A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/134905

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@ warwick.ac.uk

STRUCTURAL STUDIES OF ACTINYL CO-ORDINATION COMPOUNDS

by

Mark Pennington

A thesis submitted to the Univernity of Warwick in partial fulfilment of the requirements for the degree of Doctor of Philosophy

Department of Chemistry,
Univernity of Warwick,
Coventry CV4 7AL
Octaber 1997

I would tike to thank my supervigor $\mathrm{Dr}_{\text {r }}$. N.W. Alcock for his guidance in crytallography throughout the course of my wark. My thanke aleo to Dr. D. Brown and Mr. R.A.P. Wilteshire for their help in the preparation of neptunium compounds in the trief time I wer at A.E.R.E. Herwell. In addicion 1 would also like to thank everyone in the Chemistry depertment for their help and encouragernent throughout the period of my research.

This thesis has been written using the troff word processing program with the preprocesions refer, tbl, and eqn running under the UNDX4 operating syatem and printed on an Agfa P400PS poatecript printser. I would like to thank Mr. R. McMahon for help with the syakm, and tha operasors for thair service during the leat few year.

1 am indebted to the SR.R.C. for supporn under the CASE acheme and the Chemistry Division of A.E.R.R.

[^0]The work described in this thesis is entirely original and my own, except where otherwise indicated.

Publicationa

Perti of the work contained in this thesis have been publiahed, cceepued, or submitued for publication in the scientifc literature with the following references:
M.Pensington, N.W. Aleack, and D. Brown, Inorganica Chimica Acto; Proceedings of the Second Comference on Lanthanides and Actinider, Lisbon 1987.
N.W. Acock, D.J. Flanders, M. Pennington, and D. Brown, Acta Cryar. , 1987, C43, 1476.
N.W. Alcock, D.J. Flanders, M. Pennington, and D. Brown, Acta Cryrt, , 1997, accepted for prblication.

ABSTRACT

The work contained in this thasis describes the cryatal and molecular structmres of anmber of uraniun(V1) compounds, and the preparation of two of the neptunium(VI) analogues. Apparent from the results in the invariance of the uranyl $\mathrm{U}=\mathrm{O}$ bond length to substiution af aulphur or nitrogen for oxygen as the equatorial donor arom. This area has been explored through the determination of the following crysul atructures:
a) The dithiocarbarnate complexes $\left[\mathrm{E}_{4} \mathrm{~N}^{\mathrm{N}}\right]\left[\mathrm{UO}_{2} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NS}_{2}\right]_{]}$; $\left[\mathrm{E}_{4} \mathrm{~N}\right]\left[\mathrm{UO}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NS}_{2}\right)_{3}\right]$; $\left[\mathrm{E}_{4} \mathrm{~N}^{2}\right]\left[\mathrm{UO}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{10} \mathrm{NS}_{2}\right)_{3}\right]$: and $\left[\mathrm{Me} \mathrm{N}_{2}\right]\left[\mathrm{UO}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{NS}_{2}\right)_{3}\right]$.
b) The pentane 2,4 -dionate compleses $\left[\mathrm{UO}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{COCHCOC}_{4} \mathrm{H}_{5}\right)_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}\right)\right]$ and $\left.\mathrm{UO}_{2}\left(\mathrm{CH}_{3} \mathrm{COCHCOO}_{-}^{-}\left(\mathrm{CH}_{3}\right)_{3}\right)_{2}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)\right]$
c) The bispyridyl bis nitrato complex $\left(\mathrm{UO}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{~N}_{2}\right)\left(\mathrm{NO}_{3}\right)_{2}\right.$

In addition, the structure ere described of the 1.10 -Phenanthroline complex of uranyl ace-
 dimerisation whilst attermpting to form U-S bonded apecies.

Table of Contents

Chapter 1: Introduction 1
1.1 The Actinide Elements 1
1.2 Bonding Mechanisms in the Uranyl and Neptunyl lons 3
1.3 Effects of Oxidation State and Metal Type on the Bond Lengths in the Actinyl Complexes 3
1.4 The Nature and Geomery of the Actunyl Ion 6
1.5 The Linearity of the Uranyl lon 7
1.6 Review of the Coordination Chemistry of Uranium 12
References 15
Chapter 2: The Crystal and Molecular Structures of Four Uranyi(VI) Complexen whth $\mathrm{N}_{\mathbf{i}} \mathrm{N}$ - Dialkyldiabiocarhamate Ligands 18
2.1 Introduction 18
2.2 Experimental 19
2.3 Discussion 21
Referances 58
Chapter 3: Two Pyridime-Acetyl Acetone Complexes of Uranium(V) 60
3.1 Introduction 60
3.2 Experimental 60
3.3 Discussion 62
References 78
Chapter 4: The Cryptal and Mnlecular Structuret of Diormhth(pyrillatilinaltratouranium(VI) 79
4.1 Introduction 79
4.2 Experimental 79
4.3 Discussion 80
References 87
Chapter 5: The Structure of a 1,10-Phenanthroline Complex of Uranyi Acetate 88
5.1 Intoduction B8
5.2 Experimenta 88
5.3 Discussion B9
References 96
Chapter 6: Some Unexpected Sde Reactions - Three Further Structures 97
6.1 Introduction 97
6.2 Experimental 97
6.3 Discussion 99
References 107
Chapter 7: Exparimental Section 108
7.1 The Collection of X-Ray Diffraction Data 100
1.2 Techniques Used in Handling Neptunium - 237 113
References 116
Clepter E: Concluainn and Further A reed of Study 117
8.1 Conclusions 117
1.2 Areas of Further Study 119
References 119
Apperdix A: Structure Solution and Crystallographle Theory A]
A1.1 Diffiraction of X-Raya A1
A1.2 Symmetry and Space Groups A1
A1.3 Dan Reduction A6
A1.4 The Structure Factor and Patterson Punction A8
A1.5 Structure Solution and Refinement A9
References A13
Appendly B: Final Structure Factor Tablea B)

Llat of Tables

Table

Tahle 1.1

Table 2.1
Table 2.1 cont
Table 2.2
Teble 2.3
Teble 2.4
Table 2.5
Table 2.6
Table 2.7
Table 2.8
Table 2.9
Table 2.10
Table 2.11
Teble 2.12
Table 2.13
Table 2.14

Table 3.1
Table 3.1 cont
Table 3.2
Table 3.3
Table 3.4
Table 3.5
Table 3.6
Table 3.7
Table 3.8

Table 4.1
Table 4.2
Table 4.3

Table 5.1
Table 5.2

Titele
Oxidation States of the Lanthanides and Actinides

Cryatal Data and Data Collection Conditiona32

Analytical and infra red Dare 33
Compariton of Salient Bond Lengths 34
Atomic Coordinates for [1] 35
Alomic Coordinates for [2] 36
Atomic Coordinates for [3] 38
Atomic Coordintes for [4] 40
Hond Lengths and Angles for [1] 41
Bond Lengths and Angles for [2] 43
Bond Lengths and Angles for [3] 47
Bond Lengths and Angles for [4] 50
Deviationat from Planes for [1] 52
Deviations fram Planes for [2] 53
Deviations from Planes for [3] 55
Deviations from Planes for [4] 57

Cryital Data and Data Collection Conditions 69
Analytical and infra red daia 70
Alomic Coordinates for [5] 71
Atomic Coordinates for [6] 72
Comparison of Bond Lengths and Angles 73
Bond Lengths for [5] [6] 74
Bond Angles for [5] \& [6] 75
Deviariona from Mem Planea 77
Comparison of Inter-Plane Angles 77

Atomic Coordinates for [8]
84
Bond Lengths and Anglea for [8] 85
Deviations from Mean Planes for [8] 86

Atomic Coordinatea for [9]
93
Bond Lengtha and Angles Around Uranium for [9] 94

Table 6.1
Table 6.1 cont
Table 6.2

Table 8.1
Table 8.2

Table A1
Table A2

Atomic Coordinatea for [10] 104
Bond Lengths and Angles for [10] 105
Atomic Coordinates,Bond Lengths \& Anglea for [11] 106

Effect of E.C.N. and Donor arom on U-O Lengths 117
Uranium - Ligand Bond Length Range 118

The 14 Bravais Latrices and Conventional Unit Cella A3
Determination of Translation Elements of SymmetryA7

Lhe of Flomen

Flanure
Figure 1.1
Titse

Figure 1.2
The Valence Orbitals of Uranium

Figure 1.3 Molecular Orbitals of the Uranyl(VI) Ion a
Figure $1.4 \quad$ MoO2+ Orbital Energy ve. Boad Angle 7
Figure 1.5 UOfOrtital Energy va. Bond Angle 8
Figure 1.6
Molecular Structure of Uranyl H_{2} dapp Salt 10

Figure 2.1
View of the Anion of [1]23
Figure 2.2 Packing Diagram for [1] 24
Figure 2.3 View of the Anion of [2] 25
Figure 2.4 Packing Diagram for [2] 26
Figure 2.5 View of the Anion of [3] 27
Figure 2.6 Packing Diagram for [3] 28
Figure 2.7 View of Puckering in [3] 29
Figure 2.8 View of the Anion of [4] 30
Figure 2.9 Packing Diagram for [4] 31
Figure 3.1 s View of the Molecule of [5] 64
Figure 3.1b View of Twisting in [5] 65
Figure 3.2 Packing Diagram for [5] 66
Figure 3.3 View of the Molecule of [6] 67
Figure 3.4 Packing Diegram for [6] 68
Figure 4.1 View of the Molecule of [8] 82
Figure 4.2 Packing Diagrem for [8] 83
Figure 5.1 View of [9] as an Idealised Non-centrosymmerric Dimer 91
Figure 5.2 Packing Diagram for [9] 92
Figure 6.1 View of the Anion of [10] 100
Figure 6.2 Packing Diagram for [10] 101
Figure 6.3 View of the Molecule of [11] 102
Figure 6.4 Packing Diangram for [11] 103

Figure 7.1
Figure 7.2
Figure 7.3

Pigure Al
Figure $\mathbf{A 2}_{2}$
Figure A3

The Four Circle of the Diffiractometer110
Patuern of Spots on Film from a Rotation Photograph 110
Plot of the Disuribution Coefficient of $\mathrm{Np}(\mathrm{VI})$ in $\mathbf{H C l}$ 114Diffraction of X-Rays from Crystal PlaneaA2
Derivation of Miller Indfeies For Any Plane of Reflection A2
Possible Types of Lattice Centering A4

CHAPTEP 1

Inimaduction

1.1. The Actillide Elementa

The actinides are the fourteen elemens berween actinium ($\mathbf{Z}_{5} 89$) and rutherfordium ($Z=103$). In an analagous fashion to the d-series, and the $4 f$-lanthanide seriea, the actinider arise from the succeasive addition of electrons into the empry $5 /$-orbitals of the preceeding elementa. All of the known isotopea of the actinidea are radioactive. The terreatrial occurence of U and $T h$ If due to the half-liven of ${ }^{20} \mathbf{T h},{ }^{20} \mathrm{U}$ and ${ }^{20} \mathrm{U}$ which are sufficiently long to hove ematied them to eritat aince generis. Protactinium cen be found in nature, despite its short half-life ($3.28 \times 10^{4} \mathrm{ym}$), since it in a member of the ${ }^{\text {ms }} \mathrm{U}$ docay chain. The remaining elementre fre produced aynthetically tince their half-lives are so ahort that any primordial deposits will have completely dacayed.

The actinide elements and their electronic configurations are listed in the following table (Table 1.1). This table also illustrites the comparison with the lanthanides. As can be seen. whilst the lanthanide elements have a limited range of oxidstion states, normally +3 in both aqueoun solution and solid compounds, the actinides exist in a wide variety of oxidation atater with neptunium and plutonium for example, having the range +3 to +7 . However, the common oxidation state of americium and the remaining elements is +3 and this second half of the actinide seriea approaches the behaviour of the lanthanides, with the sole exception of nobelium ($\mathrm{Z}=102$) for which the diponitive atue appears to be extremely stable. a result of the filled f-ahell electronic configuration ($5 f^{14}$) of the $\mathbf{N o}^{2+}$ ion.

The differences between the most atable dominant oxidation states of the actiaides and lanthanidet are anributable to two main factors. Fint, the sum of the fint three ionisation enthalpiea is comperatively low, so the lanchanides are highly electropositive. and bonding tends to be ionic. Secondly, the $5 f$ electrons of the actinides are not as strongly shielded as the $4 f$ electrons of the lanthanides. lens energy in thua needed to promote the $3 f$ electron to a $6 d$-orbital, which cen then be uned in bonding.

The work conuained in this thesis describes the synthesil and structaral aspects of eome urmiurn(VI) coordination chemiatry, and the synthesis of two of the neptunium analogues. Preparative work on neptunium was carried out at A.E.R.E. Herwell.

The element was fint discovered in 1940 by McMillan and Abelann ${ }^{1}{ }^{a n}{ }^{20} \mathrm{~Np}$:

$$
30 \%:{ }^{20} U(\mathrm{n}, \gamma)^{20} \mathrm{U} \xrightarrow{\dagger}{ }^{20} \mathrm{~Np} \xrightarrow{\dagger}{ }^{26} \mathrm{Pu}
$$

The known inctopes of neptunium range from ${ }^{201} \mathrm{~Np}$ to ${ }^{20} \mathrm{~Np}$, with half liven in the range

TABLE 1.1

Oxidation Stater of the Actinidea and Lanthanidea

(Moat common oridation atates emboldened, least common in parentheses)

Actinides			Lanthanidet		
89 Ac	3	6d 7a ${ }^{2}$	57La	3	$5 d 6{ }^{2}$
90 Th	(3),4	$6 d^{2} 7 s^{2}$	58 Ce	3.4	$4 f 5 d 6 v^{2}$
91 Pa	(3),4,5	$5 f^{2}$ 6d 74 ${ }^{2}$	59 Pr	3,(4)	$4 f^{3} 68^{2}$
92 U	3,4,5,6	5f ${ }^{3} 6 d_{8}{ }^{2}$	60 Nd	(2) 3	$4 f^{4} 6^{2}$
93 Np	3,4,5,6,7	$5 f^{9} 7 s^{2}$	61 Pm	3	$4 f^{1} 6{ }^{2}$
94 Pu	3,4,5,6,7	3f57s ${ }^{2}$	62 Sm	2.3	$4 f^{4} 68^{2}$
95 Am	(2) $3,4,5,6$	$5 f^{7} 7 s^{2}$	63 Eu	2,3	4 $f^{\prime} 7 s^{2}$
96 Cm	3,4	5f ${ }^{3}$ 60 782	64 Gd	3	$4 f^{7} 5 d 6 n^{2}$
97 BL	(2).3.4	$5 f^{\prime \prime} 7 i^{2}$	65 Tb	3,(4)	4 $f^{6} 6 s^{2}$
98 Cf	2.3	$5 f^{10} 78^{2}$	66 Dy	3	$48^{10} 64^{2}$
99 Es	2.3	$5 f^{11} 7 s^{2}$	67 Ho	3	4f1162 ${ }^{11}$
100 Fm	2,3	$5 f^{12} 78^{2}$	68 Er	3	$4 f^{12} 6^{2}$
101 Md	2.3	$5 f^{13} 78^{2}$	69 Tm	(2) 3	$4 f^{13} 6 x^{2}$
102 No	2.3	$5 f^{14} 7 s^{2}$	70 Yb	2.3	$4 f^{14} 68^{2}$
103 Lr	3	5f ${ }^{14}$ 6d 78 ${ }^{2}$	71 Lu	3	$4 \int^{10} 5 d 6^{2}$

and ${ }^{20} \mathrm{~Np}\left(\mathrm{t}_{1 / 2} \mathbf{2} 5000 \mathrm{yri}\right)$ but the larter is a β emitter. This makes preparative work virtually imposaibie on all but the ${ }^{10} 7 \mathrm{~Np}$ inotope, which was used here. This isotope was first prepared by Weal and Seaborg ${ }^{\mathbf{3}}$ in $\mathbf{1 9 4 2}$ by neutron bombardment of ${ }^{271} \mathrm{U}$:

$$
70 \%: \quad{ }^{200} \mathrm{~L}(\mathrm{n}, 2 \mathrm{n}){ }^{257} \mathrm{U} \xrightarrow{{ }^{17} \mathrm{~N} p}
$$

