j  € Mo.
Proof

By the results of §1.5, the set 11" is a fundamental root system for <!>". Thus 
the elements of W " corresponding to these roots form a set of Coxeter generators 
of W ".

□

A Generalization of Hee’s Theorem
Let V”  be the subspace of V 1 generated by 11" and. for each j  G M0, denote 

by q"  the automorphism of V ”  induced by qj where j  is the representative of J in
M0. Let

e" = {̂ jheA/o-
Then

S" =  ( M o ,v '" .n " .e" )

is a root base of type XjfK  Furthermore,

W " =  W (B ’ ).

Recall that
((-Ya )«{♦ ", N. H)

is the root datum of type (B. 'I'" . N) associated to ®p(K) constructed in Exam
ple 3.2.5. Let ®"(K ) be a subgroup of ®'f,r(K) such that

{X a i  : a ’ E r ) C l 9 " ( K )

and let
JV" =  TVn ®"(K) and / / "  =  / /  D <S"(K).

We note that H " C N " .

P r o p o s it io n  4 .2 .3
The triplet

((-Y
is a root datum of type (0".<!>". N) associated to ®"(K).
Proof

We follow an analogous line of reasoning to that used by Hee in his proof of 
Theorem 3.3.3.
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We recall first that y (H ) =  H, y (N )  =  N, t(H ) =  H , and r(N ) =  N. Also, 
since

7 t A o ) — A"-, {n) and T  (-\ ) A a ,
both 7 and t fix U , U- , D , and Z?_. Both 7 and r thus satisfy the conditions of 
Lemma 3.3.2, with Q-, =  7 and 0 r being the identity automorphism of B. Hence

« ’-> (") =  7 « ’„ 7 _ 1 , w r „ ( n ) =  « > „ ,

7 (A X ) C , and r(X ~n) C X ~n

where the elements 7 and n>„ are identified with the elements o f G L (V ) they induce.
Now. if n G N  (7 ©'1',r(K) then 7(1?) =  7"(n) and so

7M’„ 7 -1 =  M)n,

leading us to the conclusion that wn G H 1 .
Suppose that r  G ©p(K) has Bruhat decomposition (itj, n , u). By Lemma 3.3.2 

the Bruhat decompositions of y (r )  and t(x ) are then

(7 (Mi )i 7 (" ) i7 (« ) )

and
(r(n ,), t (»i ), t(u))

respectively. Thus, if i  G © 'ir (K) then we must have u i,n ,n  G C7'>-r(K) and 
u>„ G W r .

Recall that
CA =  (X 0 : a G $?>

and let
U ’  =  i7 n  © 7'r(K).

Since (A’„ )oe<J)+ is a positive root system in U and the conditions of Proposi
tion 3.3.1 are satisfied we conclude that ( 1  )„ 1 e<j>> *s a positive root system of
type N) in U K  Thus we deduce that

is a positive root system of type in U ". Thus

W  =  (Xas : a 7 G C ©"(K).

Similarly,
UZ =  (X a, : n 7 G * ' )  £  ©"(Hi)
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where U°_ =  U- O 0 ^ T(K).
We are now in a position to demonstrate that the conditions RDG1-RDG4 

hold. We begin by showing that condition RDG4 holds.
Since B" is reduced in all cases,

Y-0j =  X .p , C ©"(K)

for all j  £  M 0. Recall that /3j  corresponds to a spherical 7-orbit, J  say, of elements 
of 4>". For each element o  £ J, denote by Qa the reflection of V in the liyperplane 
perpendicular to a, and by ra the element of ]V corresponding to ga. Let

W j  =  ( r a : a  £ J )

and Nj =  {n £ N : u>„ £ WO}. Denote by «>j  the unique longest element in WO- 
We thus require to show that

{1} #  X-pj C X^N jXpj

where N j =  {»1 £ N" : ten =  tvj). Now X-pj /  {1} by construction. Hence let

a- € X-pj \ {1 }.

We consider the Bruhat decomposition of x in Lj. Suppose

x =  iij mi
with Hi £ X j,  n £ Nj and 11 £ X j  fl X~n. Hence ui,u  £ U” C © " (K), and we 
deduce that

n =  «¡"'a '«-1 £ ©"(IK) and «>„ £ W l .

Thus n £ N j =  N j fl ©"(K) and w„ £ W j PI W 1 . Now, by Lemma 4.2.2,

won w r =  {i.«-j}.
Suppose, if possible, that w„ =  1. Then „Y”n = {1}. and so the Bruhat decomposi
tion of r  would reduce to

x = u 1 fl € U H

since kcr n =  H . However,

x e X-pj \ 1 c  u.\ {1}

by assumption. Hence
x £ U H D U -  = {1},

which is a contradiction. Thus we must have w„ /  {1 }, whence «>„ =  wj = rpr  
and condition RDG4 is satisfied.
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We proceed to establish the existence of an epimorphism

n" : N" —► W (B ,T).

Let n" be the composition of
k : N —* W

and the canonical isomorphism

W  — W (B ’ )
u> *—» wa.

Now
W  =  (r0i : j  € Mo)

and, for each j  6 Mo, tqi € 7r( N " ). Thus n" is surjective. Furthermore 

ker it” =  (ker k ) C\ N " =  H f\ Na =  H ” .

Thus k" is an epimorphism with kernel H ". Suppose n € N ", a7 € i ,<T and

F  =  u£ (a 7).

Since w„ € W 1 , we have 

Thus
« (.Y c - , ) « - 1 =  « n © " (K ))  n-1 =  Jf*r. (1  © " (K ) =  A'/s-t.

Hence n’<T satisfies all of the conditions of RDG3.
We now proceed to demonstrate that

©"(IK) = (H ", X a-< : a 7 € $ ").

Suppose that r  € ©"(Hi) has Druhat decomposition (u j,n ,u ) in © 7,r(K). Then we 
have shown that in fact

tti,u € (-Yq-. : a7 6 <!>") and n € JV".

Thus it is sufficient to show that

N" C (H*, A«-, : a 7 € # ') .

Since VT'T =  (r^ : j  € M0) and JVj =  N "  fl ) is non-empty for each
j  € Mo, we deduce that

N" C (H \  N j- .j  6 Mo)
from the properties of n".
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We have also shown that
0 /  X-pj \ {1 } C X 0jN ,X 0i

and we know that
(X 0J, X - 0j) C (A V  : a"1' 6 *° )  c  © "(K ). 

Hence at least one element n € N} satisfies
n =  u ^ 'ru - ' € (X ay : € d’")

and, since ker n" =  Ha, this means

and consequently
Nj C { H " ,x ay : € <K)

N " Ç ( H " , X ay : a 1 € «F7) 
as required. Thus we have shown that

© '(K ) =  (H " ,x ay : a 6 d»'7)
and, in particular,

©"(K ) =  ( H W W Z ) .
We note that the conditions

U"H" n UZ =  {1 } =  Ua n UZH”
follow directly from the corresponding conditions on U, U- and H . Thus condition 
RDG1 is also satisfied.

Finally, condition RDG2 follows from Proposition 3.3.1, the fact that ( A',,-. )o-,€4>.,
is a positive root system of type <I>" . N) in Ua, and the conditions on positive 
root systems. O

The following result is a direct corollary of Propositions 3.2.3 and 4.2.3.

COROI.I.ARY 4.2.4
Let 0 ff(K), N ", and H" be. a.« in Proposition 4.2.S. Define

B *  = { H ” , X „ y  : o'» € d>;>
and

DZ =  (H” , X ay : o'» 6 $Z).
Then (D " ,N a) and (B Z'N ” ) are two (D , N)-pairs in ©"(K).

The property
©"■(K) =  (H” , X ay : ci € d>'7)

which we established whilst, proving Proposition 4.2.3 will be of great use in the 
sequel. When required we shall refer to this as the generation property o f the 
groups ©"(K).
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The Groups H 17
In order to study the structure of ® "(K ), and in particular its (D , JV)-structure, 

it is necessary to study the subgroup H" in more detail. Since H" =  H O ®"(K), 
we begin by considering

H1T =  H  n 0 7 T(K).
Recall that, if ®p(K) is a Kac-Moody group corresponding to a root datum

V =  (A, {*,}<**, {an<ea>)

associated to .4, then the subgroup H is the image in ® p(K ) of Tp(K). In other 
words

H 2  A* © Kx =i Kx x •• • x Kx

where there are rank A* terms in the above product. Thus, given a generating set 
{A,} of A*, the set corresponding to

{ A , ® ( : ( e K x}

is a generating set for H . We note that H is abelian in all cases.
We consider the minimal adjoint , adjoint and simply-connected cases as sepa

rate examples.
E x a m p l e  4.2.5

If T> =  Dtc(A ) is the simply-connected root datum

a - =  ©
■eno

and hence H,e =  T o ,r(A') is generated by the elements

for £ € K *. Recall that,
7 : hai( i )  h-. hMo()(0

and
t : / i „ ,(0  •-* haiU)

for all i £ n0 and £ 6 Kx . We deduce that

h e o h = h a o ( to) n (n
Jen' \I€J

for some £0, £j 6 Kx . o
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E x a m p l e  4.2.6
If 2? =  T>„d(A) is the adjoint root datum, then by Example 2.5.8

A = ® Z d i
•€fi

and so A’ has a generating set, { },€„, defined by
=  hi

for all j  6 n0> "'here btJ is the Kronecker delta. Thus H„a =  Tpnd(K) is generated 
bj' elements of the form

hmfit) =  w,v ® £
for i G »  and £ G K* . Recall that

7  = ^ K ) ( i )
where 7(w,v ) =  and

r : /*=7,y(0 *-» y (0
for all i 6 n and £ 6 Kx . We thus obtain the condition

1 ad h =  n (n*-r(w)Jen1 \ t€ J /
for some £j G Kx .

Example 4.2.7
If T> =  P,„(.4) is the minimal adjoint root datum

A =  ®  Zd, =  ®  Zo,
■ClLo >€l!o

and so A’ has basis {£CJ,v }i€n0 where
W,V(« j )  =  ¿.j

where f)u is the Kronecker delta. Thus H,„ =  Tp,„(K) is generated by elements of 
the form

for i G »o and £ G Kx . Recall that
7 : A®y(0 /> (̂®y)(0

where 7(c7,v) =  tZ7̂ (l), and
r : / i „ v (0  •-» h „y (0

for all » G n0 and £ € Kx . We thus obtain the condition

h € H.Y  « /* = h w ^ t o ) n (n *»,v(o))
Jen1 /

for some € Kx . O



§4.3 A Comparison of the Action of Two Groups on a Kac-Moody Algebra 159

4.3 A Comparison of the Action of Two Groups 
on a Kac-Moody Algebra

Suppose Z> is a root datum associated to a GCM and ©p is the Kac-Moody 
group functor corresponding to 2?. Recall that condition KMG5 endows ©p(C) 
with an action on the corresponding complex Kac-Moody algebra. Furthermore, if 
T> is of minimal adjoint type this action is faithful.

Suppose that A is a simply-laced extended Cartan matrix of type X „  and 
maintain the notation introduced in the first two sections of this chapter.

The Algebra in Question
Recall that in §1.5 we constructed a suhalgebra £ (0 ,7 ,1 ’ ) of 0^(C) which was 

the fixed point subalgebra of 04(C) under the action of an automorphism à. We 
shall hereafter denote £ (0 , 7,1’ ) by 0".

By Theorem 1.5.6 we have

0* — 0 V,*»(C),n

where X^k) is determined by Table 1.5.5.
Let D = (Dij )i,j£nt0 be a GCM of type X}tk) and let 0b(C) be the Kac-Moody 

algebra associated to B. Denote by IIH =  {/3,} ,eaio and 'I>H the set of fundamental 
roots and the real root system of 0«(C) respectively. Let

{e/Jofan flj '■ * € nioJ  6 m +  l n)

be a Chevalley basis of 0/j(C).
Suppose

<t>' ■ -»  Ofl(C),

is a Lie algebra isomorphism of the type constructed in §1.5. Given a fixed set 
of structure constants for 0.j(C), this entails a particular choice of structure con
stants and root vectors in 0h(C). We shall refer to such root vectors in 0»(C ) as 
distinguished root vectors.

The Lie algebra isomorphism <j>' induces a group isomorphism

d> : Aut 0" —» Aut 0«(C )

such that <£(expad :r )  = expad for all / £  0* and :  6 C.
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A Faithful Action
Denote by the Kac-Moody group functor ®x>m(B)- Thus <5®(C) acts faith

fully on JJb(C) and so the map

AdB : 0® (C ) -  Aut 0fl(C)

determined by condition KMG5 is injective.
Denote the generators of ®®(C) determined in Example 2.5.8 by

v-/j.(*)> and

for i G nin. z G C. and (G  C*. Then

AdB (t//3,(i)) =  exp ad zegt and AdB (y-gAz )) =  exp ad z f0i

for all 
h
Thus

z G C. We also wish to determine the image under AdB of the generators
*.«)• Recall that h „v (£) acts on each root vector eg as multiplication by £

AdB ( f c .* (0 )  =  M%

where Adg. is the automorphism of 0b(C) defined by

0«(C) -» 0b(C)
e0i »—>
e0i> 1—► eA< if i' G m0 \ {*}
f* 1—► r 7 A
f t , 1—► if t' G m0 \ {?}

1—► V for all i G m -f l n.