The isotope is also formed as one of the products in auclear reactors ${ }^{4}$

$$
30 \%:{ }^{255} \mathrm{U}(\mathrm{n}, \gamma){ }^{23} \mathrm{U}\left(\mathrm{n}, \gamma^{27}{ }^{27} \mathrm{U} \xrightarrow{P}{ }^{37} \mathrm{~Np}\right.
$$

The moat stahle oxidation states of uranium and neptunium are (VI) and (V) respectively. Nepminium (VI), NpO_{2}^{+}, does exist but can only be maintained by the presence of an oxidant in solution, and in readily reduced to the (V) atare. However, complexen cen be formed which mainerin this $\$ 6$ oxidation state when solid. The comparative atability of the uranyl and neptunyl ions is Uluatrited by their electrode potentials: ${ }^{5}$

$$
\begin{align*}
& \mathrm{UO}^{+}+\mathrm{e}^{-}-\mathrm{UO}: \mathrm{E}^{-}=0.163 \mathrm{~V} \tag{12.1}\\
& \mathrm{NPO}^{2}+\mathrm{e}^{-}=\mathrm{NpO}: \mathrm{E}^{-}=1.236 \mathrm{~V} \tag{1.2.2}
\end{align*}
$$

The +5 state of neptunium is much more stable, and will only disproportionate a high acid concentrations ($>5 \mathrm{M} \mathrm{HClO}_{4}$) to give the +4 and $\$ 6$ oxidation atthet. The hydroxide apecien, $\mathrm{NpO}_{2}(\mathrm{OH})$ is only formed when the acid concentration is reduced past pH 5.7 . This is in contragt to the uranium(V) species which readily disproportionates ${ }^{6}$ to U^{4+} and UO^{2}. being most stable at pH 2.5.

$$
\begin{equation*}
2 \mathrm{UO}_{\mathrm{I}}+4 \mathrm{H}^{+} \rightarrow \mathrm{U}^{4+}+\mathrm{UO}_{2}^{+}+2 \mathrm{H}_{2} \mathrm{O} \tag{1.2.3}
\end{equation*}
$$

The oxygen atoms in all of the actinyl ions are non-basic, and as such do not attract protons, even at high acidities: ${ }^{7}$ however, in aquoous solutions, both MO_{1} and MO_{2}^{+}ions coordinate with water to form acidic hydrated apecies.

1.2. Bonding mechaniam in the uranyl and meptunyl lons.

If the equatorial coordination number in 5 or 6 , then from mymmetry considerations, it is possible for all the metal $5 / .6 d$ and 7 is valence orbitals 10 participate in equatorial bonding. (Figure 1.1). ${ }^{\text {E }}$ In the case of a distorted octahedron however, all the bonding orbituls except f m can contribute

Since n bonds are quite weak compared to the corresponding o bonds, the strongest equatorial bonda will be formed with the eight f, A, and a orbitals that have electron densify normal to
 $f_{\mathrm{am}}, f_{\mathrm{mm}} f_{x^{m}} d_{\mathrm{m}}$, and d_{m} orbitals which have a spatial distribution in some plane other than the equatorial may be involved in casea of stiggered honding.

Coulson and Letter ${ }^{9}$ have suggested that the use of spdf hybrid orbitals is of importance in complexes where the equatorial coordination number is 6 . The orbitals produced by such hybridization would have lobes al 60° to one another in a planar arrangenent, suitabie for maximum overlap with the ligend orbitals. Furthermore, they suggest that the $6 f$ rather than the $5 f$ orbitals would be more favourable for such overinp hecave they protrude further into spece, (Figure 1.2)

1.3 Eflects of atidntion retate and metal type on the bond lengha in the actinyl complezen.

It can be seen from Figure 1.3 that the ot orbital in not directed along the actinyl axis. Consequently an electron occupying this orbital is unlikely to have any effect on the length, strength, or geometry of the bonds in the actinyl ion, and should not therefore be responsible for any differencen between UO_{2}^{+}and NpO_{4}^{+}ions which are in identical coordination environmentr. The S_{a} orbital however lies along the sctinyl axis and an electron occupying this orbital has the effect of lengthening the $\mathrm{N} \mathrm{OO} /$ ion primary bonds by $\mathbf{0 . 0 9} \mathrm{A}$ relative to those of NpO_{2}. A lengthening of

1.1 The valence ortitals of uranium (from ref.8)
1.2. Polar diagram for spdf hybrid orbital (from ref.9)

1.3 The molecular orbitals of the urtnyl(V) ion (from refl)
the secondary bonda also occurt in these circumstances and this is probably due to the repulaion of the partially filled th ortital toward the equatorial ligands by the "eatra" g , electron. This would increase the meal-ligand repulsion and therefore M-L bond length.

The ectivide contraction, the decrease in ionic radius then in observed from uranium to americium, ${ }^{10}$ is responsible for the anajor change in boad lengths berween analagour uranium(V I) and neptunium (VI) complexes. Between protectinium ($\mathrm{z}=91$) and urnium ($2=92$), the $5 f$ orbitala become lower in energy than the fod and 7 forbitals with the increasing nuclear charge. An a consequence the 5 f orbitala amart \mathbf{n} Bll. These orbitals do not ahield themselvea very well to the ahell contract athe atomic number increases. A consequence of this in a subiliation of the ortitala which bond with those of oxygen in the actinyl ions reaulting in poorer overlap and a weakening of the M-O (MO2ㅇ) bond with a reduction in itr length along the actinide series. A similar change is oberved in the secondary bonds around MOf*. Structural changet cen alwo occur in analagous actinide complexes a a remul of this difference in ionic redius; for example the different cryatil syitema of the tribromides of neptunium and plutoaium. ${ }^{11}$

The higher energy of the $I f$ orbital compared with the ad arbital in protactinium explains the ahence of a linear PmOH specier comparable to the of the higher actinides. The only known

1.4 The Nature and Geometry of the Actiayl loa

 gle charged metal centre, having the charecteriatici of a "hard' Lewis acid. ${ }^{13}$ As a reault they will forn complexes more readily with electronegative donor atoma (N, O, F, Ci-) than with the lariser more polariable atoms which utilite m-bonds to a greater degree (S, P. Se, 1). This "herdmoft - donor/acceptor" principle also implies that nitrogen would te leas ightly bound to the mead than oxygen, since oxygen has the higher base strength. ${ }^{14}$ U-O bonds will therefore be shorter than U-N bonds as ia found for ather "herd" acids eg TI(IV). Fe(III), wheren "softer" iona (es Cu(II), Co(II)) form M-O and M-N boade which are of comparable length. Complexea
 (de-N.N-diethyldichiocerbemate). UO2(drc) TPPO (TPPO- triphenylphosphine oxide), and UO_{2} (dSec), TPA*O (dSece diselenium carbemate; TPANO= triphenylarsine oxide). Chapter 2 describes the synthesis and cryatal tractures of further dithiocarbamate complexer of urnaimm(VI).

1.5. The Linearity of the Uranyi Ion

The MO^{*} ion ($\mathrm{O}-\mathrm{M}-\mathrm{O}$) is generally described as being linear and deviates little from linearity, one of the largest deviations for an ordered structure resulting in an O-U angle of $173.5(8)^{\circ} .^{16}$ Such a geometry is different from that encountered for other dioxocationa ${ }^{17}$ e.g. $\mathrm{MoO} \mathrm{I}^{*}$ where an $\mathrm{O}-\mathrm{M}-\mathrm{O}$ angle of 110° is found. This arises because the Mot ion contains a ($19 p$) hybridised orbital set formed from the $M, 5 s$, and $5 p$ orbitals on the molybdenum which can interact with the $2 p$ orbitals of the oxygen atoms in the diozocation. Figure 1.4 shows the (net) potential energy curvea obthined by considering ench of the orbitals individually in the formation of the dioxocation. and then the effect of utilising the hybrid set. It can be seen that whilst the a and ortials favour a more linear geometry, it is the effoct of the ed ortital which produces a potential energy minimum with an O-Mo-O angle of 110°.

1A. Relmive soed enrgy as a function of bond angle for Mo 4s, 5s. 3 (separnely) and ap (ell megether) besis sexs to the MoO?'. (from ref. 17)

In the $\mathrm{UO}^{+}{ }^{+}$lon the $3 f, 6 d, 7 s$ and 7p valence orbitals are higher in energy than, and thus less likely to interact with, the oxygen $2 p$ orbitals. The similar potential energy curves (Figure 1.5) show thas the ftep hybridised set which is formed is level in the region $110-118^{\circ}$. This indiceres that it in mot the addition of the f-orbital which is responsible for this trans-geometry, but the addition of the extra, non-vilence, flled 4 , orbital on uranium which forcer the linear geometry.

This "linemity" impoess nome seometrical constraintu upon the type of polyhedra by whicb the uranyl ion can be acoommodated. The dodecahedron or equare entiprism, are the preferred coordination polyhedra of hera-coondinate $d^{0}-\alpha^{p}$ eransition metils, ${ }^{\text {it }}$

1.5 Relative wen enersy as tunction of bond angle fo for $U 5 f, 6 d, 7 s, 7 p$, (separately) and
 (bottom) (trom ref. 17)
yet hexagonal bipymmid geomeny in exhibited by those complexes involving six donor moms coordinated to the manyl group despite being energetically less favourable The few examplea of complekes with this seometry which do not contaln the ectinyl ion arise as a reault of ateric constrainte. The exmmpie of tetramethylammonium oriacetato diphenyl plumbate(IV), ${ }^{19}$ [MeaN] $\left.\left.\mathrm{Pb}\left(\mathrm{Ph}_{2} \mathrm{XCH}_{3} \mathrm{COO}\right)_{\text {h }}\right)\right]$, has the special comhination of two bolly monodentane and three short bite bidentme litends about the ceatral metal tom. From this vecen deduce that if must be the essential dimentional requirements of the linear uranyl group which atabilises the hexagonal
bipyramidal atereochemiatry. No other geometry could accommodaue auch a linear moiety.
The M-O bond length within the MO_{2}^{+}unit lie between 1.5 A and 2.1 A with mean values of $1.77 \AA$ and $1.74 \AA$ for urnium ${ }^{20}$ and neptunium ${ }^{21,22}$ respectively. The diosocemon cen eccommodate between 4 and 6 donor atoma in the equarorial plane, and is is found that equatorial coordination number has little effect on $\mathrm{M}=\mathrm{O}\left(\mathrm{MO}^{\circ}\right)$ bond lengths, mean $\mathrm{U}=\mathrm{O}$ lengtha are 1.809 . 1.764, and $1.779 \AA$ for 4, 9, and 6 coortination respectively Furthermore, a recent review ${ }^{20}$ sut gess that contrary to the emarier analysis by Zecharisen ${ }^{23}$ there is no obvious dependence of the M=O bond lengtha on the rype of Higenda found in the coordination aphere, for example. with siz oxygen tama equetorially coordinamed, U=O lengths range $1.65(4)^{24,} 25$ to $1.909(46)^{26}$ Moar determinations have standard devidions of 0.003 A , so any trends in length will generally be maked by experimental uncertainties.

The arrengernent of ligenda in the equatorial plene becomer more puckered an the coordination number in increased. Thif pockering is reduced with a coordinating bidentrge ligand with a small "bite" an in $\mathrm{NaUO}_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right.$) 3 which has a plank arrangement ${ }^{27}$ When the tize of the donor atom is increased, either an exagernted form of equatorial puckering will be found, or the equatortal coordination number will be reduced. An example of the first effect is seen in dithiocarbamate complesen e.g. [MesN] [UOr(dich], ${ }^{28}$ and those complexea described in Chapter 2. The second effect is observed on comperison of $\left[\mathrm{UO}_{2} \mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{2}$ (HPPO$)_{2}{ }^{29}$ with $\mathrm{UO}_{\mathbf{1}}\left(\mathrm{CH}_{3} \mathrm{CS}_{2} h_{\text {. TPPO }}{ }^{\mathbf{3 0}}\right.$ where subatitution of the oxygen by sulphur reduces the equatorial coordination number from 6 ms.

Conutrinta on the coordination geometry can erite in other ways; one example is in the stucture of $\left[\mathrm{UO}_{4}\left(\mathrm{H}_{2} \mathrm{dapp}^{2}\right) \mathrm{NO}_{3}\right]\left[\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{4}\right]$ (Figure 1.6). ${ }^{31}$ The ring ayatems are so trained that in spite of the mmall size of the nimogen donors. no equarorial plane can be defined by them. Extreme disuortion is found here.

The lengths of the M-L (L-ligand) bonda lie in the range 2.2-2.9X and by connparison whith the primay MO3' ere denoend secondary bonds. This allows the coordination seometry in these complexea to vary from a distorted octahedron, through a pentagonal bipyramidal arragement to a heragonal bipyranid. Theac are illustrated in Figurea 1.7-9. If the cone angle aubtended by the coondinating ligand in sufficiently large, ${ }^{32}$ or if the donor atoms are aufficiently lerge, the complex will assume a disumed octahedral geometry. Examples are the structure of NpO_{2} (OPPh_{3}) $\mathrm{Cl}_{3}{ }^{33}$ and the anicas of $\mathrm{C}_{3} \mathrm{NpO}_{2} \mathrm{Cl}_{4}^{34}$ which eccommodete four chlorine atoma in the equatorial plane. The abllity of chlorine to coordinate in this way is determined by its large van der Wanls' ndius* of 1.75A.33

[^1]

1.6. Moleculer structure of $\left[\mathrm{UO}_{3}\left(\mathrm{H}_{2} \text { dapp }\right) \mathrm{NO}_{3}\right]_{2}\left[\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{4}\right]$

An equatiorial coordination number of 5 is most common particularly with oxygen donom. with M-O (IIgand) bond lengths in the range 2.35-2.40K and the non bonded O...O separation 2.70-2.80k. a vatue very close to the sum of the van ter Wale radil (2.84R). In some complexea perticulerly with bexacoordination in the equatorial plane, the O...O conuct distance may be al low as 26R, which indicates that simple addition of the two uncoastrained van der Wanls redif does ant fully describe the limiting cese.

The puckering of equarorial hexagons of monodentave grouph (an in $\left.\alpha-\mathrm{UO}_{2} \mathrm{OHH}_{3}\right)^{36}$ suggents thet fitting six oxyen atoms in a plane about a UO\% ion is quite difficule If the lifand are emall-bite, bidentates then the crowding in alleviated somewhat In the sulphate ion, the average O...O diningea of 231 it greater than the expected L.L.L donor atom separation for mextequmarlal coondination (2.35 A). Thus the sulphate fion cannot easily be socommodered in this geomery and is expected to assume an equatorial coordination number of 5 .

Thit example could be used a atandard limiting value such that only ligends with a bidenmse cheising bite lets than $\mathbf{2 . 3 5 \AA}$ can be comfortably socommodated within a hexagoal

1.7. Distorted octahedral coordination geometry (from ref.29)

1.8. Pentagonal bipyramidal geometry (from ref.27)

1.9. Hexagonal bipryamidal geometry around uranium. $O(2)$ is below plane and not shown. (frot ref.25)

Bpyramld. Typhal bidentate ligands which fall in this category (including bite disances) ere
 the following complexes: $\mathrm{Na}_{4} \mathrm{UO}_{2}\left(\mathrm{O}_{2}\right)_{3} 9 \mathrm{H}_{3} \mathrm{O}_{1}{ }^{37} \mathrm{~K}_{4} \mathrm{UO}_{2}\left(\mathrm{CO}_{3}\right)^{38} \mathrm{NaNpO}_{2}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)_{3}$ and $\mathrm{RbNpO}_{2}\left(\mathrm{NO}_{3}\right)_{3}{ }^{39}$ Cbapter 2 deacribes three uranyl complexes with dithiocarbamate ligands where the bite distance ia aubiantially grearer, yet heragonal bipyramidal geometry Ia observed. This is presumably due to the longer U-S bond and puckering of the sulphur atoms which reduces nteric crowding.
1.6. Review of the coordination chemiatiry of uramium

In 1967 Muetterties and Wright reviewed complexes which involved atorns with coordination number of seven or more, ${ }^{60}$ and hence dealt with most of the known compound of the actiniden. Since then, there have been numerous other reviews covering such aspects as actinide fluoride complexes (1970), cerboneten, nitrates, nitrires, sulphates, sulphites, selenates, selenitea, tellurates, and tellurites (1973), ${ }^{41}$ and chalcogenides (1972). ${ }^{42}$

Uranium and the other actinidea are aufficiently large to discourage coordination numbers less than six. Five coordination is an yet unknown, and even hexa-coordination is rare. Where this if found, the metal atom are utually in their higheat oxidation tates, a situation which correaponds to a minimum ionic redius for the element. Where uranium is incorporated into an octahedral hexcoordinare stucure, atetragonal compression results, with two short bonds perpendicular to a plane containing four longer ones. The ociahedra are regular in other reapects, the uranyl moiety casuring that the hond angles are close to $9 \mathbf{0}^{\circ}$. Examples of this distortion are seen in the structures of $\beta-\mathrm{UO}_{2}(\mathrm{OH})_{3}{ }^{43} \mathrm{CaUO}_{2} \mathrm{Bi}_{4}{ }^{44}$ and $\mathrm{UO}_{2} \mathrm{MoO}_{4}{ }^{45}$ all of which are polyhedrem built around the uranyl group.

7-Coordinatioti

Regandless of the oature of the five additional ligands, 7 coordinate polyhedre incorportaing the urianyl group adopt the only configuration which will allow the trans $\mathrm{O}=\mathrm{U}=\mathrm{O}$ moiety to be Unear. Numerous mononuclear pentagonal bipyramidal uranyl complexea exiat The structurea of $\left[\mathrm{UO}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)\left(\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$ has been determined by neutron diffiraction. ${ }^{46}$ The nitrate groups are not coordinated to the U atom but are important to the echerme of hydrogen bonding that links the cation throughout the atructure. In the complexes $\mathrm{UO}_{2}\left(\mathrm{E}_{2} \mathrm{NCS}_{2}\right)_{1} \mathrm{~L}$; ($\mathrm{L}=\mathrm{Me} \mathrm{NO}_{3}$, trimethyl-N-oxide; $\mathrm{Ph}_{3} \mathrm{PO}$. oriphenyl phosphine oxide; and $\mathrm{Ph}_{3} \mathrm{AsO}^{(}$, triphenyl arsine oxide) the uraium atom exhibits pentagonal bipyramidal geomevry. There is a variaion of U-O(ligand)
hond lengths. Me3NO appraches mare closely (2.14(3) \hat{A}) than $\mathrm{Ph}_{3} \mathrm{PO}$ (2.34(2) A) or $\mathrm{Pb}_{3} \mathrm{~A}_{3} \mathrm{O}$ (2.30स(2)). iuggesting a greater donor ability for the former ligand. ${ }^{47}$ The two U-O(uranyl) bond lengths (1.84(2) and $1.86(2) X$) are longer than those found in the arsine- and phosphine-oxide derivatives (mean value $1.70(3) \hat{A}$), and the vjO-U-O is consequently lower. 892, 901, and 910 . $90 \mathbf{c m i n}^{-1}$ for Me, $\mathrm{NO}, \mathrm{Ph}_{3} A \mathrm{AO}$ and $\mathrm{Ph}_{3} \mathrm{PO}$ products repectively. Similarly there is a decrease in the value of the $V \mathrm{C}-\mathrm{S}$ and $\sqrt{ } \mathrm{C}-\mathrm{N}$ stretching modes for the complexea.

Cryatallographic inveatigations of $\mathrm{UO}_{2}(\mathrm{DSeC})_{2} \cdot \mathrm{Ph}_{3} \mathrm{PO}$ and $\mathrm{UO}_{2}\left(\mathrm{DSeC}_{2} \mathrm{Ph}_{3} \mathrm{AsO}^{(\mathrm{OS}}\right.$ (DeC= have ahown that each uranium is again in a pentigonal bipyramidal eavironment, ${ }^{41}$ in which four selenium atoms and an oxygen atom occupy the comers of an irregular pentagon. The uranyl group in linear, (O-U-O angle $178(5)^{\circ}$). U-Se(mean) $2.98(2) \AA$ U-O(liggnd) $2.25(3) \AA$ and U=O(uranyl) $1.76(2), 1.77(2) \mathbb{R}$. Similar pentagonal bipyramidal apecies involving dithioacetic acid and dithobenzoic acid have also been prepared and characterised atructurally. All disuncea and anglea in the molecule are comparable with the corresponding ones found in the dithiocarbamate complezer, indicating that the subatitution of NEI_{2} of the DTC by a methyl group in the chelated liganda has no detectable effect on the bonding the coordinated aroms.

A large number of pentagonal bipyramidal complexes of dioxournnium(VI) with 1,3 diketonates and related ligands have been reported, ${ }^{49}$ but in the main the only inveatigation involvea atudy of v_{1} and $\mathbf{v}_{1} O-U-O$ stretching bands. Structural information on these compoundr in limited. To date only two soructures of compounds involving two pentane-2.4-dionato ligands and a monodentate ligand coordinated to the uranyl ion have been reported, ${ }^{16,50}$ (Chapter 3 deacribea a further two). Of these, diozobispentane-2,4-dionatournnium(VI) is particularly worthy of note because of the large deviation trom linearity of the uranyl ion(173.5(8) ${ }^{\text {a }}$). In both complexer the equatorial donor aroms form a slightly irregular pentagon.

A further example of urnium hepu-coordinated by oxygen atoms is eeen in the atructure of bis(hydroxymetato)dioxouranium(VI). ${ }^{51}$ In this, two of the glycolato groupt are bidentate, whilat one is tridentase; the pentagonal bipyramidn are linked through the glycolato groups forming infinjte chnins.

8-Coordination

There are several examples of complexer involving oxygen coordination with hexagona! bipynmidal geometries. One auch structure which is noteworthy in that of the anion [UO_(NO, $\mathrm{N}^{2-} .52$ In this, the urmyl group in linear (due to the centre of aymmetry), and of the four equatorial nitrates, two are linked through only one donor atorn. This is the only known exarmple of monodentate coordination of nitrate to uranium. Puckering of the donor atoms ia gencrally reduced with oxygen coordination, as seen in the structures of $\mathrm{Ne}_{4}\left[\mathrm{UO}_{2}\left(\mathrm{O}_{2}\right)_{3}\right]^{37}$ and $\left.\mathrm{Na}\left[\mathrm{HO}_{\mathrm{A}} \mathrm{OAc}\right)_{3}\right]^{27}$ where the equatorial oxygens are described an being coplanar (within
experimental error). However equatarial packering can be found; e-s- in the anion [UO_(NO \mathbf{H}_{3}]-, where the oxygen amoms lie 0.09 R above and below the plane. ${ }^{93}$ This it probably due wataceo electronic hinderance between the lone pain of electrons on the oxygen donors.

Six is the greatest number of ligands found coordinated equetorially to the urimyl sroup, and aseric crowding limits the number of known aperies. Puckering in invariably required to eccommodate the ligends. A good exnmple of this is seen fin the stucture of N,N-diethyldithiocterbanto-diozouratium described by Bowman and Dad, ${ }^{2 t}$ where devistions of about $0.2 \mathbf{Z}$ from the equatorial plane are reported for the sulphur atom.

Refersencer

1. R. McMillen and P. Ahelsan, Phys. Rev., vol. 57, p. $1185,1940$.
2. EK. Hyde, 1. Perimin, and G.T. Seaborg. The Nuclear Properties of the Heary Elements Demiled Radioactiviry Properiies, 2, p. xIvi. 1964.
3. A.C. Wand and G.T. Seaborg. Phys. Rev., vol. 73, p. 940. 1948.
4. W.W. Schulz and G.E. Benedict. "Neptunium-237: Production and Recovery.' USAEC Rapor TID-25955, 1972.
5. J.R. Brand and J.W. Cobble, Inori Chem, vol. 9. p. 912, 1970.
6. A. Elatrom, Inarg. Chem., vol. 13, p. 2237, 1974.
7. "The Actinidea," in Comprehentive /norganic Chemistry. Vod S, ed. A.F. TrotmenDiskenion, Pergamon, New York, 1973.
8. L. Camalini, U. Cromo, S. Degetm, and E. Tondello. Inorg. Chim. Acm Reviews, vol. S, p. 19, 1971.
9. C.A. Coulnon and G.R. Lesver, J. Chem. Sac., p. 3650, 1956.
10. V.1. Spimyn and JJ. Katr, in Proc. Mosc. Symp. Chem. Trans. Elem., p. 123, Pergemmon Press, Oxford, 1976.
11. D. Brown and J. Edwards. J. Chem. Soc. Dalion Trans., p. 1757, 1972.
12. D. Brown, C.T. Reynolds, and P.T. Monley, J. Chem. Soc. Dahon Trans., p. 857, 1972.
13. RG. Pearion, J. Am. Chent Sac., vol. 85, p. 3533, 1963.
14. U. Casellmo, M. Vidnli, and P.A. Vigeno, Imorg. Chim. Acta, vol. 18, p. 77, 1976.
15. U. Camellmo. M. Vidali, and P.A. Vigmo, Coord. Chem. Rev. vol. 24, p. 231.1979.
16. N.W. Alock, D.J. Fianders, and D. Brown, J. Chem. Soc. , Dation Traus., p. 679. 1984.
17. K. Tastumi and R. Hoffiman, Inorg. Chem., vol. 19, p. 2656, 1980.
18. D.L Keppert, J. Chem. Sac., p. 4736, 1965.
19. N.W. Alcoct, J. Chem. Soc. Dation Trans., p. $1189,1972$.
20. R.O. Deming, "Properties of the UOH ($\mathrm{n}=1.2$) lons," in Gmelin Handruch URAN Smppl. Vof A6. pp. 31-79. 1983.
21. M.M. Roberts, PhD. Thesis, Universify of Warwick, 1981.
22. D.J. Flanders, PhD. Thesis, University of Warwick, 1985.
23. W.H. Zecharimen, Acta Cryst., vol. 7. p. 795, 1954.
24. H. Brusect, Nguyen Quy Deo, and F. Haffner, J. Inorg. Nwel. Chem., vol. 36, p. 791, 1974.
25. C. Bois, Nguyen Quy Dao, and N. Rodier, J. Inarg Nucl. Chem., vol. 38. p. 755, 1976.
26. N. Amagen. Acta Cryar. B., vol. 33, p. 2281. 1977.
27. W.H. Zecherimen and H.A. Plextinger. Acta Cryat., vol. 12, p. 526, 1959.
28. K. Bowman and Z. Dori, J. Chem. Soc. Chem. Comnun., p. 636, 1968.
29. C. Pananoni, R. Grezimi, G. Bandoli, B. Zarli, and G. Bomhieri. Inorg. Chem., vol. B, p. 320, 1969.
30. G. Bombieri, U. Croarlo. E. Fornellini, B. Zarli, and R. Graziani, J. Chem. Soc. Dalion Trant., p. 560, 1972.
31. G. Bendoli, D.A. Clemente, G. Marango i. G. Paolucei, J. Chem. Soc. Chem. Comunn., p. 235, 1978.
32. K.W. Begnall, Inorg. Chim Acta, vol. 94, p. 3, 1984.
33. N.W. Alcock, M.M. Roberts, and D. Brown, J. Chem. Soc. Dalson Trant., p. 25, 1982.
34. N.W. Alcock, M.M. Roberth, and D. Brown, Acta Cryst., vol. B38. p. $1805,1982$.
35. A. Bondi, J. Phys. Chem., vol. 68. p. $441,1964$.
36. J.C. Taylor, Acta Cryst., vol. B27, p. 1088. 1971.
37. N.W. Alcock, J. Chem. Soc. (A), p. 1588, 1968.
38. A. Anderson, C. Chieb, D.E. Irish, and J.P.K. Tong, Can. J. Chem., vol. 58, p. 1651, 1980.
39. N.W. Alcock, M.M. Roberts, and D. Brown, J. Chem. Soc., Dalton Traur., p. 869, 1982.
40. E.L. Muetterties. C.M. Wright, Quart. Rev. Chem. Soc., vol. 21, p. 109.1967.
41. D. Brown, Comprehensive Inorganic Chemistry, vol. 5, p. 277. Pergamon Preas, Oxford, 1973.
42. R.M. Dell N.J. Bridger, MTP International Review of Science, Inorganic Chemistry (Series One), vol. 7. p. 211, Butterworth, London, 1972.
43. M.J. Bannister, J.C. Taylor, Acta Cryst., vol. 26B, p. 1775, 1970.
44. Yu.N. Mikhailov, V.G. Kurnetwov. Zh. Neorg. Khim, vod. 16, p. 2512, 1971.
45. V.N. Serezhkin, L.M. Kovbe, V.K. Trunov, Radiokhimiya, vol. 13. p. 659, 1971.
46. N.K. Dalley, M.H. Meuller, S.H. Simonsen, Inorg. Chem., vol. 11, p. 1840, 1972.
47. E. Forsellini, G. Bombieri, R. Graziani, and B.Zarli, J. Inorg. Nucl. Chem. Lett., vol. 8, p. 461, 1972.
48. B. Zerli, R.Graziani, E.Fosellini, U. Croatro, G. Bombieri, J. Chem. Soc. Chem. Commur., p. 1501, 1971.
49. K.W. Bagnall, Gmelia Handbuch URAN Suppi., E/. p. 40, 1979.
50. N.W. Aloock, D.J. Flandern. Acte Cfys., vol. C43, p. 1480. 1987.
51. B.F. Mentien, H. Smuterean, Acta Cryat, vol. B36, p. 2051 , 1980.
52. I.I. Kapahukov, Yu.F. Vollov, E.P. Moskvichev, I.A. Lebedev, G.N. Yakovlev, Zh. Sariz. Khim., vol. 12, p. 94, 1971.
53. G.A. Barclay. T.M. Sabine, J.C. Taylor, Acm Cryar., vol. 19, p. 205, 1965.

CHAPTE鼻 2

The Crystel and Metecsiar Structurea of Foar Uranyi(Vi) Coapleyen with \mathbf{N}, \mathbf{N}-Dialkyldithlocarberante Llepande.

2.1.Introduction.