An Action of the Twisted Groups
Denote by the Kac-Moody group functor We begin by showing

that the subgroups of which consist of elements g G © satisfying 7 (g) =  r (g ) 
act on the algebra 0ff.

Lemma 4.3.1
The groups X a-r(C) act. on 0" for all a7 G 4,'T.

Proof
It is sufficient to show that, for all o 7 G 4,'T. the generators of X n-,(C) act on 

O'*. In particular, if we can show that every generator of X at(C) acts on 0 .¡(C) as 
expad zr  for some : G C  and some x  G 0*. then the result will follow.

Suppose a + m6 G $ re(A) with «  G 4>re(.4) and o 7 + mft G 4’".
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We note first that if two elements j-, y £ 0.4(C) satisfy =  0, then a<l zx
and ad z'y are commuting locally nilpotent operators on the complex vector space 
0.4(C) and so

for all z, z' 6 C. Thus, whenever =  A '(o), the calculations involved are straight
forward. We consider these cases first.

Case 1: K (a  +  m i) =  {a  +  1116} .
In this case xa+ms(z) acts on 04(C) as expad zea+mt for all z £ C, where it is 

understood that, if a +  m i £ d>1'(.4), then ea+mg denotes the generator f - a - m s  of 
04(C). Furthermore, from the proofs of Propositions 4.1.3 and 4.1.5 it is clear that 

f —a —m6 €  0 .

Case 2 : = A '(a +  1116) =  {a  +  m i , ô  -f m i} .
We consider the action o f the element

exp ad zx. exp ad z'y =  exp ad (zi• + z'y)

Case 3 : A '(a  +  m i) =  {a  + mb , <5 +  m i , a  + m i}. 
This case is proved in an entirely analogous^to Case 2.

Finally, we consider the only case where /  A '(o +  m i).

Case 4 : =  {o  +  m i , o -I- m i , a +  5 +  2m i}.
We consider the action of an element

(o+mi)1

on 0.4(C). Such an element acts on 0.4(C) as

exp ad (zea+mt ) ■ exp ad (znc„+mg ) • exp ad ®o+ft+2mi)
which simplifies to

expad z (e a+mg +  Kea+mf)
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However, by the definition of 7,

{(*,& ]) =  (7(0), 7(=>y »

for all o  e 4>r'(.4 ) and j  € n0. Thus the required equalities do in fact hold.
The case of =  { a , a , « }  is proved in an entirely analogous manner to the 

above. ^

which is the restriction of Ad7,T to © "(C ) is a homomorphism. In particular, every 
subgroup of ©7;T(C) acts on 0".
Proof

It is sufficient to check that the generators of ©7,;r(C) act on 0". Since, by 
Proposition 4.2.3.

An Induced Action of the Twisted Groups
Since 0" = 0b(C). Lemma 4.3.3 leads us to the conclusion that every sub

group of ©7,'r(C) acts on 0h(C). Thus, given any ©".(C) < ©7,;r(C), there is a 
homomorphism

Let

Lemma 4.3.3
The group ®7;r(C) acts on 9". i.e. there is a homomorphism

Ad,,r : ©7;T(C) -  Ant 0*.

Thus, given any subgroup ©7,(C) — the map

Ad„ : ©7„(C) -*  Aut (g*)

: ©;n(C) -  Aut 0»(C)
stich that the diagram

> Aut 0"
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commutes. We wish to determine the images of the generators of ©„¡’"(C) under 
the homomorphism c =  <;7>r. We first consider the images of the generators of the 
subgroups .Y„-,(C) <  ®7̂ T(C).

The A ction  o f  the G roups .YQ-,

At this point it is convenient to fix our notation for the generators of the 
groups -Ya-r. Suppose that o'1' +  mS £ with o  £ <!*( .4). There may be several 
roots o ' +  mS € <£rE(.4) such that ( o ' +  mS)'1 =  a7 +  m6. Henceforth we suppose 
the representative o  +  m6 6 4>rf(A ) is chosen so that it is the first in the natural 
lexicographic ordering we can define on the set of roots satisfying such a condition.

We consider the images of the generators of the subgroups -Y„-,(C) < ©7;r(C) 
in a case by case analysis.

Case 1: I\(a -f rn6) =  {o  +  m i} .
In this case the diagram

commutes, and so c (xa+ms(z)) =  exp ad Z(j> ' ( ea + m f l ) .  However, by the results of §1.5, 
whenever o  + mS £ $ <T, 4> ' ( ea+mg) is simply a distinguished root vector of 0«(C). 
Thus xa+mt(z )  acts on 0h(C) as expad ze^ for some fi £ 'I,H.

Case 2 : $ ( '+nl4)i =  A'(a +  mfi) =  {o  + m S , a +  n i i }  .
This time the diagram

commutes. Once again the results o f §1.5 show that <&'(r„+ma +  is a distin
guished root vector of fjfl(C).

>  exp ad zea+mf

expad z<j>'(ea+mg)

Xa+m6 ( Z  ̂z) > expad z(ea+m6 +  Kea+„,s)

expad z<t>'(en+mg +  s-ea+mi)

Case 3 : A '(o +  m6) =  {a  +  mS , d +  m S , a + mf>).
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In this case the diagram
expad z(ea+mt +  /ce meà+m6 +  /c'e 2mea+,„i)

expad :^ ( e a+It,s +  «< mea+mi + /c'e 2,ne5+nli)

commutes. Example 1.5.9 explicitly shows that <t>'(ea+m6+Ke mea+ms+K'e 2"‘ ea+I„4) 
is a distinguished root vector in 0b(C).

Case 4 : <I>̂ +nl£)i =  {a  +  m6 , a +  in6 , a +  d +  2m i}.
Finally, the diagram

expad : ( e a+,„t 4" /cea+rl,̂ )

^*a + rn ô ( Z  ) ^ d  + m é ( ) ^ Q + o + 2 r n é (  /C^ / 2 ) <t>

V
exp ad z<t>'(ea+mi +  /cea+m4)

commutes. However, as was demonstrated in Example 1.5.11. in this case

(̂Ca+,116 4  SCft+mi ) — ^  C0

where eg is a distinguished root vector in 0//(C).

Moreover, a case by case analysis shows that in all cases exp ad eg is in the 
image of «, whenever eg is a distinguished root vector.

T he A ction  o f  H ^T

We note that the Lie algebra isomorphism <£' induces a bijective correspon
dence between I1" and 4>H. Suppose /? € is identified with a'1' € 4>'T under this



§4.3 A Comparison of the Action of Two Grotips on a Kac-Moodv Algebra 1G6

correspondence. Tims we may write the root vector eg g 0h(C) as eQ->. Recall that

j/iatfUo) , n  hmy(£j) : J g n1 , £ o ,0  € Cx |

is a set of generators for f f7,T(C). We note that

<, (h „v((o )) acts on eQ-, as multiplication by £o' W° ̂

and

(n/-r(0)) acts on ea-i as multiplication by £j

where a € <l>,e(-4) is a representative of the orbit corresponding to a 7 g 

Lemma 4.3.4
Suppose first that (A ,k ) /  (.4„,2). Then, for each £ 6 Cx ,

< = Mfh and <. ( i l  ^ " ( o )  =
\ i e J  /

where J g n1. and (3j g I1H corresponds to a~j g with two exceptions;

C (/‘ < ( 0 )  =  M i  when (.4, k) =  ( A +1,2)

and
C (hwv((,)hav(£)) =  M i  when (A ,k ) =  (¿6 ,2 ).

Suppose next that (A ,k ) =  (Aji-\ ,2). Then, for each ( g  C“ ,

< ( * - . " « ) )  =  M i ,  < (fc.v(0A -v( l ( 0 )  =  M i M i ,

and
=  M i

for i g / \ { l } .
Finally, if (A ,k ) =  (A n ,2) then

i  (> i< (0 )  =  M i  and (, ( { ) )  =  -^ ¡L i

/or ( g  C  and i g /.
Proof

We begin by considering the element of •h" associated to /% g <I>B. This element 
corresponds to an orbit of roots in 4>(.4). We give an explicit description of this 
orbit in terms of o , for i g n0 in Table 4.3.5.



§4.3 A Comparison of the Action of Two Groups on a Kac-Moody Algebra 1G7

(A ,k ) Orbit corresponding to do

(¿2 /,2) {a / -(- a/+i }

(Aai-1,2) {«0  +  «1 , «0 +  «2/-1}

(A + i , 2) {«0  +  «2 +  • • • +  « / - l  +  0/ , «0 +  «2 +  ■ • • +  «1-1 +  «1+1 }

(¿>4,3) {«o  +  «1 +  «2 , «0 +  «2 +  «3 , «0 +  «2 +  «4}

(¿6 ,2 ) {«0  +  «2 +  «3 +  «6 , «0 +  «3  +  «4 +  «6}

Table 4.3.5: Orbit of roots in <1>(.4) corresponding to /?0 G 'I>H.

Suppose that (A ,k )  ^  (.42/, 2).
Consider the element of associated to do G 41 H in these cases. This corre

sponds to an orbit of roots, det ailed in Table 4.3.5, where a0 occurs with multiplicity 
one in each root. For example in the case (A ,k ) — (.4.2/_ i , 2) the orbit in question 
is

{ —»1 — • • • — a ? i - i  +  6 , —«2 — • • • — at2i-\ +  A} =  {«o +  o i ,« o  +  «2/-1 }•

Hence, whenever (.4, k) (.42/,2 ), < (/t„v(£)) will act on efo as multiphcation by 
£ and on f,% as multiplication by £-1 . Furthermore, since the remaining elements 
of n fl correspond to orbits independent of o 0, s ( //n>^(0) will act trivially on the 
remaining Chevalley generators of jjh(C). Thus we conclude that

< ( * < « ) )  =  M i

whenever (A, k) ^  ( .42/, 2).
When considering elements o f the form s (fl.e_/ ( 0 )  , we separate root orbits

into two types: those whose roots appear with non-zero multiplicities in the orbit 
corresponding to /10 and those whose roots don’t appear in the orbit corresponding
to do-

Consider the element <, (flig j where .7 6 n1 and ) is such that
its roots appear with multiplicity one in the orbit corresponding to do when the 
elements of that orbit are expressed in terms of « , for i G u.u. Then s (flieJ ^wtv(0 )
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will act as multiplication by £ on both e/jo and eay, as multiplication by £-1 on f,^ 
and f a7, and trivially on the remaining Chevalley generators of 0«(C ). Thus in 
these cases

i j n / . r i o )  = m ^ m %

where /3j corresponds to at].
Whenever A’ (« ,)  is such that its roots do not appear in the orbit corresponding 

to f30 ,  the element c (FI,g7 will act as multiplication by £ on e/jj , as multipli
cation by on fgJ and trivially on the remaining Chevalley generators of 0h(C). 
Thus in these cases

where (ij corresponds to o f  ■
Finally, the case (A ,k ) =  (.42/, 2) is argued similarly. □

We note that in particular, lies in the image of «, for each i G m0.

Lemma 4.3.6
The action o f H%T on 0g(C) is faithful.

Proof
In order to show that H%T acts faithfully on Ob(C) it is sufficient to show that 

only the identity element of H%T acts trivially on 0«(C ).
Recall that

h g h ~'ut h =  /»wv (f0) n  ( n  hmrtij)
J e n 1

for some £0, O  € Kx and that such an expression is unique. Thus such an element 
It acts on 0b (C) as

M t  n
J e n 1

where f3} G ITW corresponds to a ] G 4*", O  is a product of £0 and some of the 
elements £j for .7 G n' if (-4, A*) ^  (.42/,2 ), and ( a =  £{U+t) if (A,le) =  (,42/,2). 
Hence li acts trivially on 0h(C) if and only if

0  =  1, Hiul 0  =  1

for all .7 G a 1. Now if f j  =  1 for all .7 G a 1 and h acts trivially on 0h(C), then 
(o =  0  = 1  and h limst be the identity. □
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Kac-Moody Groups

We now have details of the maps schematically described in the following dia
gram.
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From the generation property of the groups ©"(IK). Example 4.2.7, and the 
results of §4.3 we can deduce that

for any two elements r ,y  g ©7,;T(C). We know that both s and Ada are group 
homomorphisms and that the above diagram commutes. Hence

> Aut o'*

> Aut Ob (C)

<A

ç(<57,;r(Q )  £  Ada (© « (C ))  .