Cormplexen involving U-O and U-N bonda are more common than those which utilise U-S bonda. This is primarily a consequence of Pearson's Hard and Soft Acid and Base Principle,' bat steric features may also play some role. The lerger gize of sulphur compered woxygen resuln in an ereftered puckering of the equatorial plane and therefore increased dificulty in acommodating S -donor ligands. Moat of the complexes reported involve dithiocabemates or other S chelamea which tormat 4 membered rins

Dithiocarbamate compleses of uranium(V1) were firit mentioned by Delepine in 1908^{2} and several dioxouranium(V))bladithiocerbanate complexes have been repored by Malsteani ${ }^{3}$ This wort was extended to the prepertion of more compound of seneral formula $\mathrm{UO}_{2}\left(\mathrm{R}_{2} \mathrm{NCS}_{3}\right)_{2}{ }^{4}$ and to the compound KUO_{2} (dec) ${ }^{5}$ (dren, N -diethyldithiocarbmate). A variety of dialkylem-
 urnoium(IV) selti, from uranium mernchlaride, the dialkylammonium ales of the reagentr and dry solventir, ${ }^{6}$ and (b) as a by-product th the reaction between uranyl nitrate and the sodium alt of the dithiocerbamite ligend from which the polymorphous $\left[\mathrm{E}_{2} \mathrm{NH}_{2}\right]\left[U O_{2}\right.$ (der) ${ }_{3}$] har identified: ${ }^{7}$ the cation in this case in derived from hydrolysis of the dithiocarbamme ligand. The brighty coloured solution formed when UO\% is tremed with dithiocarbamine liganda hatian used in the colorimatric determination of urnaum ${ }^{\text {I. }}$ and the quantitivive procipltation of UOY with dithiocarbamates under acid conditions has been reported. ${ }^{10,11}$

There is a limited amount of atructural data available for uramium(VI) dithlocarbamates. To date there has been only one cryatal structure reported which involver six suphur atoms of a dithiocerbenate ligmon coordinged to UO2+ in the equatorial plane, and this only briefly. ${ }^{12}$ This revealed the exiatence of a species in which three dithiocerbemate ligande were each coordinared
 provioualy augeated for these complexea from polerographic atudies. ${ }^{11}$ A reaidual factar of 14%
 tions of the ethyl cartion anoms. A series of complezes of generil formula UO_DTCh.L (DTCegeneral dithiccarbamate; $\mathrm{L}=\mathrm{Ph}_{3} \mathrm{PO} . \mathrm{Ph}_{3} \mathrm{ANO}, \mathrm{Me}_{3} \mathrm{NO}$) har been produced by reaction of L with the stoichiometric amoumt of K[UO, (DTC)
risdithiocarbamate complexes. where puckering of the atoms in the equatorial plane is found the coordination of the sulphur atoma la virtually coplanar.

Mont invertigationa into dithioctrbemme ligands involve infra red spectral studien of vol U-O. ${ }^{18}$ and VC-S and vC-N ${ }^{19.27}$ and reveal that the greater the ligand donmion (i.e. the atronger the U-O(ligand) boad), the lower the stretching frequency of the uranyl proup, (weaker U=O bond). In an attempt to increase the amount of strucorrid information avalable for U-S apecies, the aynthesis and atructural detemination of a further four dithiocarbmmes of uranium (VI) wa underteken and is described here. Three of these tris(N-pyrrolidinedithiochbamio) dioxouranium(VI) [1]: tria(\mathbf{N}-piperidinedithocarbamato) dioxouranium(V) [2]: and trin(N, N dimethyldithiocarbanto) dioxouracium(VI) (3], were isolased as the tetrathylammonium altu. The fourth, tris(N,N-diethyldishiocarbamato) dioxourmium(V1) (4]. wa the anme ar that originally exmmined by Bowmen and Dori. It was re-examined to confirm their resulta and improve the precision.

2.2 Experimental

2.2.1 Preparation

Compounds [1] - [3] were prepared by whe method deacribed by Grasiani al. ad ${ }^{21}$ The required mine (30 mmol) was added dropwise with stiring to a cooled aclution containing carbon disulphide (30 mmol) and potassitum hydroxide (30 mmol) in water ($8 \mathrm{~cm}^{3}$). producing the potassium alt of the dithiocarbanate ligand. After a period of 30 minutes the chear yellow solution
 The colour beceme dert red immedianely and then K[UO2(DTCh]. $\mathrm{H}_{2} \mathrm{O}$ precipitated as a dart red powder. The compound was collected and washed with ether. Metatheria with the stoichiometric amount of tetraethylammonium chloride yielded nuby red cryanis of compounds [1] - [3] which were suituble for structure determination. Initial alternipts to obtain [4] by this method did not lead to the desired produch but erive what appears to be m O_{2}-bridged species. This has not yet been fully characterised. However, an alternative route involving the addition of $100 \mathrm{~cm}^{3}$ of
 nium nitrate (5g) was succeatful. Metathesis uning tearamethylammonium chioride then gave red crystals of [4].

2-2.2 Data Collection and Strwctare Refinemens

Data were collected with a Syntex $\mathbf{P 2}_{1}$ four circle diffractometer. Background intensities were measured at each end of the acen for 0.25 of the acan time. Three standard reffectiont which were monitored every 200 reflections, showed ulight changen during the data collection: the data were rescaled for this. Unit cell dimentions and atandard deviations were obtrined by leat squaras ft to 15 high angle refectiont ($25<20 \leq 29$). Observed reflection [/fo($/$) $\geqslant 3$. 0] were corrected for Lorencz, polarianion and abeorption effectr, the last with ARSCOR ${ }^{22}$ for [1] and by Gaussian methods [2]-[4]. The crystal dana and data collection conditions for each compound are given in Table 2.1.
 $P 2, / t$ and the potition of the uramiun alom was determined from a three dimensional Pazerain map. The atomic coordiantes of the non-hydrogen atoms were found by succeasive Fourier syntheses and all were refined anitotropically. Hydrogen atoms were inserted at calculated positiont with inotropic temperature factorn $\mathrm{U}=0.07 \mathrm{X}^{2}$

Compound [2] showed no syatematic shences in the date collection. Analysis of the Eataianics prinsed a part of the Puernon routine ahowed it to be centrosymmetric, with two independent uranium atoma in the eaymmetric unit. The positions of the lighter non-hydrogen atoms were located and refined by eaccessive Fourier mapm using anisotropic temperahre factors for all atoms. Hydrogen were inserxed a fixed positions with inouropic temperature factorm $\mathrm{U}=0.07 \mathbf{K}^{2}$.
 group M Pcab which wat rotated to the siandard Pbca. The Patterion map showed two urenium asorns. These were insented and the positions of the lighter atoms determined by Fourier syatheses. Anisoropic temperature factors were used for the sulphur, oxysen, nitrosen, and acarbon atoms. The remginder were refined isotropically. Hydrogens were inserted at fixed posidions whit isotropic temperature fectors $\mathrm{U}=0.07 \boldsymbol{R}^{2}$.
 groupa: Pna $\mathbf{2}_{1}$ and Pmaw : density calculations were consistent with 4 molecules per cell. If the space group wat Pnom, then the molecule would be planar, with the urnnium and sulphur atoma lying on a mirror plane. In view of the steric interactions that this would introduce in the equatorial plane, this seemed unlikely and Pre 2 , was selected. The position of the uranium anom was determined from a three dimemional Patherson map. The positions of the lighter non-bydrogen anom were determined from successive difference Fourier syatheses, being cautious to allow for amome generaned by false symmetry. Anisotropic temperature factors were used for all nonbydrogen atoms, which were taterted at celculated positions with isotropic tempernure factors U=0.07 ${ }^{2}$. Refinement gave afinal $R=0.048$. This succesaful refinement confirms the space
group selection. In additon, centrosymmerric model with helf-accupancy ligend moleculea disordered about the minror plane was eleo tested but could not be refined beyond $\mathrm{R}=0.12$.

Ore of the independent cation moleculea of [2] and [3] her occupency 0.5 for the carton atorn aince these are disordered over two sites. A weighting scheme of the form $\mathrm{W}=1 / \sigma^{\mathbf{2}}(\mathrm{F})+$ (${ }^{(F 1}$)) wa applied to all trree complezes and ahown to be satinfactory by weight analynis. Pinal A-fectors and the weighting conalantir are given in Table 2.1.

Calculations were performed using the SHEl XTL syatem ${ }^{23}$ on a Data Gencral DG30 Deak Top computer. Table 2.2 gives a comperison of the average valuea of alient bood lengthe and angles. Final atomic coordinatea are given in Tablea 2.3-2.6. Bond lengths and angles are listed in Tabiea 2.7-2.10. Devils of lesst squares planes are lianed in Teble 2.11. Views of the aniona of [1] - [4], and their unit cells mre shown to Figurea 2.1-2.9. A turiher view of [3] (Figure 2.6) directed along the U-C - N line of one Meq NCS_{2} group it also included to ahow the parkering of the tulphur alomits in the equatorial plane.

2.3 Discussion

All four complekes exhibit hexigonal bipyramidal coordination about the central urandum atom, involving three bidentate dithiocerbmem ligands in the equatorial plane and two axia
 group.

U-O(uranyl) bond lengths in the range 1.735(5)-1.862(12)A are as expected, and nor dissimiler from the valves found for other hexacoordinated UO2 apeciea. ${ }^{24}$ U-S bonds for each complez are reapectively $2.911(2)-3.021(2) \mathcal{A}[1] ; 2.900(7)-2.981(6) \mathbb{Z}$ (2]; 2.995(6)-2.962(6) \mathbb{R} [3]; and 2.902-2.960 14]. The bond length determined by Bowman and Dori lie below these
 refine the arructure. Indeed some of their valuet (particulardy the S-U-S bond angle) are cleady in error.

The uranyl bond engle variea from being essentially linear $\left(179.5(5)^{\circ}\right)$ to showing a alight deviation ($\left.177.2(5)^{\circ}\right)$. This " linearity" seems to be controlled by the degree of packering of the sulphurs in the equatorial plage. and a general trend which emergen for compounds [1] - [3] is that the greater the puckering, the cloner the ungyl group appromehes to linearity. This in illuatrated in Tahle 2.2 where the maximum puckering of [1] is 0.31(5)A with mo-U-O angle 178.3(3) compared to 0.S6(5)R devietion for [3] with mean O-U-O 179.0(8). The greater pucker in [3] compared to [2] may be attributed to a ahorter U-S or U-O boad in the Itter. Compound [4], however, does not fit this trend, and puckering above and below the equatorial plane of -0.30 (S2) to +0.32 (S3), i.e. 0.6 K occurr with an O -U-O(urasyl) angle of $177.2(5)$. This greater
deviation may be associared with the presence of the smaller tetramethylammonium cation. In each compound, the dithiocarbamare ligand defines an "almost perfect" bexagon. Mean bite anglea are slightly leas than the ideal 60.0°, and range $58.7(1)-59.1(2)^{\circ}$ with intermolecular anglea 61.5(1)-62.1(2) ${ }^{a}$. Intramolecular \mathbf{S} - $\mathbf{S}($ hite diatancea within teach compound are aimilar and range $2.873(4)-2.898(5) \AA$. $S-S$ contacts berween adjacent ligands are not much greater and range 2.991(4)-3.029(6) \AA. Both sets of distances are well within the sum of the van der Waila radii for two sulphur atoms. This may be a result of the puckering which alleviater equatorial strain, but causes the sulphur atoms to approach one another more closely in order to maintion the bite angle. Support for this theory in supplied by the corresponding values for dithiophoaphinate complexes ${ }^{29}$ where the bite angle is much larger (110.5(2)X) than fhen encountered for the dithioctribemate ligands. An a result, nteric crowding in the equatorial plene prevents the coordination of three ligands and the suiphur atoms become less puckered (maximum value 0.15). The bite distance in these dithiophosphinare complexes approaches more closely the sum of the van der Waals redii for two sulphur atoms. The complexes are not coondinatively unsaurued, the fith site of the pentagonal bipyramid is taken by molecules of alcohol, triphenylphosphine oxide or chloride atoms.

In [1], the a-carbon arom are displaced with reapect to the mean equetorial piane. $\mathbf{C}(15)$ is above (+0.08), $\mathbf{C}(25)$ is below (-0.04) whilst $\mathbf{C}(35)$ is virtullly coplanar (-0.0006). The pyrrolidine ringat ere diaplaced in the ame direction as the a-carbons with the exception of $N(3)-C(33)$ which lies above the plane, whth C(34) below. This is preaumably a result of packing interactions. All the piperidine ringa in compound [2] adops the chair conformation with the chair out of pime displecement $0.54 \mathbf{R}$. The carton of the second molecule in the saymmetric unit is disordered over two sites. In the fint molecule of the asymmetric unit of [3], all of the Me2N-C moietiex are directed below the equatorial plane and away from O(11). (Table 2.14). In the aecond molecule the units are either directed above, below, or twisted about the mean plane. in [4]. the α-carbon atoma $\mathbf{C}(11)$ and $\mathbf{C}(21)$ both lie below the mean equatorial plane defined thy the sir sulphur acoms ($0.25,0.09 \mathrm{~K}$ reapectively) whilst a-carbon $\mathrm{C}(31)$ lies 0.20 K above. The poajtions of the carbon atoms of the ethyl groups of these ligands with reapect to this plane it influenced by the extent of the displacement of the sulphur atoms above or below the plane; e.g. $S(2)$ liea further below this plane than $S(1)$ does above, and carbon atoms $\mathbf{C}(11)-\mathbf{C}(14)$ are all found below. Only $\mathbf{C}(15)$ of this ligand molecule in found above. A similar result is found for $\mathbf{C}(32)-\mathbf{C}(35)$ which are found above with the exception of $\mathbf{C}(33)$. In the third dithiocarbamate Ligand, the β carbon aroms $\mathbf{C (2 2)}$ and $\mathbf{C (2 4)}$ both lie below the plane, but the terminal C -atoms of the ethyl groupa $\mathbf{C}(23)$ and $C(25)$ are found above the plane.

FIGURE 2.1 View of the anion of (1), showing atomic numbering scheme.

FIGURE 2.2 Packing diagram for [1]

FIGURE 2.3 View of one anion of [2], showing atomic numbering scheme.

FIGURE 2.4 Packing diagram for [2]

FIGURE 2.5 View of one mion of [3], showing the scomic numbering scherne.

FIGURE 27 Packing diagram for [3]

FIGURE 2 If View of the anion of [4], showing atomic numbering scheme.

FIGURE 2.9 Packing diagram for [4].

- 32 -

TARLE 2.1

Crystal Defa and Date Collection Conditiona

Comprand	[1]	[2]	[3]	[4]
Formula				
M	838.36	881.10	760.91	788.54
D, $/ \mathrm{E} \mathrm{cm}^{-1}$	1.743	1.547	1.756	1.69
\boldsymbol{z}	4	4	16	4
Cryatil Syatern	Monoclinic	Triclinic	Orthorhombic	
- $\mathbf{N}^{\text {d }}$	17.322(4)	$11.498(2)$	20.613(5)	19.1038)
b/A	$18.287(4)$	16.938(4)	$22.443(4)$	17.238(6)
c/R	10.227(3)	22.596(5)	24.87\%(5)	9.432(3)
$\boldsymbol{\alpha}$	90.00	$81.33(2)$	90.0	90.0
$\boldsymbol{\mu}$	$99.68(2)$	$85.00(2)$	90.0	50.0
${ }^{\sim}$	89.9\%	77.89(2)	90.0	90.0
Systematic Abeences	Morl:102n	None		0 c
	O20- 0 - 20		$4 \mathrm{CO}: 4 \rightarrow 2 n$	
	M 0×1020			
Space Group	$P_{1} \boldsymbol{1} \boldsymbol{c}$	$P 1$	Pbea	Pra 2,
Cryatel nize/mmi.	. $34 \times 18 \times .17$.18x. 32×39	13x 31×32	. $15 \times .45 \times .23$
Max. tranmisaion factor	0.64	0.63	0.82	0.53
Min. trensmission factor	0.53	0.35	0.49	0.46
Tempfe	16	16	16	16
Scmin renge about $\boldsymbol{K}_{\mathrm{a}}-\mathrm{K}_{\boldsymbol{g}} \boldsymbol{\mu}$	-1.1/+1.1	$-1.0 \%+1.0$	$-1.0 \gamma+1.0$	$-1.10 \mathrm{p}+1.10$
Reflections collected	6037	10279	9548	3192
Reflection observed	3970	5729	3722	2231
[$1 / 0 / 1>2.0]$				
Weighting constent:	0.0006	0.0018	0.0022	0.0018
R(final)	0.039	0.057	0.054	0.048
$\mathbf{R w}_{w}$ (final)	0.039	0.061	0.057	0.050
max on final difference Fourier	1.89	2.02	1.26	1.79
min on final difference Fourier	0.67	-1.04	-1.06	-2.16
max A/orinal cycle)	0.90	0.688	0.623	0.273

- 33 -

TABLE 2.1 cont.

Anelytiod and lifa red data

Componed	[1]	[2]	[3]	[4]
Formula	$\mathrm{C}_{24} \mathrm{H}_{4} \mathrm{Na}_{3} \mathrm{~S}_{4} \mathrm{U}$	$\mathrm{C}_{3} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{4} \mathrm{U}$	$\mathrm{C}_{17} \mathrm{H}_{3} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{5} \mathrm{U}$	$\mathrm{C}_{14} \mathrm{H}_{4} \mathrm{NSO}_{4} \mathrm{~S}$
M	838.36	881.10	760.91	788.54
C (found)	32.17	35.21	26.29	28.68
(expected)	32.95	35.44	26.83	28.94
H (fornd)	5.16	5.56	4.97	5.26
(expected)	5.28	5.72	5.03	5.37
N (found)	6.82	6.28	7.57	6.32
(expected)	6.68	6.36	7.37	7.10
v O-U-0	915	915	910	875
$\checkmark \mathrm{C}-\mathrm{s}$	1000	1050	1000	1000
$\checkmark \mathrm{C}-\mathrm{N}$	1490	1500	1500	1470

- 34 .

TABLE 22
Comparimo of ithe averamed valuen for calient bond
 central uranium atom

Componed	[1]	[2]	[3]	[4]
U-O	1.753(5)	1.753(11)	1.76*(13)	1.798(11)
U-s	2.947(2)	$2.926(6)$	$2.935(7)$	2.923(4)
S-S (Bite)	2.897(5)	2.873(1)	$2.898(7)$	2.887(6)
S-S (Intermolecular)	3.017(4)	2.991(2)	3.029(7)	3.014(5)
C.S	1.688(8)	$1.70420)$	1.694(23)	1.707(6)
O-UO	178.3(3)	179.2(5)	179.09)	177.2(5)
S-U-S (Bite)	58.7(1)	58.8(1)	59.1(2)	59.0(1)
S-U-S (Intermolecular)	613(1)	61.5(2)	61.9(2)	62.1(2)
S-C-S	117.48)	115.0(10)	118.6(13)	115.1(9)
S-Puckering(max)	0.31(5)	0.43(5)	0.36(5)	0.62(4)
Angle O-O line/ Sa plane	89.0(4)	89.5(4)	88.0(4)	89.3(5)

TABLE 2.3

Atomic coordinates $\left(\times 10^{4}\right)$ for［I］（with standard deviations in parentheses）．

د． 0 h	$*$	Y	－	v
A：	［249．363）	S8E」 78	55：-5	$\pm \geq 1$
	5727 （E）	553नt3：	－5\％${ }^{\text {－}}$	5512
－ 4 ：	S－56：	57836 3.		$58(2) 1$
	アEラワ S¢ES：	5417.1613	213451	65123
－	254\％\20．	－ 5 5ti．2¢ ís	1：－2， 5 \％	$708: 12$
$\underline{3}$	－a $5: 30$	$5 E 85$	ご，${ }^{\text {a }}$	7 cos 11
	5EEq．Sis：	3365312	36	65 ： 11
\％ 3		ごも¢ ¢－：	$3{ }^{5}$	63 ， 14
5． 5^{-}	$\because 150$		1350 ？ミ	7et 414
M6：		153c\％${ }^{\text {a }}$	58.6	$57 \leq 31$
N（2）	9237（8）	$358164)$	1 S®T	5065
H：${ }^{\text {4 }}$	20826）	5043：4）		55172
403	740S（8）	8585（4）	31584 ：	616321
¢	5854610.	116364）	उETE É	$52(4) 3$
\cdots	53i5ctas	77865	$4350 ゙$	76 （4） 38
\therefore－	－50erif	12906 5	$45 \mathrm{~S}=$	73＜4）
E（14）	$5 \mathrm{5} 5 \times 2 \mathrm{C}^{2}$ ）	20426 5 ）	4545	$67(4) 3$
	5035（8）	2468（ ${ }^{4}$	307056	$53+3) 7$
㤩：	9834：12）	395ed 5）	－285（\％）	$74(4) 3$
E2z	9955（ 4 ）	3567 （E）	-160^{-3}（	$98(6) 1$
C（23）	－ $79053(11)$	2810（5）	－8926	$78(4) 3$
ES4，	2es5 ${ }^{\text {a }}$	26E05 5	－244\％	62043ir
CSJ	2754 9.3	149865）	51165	$5603) \mathrm{t}$
E6E\％	$5618(3)$	6097（5）	3535（ ）	986578
（ 33$)$	$6579<15)$	$7439(6)$	3869 \％	1136738
（\％）	7449 （15）	7623 （6）	$3182(8)$	119 （7）
（－ 34 ）	7550（11）	6981（5）	2652（5）	$73(4) 2$
E－5，	－ $877(8)$	5682（4）	2，43（5）	516 $98(6) 2$
C（41）	2944（12）	$4391(7)$	4098（：）	$98(6) 2$
C（42）	2181（13）	3656（6）	3005（ 2 ）	$98(6) \pm$
（ (43)	2972（12）	5738（6）	T668（s）	$102(6) 8$ $99(6) x$
C（44）	3553（13）	5978（7）	4491（7）	99（6）x
c（45）	1482（13）	4879（7）	$2754(7)$	1086 （6）
C（4E）	2587（14）	$4675(8)$	226ers）	112 （6）3
c（4）	928（12）	5149（7）	$4871(9)$	116878
c（43）	220（14）	5866（7）	s8नertil	137683

＊Equivaienr isorropic U defined as one thind of the trace of the orthogonalised U_{4} tensor

TARLE 2.4

Atomic coordinates（ $\mathrm{m} 10^{4}$ ）for［ $2 \mid$（with standerd devialions in parentheses）．

	x	4	z	U
U（1）	$526.4(6)$	2647．6（4）	$8718.8(2)$	41（1）＊
U（2）	2041．5（7）	1710．8（4）	3865．1（3）	49（1）
S（i）	$-1548(5)$	192763	$9243(2)$	61（2）
5（2）	$551(4)$	1578 3 ${ }^{\text {3 }}$	$9914(2)$	5月（2）
5（3）	393（4）	$3794(3)$	$7539(2)$	53（2）
S（4）	－1684（6）	3216 （5）	811 ¢ 3 ）	112（3）
S（5）	2624（5）	3541（4）	s $26(2)$	76（2）＊
5（6）	2757（5）	$2126<4\}$	$9323(2)$	74（2）＊
S＜7）	$3512(6)$	188：3）	$3295(2)$	83（2）
5（E）	$1240(5)$	1065 （3）	2st5（ $\hat{2}$ ）	66（2）
S（9）	－411（5）	2432（3）	$5531(2)$	72（2）
S（10）	431（5）	3428（3）	$4537(2)$	69（2）t
S（11）	2996 （5）	2421 （3）	$4814(2)$	66（2）4
S（12）	$4529(6)$	1807（3）	$4168(2)$	85（3）
O（1）	129（11）	$3688(8)$	？ 084 （5）	69（5）
O（2）	$959(14)$	1676（6）	s354（4）	52（5）
0く3）	$2488(11)$	$2589(7)$	3344（4）	$63(5)$ t
O（4）	1571（12）	84367	$4393(4)$	68（5）
N（11）	$-1389(12)$	922＜7？	14385 5 ）	48（5）
N（21）	－1747（14）	4437611）	$7126(6)$	7787）
N（31）	449e（ 4 4）	$3101(10)$	8944 （6）	68（7）
N（41）	2626（14）	-345 （14）	2362（7）	78（7）
H（51）	－169e（ 14 ）	3807（9）	4188（6）	7日（7）
$N(61)$	$5228(15)$	$1657(10)$	$511367)$	82（8）t
N（71）	1581く14）	927（9）	－6596（5）	61（6）
N（81）	9885（16）	$3734(10)$	－1247（6）	83（8）
C（11）	－853（16）	$1395(9)$	9894（6）	46（6）
c（12）	－8日ex 16）	448（11）	14864 （7）	56（7）
C（13）	$-1533(29)$	$719(14)$	$11398(8)$	76（1A）
c（14）	－2725（23）	494（14）	$11414(7)$	9é113＊
C（15）	－3357（18）	921（12）	$10814(8)$	85（10）＊
C（16）	－2558（15）	$709(14)$	$10282(7)$	58（7）
C（22）	－3051（21）	$4587(14)$	7169（8）	$189(12) *$
c 23$)$	$-3586(23)$	$4439(16)$	6598 （ 18$)$	$136(15) *$ 122 14
c（24）	$-3116(27)$	5981（15）	6186（9）	122¢14）
C（21）	－1089（19）	7824（11）	7546 （7）	74（8）
C（25）	－1745（23）	4983（17）	6452（9）	1日日（13）
Cく26）	－1259（21）	5814（13）	$6695(7)$	$91(10) *$
C（31）	3391（16）	2946（18）	Ss38（7）	
C（32）	$5812(21)$	$3697(14)$	8519（8）	19a（12）
C 33$)$	$5152(21)$	451日 14？	8787（11）	$118(12) *$
C（34）	5729 （23）	$4208(15)$	9411（10）	105（13）
C（55）	$5122(23)$	3534（13）	9se6（11）	120（13）
c 36$)$	5943（18）	2768（12）	9488（9）	$79(18) *$

TABLE 2.4 cont
Atomic coordinates $\left(\times 10^{\circ}\right)$ for［2］（with slandard deviations in parentheses）．

c（41）	$2463(17)$	246（10）	2772（7）		59（8）＊
c（42）	1936（18）	$-211(15)$	$1862(8)$		8日（1e）＊
c（43）	2622（25）	95（16）	$1321(18)$		109（14）
c（44）	3817（23）	－575（18）	1224（9）		114（14）＊
c（45）	4497（21）	－748（19）	1789 （9）		113（14）
c（46）	3818（22）	－10a7（14）	2284（10）		106（12）＊
c（51）	－684（17）	$3158(11)$	4645 （ ？）		61（8）＊
c（52）	－2621（18）	$3972(12)$	3666（7）		77（9）
c（53）	－2829（20）	4993（12）	$3371(8)$		84（10）
c（54）	－ 3 （973（25）	$5581(13)$	3778（11）		121（14）
c（55）	－2078（20）	5387（14）	422s（9）		85（11）＊
C（56）	－1959（21）	4441（13）	4516（9）		95（11）
C（E1）	4365（16）	$1721(10)$	$4734(7)$		51（7）
c（62）	5075（21）	2219（14）	$5618(18)$		95（11）
c（63）	$5952(24)$	$2857(17)$	5488（12）	\checkmark	117（14）
C（64）	$7155(21)$	2308（13）	5427（9）		109612）
c（65）	7309 （19）	1684（15）	4926（11）		138（13）＊
c（66）	$6497(20)$	1093（13）	5041（9）		1日S（11）＊
c 31 ）	2677（23）	1249（18）	6487（9）		126（14）＊
C（72）	29860（25）	1461（18）	7079（10）		148（16）＊
c（73）	$1549(22)$	68（12）	$6967(9)$		1日8（12）
C（74）	2492（26）	－684（16）	6824（14）		191626）
c（75）	1366（22）	725（14）	5886（7）		108（11）
c（76）	265（21）	381（14）	$5798(8)$		94（11）t
C（77）	$461(23)$	1685（15）	6718（9）		117（13）
c（78）	$397(32)$	$2483(19)$	6259（11）		$53(9)$
C（81）	$9480(46)$	2925（27）	1691（18）		87（13）
c（82）	8787（46）	4535（38）	1498（20）		118（15）
C（83）	8504（ti）	3976 （4日）	2438（26）		148（22）
c（84）	8989（37）	4982（23）	1945（16）		75（11）
c（85）	8414（50）	3558（ 33 ）	$557(22)$		92（17）
c（86）	8905（33）	4349（2e）	862（14）		5e（9）
c（87）	8468（47）	3948（32）	397（21）		85（15）
c（88）	$10346(49)$	4321（31）	684（21）		113（16）
C（89）	$11118(43)$	3143（25）	868（19）		94（14）
c（90）	$11569(44)$	3766（28）	468（18）		93（14）
C（91）	10374（33）	4282（21）	$1664(14)$		55（9）
C（92）	$10541(4)$	3148（38）	1791（19）		$101(14)$
C（93）	$11933(47)$	3819 （31）	$2151(21)$		79（16）
C（94）	$11547(4)$	3761（34）	1986（20）		76（15）
Cos（1）	5076（41）	2698（26）	$2133(18)$		73（11）
Cas 2 ）	$5254(44)$	281e（28）	2697（19）		108（14）
cos 3 ）	4414（42）	2997（28）	$2186(18)$		9e（13）
a（5）	5699（35）	2858（22）	1766（16）		135（12）

[^2]TABLE 2.5

Atanic coardinates（ $\times 10^{\circ}$ ）for［3］（with scandard devintions in parentheses）．

5＊2＊	＊	\because	z	t
	－zér E．4；	253．di 3 ：	479 ifis	459 i -1
いこ：	$7821: 5$.	－196 4i3．	2151．4（3）	460 1\％
sa：	S15－3：	24963）	3231（3）	P8，3）
3a 2 ）	3900 3 ？	－304（3）	2234（3）	®12）
5.33	Ster 3	－5रอ\％${ }^{\text {¢ }}$	165EC	778
564		－4896\％	1071（3）	50．3）＊
St5：	－\％ 5 5， 4	－72 ${ }^{-16}$	205963）	71くご为
8 （6）	－74：4．	1916	$3200(3)$	77（3）
$5(7)$		222233．	4639 （3）	64：23\％
EC：	－ 35.3		玉心テ5く3）	7⿹勹⿰丿丿
$5: 3$	fsers	－839	$3735(3)$	－4（3）
griel	1299：－	235063	4881 （3）	$67(2)$
E．if：	450% 1	22rs 3 ）	$5086 i 3)$	50゙（3）＊
5． 2 z ：	－5s2：	A－ 3 ， 3 ，	SEmar ${ }^{\text {c }}$	70（3）
Gid：	－5cis．s．	こ13【5		7a（t）
$00^{\circ} \mathrm{F}$	－20 13	1576 （6）	$4597(7)$	s5（8．）
Qr 2 ）	－9056．	－ 3 2－5 5	2423 （ ${ }^{\text {2 }}$	$66(6) *$
－i32；	－5540：	526（E）	1875 ${ }^{\text {（7）}}$	Ex（？）
到法：		1535（ 7 ）	（17685	65（8）
就挍	17060	311747）	こ日74（8）	62（8）＊
iv¢ \leq ？	－259xis，	2378（11）	玉6e7（14）	97\％ 111 \％
Aic1）	5512618	－475：7）	1e4ars）	63（s）
隹駺）	7419 （15）	58368 ？	4136 （8）	85（18）
（1） 23 ）	S517is）	－555（ 7	1213 （8）	49（7）＊
（＊ii）	－266（13）	$2055(8)$	6222（9）	73（11）＊
C 15 ）	－882（12）	1665 （i0）	7eseri1）	76（8）
C（13）	276（14）	1715（11）	7esz（12）	93（9）
（－14）	1155（12）	2926（9）	4152（10）	63（9）
C（15）	2290（14）	3182（11）	$4193(12)$	91（10）
C（i6）	1748（13）	3178（18）	3229（11）	74（8）
C（17）	－1634（12）	2463（18）	3947（11）	64（9）
cris？	－2283（22）	2641（15）	3014（16）	168（18）
C（19）	－2754（15）	2193（12）	5796（15）	119（12）
C（21）	E－81（11）	－357（9）	1355（10）	6日（9）
C（22）	$5517(14)$	－727（18）	448（14）	$77(8)$
c（23）	486a（13）	－ 5 － 4 （10）	12E1（13）	87（9）
C（24）	F425（12）	353（9）	3574（9）	57（9）
c（25）	E786（10）	709（12）	4411（14）	$108(1 f)$
C（26）	$8437(15)$	$719(11)$	4458（14）	98（10）
©く27）	8964（11）	－441（8）	1466（10）	55（9）＊
C（28）	（0\｛38：13）	－642（18）	$1538(12)$	8e（8）
C（29）	－9575 15）	－65er 10 ）	568（11）	87（9）

39.