Aut 0h(C)

commutes. 

Lemma 4.4.1
The. map t/’m *•'< a group homomorphism.

Proof
We need to show that

i'm(xy) = 0m(*)V’m(y)

Ada (tl>m(xy)) = c (ry )  =  ç(*)ç(y)
= Ada (V’m(•»•)) Ada (V’,..( y ) ) 
= Ada ( V’m ( •»* ) V’r« ( ?/ ) ) •
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However, since Ada is injective, we deduce that

V’m (■»'!/) =  V’mUW’mi.V)

as required. O
Furthermore, the homomorphism %l>m is surjective since every generator of 

<S*(C) Ues in the image o f i/>m. We aim to show that t/>m is in fact an isomor
phism. To do this we use the properties of a (B  ,7V)*pair.

Lemma 4.4.2
The homomorphism tpm is injective.

Proof
We show first that

ker V’m C Hm n  ® ^r(C) =  H ” .

Since A<1h is injective, ker V’m consists of those elements of 0?,;T(C) which act trivially 
on 0b(C). We aim to identify these elements.

Recall that

U" =  (Xc-, : o '  e  *%) and UZ =  (X ay : a 7 6 * ' ) .

Let
F ' r =  UVH ^T and B l T =  UZH%T.

Corollary 4.2.4 implies that (B~,,T , N~,'T) and (Bl'T , N y,T) are two ( B , N )-pairs in 
© ;;T(C).’ Thus

0 £ T(C) =  B y'TN','T B^'T and 0 £ r(C) =  B 1T W 'T B Y

are two Bruhat decompositions of ©?,;r(C).
We consider the first of these. As a result of the third part o f Proposition 2.1.7 

we know that, for any n,n' € N y'T,

B'' TnB^T =  ¿T V Z T  T ^"(n) =  € W "

where n" denotes the projection of N~',T onto W ". Thus all the elements of ©?,;r(C) 
which act trivially on 0«(C ) must lie in the double coset corresponding to the 
identity element of W*, and hence we deduce that

ker V’m C B ' r.

However, an entirely analogous argument holds when we consider the Bruhat 
decomposition 0?,;r(C) =  B1'T N ‘,,T B1'T instead. Thus

kerV’m Q ¿P 'r fl BZ'T =  H%T.
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We know Ĥ nT acts faithfully on fla(C) as a result of Lemma 4.3.6. Hence 
ker V’m is trivial and we deduce that V’m is injective. □

We thus have the following result.

Proposition 4.4.3
There is a group functor isomorphism

0> •^m • v m)

where the group functors in question are defined on the category of fields K with 
charK ^  2 and such that

n/ 2 € K  if (.4 ,* ) =  (.42i,2), and 
char K ^  3 and K coAtvU ^ if (.4, k) =  (¿ .j, 3).

prifettw« cube rcch'
Proof

We have shown that there is an isomorphism

*„.(C ) =  V-„, : ® r (C )  -  ® £(C ).

Tims it remains to show that there exists an isomorphism

*m(K) : (97„'r(K) -  <S»(K)

where K is an arbitrary field. We do this by considering the map

* ;„ (K ) : ® * (K ) -  ® „ T(K)

defined on the generators of ® ” (K) by

*™(K)(W(/*))- n *-(*«/*)
for // G K whenever

*„.(C ) n  = l//l(")
\“ €*i /

for all i / £ C  and
*m(K) ( / * . * « ) )  =  II * - / « )

for £ € Kx whenever

(0* m(C) n  A *;(C )
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for all £ € Cx . We note that the set ii ( ^ 3,) is determined by Lemma 4.3.4.
Furthermore, if either (.4. k) =  (A j/, 2) and \/2 K or (À, k) =  (¿>4,3) and A

To show that is a group homomorphism we show that the defining
relations are preserved. That is to say, we need to show that the relations

are preserved for all i , j  G in,,. p ,v  G K. and £, £ G K *, where 6,y denotes the 
Kronecker delta.

The first two relations are preserved since

for all i G rn0 and £ G K* . We note that whenever ii G ±11w \ { ±/40}. the elements

{■To(«o/0 : «  € $,3} 

commute pairwise and so the relation

2//3(/«)»//i(") =  y, 3(/i +  V)

is preserved. If /3 G { ± /io ). the preservation of the above relation is a consequence 
of the third part o f Proposition 4.1.5. We split the calculations for the remaining 
relations up into Lemmas for convenience.

Lemma 4.4.4 
The relation

then is not defined. K  r\o  yéuwIvVvot ro o V  ^

yg(t‘ )yti(v) yg(i‘ +  v) 
ygjiÇ^n)

nf3jhwv(t)n p }

[yaU^-ya'^)}
y r B.(&) (V/3,,/3/<)
n  y~i (Cgii'if1'

)(*!&,gf1) an<1
y-,(Cßß^p'u] ) , 7€<t-B, g*±g\

{/3,/3'} p renilpotent

*:„(K ) ( / . .v  (£)) e

iiw*.(t)ygj(t')i'a,*.(Zrt =  yaM SiJn)

is preserved by 'k'm (K) for all i , j  G ¡Ra, £ € K* , and p G K. 
Proof

We note that

♦'„(K ) ( / » „ v ( 0 ^ ( / / ) / . „ v  (£)-•)
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= n n <w
and

ae*,5 Ww'sntw*.)

*»(K) (v* = II {(Siiw )  •
We thus require to prove that

Y  {<*,&?,) =  6ij

for all a £ 4» .̂. However, this is a condition independent of the field and therefore 
must be satisfied since 'PJII(C) preserves the relation. □

Lemma 4 .4.5  
The relation

n0jhm*X {)n^  =  r0] (h*,*(()) 

is preserved, for all i , j  £ pio, £ £ K* .
Proof

We note that '̂„,(K)(n̂ ) = II n«(K“)
ae<t„j

where
« o ( « a )  •—  •**« ( ^  a  )•*- —o  (  A'a  ]

We note that cv =  le(o ') for some tv £ W * and o ' £ IT(-4). Thus

Uo(A*a) — U ult l a f ( f\ 'a >h'a ) t l u,

where /»•„. € Kx and nw £ N" is an element such that n(n„,) =  tv. We also note 
that

««, (< )/» .v (0 » a ;« ;r hej (< )na hm* (t )n~J haj (< ) -1 

haj(C)r0i (hwv (())  h a j«)-*  
raj (h »v (i))
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for all i, j  € n0 and £ € Kx . Thus

JJ[ ^o(^a)

' n , ) f

n *-s(0
)  \ -?€n (-v ) ’ y

n *-?(«>)rfeniw*) J

>€^- y

n ».?«>)( n *.( n «-<--?>) j
/  Voe*»j V-îî€ft(»X» / /

where Flog«» ro is well-defined since the roots in the orbit corresponding to /3j, and 
hence the reflections corresponding to them, all commute. However,

# :»(K ) (n* (* .v  ( o ) )  =  * :„(K ) ( r <w))

= ( n ( n *- M  ] •
\toiien(wJ.) /  J

Thus it is sufficient to show that

Y  (Q>we) =  6H

for all a € $/),, which is a fact we have already established. □

Since the structure constants are all integers, the preservation of the last two 
relations involves integral equalities which, since they are satisfied in C, must cer
tainly be satisfied modulo a prime.

Thus »^„(K) is a group homomorphism. Furthermore, since every generator of 
®7nT(^ ) described in §4.2 appears in its image, (K) is surjective.

We thus require to show that ( DC.) is injective. Let

U B = (Xfi : n € *?), U B = (Xu  : 0  € *?>,
B' =  U HH B and B'_ = U ? H B.

Recall that ( B ',N H) and (f?'_,jVH) are two (B  ,N )~pairs in
We note that we may define Kac-Moody algebras over arbitrary fields in a 

manner analogous to that used in the classical case. Furthermore, provided the 
field K is o f a suitable type, we may again obtain isomorphisms between £Jh(K)
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and o'7)K ). VVe may also define actions of the groups 0 ® (K) and ® 7 ,;T( ] K )  o n  

0H(K) =  0"(K) and the diagram

© »(K )

♦'m(K)

©7,;r(K) ------------------------------> Ant 0b(K)

commutes. Thus a non-trivial element

x G ker K)

must certainly act trivially on 0fl(K). Recall that by Proposition 3.2.3 there is a 
unique decomposition

X  =  U \ 1 1 U

such that «1 G UB, n G N B and

« € -Y-n =  (X a : a  €  $ ?,«> „(a ) G * f )

where ten -  n(n ) G H’ H. Since x acts trivially on 0/j(K) we conclude that the action 
o f U|ti is the same as that of u-1. Thus u\n must leave n+(K) invariant. Hence we 
deduce that w„ =  1 and so n G H . Thus x  G B' and we conclude that

that

Thus

ker*'ra(K ) <  B '.

Similarly, consideration of the (B  , jV)-pair ( B N H) leads us to the conclusion

k e r ^ ( K )  <B '_.

ker*'m(K) < B ' D B'_ =  H

Recall that every element h G H B lias a unique expression of the form

> ' =  n
for some G K *. Suppose that such an element It is a non-trivial element of 
ker #;„( K) , so that ^  1 for at least one i G »Ue hut the element

*m(K>(/»)= n *:„(K)(/.„v (0)) = i.
■ €l!!o
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Since (, /  1 for at least one i £ Ulo

¥'m(K) ( a . v (6 ) )  =  n  h- /  (6 )  /  1
arYen(n>H.)

for at least one i 6 m0. However, we note that the orbits i i(w ^ ) for i £ mo 
are linearly independent. We thus conclude that $j„(K)(A) ^  1 contradicting our 
assumption on h. Hence \Pin(K) is injective.

Thus K) is a group isomorphism for all suitable K. □

Examples
We build on the examples of Kac-Moody algebra isomorphisms we gave in §1.5. 

We first note the general facts that

A  =  52 BijwXj

for each i £ m,, and
( 0  =  +fccP«.(0

P i P i  P j

for all i , j  £ m0, a, b € N() and (  6 Kx .
Example 4.4.6

We shall first consider the case when (A , k) =  (D*, 3), and B =  'Gj. Thus we 
suppose that K is a field such that

cliarK /  2,3 and f =  e*1” £ K.

The results o f the preceding sections and Example 1.5.9 lead us to the conclusion 
that the map ^(„(K) defined by

Vli„(/<) 1—► •**«0+<»2+a4 (/*)■* r»0+<4| +«2 ( +f»2+«a ( ̂  / ' )
1—►

y f h ( n ) 1—►

y - n t i h ) 1—► •C — f>o — «2“«4 ( /* )^-oo —4* 1 —<»2 (  ̂1* )•**—«0 — 02“«.I ( ̂  /')
y - o x ( y ) 1—► r - a i ( / i ) x - a, ( p ) x - a , ( p )
y - f h ( / ‘ ) 1—► * - a 7( p )

1—► >oJJ

1—►

1—►

for p € K ad £ £ Kx , extends to an isomorphism

: ®*(K) -* 07,;T(K).
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Note that since

ßo
ßx
ß*

=  “ ® A +  2n,rt. _  3t®:/3i 'ft and

~ w0x +  2wfh

we deduce that

WO ~ /l3“’A)-a»ï, ~m ' i t (O
h ß M ) Wv-3wv+2wv+2„v(i)
WO - ,l- wA,

^ O o + O i  + 0 2  ( £  ) ^ Q ,0 + ® 2 + Q 3 ( £  ) ^ O o + Q 2 + ° 4  ( £  )

W 0 W O * a « ( 0  and
W  0 -

Iii particular, since £)4 is simply-laced

haai+hajt f )  =  W O ) * « , « * )

for all i, j  G 40, a, 6 G N0 and (  G K x and hence

W O  -  W £ 3) W f 3) W O W O W O -

E xam ple  4.4.7
We next consider the case when (A, A-) =  (.44,2 ), and I? =  "CV Thus we 

suppose that K is a field such that

char K ^  2 and \/2 G K.

The results of the preceding sections and Example 1.5.11 lead us to the conclusion 
that the map ^¡„(K ) defined by

W /0 1—> •»•a, ( \/2/< )*«, ( \/2 /i)a-a, +„> ( - / i 2 )
y  aßt1) 1—► r a, { p ) r at(p)
Vii,(/') 1—► •Tao (/‘ )
î/-/io(/0 h-♦ *-« , ( \/2/i )r_a, ( v/2/i )a--o, -a, ( - / ‘2 )
v-nAt*) 1-4 ■«•-«,(/< ) r - at(p)
y - ih(i ‘ ) 1—► •r-oo(/0

Ä < ({)Ä -y (0
1—► /,„v (0 h „v (0
1—► * < ( 0

for p G K and £ G Kx , extends to an isomorphism

*'m(K) : © t"(K) -  ® y (K ) .
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Once again we note that

/30 =  2 ^  - 2 w £ ( 0
01 =  +  2w^( ( )  - 2 t v £ ( ( )  and
02 =  ~ a$ , +  2 ^ ( 0 -

Hence we may deduce that

f)/3o(0 />2«^+2^-2«v _2„v (^) =  W ( O ) W O )
h-w'O,-wvei +2m*t +2®^-2m ^(0 -- ^Ol(0^O4 ( 0

w o h- ’Bai - wst +2wsv^ ') =  hQ o(().

The Im ages o f  the Elem ents U nder

We note a general observation.

Lemma 4.4.8
Let 0, G n w and suppose. K ( o )  is the orbit corresponding to 0,. Let

o 1 = l ' ( n ) =  53 kjO j.
>€*.' j€2q

Then
:̂,.(K)(/.A(i)) = n («*0

>€no

for all £ e  Kx .
Proof

This can be shown by straightforward case-by-case analysis such as in the 
preceding examples. A

4.5 An Isomorphism Between Simply-Connected 
Kac-Moody Groups

We shall here exploit the existence of generalized isogenies, described in §2.5, 
between simply-connected Kac-Moody groups and adjoint Kac-Moody groups cor
responding to the same generalized Cartan matrices.
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A Restricted Generalized Isogeny
Denote by ©£ the Kac-Moody group functor ( and suppose that

® d(K ) =  (x'Jp) : a  € * r‘ (A ),p  G K>.

By the results of §2.5, the map defined on the generators of © '4C(K) by

bi(K ) : -*  *o(/0

for all a G <I>"(.4 ) and p G K, extends to a group homomorphism

bi(K ) : <»d(K) - »  « ¿ ( K ) .

We note also that we may define automorphisms of © £(K ), 7' and r', analogous 
to the automorphisms 7 and r defined for 0 ^ (K ), but with x a (f i )  replaced by 
r'a(p). We shall denote by ©2/r (K) the subgroup of ©,'.(K) consisting o f elements 
x '  G © ¿(K ) satisfying t ' ( x ' )  =  r ' ( x ' ) .

Since the action of © ¿(K ) on g.j(C) factors through ©;f,(K), the results of 
Propositions 4.1.3 and 4.1.5 also hold for the simply-connected case. Hence in 
particular, the homomorphism (K) maps elements of 0^ (K ) which are stable 
under the automorphism a' =  (7-,_1o7') to elements of ©^(K) which axe stable 
under the automorphism a =  Thus the generalized isogeny i.j(K) restricts
to a homomorphism

»„(K) : ©:;•''( K) -4  © r (K )
and enables us to define a group functor homomorphism

, • (ftï'.r' rtlT.r

defined over the category of all fields in which 7' and r' are defined.

An Induced Generalized Isogeny
Denote by ©£ the Kac-Moody group functor ©x»,c(«) and suppose that

® "(K ) =  < ! / »  : / ? € * » , / « €  K).

From the results of §2.5 we have a group functor homomorphism

: © « - , © «

defined over all fields, such that the diagram
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A lit 0a (C)

commutes, where the maps Ada and Ad»c are those determined by condition KMG5. 
Hence

keria(C) =  ker Ad.c

since ©^(C) acts faithfully on fls(C). Thus kerifl(C) consists of all those elements 
which act trivially on 0b(C ), whence

ker»fl(C) C Hfc

by condition KMG5. Now every element h £ Hfc has a unique expression

where £ <C* for all i £ m. Such an element will act trivially on egi if and only if

fBoiifllj cBmi   1
S O  S I  Sr»i —  A *

Thus an element h which acts trivially on 0g(C) satisfies a set of in +  1 equations 
in m +  1 variables. Consider the equations

C  B m l  
S m

__  c  — B  01
—  S O

c B m t n
S m

___ C ~ B o m
—  S O

Since 6  is non-singular and C is algebraically closed these equations have a simulta
neous solution. The remaining equation is the then automatically satisfied by this 
solution as a result of the linear dependence in the rows of B. Thus kerf/¡(C) is 
certainly lion-trivial.

Now. by §4.4 we also have a group functor isomorphism

defined over the category of all fields in which 7 and r are defined. We may thus 
define a group functor homomorphism T such that the diagram
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0 B
m

commutes. We note that the action of T(K) on the generator y'a(p) of 0  ® ( K) is

r  (y'oit1)) = 'I'm (ypU1))
for each f3 6 and /< € K.

A  Homomorphism Between Simply-Connected Groups
We would now like to define a group functor homomorphism such that the 

diagram

commutes. We do this by defining K) on the generators of 0 ^ (K ) and proving 
that this definition extends to a group homomorphism by showing that the defining 
relations o f 0 ^.(K) are preserved.

We begin by defining K) on the generators o f 0^ (K ). Suppose that for
D  e ±nH

T ( K ) ( y » ) =  I I
a€*” (/i)

for p ,p a € K. We define

* „r(K) ( y » )  =  n  *«(/*«)•
o6» r«(/i)

We begin by considering the images of the elements and !>'&((,) for » € ULo
and ( 6 K*.
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The Im ages o f  njj(£) and under «P,

Suppose
*.c(K ) (¡,'fitf)) =  II <(«a()

a€*r'(Â)
and

*.c(K )(i,L A ( C ' ) ) =  n * -«  (« '-.€■*)
06®r'(/i)

for some Ka, k'_0 g K. Then

(̂K)(n̂(o) = [ n *>«o) ( n *'-a(*-«r1)) ( n
\a€<K'(,4) /  \ a € * ” (d) /  \ a e » r'(<4) /

However, whenever ft, /  /3o the the orbit of roots, K (a )  say, corresponding to fti 
consists of commuting fundamental roots and hence

*«•(*) ( » a « ) )  =  n  ( < ( ^ 0 * ^  O ^ r 1) * ^ (* - ,0 ) •

Furthermore, in these cases /c' =  k“ 1 € Kx for all a, € d>ai and hence

*.c(K) (njj,(0) = II

We now use the fact that

< « ) < ( o  =  K j  ( - r ' c )

for all j  g n0 and £, £ g Kx to deduce that

*.c(K ) (/tj*(0) =  n l * a , U )

whenever fti ^  ft0.

The Case fti =  ft0

Suppose now that /i, =  ftg. Recall that the orbits of roots, which we shall denote 
by corresponding to ft0 were described in Table 4.3.5. Whenever (A ,k-) /  
(A ji, 2), $ 3,, consists of pairwise commuting non-fundamental roots, each of which 
also commutes with the negatives of the remaining roots in the orbit. Thus

*.e(K ) ( n ^ (o )  =  n
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and once again we note that n'_a =  . Suppose that a =  w (a j) for some j  £ n0
and w £ W (A). Let n'w £ N *  be a product of elements of the form n'a . for i £ n0 
such that n(n'w) =  w. Then

x'a(Ka£) =  n'wx'aj (T)Wtaj and

( « o 1̂ '1) =  nw*'-aj (nw,aj K~iC 1) n» " 1

for some t]w,aj £ { 1 , - 1 } .  Hence

*«(*) (b̂co) - n fax*, (•»*.,.*«.
a£*i*o

where q =  wa (a ja).
We now use the fact that

< M )n 'aj( o  =  h'a . ( - r ‘ c )

for all j  £ n0 and £, £ 6 Kx to deduce that

*«(k)(*Sb(«)= n K.*;io(o<.-1) = n
Since A is simply-laced in all cases under consideration, we deduce that

* ~ (K ) ( h ' M )  =  n  K ,  ( i kj)
j€no

where a 1 =  A’jOj for every o  € ^ Jo.

T he Case /?, =  /?0 W h en  A = A2/

Finally, we consider the case =  1% when (A ,k ) =  (A 2/,2 ). We recall that the 
orbit corresponding to fi0 in this case is { 07, 01+1} and that

• « (K ) ( » ^ (O )  =  ^ . ( ^ X + . i ^ O ^ + a . + . i - « 3)

* -o ( ( v ^ r 1 )*-„,+, ( 1 r 3)
< ( v ^ O * « l+1(V 2 0 < + Ql+1( - i 3).

We also note that there is a group homomorphism

: S £ 3(K) -  (X a, , JV„l+l, -Y_a, , -Y_„l+l} C « ¿ « (K )
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such that

t. i

for all p 6 K and £ € K* . 
Consider the matrix

V o - 1/ i 0 00 1 0
\ - » 0 10 i 0- r l 0 00 () 1
1 0 
0 0 
o - C '

M  =

, 0 0

< + t f )

0 0 i 2
0 - 1 0
—2 0 0

for ( i  K*. Since

M  =
1 v/2£ 0

0 0 \ (  1 o 01 0 o i 0—v/2 r * 1 / 0 10 \ / 1 0 - t 2 \
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we deduce that ».,(M ) =  4>,C(K) (n'Jo(^)). Furthermore, since

as expected.
In particular, we note that in all cases the natural analogue of Lemma 4.4.8 

holds in the simply-connected case.

The Preservation of the Relations

We must show that the relations

M
0 £ 0 

- C l 0 0 
0 0 1 ) (

) (
1 0  0 
0 0 £ 
0 - £ " '  0

0 £ 0 
- £ - ‘ 0 0 

0 0 1

) ( 0 £ 0 
-£ ->  0 0 

0 0 1
1 0  0 
0 0 £ 
0 - £ “ * 0

1 0 0 \
0 0 £ ,
0 - £ - ‘ 0 )

we may deduce that

*.c(K ) (n ^ (£ )) =  n ; , ( £ K I+i(£ K ,(£ )  and

=  < +1( ü < ( 0 < +1(£)-

We note that

'P.c(K) (h'<Jo(£))

[y'a(y)Aj',•(•')} n  IVM,
- . - • O + J / ) 'iJS"

and

{0,0') prenilpotent
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are preserved for all i £ m j, /¿, v £ K, and 6 Kx , where

Since g>.r(K) ( t y ,« ) )  G H £ t' for all i £ nio and £ £ K* it is now straightfor
ward to show that the relations

are preserved by >P,r(K). The relation

ypivWpiv) =  Vpit1 +  " )

for ¡3 € ‘I>H and p, u g K is preserved since the relation

yp{/‘ )yp(i') =  vp(h +  /')

in 0 ®(K) is preserved by and U±'T (K) = U±T(K).
In order to verify the relations

and

h 'n iO hp tf) =  h'pS CO and
* '* « )  K M )  =

h'pMMM)hW l =y'pj
and

we consider the nature of the correspondence between the matrices B  and .4.

Lemma 4.5.1
The. relation

h M v 'p M 'ih 'to itr ' =  y'pj

is preserved for all i , j  £ np,, £ £ K* and fi £ K. 
Proof

Suppose *~(K) k <o) = n k ,  («*")
*«r(K) (l/^ (/0 ) =  I l  •r0(K« /')

and
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where 4»^ denotes the orbit of roots in $ re(.4) corresponding to Then the 
required relation is preserved if and only if

( n f n *:,(<*')] -<(<*»**.)
\aj(en(d) /  \a,,€n(4) /

for all a € 4*^. Using Lemma 2.5.1, we may reformulate this condition as

r'a =  *'a ( ( BiJ*ap)

for all a € $,jj- Tims it is sufficient to show that

a(.en(/i)

for all a € 4*^. However, this is a condition on the Cartan matrices. Furthermore, 
this condition must hold since the relation

M O i M / O M O -1 =  ye, { t B,Jn)

is preserved by ^ '„(C ). □

Lemma 4.5.2 
The relation

( r BO)
is preserved, for all i , j  € Ulo an<l- i  € Kx .
Proof

Sttppose first that /3j ^  do- Thus



§4.5 An Isomorphism Between Simply-Connected Kuo-Moody Groups 188

where <J>rfl.(A) denotes the orbit of roots in <I>(.4) corresponding to (/?,).
Hence in order to show that the relation is preserved, it is sufficient to show

that
^ ( A )  =  u’ ($ a )

where w =  n 0j,g<i> ray a,ld that £Q< =  £0 whenever o ' =  ic(o).
The former is a condition on the root system and the Weyl group of .4. Since 

these are independent of the type of the group in question,

*'m(K)(fcA(o)= ( n a-(€«)
and

♦ «(K ) (fcr*(A)(0 ) =  II h«'Ua>),
a'e*rgJ(Di)

we use the fact that the relation

=  hoM )h0i ( r fl,J)

is preserved bv <P'nl( K) to conclude that its analogue in <5®(K) is preserved by
* . r(K).