TARLE 2.5 cont

A431）	4851614	1339（7）	26s9re）	69（6）
C（31）	4747614）	1011（10）	2146（11）	$79(8)$
（ 32 ）	4616（10）	1326 11）	$1582(14)$	104（10）
（633）	4317617）	1713（13）	2858（14）	104\｛11）
C（34）	3644：19）	1376i14）	2953（16）	$138(14)$
C（35）	5426 （ 5 ）	924（16）	3222（13）	$93(9)$
C（ 36$)$	5id5（18）	1199（12）	3896（16）	12e（12）
C（37）	5498（10）	1782（12）	2616 （13）	99（1a）
c（38）	6872（19）	1496（12）	2486（16）	121（12）
$N(41)$	2308（14）	1158（11）	$4986(15)$	71（8）
C（43）	3254（45）	984（34）	$5597(43)$	181（39）
C（41）	2985（39）	$779(28)$	$4948(36)$	145（29）
cr4a）	3187（56）	1253（38）	$4758(47)$	214 （47）
c 53$)$	2240（33）	1788（24）	4280 （28）	110¢ 0^{3} ）
		s1i39）	$452743)$	1536 ${ }^{\text {（ }}$ ）
$6 \cdot 5$	12ilke）	1171＜34？	－55963）	1083 3 （
碞：	2゙¢	部行すく	5「51尤：	
¢78：	2458：4		くが305	115124
免	2033，砣，	re26it	4 c 2 aj （1？	121iEs
－85：		［423：29？	5383435：	
है54．	2111653．	127e6 4.	6日rukit	1rct4．

＊Equivalent isotropic U defined as one third of the trace of the orthogoalized U_{4} tensor．

－40．

TABLE 2.6
Atomic conrdinuted（E1－N）for［4］（standard deviations in parentheset）

atom	x	4	z	4
（1，1）	2413．162）	7168．5（3）	2594	34（1）＊
S（1）	3143（2）	5685（2）	2799（7）	51（2）
Sç）	$1676(2)$	5744 （2）	2t168（5）	50＜23才
$5<3)$	107143）	7228 （3）	1446（7）	5ric ）
S（4）	1010（2）	8597（3）	2354（8）	65（2）＊
S（5）	$3110(2)$	geds 2 ）	3309（7）	68（2）
S6．	3592 2 ）	7145 （3）	3931（6）	50゙（2）
O（1）	27897）	724067）	834（11）	49（4）＊
$0(2)$	$2051<5$ ）	7090（？）		5514）＊
N（11）	2357（7）	439567）	2633（45）	7日（6）
M（21）	309（8）	8526\｛9）	1312（18）	62（6）
H（31）	4473（7）	8478（8）	4856（17）	55（5）＊
H（1）	2533（7）	$5956(7)$	7684（52）	58（5）
C（11）	2390（8）	5175 （8）	258日（ 41）	53（5）
（12）	（699（10）	$3958(10)$	2566（35）	87（8）＊
C（13）	1353（14）	3887（15）	3957（36）	167（12）＊
C（14）	2964（13）	3945（11）	3120（29）	98（11）
c（15）	3357（14）	3651（14）	1907（32）	1178（14）＊
C（21）	928（10）	$8153(14)$	1539（18）	48（6）＊
c（22）	－275（10）	8131（11）	$613(24)$	6788）
c（23）	－211（14）	$8188(18)$	－933（28）	118（13）
c（24）	182（11）	9317（13）	1869（29）	87（10）
C（25）	187（25）	9991（16）	$816(37)$	207（27）
C（31）	3878（8）	$8134(16)$	3818（22）	58（6）
C（32）	5128（18）	8476（13）	4385（25）	75（8）
c（33）	5287（13）	8629（14）	5899（27）	97（11）＊
C（ 34 ）	4542（12）	9366（13）	$3997(33)$	105 12 ＊
c（35）	4686（11）	9636 （13）	2517（34）	144（16）
c（1）	2946	5580	8776	152（16）
c（2）	1873（13）	6287（23）	6936（28）	153（18）
c（3）	2831（21）	6715（21）	7214（35）	262（26）
C（4）	2434（17）	5498（14）	6365（27）	129（17）

${ }^{-}$Equivalent isotropic U defined an one third of the trace of the orthogonalised U_{4} tensor．

TABLE 27
Bond length（ λ ）
and angles（＂）for［1］（standard deviations in parentheses）．
a）Bond lengths

U＇：1－0 11）	1．752：6）	U（1）－041	1．759iE；
U（1）－56 1 ）	$2915(2)$	U（1）－E\｛2）	2 934（3）
Vi 1 ）－5（3）	3．018（5）	U（1）－5（4）	2． $923(3)$
U1 1 1－St 5 ）	$2937(2)$	U¢1）－Éci	2 －53（3）
	2．8804 ${ }^{\text {a }}$	S（1）－6（ 35 ）	$1672(9)$
$5 ¢(3)-5 ; 6$	2．88543	S（2）－C（EJ）	68：19：
S（3）－C S ${ }^{\text {S }}$ ）	i．7es（9）	S（4）－5（5）	2．891（4）
S（4）－C（15）	1．7eris）	S（5）－C615）	16936
S（5）－c（ 25 ）	i．674 9）	H（ ！）－ 6 （ i 1 ？	（ 5 ET4（10）
H（1）－Cití）	1．459（13）	N（1）－C！	1．3¢8く11．
4（2）－6（21）	1．465（13）	$N(2)-[2$	1．453i i ${ }^{\text {，}}$
	1． $373(12)$	$\mathrm{N}(4)-\mathrm{C}(1+3$	1．540゙く13．
$N(4)-C(43)$	1．558（14）	N（ 4）－C． 4 －	－55e 14 ？
N（4）－C（4）	1．534（17）	N（3）－C（31）	1．4EE（15）
N（3）－C（34）	1．439（12）	N（3）－Cく35：	1． 3 E5（1i）
c（1］）－c（12）	1．517（15）	C（12）－C（15）	1．586（15）
C（13）－C（14）	1．499（13）	c（21）－çz2）	1．551（16）
c（2z）－C（23）	1．417（15）	C（23）－C（24）	$1518(16)$
$c(31)-c(32)$	1．494（ 5 ）	$c(32)-(53)$	$1398(20)$
c（5E）－E（34）	1．464（15）	c（41）－（ 42$)$	1．538（16）
c（43）－ǐ 4 （4）	$1510(18)$	c（45，－Ci40．）	$1573(20)$
c（47）－c（4）	1． $588: 89$		

－42－

TABLE 2.7 cont．

b）Bond angles

？ 11 －－（1） 1 －0（12）	17873）		87 eic）
9．12）－1k（ 2 －g（t）	9 ± 8 er		$92 \mathrm{z}(2)$
i $123-4<1)-5(2)$	ssers：	3－1－6 $10-5 \cdot 2$	59 \％f
	$55+2$	－12）－：－Sく3）	85 Eイ2）
S $1 . i-U(i)-s(z)$	$53,11)$	$5 ¢ 2-61$－ 5 \％	115 de！
$0(11)-(t)(1)-5(4)$	S8	O（2，－in－s）	89 3t
	120 （\％）	grev－ut 3 －sta．	178 eit
Sf $2:-3<;<-3(4)$	63181		$855{ }^{\circ}$
	5t Ex		177 2f？
	（se 6（1）	ses）－iti i ：－ses：	122 ar：
S（4）－6：1：－5 5	59.1 （1）	20 11－ 10	S5
6（12）－6ii $)$－5（6）	91． 5 （2）	s（i）－vi 1 ）－ss	118 ifis
3（2）－6ii）－3（6）	$58.8(1)$	sis：－6icis 5 ¢	17536
5， 5 ）－U6 $)=5(6)$	121.10 （）		61．$¢$（1）
	62 sit		94 TS
S（3）－5（1）－C（35）	32 a（3）	U6： $1:-512)-566$	60．or：
W	91，2（3）		$30^{20} 5$
Lir＇$: 1-563-5(1)$	59.2 （1）	W6：－sis．－6\％5，	
	$31.2(5)$	H6゙1）－8（4）－8¢5	66 7＜1：
（ki i－St 4 ）－C（15）	92．1（3）	S（5）－s（4）－6（15）	3！5is
（1） 1 ）－5（5）－5（4）	（8．201）	隹1：－5：5：－615：	9： 53
S（4）－S（5）－ís 5 ）	31.963	（i6 5 － 5 （ 5 ）－3：2）	60.31
U 1 ）－S（ 6 ）－C（25）	$90.7(5)$	sfe）－s（0）－c 25）	31603
C（11）－N（1）－C（14：	112．5（3）	C6 11）－N（1）－6615）．	121 （ 6 ）
	126.15	C（21）－N（2）－C（24）	112．1行
$C(21)-N(2)-C(25)$	$123.5<7$	C－$=0-H(2)-6(25)$	124 4¢\％
$C(41)-N(4)-C(43)$	109757	Ci41）－N（4）－C（45）	111 Si8）
C（ 43$)-N(4)-C(45)$	110．0（8）		1 105 5ic：
$c(43)-N(4)-C(47)$	111.2 （8）	C（ 45$)-\mathrm{N}(4)-\mathrm{C}(47)$	197．7（8）
$c(31)-N(3)-C(34)$	111．0（7）	C（ 31$)-\mathrm{N}(3)-\mathrm{C}(35)$	124．8（8）
$C(34)-M(3)-C(35)$	$124.2(8)$	$N(1)-C(11)-C(12)$	103．3（8）
$C(11)-C(12)-C(13)$	104． 7 （ 8 ）	C（12）－c（13）－c（14）	10516 ）
N（1）－C（14）－C（13）	193．3（7）	S（4）－C（15）－S（5）	116．5（5）
S（4）－C（15）－N（1）	12e．3（7）	s（5）－C（15）－N（1）	123．266
$N(2)-C(21)-C(22)$	141．5（8）	C（21）－C（22）－c（23）	1 196．3（9）
C（22）－C（23）－C（24）	106 6（10）	N（2）－C（24）－C（25）	163.6 （ 7 ）
S（2）－C（25）－S（6）	118．9（6）	Sczy－ices）－N（2）	119.5 （7）
（ 6 ）－c（25）－H（2）	121．6（6）	N（ 3$)-C(31)-C(32)$	$105.7(10)$
C（31）－C（32）－c（33）	198．8（11）	C（32）－C（35）－c（34）	111．6（18）
N（3）－C（34）－C（33）	102．3（9）	S（1）－C（ 55 ）－s（3）	116.8 （5）
S（1）－C（35）－N（3）	124．2（7）	S（3）－C（ 55$)-\mathrm{N}(3)$	123.8 （ ${ }^{\text {c }}$
（4）－C（41）－C（42）	114．2（9）	$N(4)-C(43)-C(44)$	－114．4（18）
（4）－c（45）－c（46）	111．6（9）	$N(4)-C(47)-C(48)$	1123 （2）

TABLE 2.8
Band lengths (K) and angles (") for [2] (standard deviations in parentheses).
a) Band lengths

U(1)-5(1)	2.913(5)	U(1)-s(2)	2.929(4)
U(1)-s(3)	2.948(4)	U(1)-S(4)	2-940(6)
U(1)-5(5)	$2.994(6)$	U(1)-s(6)	2913 (6)
U(1)-0(1)	1.734(12)	u(1)-0(2)	1.750(10)
U(2)-5(7)	2.946(5)	U(2)-5(8)	2.958(5)
U(2)-S(9)	2.922(5)	U(2)-S(10)	2. 926 (5)
U(2)-5(11)	2.922(5)	U(2)-S(12)	2. 926 (6)
U(2)-0(3)	1.765:10)	U(2)-a(4)	1.773(11)
S(1)-S(2)	2.573(7)	$\mathrm{S}(1)-\mathrm{C}(11)$	1.737(14)
S(2)-c(11)	1.700: 19)	s(3)-5(4)	2. 556 (8)
S(3)-C(21)	1 693(23)	S(4)-C(21)	1.647(18)
S(5)-S(6)	2. 86346$)$	S(5)-C(31)	1.695(17)
S(6)-c(31)	1.718(17)	S(7)-S(8)	2.888(6)
S(7)-C(41)	1.739(20)	S(B)-C(41)	1.675 (17)
s(9)-s(10)	$2.876(3)$	s(9)-C(51)	1.681(17)
$\mathrm{s}(18)-\mathrm{c}(51)$	1.728(10)	s(11)-S(12)	2.891(7)
S(11)-C(61)	1.714(16)	S(12)-C(61)	1.744(17)
$\mathrm{H}(11)-\mathrm{C}(11)$	1.297(19)	$N(11)-C(12)$	1.488(19)
N(11)-C(16)	1.445(24)	$N(21)-C(22)$	1.466(29)
N(21)-C(21)	1.376(21)	$N(21)-C(26)$	1.497(23)
N(31)-C(31)	1.302(26)	M 31$)$-C(32)	1.458(26)
N(31)-C(36)	1.465 (24)	N(41)-C(41)	1.354(23)
N(41)-C(42)	1.481(25)	$N(41)-C(46)$	$1.526(26)$
$N(51)-C(51)$	1.360(22)	N(51)-C(52)	1.471(25)
H(51)-C(56)	1.411(25)	N(61)-C(61)	1.344(25)
H(61)-C(62)	1.500(29)	N(61)-C(66)	1.452(25)
H(71)-C(71)	1.524(33)	$N(71)-C(73)$	1.530(21)
N(71)-C(75)	1.596(23)	N(71)-C(77)	1.497(25)
N(81)-C(81)	1.621(46)	H(81)-C(82)	1.679(47)
H(81)-C(86)	1.541(35)	N(81)-C(88)	1.556(48)
N(81)-C(89)	1. $740(45)$	N(81)-C(91)	1. 552(41)
N(81)-C(92)	1.554(45)	C(12)-C(13)	1.471(24)
C(13)-C(14)	1.475 (36)	C(14)-C(15)	1.579(26)
C(15)-C(16)	1.483(25)	c(22)-C(23)	1.512(34)
C(23)-C(24)	1.454(32)	C(24)-C(25)	1. 548 (40)
c(25)-C(26)	1.468(31)	c(32)-C(33)	1. 498 (34)
c(33)-c(34)	1. 575 (34)	C(34)-C(35)	1.486(33)
c(35$)$-c(36)	1. $482(32)$	$\mathrm{c}(42)-\mathrm{C}(43)$	1.465 (30)
C(13)-C(44)	1.546-35)	C(44)-C(45)	1.514(32)
C(45)-C(46)	1. $368(32$)	C(52)-C(53)	1.440(24)
C(53)-c(54)	1.446(31)	c(54)-C(55)	1.547(36)
c(55)-C(56)	1.459(27)	C(62)-C(63)	1.517(38)
c(63)-C(64)	1.461(33)	c(64)-C(65)	$1555(34)$
c(65)-c(66)	1.496(33)	c(71)-C(72)	1.510(35)
c(73)-c(74)	1.445(31)	c(75)-c(76)	1.504(37)
C(77)-c(78)	1.548،32)	C(81)-C(83)	1.243(78)

TABLE 2.8 cont.
a) Bond lenguhs

4)	2. $167(54)$
C(82)-C(84)	1.420(60)
$c(82)-c(91)$	1. 843664)
c(85)-C(86)	1.688(69)
C(86)-C(87)	1.467(66)
C(88)-C(89)	1. $816(58)$
c(89)-C(9a)	1.361(61)
$c(91)-C(92)$	1.664(54)
C(91)-C(94)	1.587(59)
c(92)-C(94)	1. $745(79)$
$\cos 1)-\cos 2)$	1.349(63)
$\cos 1)-0(5)$	1. $882 \times 56)$