A similar but lengthier argument shows this also to be the case for /ij =  do- □

Lemma 4.5.3 
The. relation

n 0 , 1& ( p ) n 0 r l  =  J/rfl,(/3) (VA./i/O 
is preserved for all i 6 m0, /3 € 4,H and p e K.
Proof

We note that using the relation

< , ( i )  = KM)n 'a - '

we may deduce that

= K i(a) ( r <oa^ . a/i)

for all j  6 n̂ ,, (  € Kx and // € K.
Suppose first that /#,■ ^ do- Then

i.c fK ) (n 'j.J /^ /l)«^ -1) =  ( f l  n^(/<aj)) ( II •ra (*"/1) )  ( n naj(K°j)
\nj£+ni /  /  \nj£*fii
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and
*.e(K ) ( y ^ (/J)(i;A>/3/j)) =  r'a,(Ka^ it0p).

Let u> =  riaj€<>̂  r>- Then it is sufficient to show that

and that, for each a  G $ 3,

« ’ ( $ 3) =  &r0l(B)

Xa(KaP)

where o ' =  w>(a). We may fix a natural lexicographic order on i , il since it consists 
of fundamental roots. Then the equality we require reduces to

ra'
-<r„.t (a'),aV)

'lji,,raj (o') ' - ‘ Kaj Vii «0/1J = Xa>(Ka,'T)3i,Bh'h

for which it is sufficient to show that

KOjl, tljkS*jk(a') ' ' ’ KaJi Vli.a^a —

Thus we have reduced the problem to properties of the root system, the field, 
and constants which are independent of the type of group. Furthermore, we note 
that

*m (K )(n A ) =  n  n°A *°j)

V ' , „ ( K ) ( y 0 ( p ) )  =  J] r „ ( K ap )
cr€<>,>

and
* m ( K ) (y r„ .(U ) (» ; /31, / l / i ) )  =  I I  r a ' i K a ' n B i . l i f l ) -

t»'€*r tj(D)
Since '¡'¡„(K) preserves the relation

« / S l V u O 'W , - 1  =  .Vr„. (/3) ( '/ / ! , . / i / ' )

the conditions we require on the root system and the structure constants must be 
satisfied.

A similar argument holds for the case /i,- =  /3o- O
I11 order to show that the commutator formula is preserved we make use of the 

(B  , 7V)-pair structure of ©¡¡J.(K).
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Lemma 4.5.4
For all prenilpotent pairs {(3, ¡3'} such that ¡3 ^  ±/?', the relation

= II y'-,
with p,i/ G K and where the product is taken over all roots 7 =  i/3 +  j(3' G 4>H with 
i , j  G N, is preserved by >I,,C(]K).
Proof

Since {/?, f3'} is a prenilpotent pair there exists an element w G W H such that

«>-«(/?), « .- ‘ (/J') <E

Let n'w G Nfc C <8 ®(K) be such that n(n'w) =  w. Thus

MOO, y'yU')) (n <A G n'wHi(K)n'w- 1.

Recall that
Ufc(K) n H?c =  1 and nH “ n~l =  Hfc 

for all n G A7” . Thus
n (U »(K )) n- 1 D Hfc =  1

for all n G Ar®. Hence
11 (lifc(K)) n"1 nkeriH = 1

and we may deduce that

n ( l l» (K )) n" 1 2S ,B(n) (il?d(K)) » „ (n ) "1

for all ?i G TV". Thus ^ ,C(K) must preserve the relation since does. □

YVe have thus shown that ^„.(K) is a group homomorphism for all K.

An Isomorphism of Simply-Connected Groups
We will show that the group homomorphism $ ar(K) described above is in fact 

bijective.
We note first that every generator of ®2r’r"(K) appears as the image of some 

element of 0 ^(K) so that 'IV(K) is surjective.
Lemma 4.5.5

The group homomorphism

*.,.(K) : <S"(K) - »  K)
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is injective.
Proof

Since the diagram

commutes, it follows that
ker 'I’ .r(K) C

Suppose there were a lion-trivial element li £ Hfc( K) such that <P,r(K )(/i) =  1. 
Recall that h has a unique expression

h =  h M ) h 0M t ) - - h 0 n,{U )

with £, £ K* for all * 6 m0 and such that ^  /  1 for at least one j  6 m„. Since 
/i £ ker we must have

*«(K)(fcA (& ))««(K)(fcA (( i)) --  ■ * .c(K )(h l}mt fm)) =  l-

However, we note that

4'«(K)(f.A(i1)) = n m&>
a€$0,

in all cases except (A ,k j3 j)  =  (-4.2/ 2̂ , /30), in which case

(̂K)(/iA(io))= n
Iii particular. K) ( ) )  ^ 1 for at least one j  £ m0 in the above decom
position o f ,,(K )(h). Furthermore, since the orbits <i\j, for i £ >))<, are linearly 
independent, the elements '¡ '„ (K ) ( ) )  are linearly independent. Thus we ran 
not have

**(K) (fc*«0>) ^.r(K) (h M ) )  ■ ■ ■ *«(K  )) =  1

where ^ ,C(K) ( / i {i j )) /  1 for at least one j  £ m,, and we deduce that

kertf.c(K) =  1
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as required.
We thus have the following result.

□

Proposition 4.5.6
There is a group functor isomorphism

where the group functors in question are defined on the category of fields K with 
char K ^  2 and such that

v/ 2 € K  if (À ,k ) =  ( i 2/ , 2), and 
char K ^ 3 and K.«»MtwVns o, if (À ,k )  — (D*, 3).

Proof
coo'r <5̂

We have shown that whenever K is a field admitting the definition of 7' and 
t', there is an isomorphism

We recall that if either (A ,k ) =  (An, 2) and \/2 0  K or (A ,k )  =  (£>4,3) and

4.6 An Isomorphism Between Adjoint Kac-Moody 
Groups

We shall here extend our results to adjoint Kac-Moody groups.

Generalized Isogenies Associated to B

Denote by the Kac-Moody group functor © 7>„rf(H) and suppose

tf,r(K) : 0 « (K )  -  K).

. then is not defined. □

®„"(K) =  < iW /i )X v (0  : ¡3 € € K. / e  m .Î 6 Kx ).

By the results of §2.5, tin1 map defined on the generators of 0^ (K ) by

*.« : -»

for all ¡3 € i 'H and ft € K extends to a homomorphism

: ® "(K ) ® ” ,(K).
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Furthermore, the generalized isogeny

, B  : 0 ® (K ) -  ® £ (K )

factors through i.„ so that there is a group homomorphism i„„, making the diagram

® fc(K) --------------- — ------------> ®fd(K)

0»(K)

commute and we note that ker C Hfc.

Generalized Isogenies Associated to A

Denote by 0 ;'d the Kac-Moody group functor 0 p ^j| and suppose

0 o</(K) =  {£a(p ) ,h „ ? ( 0  : a € * r'(A ),p  £ K .i £ n , i  € Kx>.

Once again we have group homomorpliisms i‘ta and i'am such that the diagram

i » «  ,® d(K ) ----------------------------- > ® a4d(K)

l/ am

®.i( K)

commutes. We may also define automorphisms 7 and f  of 0 „'/( K) analogous to the 
automorphisms 7 and t  defined for 0 ,'1',(K), with i Q(/i) replacing ./•„(//) «»<1 
replacing hmy(£) for i £ n. Denote by 0^jr(K) the subgroup o f 0 (1'f(( K) consisting of 
elements x £ 0;^,(K) satisfying 7 ( i )  =  f ( x ). We note that the homomorphism «'„ 
maps elements of 0^r(K) which are stable under the automorphism a' =  ( r ,_ l07') 
to elements of 0^rf(K) which are stable under the automorphism fr =  ( f - , oy). Thus 
the generalized isogeny »'„ restricts to a group homomorphism

«„< : ® i 'r (K ) -»

Similarly, the generalized isogeny t'am restricts to a group homomorphism

„  : 0 „jf (K) -  0 ; ; r(K).
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A Homomorphism of Adjoint Groups
We would like to define a group homomorphism K) making the diagram

© £ t'(K )

^»r(K)

©fc(K)

--------------->■

âa--------------->

" W K )

® ^(K )

commute. We do this by defining K) on the generators of 0 ^ (  K) and showing 
that the relations are preserved.

Firstly, we note that there is a group homomorphism

r a d ( K )  : © ^ ( K )  -  ® ^ ( K )

whose kernel lies in H„d( K). Suppose that for /3 € ±11 and /< € K

Tarf(K )(y /3 (/i))=  n

for some fiQ £ K. and that for i € 1R and £ £ K*

T a(/(K) (Â.V ( 0 )  =  n  h” A tj)
>62«

for some (j  Ç Kx . Then we define

n̂rf(K)(̂ (/l)) = JX *«(/'<>)
otÇQp

and
w k ) ( â . v (o )  =  n

J62o

T he Preservation o f  the Relations

We note that any relations common to both 0® (K ) and <3̂ r/(K) are preserved 
by K) since they 
relations

w/>i

preserver1 by• *.c( K).

h-v(C ) = /» .* « < )
= Â-v (C)/»,

’ ? , (* ) - = j/^ U N O
= r»j ( h^ S

(O
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are preserved, where i, »' 6 in, j  G in,,. £, C G Kx , p G K and 
Kronecker delta.

Since 'Pn.ifK) (Â .v  (£)) 6 for all i G m and £ G Kx it is 
to show that the relations

ha*(O i '«.*(<) =  and
( 0  =  hwv (< ) / . ,v (0Pi Pjl P,» P|

are preserved.
Note that for each i G in,

*^k)(&.v(6)) = n *-?.(€>
' w;en(a,j.) J

where ) denotes the set of fundamental coweights of T>„j(A)
deduced from Lemma 4.3.4.

Lemma 4.6.1 
The relation

=  ypj (z '“ p )

is preserved for all i € in, j  6 n0, £ G Kx and p G K.
Proof

Note that

n mjo n £ c , (K a p ) n *

= n n # *r,P
Î€ll(o

and
(*Nl)) = II i c ( ^ K 0p ) .

Hence it is sufficient to show that

H  (o, Wy) =  6,J
»;€«(

denotes the 

straightforward

[■responding to

for all 0 6 4»
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Thus the problem reduces to a condition on the root system which must be 
satisfied since preserves the corresponding relation in <S^(K). O

Lemma 4.6.2 
The relation

n^h 9^ ( = rDj ( * « v ( 0 )  =  ( i  Sii)

is preserved for all i £ m, j  £ Ul0 and £ £ Kx .
Proof

Suppose first that /3j ^  /io- Thus

n «»(««) n *-x(o n " « (« a )
V*€4«J y

»r€0(-v) J y

n *-*.«> n M n r«*-»
/  V“ *4*; V -ren^v) y

where «> =  n «e * . r“ € W ". On the other hand.

*a<i(K) ( / . r,j( „v4, ( 0 )  =  * a J ( K )  ( f i - z A O h j

n *<<0) ( n M*~4,i)]
< e n c ï .)  /  \ae*>i /

Thus it is sufficient to show that

Y  (a ' wj )  =  6u
W/€tl(wJ.)

for all a 6 <1*,̂ . We have therefore once again reduced the preservation of the relation 
to a condition on the root system and we deduce that the relation is preserved since 
its analogue is preserved by K).

The case 0} =  fi0 follows similarly. O
Hence we have established the existence o f a homomorphism

* « ,/(« ) : <»,?rf(K) -  K).
We proceed to show that it is in fact an isomorphism in an analogous manner to 
that used for '¡ '„ (K ).
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An Isomorphism of Adjoint Groups
Once again we use the fact that every generator of 'J (K) appears in the

image of $«,<*( K) to show that '¡'„¿(K) is in fact an epimorpliism.

L emma 4.6.3
The group homomorphism

: ® « (K ) -  © ^ (K )

is injective.

Proof
Since the diagram

commutes, it follows that
ker 'P„rf(K) C H » (  K).

Suppose there were a lion-trivial element h € H^d(K) such that K )(h ) =  1.
Recall that h has a unique expression

h =  /'»J ( i i ) ■ • • (&»)0\ 0m

with € Kx for all i g m and such that ( j  /  1 for at least one j  g m. Since 
h g kei ^ fli/(K) we must have

# od(K) (Awv « , ) )  ••• * ,lrf(K) ( h „ .J U ) )  =  1.

Recall that for each i g m,

#*i(k)(/..* «d)= n *<«>
where it(zz>p,) denotes the set o f fundamental coweights of T>„j(A) corresponding to 
‘tt'fl. deduced from Lemma 4.3.4. Thus we see that **

* * i(K ) ( / i»* (& )) *  1 i, t  1,
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whence we deduce that

* U K )( fc .v  (€ , ) ) - . .  ^ ( K )  ( ^ ( U ) )  =  1

<=> i ad(K) (fc.v Ui)) =  1 for i e  m-

Thus <farf(K) is injective. O
We have thus proved the following result.