C(81)-C(92) 1.465(79) $C(82)-C(86) \quad 1.494(56)$ C(83)-C(84) 1.479(66) $C(85)-C(87) \quad 0.655(67)$ c(86)-c(88) 1.665(66) C(88$)-C(9 \theta)$ 1.557(66) $C(80)-C(92) \quad 2.134(68)$ $c(91)-C(93) \quad 1.4 \theta 1(56)$ $C(92)-C(93) \quad 1.683(73)$ C(93)-C(94) a 669(70) $\operatorname{Co}(1)-\operatorname{Co}(3) \quad 1.318(69)$ $\operatorname{Co}(2)-0(5)$

b) Bond angles

S(1)-U(1)-S(2) S(2)-u(1$)-5(5)$ S(2)-U(1)-S(4) S(1)-U(1)-S(5) S(3)-U(1)-5(5) S(1)-U(1)-S(6) S(3)-U(1)-S(6) S(5)-U(1)-S(6) S(2)-U(1)-0(1) S(4)-U(1)-O(1) S(6)-u(1)-0(1) S(2)-u(1)-0 (2) S(4)-U(1)-0(2) S(6)-U(1)-0(2) $S(7)-U(2)-S(8)$ S(B)-U(2)-S(0) S(8)-U(2)-S(10) $S(7)-U(2)-S(11)$ S(9)-U(2)-S(11) s(7)-U(2)-s(12) S(9)-U(2)-S(12) S(11)-U(2)-S(12) S(8)-U(2)-0 (3) $S(10)-U(2)-a(3)$ S(12)-U(2)-a(3) $S(8)-U(2)-0(4)$ S(10)-U(2)-0(4) $5(12)-4(2)-0(4)$
$58.9(1)$
176.9(1)
119.6(2)
$178.8(1)$
61. 7(1)
119.8(1)
120.6(1)
59.0(1)
86. 3(3)
s.e.e(4)

9e. 1(4)
$93.5(3)$
91. 8(4)
s9. i(4) 58.4(1)
62.2(1)
121.1(1)
119.8(2)
120.2(1)

6日. 9(2)
177.3(1)
59.2(1)
$86.3(4)$
92. 3 (3)
88.7(4)
93.9(4)
86.8(4) 92. $8(4)$

S(1)-U(1)-5(3) $S(1)-U(1)-S(4)$ S(3)-U(1)-S(4) $s(2)-W(1)-s(5)$ $s(4)-U(1)-s(5)$ S(2)-U(1)-5(6) S(4)-U(1)-S(6) S(1)-U(1)-0(1) s(3)-U(1)-0(1) $s(5)-U(1)-a(1)$ S(1)-U(1)-a(E) S(3)-U(1)-0(2) s(5)-U(1)-a(2) O(1)-U(1)-a(2) S(7)-U(2)-S(9) $S(7)-U(2)-S(18)$ s(9)-U(2)-s(1e) s(8)-(142)-s(11) S(1a)-U(2)-S(11) S(8)-U(2)-s(12) s(10)-u(2)-S(12) $5(7)-U(2)-0(3)$ $s(0)-U(2)-0(3)$ $s(11)-U(2)-0(3)$ S(7)-U(2)-0(4) $S(9)-(1 / 2)-0(4)$ S(11)-U(2)-0(4) $0(3)-(1(2)-0(4)$
$119.5(1)$ 61. $3(2)$ $58.4(2)$
$110.9(1)$
12日. $\mathrm{e}(2)$
61.3(1)
178.6(2)
92. 5 (4)
91. 2 (3)
87.7(4)
88.1(4)
59. $4(3)$
91. $7(4)$
179.1(5)
$119.9(2)$
172. G(1)
58. 9(1)
174.6(1)
61.5(1)
118.1(1)
120.7(2)
95. 6(3)

S8. $6(4)$
8s. 9(4)
85. 3 (4)
$98.6(4)$
$90.9(4)$
179.0(5)

TARLE 2.8 cont．

U61）－5¢1）－S（2）	6 6．8（1）
S（2）－S（1）－C（11）	32 （6）
U（1）－S（2）－C（11）	$93.9(4)$
（Vく1）－5（3）－5（4）	59．9（1）
S（ 4）－5（ 3$)-\mathrm{C}(21)$	36．S（5）
U（1）－S（4）－č21）	93．2（6）
U（1）－5（5）－5（6）	$60.7(2)$
S（ $-9.5(5)-c(31)$	33．2（6）
（1） 1 ）－S（6）－c（ 31$)$	92．1（6）
U（2）－5（7）－5（8）	61．${ }^{\text {（1）}}$ ）
S（8）－S（7）－C（41）	31．8（5）
U（2）－S（8）－c（41）	93．8（6）
（1く2）－S（9）－S（10）	$60.6(2)$
S（10）－s（9）－C（51）	$33.9(6)$
U（2）－S（10）－C（51）	92．1（6）
U（2）－S（11）－S（12）	6e．4（2）
S（12）－S（11）－C（61）	32．2（6）
U（2）－5（12）－c（61）	$92.6(6)$
C（11）－N（11）－C（12）	121．2（15）
C（12）－N（11）－C（16）	112．3（12）
c（ 22$)-N(21)-C(26)$	114．0（14）
c（31）－N（31）－C（32）	123．1（15）
c（ 32$)-N(31)-C(36)$	112．1（16）
$c(41)-N(41)-C(46)$	121．1（17）
$c(51)-N(51)-C(52)$	129．9（14）
$C(52)-N(51)-C(56)$	111．2（15）
c（61）－M（61）－C（66）	123． A （16）
C（71）－N（71）－C（73）	109．${ }^{\text {a（15）}}$
C（73）－N（71）－C（75）	111．1（14）
C（73）－H（71）－C（77）	185． $8(14)$
C（81）－N（S1）－C（82）	$91.6(23)$
C（82）－M（81）－C（86）	$55.1(29)$
C（82）－N（81）－C（88）	99．1（24）
c（81）－N（S1）－C（89）	193．8（21）
C（86）－N（S1）－C（89）	117．1（20）
C（81）－N（31）－C（91）	$145.2(22)$
c（86）－N（81）－C（91）	111．6（19）
C（89）－N（81）－C（91）	$186.5(24)$
C（82）－N（81）－C（92）	188．9（24）
C（88）－N（81）－C（92）	131．3（31）
C（91）－N（81）－C（92）	64．8（22）
S（1）－C（11）－N（11）	121． $0(14)$
$N(11)-C(12)-C(13)$	111．0（13）
c（13）－c（14）－C（15）	118．7（16）
$N(11)-C(16)-C(15)$	113．2（15）
c（22）－c（23）－c（24）	$188.5(23)$
S（3）－C（21）－S（4）	117．5（10）
S（4）－c（21）－N（21）	123．5（16）
$N(21)-C(26)-C(25)$	109．6（19）
S（5）－c（ 31$)-M(31)$	124．4（12）
N（31）－C（32）－C（33）	111．2（16）
c（33）－C（34）－C（35）	112．2（22）
$N(31)-C(36)-C(35)$	110．1（15）
S（7）－C（41）－N（41）	121．9（13）

（U1）－S（1）－L（11） U（1）－S（ $\mathbf{Q})-5(1)$ s（1）－s（2）－c（1i） （K1）－S（3）－C（21） （1，1）－S（4）－5（3） $5(3)-5(4)-c(21)$ （K1）－5（5）－C（31） （ $(1)-5(6)-5(5)$ S（5）－S（6）－c（31） （U 2$)-S(7)-c(41)$ （1（2）－s（8）－5（7） S（7）－S（8）－C（41） u（2）－5（9）－c（51） U 2 ）－S（18）－S（9） $S(9)-S(16)-c(51)$ U（2）－S（11）－C（61） u（2）－s（12）－s（11） S（11）－S（12）－c（61） $C(11)-N(11)-C(16)$ C（ 22$)-H(21)-C(21)$ C（21）－N（21）－C（26） C（ 31$)-N(31)-C(36)$ $C(41)-N(41)-C(42)$ $C(42)-N(4!)-C(46)$ $C(51)-N(51)-C(56)$ $C(61)-N(61)-C(62)$ $C(62)-N(61)-C(66)$ C（71）－N（71）－C（75） C（71）－N（71）－C（77） C（75）－N（71）－C（77）
C（81）－H（s1）－C（86）
C（E1）－N（E1）－C（88）
$C(86)-N(81)-C(88)$
C（82）－N（81）－C（89）
C（88）－N（81）－C（89）
C（82）－N（s1）－C（91）
C（88）－N（81）－C（91）
$C(81)-N(81)-C(92)$
C（ 86$)-N(81)-C(92)$
C（89）－N（E1）－C（92）
s（1）－c（11）－s（2）
$\mathrm{s}(2)-\mathrm{C}(11)-\mathrm{N}(11)$
C（12）－C（13）－C（14）
$c(14)-c(15)-c(16)$
$N(21)-C(22)-C(23)$
C（23）－C（24）－C（25）
s（3）－c（21）－N（21）
$c(24)-c(25)-c(26)$
S（5）－C（31）－S（6）
s（ 6$)-C(31)-N(31)$
$C(32)-C(33)-c(34)$
$C(34)-C(35)-C(36)$
$\mathrm{S}(7)-\mathrm{C}(41)-5(8)$
S（8）－C（41）－N（41）

93．7（6） 6 E （1）
$33.7(4)$
90．6（5）
$61.6(2)$
31．7（7）
92．9＇ 7 ）
6日．4（2）
$32.7(6)$
92．S（5）
62．6（1）
$33.2(6)$
93．3（7）
$60.5(1)$
32． $8(5)$
92．5（6）
60．3（2）
32．4（6）
126．5（13）
12 B （15）
125．5（17）
124．8（15）
123．5（15）
112．3（16）
127．7（17）
122． $3(15)$
114．6（17）
196．7（15）
112．9（17）
112．3（15）
112．4（25）
163．4（28）
65．日（24）
$165.4(23)$
66．6（22）
69．4（23）
91．5（25）
54．9（27）
$161.5(24)$
sa．6（23）
$113.4(8)$
125．6（12）
111．6（17）
$111.8(15)$
110．3（17）
$109.6(19)$
$118.5(14)$
111．6（18）
114．1（11）
$121.5(12)$
118．3（17）
$110.5(19)$
115 （10）
1231（14）

TABLE 2.8 cont．
$N(41)-C(42)-C(43)$ C（ 43$)-\mathrm{E}(44)-C(45)$ $N(41)-C(46)-C(45)$ S（9）－c（51）－M（51） M（51）－C（52）－c（53） $c(53)-c(54)-c(55)$ $N(51)-c(56)-C(55)$ S（11）－C（61）－H（61） $N(61)-C(62)-C(63)$ $C(63)-C(64)-C(65)$ $H(61)-C(66)-C(65)$ N（71）－C（73）－C（74） N（71）－C（77）－C（78） $N(81)-C(S 1)-C(84)$ N（s1）－C（s1）－C（92） C（84）－C（81）－C（92） H（81）－C（s2）－C（86） N（81）－C（82）－C（91） C（86）－c（82）－C（91） C（81）－C（84）－C（82） $C(82)-C(84)-c(83)$ N（31）－C（86）－c（82） c（82）－C（86）－C（85） C（82）－C（86）－c（87） N（81）－C（86）－C（88） c（85）－C（86）－C（8S） C（85）－c（87）－c（86） N（81）－C（88）－C（89） N（81）－C（88）－C（98） C（89）－C（88）－C（90） N（81）－C（89）－C（90） N（ 81$)-C(89)-C(92)$ C（90）－C（89）－C（92） H（81）－C（91）－C（82） C（82）－C（91）－C（92） C（82）－C（91）－C（93）

N（81）－C（91）－C（94）
C（92）－C（91）－C（94） H（81）－C（92）－C（81） C（81）－c（92）－C（89） C（81）－C（92）－C（91） H（ 81）－C（92）－C（93） C（89）－C（92）－C（93） N（81）－C（92）－C（94） c（89）－C（92）－C（94） C（93）－C（92）－C（94） C（91）－C（93）－C（94） C（91）－C（94）－C（92） c（92）－c（94）－c（93） $\cos (2)-\cos 1)-0(5)$ Ca（1）－Co（2）－0（5） Car 1 ）－0（5）－Co（2） $\operatorname{Co}(2)-0(5)-\cos (3)$

109．7419）
$189.1(19)$
113．8（17）
125．3（14）
111．7（18）
109．E（18）
112．5（17）
122．1（12）
146．8（15）
112．7（21）
109．6（16）
112．8（18）
105．9（18）
81．4（19）
$68.2(25)$
193．9（31）
57．7621）
52．${ }^{\text {a（18）}}$
99．5（30）
$79.5(27)$
113．2（39）
E7．2（22）
129．4（35）
147．7（39）
57．9（20）
111．3（30）
98． $0(70)$
61．6（21）
187．5（30）
46．8（24）
$147.5(36)$
45．9（16）
132． $1(38)$
58．6（21）
97．1（30）
135．6（34）
115．4（26）
64．9（28）
64．9（27）
92．1（32）
1日7．2（33）
148． 2 （30）
117．1（35）
187． 9 （30）
97． $7(38)$
22．5（25）
93．4（61）
59．7（27）
$66.7(67)$
120．7（51）
26．1（25）
33． 3 （32）
64．1（21）

$C(42)-C(43)-c(44)$ $c(44)-c(45)-c(46)$ s（9）－C（51）－S（10） s（18）－C（51）－M（51） c（52）－c（ 55$)-c(54)$ c（54）－c（55）－c（56） $S(11)-C(61)-5(12)$ S（12）－C（61）－N（61） C（62）－C（63）－C（64） c（64）－c（65）－C（66） H（71）－C（71）－C（72） N（71）－C（75）－C（76） N（81）－C（81）－C（83） C（83）－C（81）－c（84） C（s3）－C（s1）－C（92） N（（81）－C（ 82$)-$ C（ 84$)$ C（84）－C（82）－C（86） C（84）－C（82）－C（91） C（B1）－C（83）－C（84） C（81）－C（84）－C（83） $c(86)-C(55)-C(87)$ M（s1）－C（86）－C（85） N（81）－C（86）－C（87） C（85）－C（86）－C（87） C（ 82$)-C(86)-C(88)$ C（ 87 ）－C（86）－C（88） N（ 51$)-C(88)-C(86)$ C（86）－C（88）－c（89） C（86）－C（88）－C（98） N（81）－C（89）－C（88） c（8s）－C（89）－C（9e） C（88）－C（89）－c（92） C（88）－C（90）－C（89） N（81）－C（91）－C（92） N（81）－C（91）－C（93） C（92）－C（91）－C（93）

C（82）－C（91）－C（94）
C（93）－C（91）－C（94）
N（81）－C（92）－C（89）
M（S1）－C（92）－C（91） C（89）－C（92）－C（91） C（81）－C（92）－C（93） c（91）－C（92）－c（93） $c(81)-c(92)-C(94)$ C（91）－C（92）－C（94） C（91）－C（93）－C（92） c（92）－C（93）－C（94） $C(91)-C(94)-C(93)$ Ca（2）－Co（1）－Co（3） $\operatorname{Co}(3)-\operatorname{Co}(1)-0(5)$ $\cos (1)-\cos (3)-0(5)$ $\cos 1)-0(5)-\cos 3)$

112．5（18）
$111.6(22)$
115 （1）（1）
119．7（13）
113 S 16
108．4（2a）
115．5（11）
122．3（12）
108．8（19）
$189.1(18)$
114．5（18）
16．4（15）
122．6（39）
41．2（31）
123．（151）
1a7．S（3a）
122．（43）
$112.2(31)$
145．2（48）
33．6（29）
59．4（65）
109．2（23）
117．A（26）
22．6（23）
102．4（54）
$146.2(32)$
57．A（21）
187．1（．73）
147．4（42）
51．9（19）
56．5（28）
91．3（25）
76． $7(33$ ）
57．7（21）
12日．©（3A）
62．4（34）
157．2（31）
24．9（28）
53．5（18）
57．5（19）
87．1（24）
$138.6(49)$
58．7（25）
159．3（38）
55．4（25）
$66.9(31)$
9日．7（69）
61．8（56）
$113.9(39)$
12e．8（46）
26．5（23）
$32.7(30)$

47.