Proposition 4.6.4
There is a group functor isomorphism

: 0 »  -

where the group functors in question are defined on the category of fields K with 
char K ^  2 and such that

n/ 2 € K  if (A .k ) =  (A 2l. 2), and 
char K ^ 3 and IK.cdaW m  a. if (A .k )  =  (.D.i.3).

p n 'iw iV o c  Cv*to« 
coct A

Proof
We have shown that whenever K is a field admitting the definition of 7 and f , 

there is an isomorphism

*«i(K ) : ©"„(K) -4 &*J(K).

We recall that if either (A ,k )  =  (A n .2) and s/2 ^ K or (A .k )  =  ( D\.3) and 
, then K) is not defined. D

K  rvo C«tof reoV «* — ^



Chapter 5

The Fixed Point Subgroup of a 
GraphxField Automorphism

In this chapter we consider the implications of the results o f Hee in the case 
when

• .4 is a simply-laced ext ended Cart an matrix,

• 7 is a graph automorphism of <25p(K) induced by an automorphism of A(.4) 
inherited from an automorphism of A(.4), and

•  t  is a field automorphism of ®p( K) of the same order as 7.
We consider the twisted root system obtained in this manner and describe the fixed 
point subgroups associated to the twisted roots.

Finally, we complete our description of the generators of the fixed point sub
group G~'T by giving an explicit description of Hj>'T(K) for — X>ln, T>„j. and 
V .c.

5.1 The Automorphisms in Question
Suppose 7 is a graph automorphism of GVp(K) of order k such as described in 

Chapter 4. We recall that the action of 7 gives rise to twisted root systems 'I'"1 of 
types described in §4.1. We recall these in Table 5.1.1, where N t and DC\ denote 
the root systems obtained by extending the lion-reduced root systems of type .4| 
and BC'i respectively by the fi — 0, where H is the highest root in that system.

Let be a field automorphism of K which is also of order k. Denote by K’’ the 
set of «^-stable elements of K. We note that the prime subfield o f K is stable under 
all automorphisms of K, and hence is always non-trivial.

We may use <# to define a map, r, on the generators of CVp(K) by

r : av,(/<) •-» x„

199
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i -4 2 (/ >  1) Am- . ,  ( / > 2) D,+x, (/ > 1) D4 Ee

7? TV, BC, c , B, 62 f 4

Table 5.1.1: Types /? of root systems 4*"1.

for all a € ±11(^4), /i € K. and

r : hmy (() h„y (v?(0)

for £ 6 Kx and cc,v a fundamental coweight in the case of T> =  T>,„ or T>aj. It is 
straightforward to check that r € Aut ® p(K).

We note also that

r (n ai(( ) )  =  nai(<fi(0) and r  (/.<,,(£)) =  hai(<p(()) 

for all » 6 n0 and (  6 Kx . Thus

t(N ) =  N, t(H v ) =  H v , and t (.Yq) =  X „ ±  1 

for all a  6 4>(.4).

5.2 The Twisted Root Subgroups
Suppose that a +  mb £ <l>re(,4) with a £ $(-4) and let K (a )  denote the 7-orbit 

of a. We define

-Xa">+m4 =  -^o' +|A'(o)|rni =  ®I> ( ^ +
=  (» €  © p ( K )  : 7 (r /)  =  r ( g ) )  n  (A >  : f i  6

In order to study the groups X at we consider the cases .4 /  An  and .4 =  An 
separately.

The Case A  ^  A21
In this case the automorphism 7 satisfies

7 :  ® 4(K ) ^  © ¿(K )
*•(/*) >— *W )(p)
r -i (p )  •-*
/lwv(£) h WV (£)“7 " '  “\<j>
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for all i € n„, /i £ K. (  6 Kx and fundamental coweights L jf.

Lemma 5.2.1
The elements of -Va-,+rni are as follows;

1. If K (a  +  mS) =  {a  +  m i} then

=  {■fo+tnii/*) . /I g K } .

2. If I\(a +  m i) =  {a  +  mi, a  +  m i} then

= {^Q+raj (p )r6+ms{‘fiU1)) ■ / ' G K}.

S. If K (a  +  m i) =  {a  +  mi, ci +  mi, a + m i}, then

X ay+ni6 — { + ) )^a+m6 (^' ( /0 ) • G K} .

Proof
This follows from a direct comparison of 7(x ) and r(a-) for general x g 

bearing in mind that .Y0->+„,« is abelian in the cases under consideration.
In particular, we note that X as+ms ^  1 for all a € ^(-4) since K* i 

nontrivial. Thus we may apply Theorem 3.3.3 directly.

The Case A  =  A21
In this case the automorphism 7 satisfies

® i } ( K ) - 4 ® p ( K )

*.•(/*) 1---► * 7 (.-)( /0
* - ¡ 0 0 1---► * - 7 C ) ( /0
*0  0 0 f—► * o ( - / 0
* - 0  0 0 1---► r - o ( - f i )

h w f t t ) 1---►

for all fi 6 K, (  6 K* and fundamental coweights zuf. 

Lemma 5.2.2
The elements of X „Hm* aTe as follows;

1- I f * a +mf 1 =  { «  +  »»¿} then

— { J'n+mitlO • ft £ K }

□
s always

where K v denotes the. -l-eigenspa.ee of K with respect to



§5.2 The Twisted Hoot Subgroups 2 0 2

2. If $ " +mii =  {«  +  tub, a 4- m£} then

Xa"i+m6 { )-**A+ni6 (^(/2 ) ) • ^ K} .

3. If ^ rae+m6i =  { a +  mb, a 4- mb, a 4- a  4- 2mb} where

a  =  a,  4- • • • 4- a/

/or some i £ / </ien

p,»7 G K with <p (tj) + r] = —Kfiip(n)} 
where k =  ( —1),_*. Furthermore, if we define

=  Xa+tnsifl )-2'A + rn2i( ) ) '̂a+d+2ni6( J/) ^ -̂ o^+ni6

then
*a-’+m6(H,7])xa-,+mS(v,\ ) =  XQl+mi(/i +  «/,»; +  A -  Kp(fl)v) 

for all suitable f t , »/, i/, A € K.

Proof
We begin by making some general comments which we will find of use in our 

calculations. We note that Na,0 £ { 1 , - 1 }  for all a, /i £ d>,r( .4). Hence, by Theo
rem 1.4.4

Na,/i =
Furthermore, tin- structure constants involved in the calculations for A’ ( —a 4- mb) 
whenever a  € and in £ Z depend only on those for K ( —a) by Lemma 1.4.3, 
which by the above observation depend only on those for A '(o). Thus it is sufficient 
to consider 7-orbits of the form A’ (a + mb) for a £ <J>’+' and 111 £ Z. We are now in 
a position to proceed with the proof.

Suppose first that $ " +mii =  {a  4- m i} . Thus

a  =  Oi 4-------- 1- «2f-,+i

for some i £ l and 

for all // £ K. However,
7 • ■2*a+mA(/0 *“-» 2’,,+,ma( fl )

7" • Xn + mfi(ll) 1  ̂ .i\,- f r i i a( v̂ (/0)

for all /( £ K, and hence

*a+m«0‘ ) € ®PT( K ) fU ‘ ) =  ~t*
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which is precisely the condition that p € K7*.
The result for =  {a  +  r? ii, a +  m i } is straightforward.
Finally, suppose $^c+mii =  {a  +  mi, a +  m i, a  +  a +  2m i} with

a =  a, +  • • • +  oj

for some i 6 /. Then, whenever ft, v, T] € K,

=  •ea+ ra i((-l), - V )X a+ m i((-l) '- V )a’o+«+2m/s(-»/ ~ Z*»')

from calculations made in the proof of Proposition 4.1.5. However,

T ( 2*a+ni6(/̂  )*£d+m6( ̂ '/ )*̂ o+d+2nitf ( ? »
=  ^ ) )®a+fi+2mi(<̂ ( *7 ) )?

so that

£ a + m S  (/0 *£d+r»6 ( ̂  ) •*'a+S’+2m6  (*/) £ ^ T> (
«■ «¿’ (/O =  »«d  ‘¿’(»i) =  ~*i -  / ‘ "
O  =  ( - 1 ) , - V  and <¿>(1/) +  1/ =  p<p(p).

Thus it remains only to show that the necessary condition is satisfied by any 
two generators of Xa-,+mt. Let xai+mf(p , t/), xa-,+mf(u, \) € X ay+me and k =
Then

X n+m6 (/* )■** o+a+2mrt ( 1/ J^o+mi ( ̂  ) J’a+niA ( M ) ) j (i+n+lmi ( A )=  ^ o + m i ( / ^ )x&+„tti(Hip ( p  ) ) r o + n i i ( ^ ) ^ a + d + 2 m i (  V ) ^  6 + m i  ( ) ^ o + A + 2 m i (  ^  )
~ X a  +  i n f ) {  P  ^)****+»n t > ( . H y ’( p  ) ).J’(1 +»»+ 2hia( ^ < p { p  ) l / ) j  a+A+2riî ( V)

*̂ a+nii>( )*a+«+2mi( A)
=  xa+mf(p + iy)xa+m(,(Kip(p +  u))x0+3+2mg(ri +  A -  np(p)ts).

Now

¥>(»/ +  A -  Klfi(p)u)

so that

Y»(»/) -t- v=>( A ) -  np<f>(v)
— 1] — Kp<f>(fi) — A — KUIfi(u) — Kpv(l') 
- t ]  -  A + K<fi(p)v -  k(p  +  » 'M / ' +  )

A) =  x„-,+mf(p +  i ', »/ +  A -  kv?(/i );/) € -Ya,+m<

as required. □
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L em m a  5.2.3
Suppose ip G Aut K has order two. Denote by K-  ̂ the —1 -eigenspace of p. 

Then is non-trivial.
Proof

We need to show that there exists a £ G K* with p{£) =  — We note that if 
char K =  2 then all non-trivial elements of the prime subfield satisfy this condition. 
So suppose that char K ^ 2. Let £ G K* satisfy

¥>(<) /  C-
Such a C exists because p  is non-trivial. If

<p(C) =  - <
then we are done. Otherwise, consider the element

£ =  ¥ > (< )-C 6 K*.

Then p(£) =  — £ and K-v5 is non-trivial as required.
Lemmas 5.2.2 and 5.2.3 lead us to the conclusion that 

all o  G $ r'(.4 ) whenever p  is non-trivial.
Thus we may again use Theorem 3.3.3 directly.

5.3 The Groups H ~"T

We return to the general case and now consider the fixed point subgroup of 
under the automorphism <r = r _107. We consider the minimal adjoint, 

adjoint, and simply-connected cases separately.

□
X a-,+ms is non-trivial for

The Minimal Adjoint Case
Recall that every element li G has a unique expression of the form

A =  *-*(& )• ••ft-xK»)
where £, G K* for all i G n0. Since

7 : hmftti)  ►-» /»»*„(&)

and
T ■■ h a ,y (£ .)  *-► h wy ( p ( £ t ) )

for every i G Ho, we deduce that

->(/») =  /r«,v#)(io) • • •
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and

Thus

Jen1 \i€*
where £0 G K’"‘ fl Kx , j  is a representative of .7 € n1, and € Kx for each .7 € n1.

The Adjoint Case
Recall that every element h € Hnri( K) has a uniqiie expression of the form

The Simply-Connected Case
Recall that every element h € H,c( K) has a unique expression of the form

h — ha0(£o) ' * * ^On((n)

where £, 6 K x for all i € n0. Since

7 = haM > )  ha^ t) ( { i )

where ( 0 € K* D Kx , j  is a representative of the orbit .7 € n 1, and £./ 6 Kx for each
.7 € it1.

/l = V ( £ l ) -  ••/<<(£n)

where € K x for all t € u. Tims

where j  is a representative of .7 € n1 and £j € Kx for each .7 6 » 1.

and

for every i € n0, we deduce that

7 (h ) — hoMO,(io ) ■ ' ‘ (in )

and
r ( f c )  =  A 0 0 ( v ? ( Ì o ) ) - - - / » o „ M Ì n ) ) .

Thus

/, € 77,T;r(K) o
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5.4 The Application of Hee’s Theorem
Suppose A =  (A ,j)i /eii is a Cartan matrix o f type A/, Dp or Ee and that

A

is the extended Cartan matrix obtained from it.
Suppose ©p(K) is a Kac-Moody group of type A and let 7 G Aut ©z>(K) be 

induced by an automorphism 7 of A(.4) inherited from A(.4). Suppose 7 has order 
k and let G Aut K also have order k. Denote by t the automorphism of 0/>(K) 
induced by <p. Define

© £ r ( K )  =  (x  G 0 P ( K )  : 7 ( x )  =  r (x )> .

Recall the root base B' and the twisted root system 4*’' o f type R constructed 
from <I>(.4) in Chapter 4 and described in Table 5.1.1. Define

IP 'T =  ( X ay : a7 € $ ;>  and U l'r =  ( X ai

Suppose that ®p(K) is a subgroup of ©pr(K) such that

(U’1'T,U1'T) c  © £(K ).

Define

and

Let

H°v =  Hv n 0 J (K ) =  H i T n 0£ (K ) 

N " =  N  fl © £(K ).

D" =  IP'TH$ and  B"_ =  U1'T H^.

P r o p o s i t i o n  5 .4 .1  
The triple

U x a, ) a y e * \ i r , H ' )
if a root datum of type asfociated to f^). Furthermore

( D" , N " ) and (B l 'N * )

are two (B  , N)-pairs in 0 p ( K) with Weyl group W 1.
Proof

This is a direct result of Theorem 3.3.3 and calculations made in Chapter 4.
□
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The Group N~l'r
Let j  be any representative of J  € «¿. Whenever the roots in K ( o t j )  are 

independent, define «a] = II
If (Â ,k )  =  ( i 2/, 2) and J =  { / , / - h i } ,  define

The proof of Theorem 3.3.3 and the calculations of §4.5 then lead us to the conclu
sion that



Chapter 6

The Fixed Point Subgroup of a 
Graph x Diagonal x Field 
Automorphism

Finally, in this chapter we investigate the fixed point subgroup under an auto
morphism which is a combination of a graph, a field and a diagonal automorphism 
of Ivac-Moody groups of the types envisaged in the previous two chapters.

6.1 The Automorphisms in Question
Suppose .4, .4, 7 and r are as in Chapter 4. Let <j> be a field automorphism of 

®ji(K) induced by an automorphism ^ of K of the same order, k, as 7.

K  ccrvvVo.>.<vi O- yOvUvUv.’ «. V,H\ VocA- , 3«.^ c

. Denote by Kr~ the fixed point subspace of K with respect to p  
and by K' * the em-eigenspace o f K with respect to <p for each integer m.

LKMMA 6.1.1
With the above, notation. K'"’ * ».h non-trivial.

Proof
The case k =  2 was considered in Lemma 5.2.3. Tims it remains to show that

K *  ^  1 and K'5  ̂^  1 when e*=i .

We begin by showing that K"* 1. Since 1p is noil-trivial, we may find an
element £ € Kx satisfying <̂ >(£) /  C If ‘¿’(O  =  then we are done. Suppose that 
p (i)  /  f£, and consider the element

< =  C +  < V (0  +  <*>2( 0  6 Kx -

208
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Now <p(() =  eC so that (  6 K 'v' and K<v5 is non-trivial as required.
A similar argument using

C = ( + e<p(0 + <V(0 G Kx
shows that K'2*’ is lion-trivial. E

The Case Â  ^  ^2/
Consider the automorphism

70 := ~yo<f> =  0<>7
defined on the generators of 0 $ (K ) by

7 <t>- *.-(/*) •-» t n o M t * ) )
* - ;( / ')  ►-> * _ , (()(v>(/i))

for all i £ «o, /i ê K, £ € Kx and fundamental coweights w* if P  =  P m or P,,,/. 
Thus

7 ^ (« o .(0 )  =  «o M0 (v>(0)
and we note that

-y<t>(N) =  JV, -y<M,H) = H, and 70(.Ya ) =  -YMo) 

for each o  € 4>re(À).

The Case ^4 =  Ào/
This time the automorphism

70 :=  7 o0 =  0 o7

is defined on the generators of (Sp(K) by
7 0 : Xi(p) >-» a-,(l)(0 (/i))

►-* x _ ,(o(0 (/i))
•To(/0  *-♦ * o ( - y » ( » )
■ r - o ( / ‘ ) •-*’ J - - o  ( —V ?(/«) )
h » v (0  *-*

for all * 6 u f p € K. £ € K* and fundamental coweights tr* if P  =  P,„ or P OI/. 
Once again we note that

1<t>{N) = N, ytHH) =  and 70 (.Y„) =  X q„)
for each o  € f>rr(.4).

We note that in all rases the automorphism 70 satisfies the conditions imposed 
on the family (7* )„e£ ° f  automorphism« in {¡3.3.
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6.2 The Twisted Root Subgroups
Define

®^'r(K) = (fir € 0&K) : 74(g) = r(g))
and let

X at+mS =  -̂ <l1+|A'(a)|m4 =  ®7> (^ ) C {Xff • ft G +

We must once again study the cases A ^  An and A =  An separately.

The Case A ±  A21

L em ma  6.2.1
The elements of X ai+m( are as follows;

1. If K (a  4- m i) =  {a  +  mS} then

=  |®o+m4(^) • p G K

where K' d e n o t e s  the em-eigenspace of K with respect to <p.

2. If K (a  4- m i) =  {a  4- mb, a 4  mb) then

-Yn-, + md = ■ h ^

3. If A '(a -|- mb) =  {a  4- tub, a 4- mb, a  +  mb], then

Xa-y+mt =  {*a+mi(/l)*«+mi(e- "V(/0)*a+m i(e_inV i (/*)) : / ' € K }.

Proof
Consider the case K (o  + mb) =  { o  4- m i}. Then

and

Thus

7<A : J - a + m « ( / < )  •-* *a+„>s(<P(f*)) 

T • í ’o+mAÍ/O * * ^o+mi(i /')•

*a+mi(/i) € 0 ^ T(K ) yp(p) =

which corresponds precisely to the condition that /1 € K' 
If A '(a 4  m i) =  (0  +  mb, d 4  m i} then

7 <A : *o+m«(/i)*ft+mi(^) •-* •»•.■> + ...*(‘r’O O k o+ m iM "))
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and
T : fa+ni6(p)ra+nis(l/) 1 * ■ro+mtf(f /O-

Thus
Xa + m s (fi)* * + m s (> '))  €  < 5 ^ 'T(K )

as required.
Finally, suppose I\(a +  m i) =  {a  +  m i, 6 +  m i, 5 +  m i}. Then 

7<A : a ia + m * (/i)* a + m i(^ )* 5 + m i(»| ) ■ r a + m * M /0 )* 5 + m i(V ’ ( * ') ) 3'a + m «( ‘̂ (»7 ))

and

 ̂ • ^o+mfi(/0^6+mii^)^5+riii(^) * * /0^d+nii(^ */)

leading us to the conclusion that

*<.+m«(/i)a,a+mi(^))*«+mi(*/) € <5‘p 'T(K)
i/ =  e- "V (/i), and tj =  e~2mip2(p )

as required.
VVe note that .Y„-,+,„/, /  1 in all cases as a result of Lemma 6.1.1. Hence we 

may use Hee’s Theorem directly.

The Case A =  A->i

Lemma 6.2.2
The elements of A’„ •.+,„* are as follows;

1• =  {<* +  *"£} then

=  {^o+niii/O . ft £ K }

where K =  ( —l ) m+1 and K“* denotes the k -eigenspace of K with respect to 

2. If $j,+m4i =  {o  +  mb, d +  m i} then

-V0-,+m4 = {j-„+,„4(/i)j-o+„14 ( ( - l ) " V ( / i )) : /' G K>- 

S. If $ " +(n4i =  {a  +  mi. a +  mi, o + a +  2mi} where

a =  a, -)-••• +  oi

for some i € l then

= { ***o+f„A +niA( /I ) )i*0+ft+2,,lA( V ) *
/ i , »/ € K with if(tj) +  // =  -s-pv?(/i)}
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where k =  ( —l ) m+,_*. Furthermore, if we define

=  ( / ^ Q + o + l n l ^ i  ^ ^o^+mi

then
*V-+m«(/l, n)r a-'+m6(l', A) =  Xa-,+mS(p +  V, 1] +  A -  K^(p)u) 

for all suitable p,i], i/, A € K.

Proof
We once again assume without loss of generality that a  G 0 "  and m G Z. 
Suppose first that $™+mSi =  {a  +  m i}. Thus

a = Oj H-----+ a tu -i+ 1

for some i G / and
70  : r a+m6(p) •-» r a+mS( - v ( b ) )

for all /i G K. However,

T  ■ X a + m s i / l )  ^  ^ o + m i ( (  1 )  / 0

for all p G K. and hence

x a+n,s(n) € ®jiT{K) v?(/i) = up

for n =  ( —l ) ra+1, which is precisely the condition that ft G IK"*’ .
The result for 4, =  {a  +  mi, a  +  m i} is proved in precisely the same

manner as the corresponding part of Lemma 6.2.1.
Finally, suppose $^'+nl4i =  { «  +  mi, a +  m i, a  +  a +  2m i} with

a  =  a, +  • • • +  a/

for some i G /. Then, whenever G K.

l<t> (^o+mi(^ )***A + m#( V ) ĉ»+A+2nii ( V ) )
=  *o+m* ( ( - l ) , - V (» ') )* a + m i((-l) '“ V 00)*a+* + 2».A(-<<?(»/) ~  9(b>'))-

However,

T ( )***6 + ni6(f', ),̂ CT+<!t + 2rnA( V ) )
=  ® ar+ m $(( 1 )  /0***o + r»«6(( ” 1 ) ^ )^ a f+ A + 2 m i(^ ) i

Xa + tnóifl v ) x a + a +2ms(*l) €  (ftp ( K )

4* *?0‘ ) =  ( — l ) m+,“ V  and t] =  - 9 ( 1)) -  *>(//»')
«■ 9 (b ) =  ( - l ) m+,-V  and ^ (V) + >/ =  - ( - l ) m+'" W ( /0 -

so that
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Thus it remains only to show that the necessary condition is satisfied by any two 
generators of .Y„-,+mé. Let xa-,+ms(p ,t)),xa-,+ms(v,\ ) € A'a-,+mi and k =  ( —l ) m+,-\ 
Then calculations similar to those in the proof of Lemma 6.2.2 lead us to the con
clusion that

'* 'a + m i ( /^ ) ^ 'ô + m i ( ^ ie l( /^ ) )* ^ a + â + 2 m i(v )* * ’ o + w 6 (^ /  ) X â + m 6 { K lp { l ‘/) ) X a + â + 2 m 6 ( X )

=  *a+m«(/i +  t')Xa+ms(K<p(p +  v))xa+c,+2m6(fj +  A -  Kifi(p)u).

where
<p(t] +  X — Kif(p)u) =  -T] -  A +  K'p(p)v -  « ( / !  +  v)<ç(p +  v).

Thus

®o^+mi(^i — Xai+nlg(p "f V, 1/ A ^ A^Qf+mi

as required. □

Once again we have X ai+mg ^  1 in all cases and we may thus use Hee’s Theorem 
directly.

Returning to the general case we note that the twisted root system involved is 
thus none other than i*7, described in Table 5.1.1.

6.3 The Groups H ^ T

Let K) denote the fixed point subgroup of Hp(K)  under the automor
phism a =  T~lo~/<f>. VVe note the general fact about diagonal automorphisms that

r(h)  =  li for all h 6 H-p(K)

so that
h € H t>( K) is (T-stable <=> h is 7 ^-stable .

Thus we may use the results of §5.3 to deduce the following result.

Lemma 6.3.1

1. Every element li € H?*'T( K) has a unique expression of the form

o) n
Jen1 \'«i /

where £() 6 Ky' ft Kx , j  is a representative of J € it1 • and £j € Kx for each
J e n 1.
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2. Every element h G (K) has a unique expression of the form

= n (n
Jen} \i€k /(t)

where j  is a representative of J G n1 and £ 7  G Kx /or each J € n1 • 

Every element h G H f* *(&) has a unique expression of the form

h = h a o u o )  n
•/€n* \»6*

where £0 G K1'’ fl Kx , j  m a representative of the orbit J G n1, and £7 G Kx 
for each J G nl .

6.4 The Application of Hée’s Theorem
Suppose .4 =  jgn is a Cartan matrix of type .4/, D/, or £« and that

is the extended Cartan matrix obtained from it.
Suppose 0p(K ) is a Kac-Moody group of type .4 and let 7 G Aut ©p( K) be 

induced by an automorphism 7 of A(.4) inherited from A(.4). Suppose 7 has order 
k and let G Aut K also have order k. Denote by <p the automorphism of ©p(K) 
induced by <p. Define

y<j) := yocp — <poy

and denote by r the diagonal automorphism d(e) of ®p(K) where

e =  e 1f i .

Define
® ^ r(K) = ( iG  © p (K) : 7<t>U) =  r(x)).

Recall the root base and the twisted root system i *-1 of type /? constructed 
from 4*(-4) in Chapter 4 and described in Table 5.1.1. Define

W'+-T =  (X ai : q1 G $+) and U1*'T =  (Xa, : a 7 G $1).

Suppose that ®j>(K) is a subgroup o f such that

{IP+'T,UZ+'T) c  ®i,(K).
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Define
H i  =  Hv n 0£(K) = H l*  T n 0J(K)

and
N’  =  JV n0?,(K ).

Let
B" =  lP*'TH i  and B1 =  Ul*'TH$.

Proposition 6.4.1 
The triple

is a root datum of type (S '>,$ ‘V,N) associated to ©p(K). Furthermore

( B " , N V) and ( B"_,Nm)

are two ( B , N)-pairs in 0 j,(K ) with Weyl group W l .

Proof
This is a direct result of Theorem 3.3.3 and calculations made in Chapter 4.

□

The Group
Let j  be any representative of .7 6 Whenever the roots in A (O j) are

independent, define = n "«.•iej

If (A,k)  =  ( A y , 2) and J =  {1,1 +  1}, define

n a j  =  n O | W o | + i n i l |  =  **<»1+1 n ® i n « l + l  •

The proof of Theorem 3.3.3 and the calculations of §4.5 then lead us to the conclu
sion that

N * ’T =  (H l+ T,na:).

\.



Bibliography

[BdK90]

[B01168]

[Bou75]

[Car 72] 

[CG'91]

[ChefiOa]

[Clie60b]

[DG70]

[Gar78]

[Gar80]

[Hée90]

[HéeOla]

G. G.A. Bâuerle and E.A. de Kerf. Lie Algtbras part 1: Finite and Infinite 
Dimensional Lie Algebras and Applications in Physics. North Holland, 
Amsterdam, 1990.

N. Bourbaki. Groupes et Algèbres de Lie, chapter IV, V, VI. Hermann, 
Paris, 1968.

N. Bourbaki. Groupes et Algèbres de Lie, chapter VII, VIII. Hermann. 
Paris, 1975.

R.W. Carter. Simple Groups of Lie Type. John Wiley, London, 1972.

R.W. Carter and Y. Chen. Automorphisms of affine Kac-Moody groups and 
related Chevalley groups over rings. Warwick University Preprint, April 
1991.

C. Chevalley. Certasin schémas de groupes semi-simples. Technical Report 
219, Séminaire Bourbaki, Paris, 1960.

C. Chevalley. La théorie des groupes algébriques. In Proceedings of the 
International Congress o f Mathematicians, Edinburgh, Cambridge, 1960. 
Cambridge University Press.

M. Demazure and A. Grothendieck. Sche'mas en Groupes, I, II, ///.volume 
151, 152, 153 of Lecture Notes in Mathematics. Springer-Verlag, 1970.

H. Garland. The arithmetic theory of loop algebras. Journal of Algebra, 
53:480-551, 1978.

H. Garland. The arithmetic theory of loop groups. Institut des Hautes 
Etudes Scientifique Publicationes Mathématique, 52:5-136, 1980.

J-Y. liée. Construction de groupes tordus en théorie de Kac-Moody. 
Comptes Rendu de Academie Scientifique de Paris, 310:77-80, 1990.

J-Y. Hée. Systèmes de racines sur un anneau commutatif totalment or
donné. Geometriae Dedicata, 37:65-102, 1991.

216



BIBLIOGRAPHY 217

[Hée91l>] J-Y. Hée. Torsion dégroupés munis d’une donnée radicielle. March 1991.

[Her60] D. Hertzig. On simple algebraic groups. In Proceedings o f the International 
Congress o f Mathematicians, Edinburgh, Cambridge, 1960. Cambridge Uni
versity F*ress.

[Hum69] J.E. Humphreys. On the automorphisms of infinite Chevalley groups. Cana
dian Journal of Mathematics, 21:908-911, 1969.

[Hum72] J.E. Humphreys. Introduction to Lie Algebras and Representation Theory, 
volume 21 of Graduate Texts in Mathematics. Springer-Verlag, New York, 
1972.

[Hum75] J.E. Humphreys. Linear Algebraic Groups, volume 21 of Graduate Texts in 
Mathematics. Springer-Verlag, New York, 1975.

[Hum90] J.E. Humphreys. Reflection Groups and Coxeter Groups, volume 29 of 
Cambridge Studies in Advanced Mathematics. Cambridge University Press, 
Cambridge, 1990.

N. Jacobson. Lie Algebras. Interscience Publishers, New York, 1962.

V.C!. Kac. Infinite root systems, representations of graphs and invariant 
theory. Inventiones Mathematica, 56:57-92, 1980.

V.C!. Kac. Infinite root systems, representations of graphs and invariant 
theory, II. Journal of Algebra, 78:141-162, 1982.

V.C!. Kac. Constructing groups associated to infinite dimensional Lie alge
bras. In V.C!. Kac, editor, Infinite Dimensional Groups With Applications, 
pages 1647-274. Springer-Verlag, 1985.

V.C!. Kac. Infinite Dimensional Lie Algebras. Cambridge University Press, 
Cambridge, third edition, 1990.

V.C!. Kac and D.H. Peterson. Defining relations of certain infinite dimen
sional groups. In Proceedings o f the E. Cartan Conference, Lyon, 1984. 
Astérisque.

F. Levstein. A classification of involutive automorphisms of an affine Kac- 
Moody Lie algebra. Journal of Algebra, 114:489-518, 1988.

[Moo67] R.V. Moody. Lie algebras associated with generalized Cartan matrices. 
Bulletin of the American Mathematical Society, 73:271-221, 1967.

[M 0068] R.V. Moody. A new class of Lie algebras. Journal o f Algebra, 10:211-230, 
1968.

[ J ac62] 

[Kac80]

[Kac82]

[Kac85]

[Kac90]

[KP84]

[Lev88]



BIBLIOGRAPHY 218

[MT72] R.V. Moody and K.L. Teo. Tits’ systems with crystallographic Weyl groups. 
Journal of Algebra, 21:178-190, 1972.

[PS86] A. Pressley and G.B. Segal. Loop Groups. Oxford Mathematical Mono
graphs. Clarendon Press, Oxford, 1986.

[Ree61a] R. Ree. A family of simple groups associated with the simple Lie algebra 
of type (F*). American Journal of Mathematics, 83:401-420, 1961.

[Ree61b] R. Ree. A family of simple groups associated with the simple Lie algebra 
of type (G'2). American Journal of Mathematics, 83:432-462, 1961.

[Seg85] G B. Segal. Loop Groups, volume 1111 of Lecture Notes in Mathematics, 
pages 155-168. Springer-Verlag, 1985.

[Ser87] J-P. Serre. Complex Semisimple Lie Algebras. Springer-Verlag, New York, 
1987.

[Ste59] R. Steinberg. Variations on a theme of Chevalley. Pacific Journal of Math
ematics. 9:875-891, 1959.

[Ste60] R. Steinberg. Automorphisms of finite linear groups. Canadian Journal of 
Mathematics, 12:606-615, 1960.

[Ste67] R. Steinberg. Lectures on Chevalley groups. Mimeographed lecture notes, 
Yale University Mathematics Department, 1967.

[Ste70] I. Stewart. Lie Algebras, volume 127 of Lecture Notes in Mathematics. 
Springer-Verlag, 1970.

[Suz60] M. Suzuki. A new type of simple groups of finite order. Proceedings of the 
National Academy of Science, U.S.A, 46:868-870, 1960.

[Tit62] J. Tits. Théorème de Bruhat et sous-groupes paraboliques. Comptes Rendu 
de Academie Scientifique de Paris, 254:2910-2912, 1962.

[Tit64] J. Tits. Algebraic and abstract simple groups. Annals of Mathematics, 
80:313-329, 1964.

[Tit66] J. Tits. Classification of algebraic semisimple groups. American Mathemat
ical Society Proceedings o f Symposium in Pure Mathematics, IX, 1966.

[Tit74] J. Tits. Buildings of Spherical Type and Finite BN-pairs, volume 386 of 
Lecture’Notes in Mathematics. Springer-Verlag, 1974.

[Tit81] J. Tits. Resumé de cours et travaux. Technical report, Collège de France, 
Paris, 1981.



BIBLIOGRAPHY 219

[Tit82]

[Tit85]

[Tit87a]

[Tit87b]

[Wan 75] 

[Wat 79]

J. Tits. Résumé de cours et travaux. Technical report, Collège de France, 
Paris, 1982.

J. Tits. Groups and Group Functors Attached to Kac-Moody Data, volume 
1111 of Lecture Notes in Mathematics, pages 193-223. Springer-Verlag, 
1985.

J. Tits. Groupes associés aux algèbres de Kac-Moody. Technical Report 
700, Séminaire Bourbaki, Paris, 1987.

J. Tits. Uniqueness and presentation of Kac-Moody groups over fields. 
Journal of Algebra, 105:542-573, 1987.

Z-X. Wan. Lie Algebras. Pergamon Press, 1975.

W. Waterhouse. Introduction to Affine Group Schemes, volume 66 of Grad
uate Texts in Mathematics. Springer-Verlag, 1979.



Index

affine type 26
affine Weyl group 43 , 44
automorphism of a root prebasis 109

Birkhoff decomposition 102 
Bruhat decomposition 89 , 102 , 169 

of a group element 116 
(B , ¿V)-pair 88

saturated (B  , JV)-pair 88 
Weyl group of a (B , jV)-pair 88

canonical central element 38
Cartan subalgebra 9
centre of a Kac-Moody algebra 12
chambers 22
Chevalley

basis of a Kac-Moody algebra 10 
generators 9 
involution of 94(C) 10 
involution of ®p(C) 128 

closed set of roots 83 
coroot 32

coroot lattice 5
Coxeter number of a GC’M A 38 

dual Coxeter number of A 38

degree of a homogeneous element 11 
derived subalgebra 9 
distinguished

generators 88 
root vectors 158

dual Coxeter number of a CJCM A 38 
dual Kac-Moody algebras 11 
dual root system of 94(C) 11 
Dynkin diagram 26

exchange condition 22 
exponential of a locally nilpotent linear 

operator 17
extended Cartan matrix 45 
extended Dynkin diagrams 28

finite type 26 
fundamental 

chamber 22
coweights 104 , 105 , 194 , 196 
reflection 19 , 91

generalized Cartan matrix 2 
generation property of the groups ©<’ (K)

155
gradation

of a Kac-Moody algebra 11 
of a vector space 11 

graded subspace of a vector space 11 
group functor 87

toral group functor 93 
group scheme 87
group of sign automorphisms of a Kac- 

Moody group 128

fl-diagonalizable module 17 
Hée’s Theorem 120 
homogeneous 11 
hyperbolic Cartan matrix 35

imaginary root 28 , 33
fundamental imaginary root of an 

affine algebra 35 
indefinite type 26 
integrable module 18 
isomorphic quadruples 7

220



INDEX 221

Kar-Moody 
algebra 2
group system 93 , 97 

Kostant Z-form 85

length of a word in the Weyl group 21 
Levi subgroup 117
Lie algebra corresponding to an arbi

trary square complex matrix 7 
locally nilpotent element 16 
loop algebra 45

multiplicity
of a root o  10 
of a weight 18

N-closed 113 
negative root 10
normalized invariant form 39 , 42

positive 
root 10
root system of ©p(K) 114 

prenilpotent
pair of roots 83 
set of roots 83 ,112 

principal
submatrix 26 
minor 26

rank 7 
real

root 32
dual real root 32 
long real root 33 
negative real roots 92 
positive real roots 92 
short real root 33 

root system 91 
realization

of a matrix 2 
of a (¡CM 90

reduced expression in a Weyl group 21

representable functor 87
residue of a Laurent polynomial 45
root

of 9.4(C) 10 
closed set of roots 83 
dual real root 32 
imaginary root 28 , 33 

fundamental imaginary root of an 
affine algebra 35 

long real root 33 
negative root 10 
positive root 10
prenilpotent set of roots 83 , 112 
prenilpotent pair of roots 83 
real root 32 
short real root 33 

root basis 35 , 111 
root datum 90

simply-connected root datum 90 
adjoint root datum 90 
minimal adjoint root datum 90 
universal root datum 91 

root-group datum 115 
root lattice 5 
root prebasis 109

Cartan matrix thereof 110 
Weyl group of a root prebasis 110 
roots of a root prebasis 110 
reduced root prebasis 110 

root vectors 50

scaling element 38 
semi-Cartan matrix 24 
simply-connected root datum 97 
simply-laced Kac-Moody algebras 33 
special linear group functor 88 
spherical set 111 
Steinberg group functor 95 
structure constants of a Kac-Moody al

gebra 50 
symmetrizable 

matrix 13



ISDEX 222

Kac-Moody Algebra 13 
symmetrization of a matrix 13

Table 1.1.31 23
Table 1.5.4 60
Table 1.5.5 62
Table 1.5.13 75
Table 4.1.1 135
Table 4.1.4 145
Table 4.3.5 166
Table 5.1.1 199
Table Aff I 30
Table Aff II 31
Table Aff III 31
Table Fin 29
Tits cone 22
Tits’ convention 6
Tits systems 88
toral group functor 93
twisted affine Kac-Moody algebra 63

weak C'artan matrix 110 
weight 18 
weight space 18 
Weyl group 91
Weyl group associated to a CIC'M A 19 
Weyl group of a root prebasis 111

Z-form of a C-algebra 85