TABLE 29

Bond lengths（ \mathcal{X} ）and angles（ ${ }^{*}$ ）for［3］ （standard deviations in parentheses）
a）Band lengths

	$\therefore \pm 467$
$3(1)-58^{\circ}$ ？	－57\％
（1）－E：11：	
	$\therefore \mathrm{C}_{\text {－}}^{\text {a }} 10$
隹 2 －	こ FE
	2 こ⿹勹⿺：
Wこ．	¢ EEE：
	－$=$ ifl品：
－$=$	¢＝－5 ；
$50-515 \geqslant$	¢ ¢だっここ
5． 4 ）－5！＝	－3i6i c^{7}
$5(5)-4$	본른
$\leq-1-5+5$	$2 \operatorname{sen}=$
戓	1． 5 ¢5ら
50，¢－E1，	（ 7 ± 5 ¢5
	1．ल०७：उn ？
$\left.\mu_{1} 11\right\rangle-6: 1 \pm$	（ 575， 3 ）
H（1： 0 － 53 ）	1 429゙54？
N（1E j－6：	1 4207 54
Ni可）－E（	1． 594053
	（ 45 （ 35$)$
NイE1）－Cくこき）	i 4\％1イ29）
H（22）－5：24）	i． $38=$（ ${ }^{\text {c }}$ ）
Nく运；－Cく2e）	1.544 （3）
H（2J）－5：23）	1． $4 \overrightarrow{\text { rs }}$（ $)$
Aイ51）－Cく 51 ）	1．4924 32.
H（31）－L（35）	1．697（34）
$C(31)-C(32)$	1．512（39）
C（ 55$)-\left(\begin{array}{c}\text { 26 }\end{array}\right.$	1．488（45）
N（4i）－C（4i）	1．686゙823
Hi 4i $)-C(45)$	（956，112）
H（41）－C（5Q）	（388（？）
$N(41)-E(5)$	1．22＠くア入）
$C(40)=C(42)$	1．933（139）
C．$(11)-C(51)$	1．903¢111）
$C(43)-C(50)$	1． $022(98)$
C（45）－C（51）	1．140（135）
C（47）－č52）	1． 3416153$)$
	2．180（180）
c（52）－C（54）	1．6478129）

）－5（2）	2． 96367%
U（1）－5（10）	$2.912!$
	4 9177
びi i－0！ 12 ？	1．-6315
t＇$\hat{\text { c }} ;-5: 2$ ）	2． 97897
	$2.313: 7$
（112：－5	$2.937(7)$
U62：－0：2c；	1． r －50i
St $2:-543$ ：	2．scisio？
ミ， $3-6 \times 2$	
$s(4)-[621)$	1 E®5゙てE4）
Ş6；－Cく24）	1 694C25：
S（7）－C（1）	1 550\％${ }^{5} 5$
S（s）－side）	－EESig
S（ixi）－C（14）	1 E52（24）
s－12）－c（1i）	1．724（34）
N（11）－C．（12）	1．448（32）
N（12）－C0 14）	1． $385(30)$
N（12）－C（16）	$1459(30)$
H（15）－C（18）	$1482(43)$
	1．4ee（ 3 （1）
Híl）－č23）	1．482（34）
N（ 22$)$－C（ 25 ）	1．477（41）
N（23）－C（27）	1 $3 \mathrm{~A} 4(28)$
N（23）－C（29）	1．47E（31）
N（31）－C（33）	1． $536(39)$
N（31）－C（37）	1．557（37）
C（33）－C（34）	1．643（51）
C（37）－C（36）	1． $571(58)$
$N(41)-C(42)$	1．747（117）
$N(41)-C(47)$	1．793（146）
$N(41)-C(51)$	1．328（76）
$C(40)-C(41)$	1．496（124）
$c(41)-c(42)$	1．287（120）
C（42）－C（5t）	1．611（137）
$c(45)-c(46)$	1．146（136）
C（4E）－C（51）	2.447 （119）
C（47）－C（54）	0．991（177）
c（52）－c（52）	1．903（105）

TABLE 2.9 cont．

b）Bond anglea

87	53 4亿き？		1778 8；
： $51-3 \mathrm{l},-5 \mathrm{~S}=$	E1，s？		17\％（2）
	119 d 2 ）	$5 ¢ 0\rangle-4(1)-5110)$	$5 \leq 5 \leqslant$ ？
	120 12．	Ses．－uく1．－5611：	178 E¢ご
	$\leq 1082)$		52583
－－－－－－	－B \％		11053 ？
$z_{1}=:-3$－ 0 ，	172 Es）	$5(12)-U(1)-50^{2}$ ）	1100
3．：：－－－5	55．42）		so. di
－	83． 9 （ ${ }^{-}$	S：0）－［4（1）－（9\％i ）	57.265
d	$902\{6$ ）		950 2is：
	$835<5$ ）		ET．Ei
	－5．Sic？	St9）－6iój－6is 12）	54.45
	O1，$\vec{\sim}$	S（if）－价 1 ）－06iz）	63． ¢ 5
－¢－blo－siz			178．060：
¢－－Ej－s＜E：	－v． $92 ?$	si i l－Uf 2 ）－5 3 ）	$117.3(2)$
E． $2>-$（ $2 \times 5 \geqslant$	58 （2）	S： $\mathrm{i}^{\prime}=[4(2)-s(4)$	1－7 3 （2）
Exj－102 -364	118．542）	S（ 3 ）－id（ 2$)-5(4)$	¢0 i（2）
5－－－62：－3¢5．	12i．GE？	s 3 ）－142）－5＜5；	17542 ，
5． $3-2030$	120.62	（17）－（k2）－5i5）	50，日（ z？
	68． 6 （2）	S（2）－4 2 ）－5（6）	」くびers
	175．562）	564）－U（2）－S（E）	
	62．0is）	E（1）－以建－6421）	91．75）
	85．9（6）	$S(3)-[4(2)-0(21)$	98． 4 （5）
5＜4；－i／ 2 ）－7321\}	85．465）		9 E （1）
$5(6)-4(2)-0(21)$	$86.7(5)$	$5(1)-U(2)-0<22)$	$88.7(8)$
$5<2)-(0)(2)-0(22)$	94.567	S（3）－ik（2）－0（22）	81．7（6）
$5(4)-y(2)-0,22)$	9f． $2\left(0^{*}\right)$	565）－4，2）－0＜22）	$85.4(7)$
	$93.3(6)$	$0(21)-4(2)-0(22)$	179.516
	96.88 ）	（1：2）－S（2）－5（3）	ही． $1(2)$
Uf $2,-5(2)-C(2) ?$	92．3（3）	$s(3)-s(2)-C(27)$	$52.3(7)$
U（2）－5（3）－5（2）	$61.5(2)$		$95.5(8)$
Si（2）－S（3）－C（27）	$34.4(8)$	U（2）－S（4）－S（5）	$68.7(2)$
U（2）－S（4）－C（2i）	92．6（8）	S（5）－S（4）－C（21）	$32.0(8)$
$U(6)-5(5)-5(4)$	$68.4\langle 2\rangle$	U（2）－S（5）－C（ 21$)$	$91.1(8)$
$5(4)-5 i 5)-C(21)$	$38.8(8)$	U（2）－5（6）－c（24）	
（1 1）－S（7）－S（8）	Et．1 2 2）	U（1）－S（7）－Li U $^{(17)}$	98. $68.5(2)$
S（E）－S（7）－C（17）	$29.6(9)$	U（1）－S（ ${ }_{\text {S }}(7)-5(8)-C(17)$	$68.5(2)$ $29.9(9)$
U（1）－S（8）－C（17）	98． 3 （9）	$5(7)-5(8)-c(17)$ $U(1)-5(9)-c(14)$	29．9（9）
U（1）－S（9）－S（？${ }^{(1)}$ ）	$60.5(2)$	U（1）－S（9）－c（14）	91． 6 （8） 2 ）
S（10）－S（9）－c（14）	$30.7(8)$ $92.49)$	$u 61)-S(19)-s(9)$ $s(9)-5(19)-c(14)$	$66.6(2)$ $32.3(9)$
$U(1)-5(10)-C(14)$ $U(1)-5(11)-C(1)$	$92.2(9)$ $90.3(8)$	s（9）－s（12）－c（12）－c（11）	$98.6(8)$
cili）－N（11）－c（12）	$123.3(22)$	C（11）－N（11）－C（13）	120．2（22）
C（12）－N（11）－C（15）	116，4（20）	C（14）－N（12）－C（15）	120．9（20）
C（14）－N（12）－C（16）	122．8（19）	$C(15)-N(12)-C(16)$	$115.5(24)$ $125.8(24)$
C（17）－N（13）－C（18）	$116.8(25)$	$C(17)-N(13)-C(19)$ $C(21)-N(21)-C(22)$	$125.8(24)$ $122.6(2 \theta)$
C（18）－N（13）－C（19）	118．0（26）	C（21）－N（21）－C（22）	$122.6120)$

TABLE 2.9 cont ．

－くご，1－N（21）－C823）	122．6（19）	C（22）－N（21）－C（23）	114．782
	118.5653	$C(243-N(22)-C(26)$	$1215425)$
		C（2） 2 －N（25）－C（28）	124 （19）
	122 İ 2 （ ）	ci28）－Ni 23$)-C(29)$	113 7 （19）
S 11）－C（11）－5 12，	118．4 12 ）	$5(11)-C(1 \pm)-N(11)$	$1231(21)$
S¢12）－C（11）－N（11）	（18，4 21）	S（9，－C（14）－S（10）	117 （1） 14$)$
569）－C（14）－N（12）	118．8617）	S（16）－C（14）－N（12）	125 ¢18）18
$5(7)-C(17)-5(8)$	124．5（15）	S（7）－C（17）－N（13）	1171（18）
s（8）－C（17）－N（13）	122．3（19）	S（4）－C（21）－S（5）	1」71（14）
$5(4)-C(21)-H(21)$	121．3（16）	$5<5\rangle-C(21)-M(21)$	$121.5617 ?$
Sく！－C E 4 ：S¢ ？	11\％．8612）	5＜1）－Ci24）－M（22）	1206101
		siz）－6iziz－si3）	15
			$124.0: 17$
	117 1（21）		166．9（ 6 ）
			115 5619）
	－1：2k）		1158823
	⑮．Size）		114 9\％24i
	112 521$)$	N（31）－6＜ $37,-6(35)$	16i 9，心3
	44 Hi 41 ？	C¢ 4 ！－Ne 11 ？－C645？	112 24，4，
	135447	$\mathrm{C}<41)-\mathrm{NC} 41$－C¢ 47 ？	＝5 P（5a）
E6， 5 －iti $-1-24^{2}$	126，40 59，	$C(45)-84+1)-4,4)$	$38.5(54)$
－	195． 56^{47}		6075
E¢ ¢ J－Ni ¢ 1－56．		C64Fj－N（41）-6.66^{6} ？	15 c
	S2． $2(43)$		
	$325(44)$		1 ± 2.625
C650）－N（ 41$)-65 i$		C＜ $41: N(41)-C(52)$	
	122．7（50）	（．$\because 5$ ）$-\mathrm{H}(41)-\mathrm{C}(52)$	$\text { 주․ 965 } 5$
	$484(55)$	C（5c）－N（41）－C（s）	41 隹
E－5： $1-N$＋1， 0 （ 52 ？	135．5 52 ）	$\left.\begin{array}{cc}C+1\end{array}\right)-C(46)-C(42)$	41 ¢ 5 － 40
	$95.1628)$	$N(41)-C(41)-C(4 i)$ $N(4)-C(4)-C(5 i)$	$\begin{aligned} & 5(22) \\ & 4 i .1(29) \end{aligned}$
	91．Ex75）	$N(4) 3-C(41)-C(51)$ （ $2 \rightarrow-C(41)-C(51)$	$52,9(66)$
	134 ÉEE）	$C(4 E)-C(41)-C(51)$ $N(4)-C(42)-C(4 i)$	
$N(4)-C(42)-C(40)$	$796<50)$	$N(41)-C(42)-C(4 i)$ $N(41)-C(42)-L(50)$	$483(45)$
$C(4)^{2}-C(42)-C(4)$	48．6456）	$N 4413-C(42)-C(50)$ $C(41)-C(42)-C(5 A)$	112 4 （90）
c（ 4 交）－C（42）－c（5a）	120．1（72）	c（41）－c（42）－c（5t）	$112422)$

TABLE 2.10

Bond length (\mathcal{k}) and angles (${ }^{(}$) for (4) (standard deviations in parentheses)

a) Bond length

U(1)-S(1)	2 9284;	U $13:-5<2)$	$2918(4)$
(1) 1 - S $^{(1)}$	2. 909 (5)	U $11.2 \mathrm{~S}(4)$	2 9e2(4)
U(1)-5 (5)	2. $924(4)$	(16 1)-S 6 (${ }^{\text {(}}$)	2.960.5)
U(1)-0 (1)	$1734(11)$	(161)-0.2)	1.862(12)
S(1)-S(2)	2.886(6)	S(1)-C(11)	1.681(16)
$5(2)-C(11)$	1.724(18)	S(3)-5(4)	2. $866(7)$
S(3)-c(21)	$1691(18)$	$S(4)-C(21)$	1.71e(19)
S(5;-5(6)	2. $890(6)$	S(5)-c(31)	1.732(17)
S(6)-C(31)	$1714(17)$	N(11)-E(11)	1.348(18)
N(11)-C(12)	1.473(23)	H(11)-6. 14)	1.469(30)
N(21)-C(21)	1.352(24)	N(E^{1}) $-6 .\left(2{ }^{2}\right.$)	1.465(25)
H(21)-C(24)	148 A (28)	H(31)-C, 31$)$	1. 3 92 21)
$N(31)-C(32)$	1. $40^{\circ} 4(24)$	N(3I)-C(34)	1. $332(26)$
$N(1)-C(1)$	1.465 (47)	N(1)-C(2)	1.444(34)
M(1)-C(3)	1.473(40)	N(1)-C(4)	1-423(48)
C(12)-c(13)	1.491(41)	C(14)-C(15)	1.460 (39)
C(22)-C(23)	1.407(35)	c(24)-C(25)	(414(4e)
C(32$)-C(33)$	1.439 (35)	C(34)-C(35)	1.509(43)
C(2)-C(3)	2. $128(48)$		

b) Band anglea

S(1)-u(1)-5 (2) S(2)-4(1)-5(3) 5(2)-U(1)-5(4) S(1)-U(1)-S(5) $5(3)-4(1)-5(5)$ S(1)-U(1)-S(6) S(3)-U(1)-S(6) S(5)-U(1)-S(6) S(2)-U(1)-0<1) S(4)-U(1)-0 (1) S(E)-U(1)-0 (1) S(2)-U(1)-0 2) $5(4)-U(1) \cdots 0(2)$ s(6)-U(1)-0(2)
$592(1)$
$62.6(1)$
$1182(1)$
$119.8(1)$
$119.9(1)$
$61.4(1)$
$178.4(1)$
$58.8(1)$
$98.2(4)$
$96.7(4)$
$92.6(4)$
$83.5(4)$
$84.3(4)$
$84.7(3)$
(i1) -. (4́1)-S(3) S(1) - (k 1)-5 (4) $5(3) \cdot-(k(1)-5(4)$ $S(2) \cdot \operatorname{li}(1)-5(5)$ S(4)-. (U (1)-S(5) $S(2) \cdot U(1)-S(6)$ $\mathrm{s}(4) \cdot \mathrm{UK} 1)-5(6)$

 $s(5)-U(1)-0<1)$ s(1)-U(1)-0i2) s(3)-u(1)-0(2) $s(5)-u(1)-0<2)$ a(1)-U(1)-0(2)
119.7(1) $3\left(\frac{1}{2}\right)$

59 1(1)
$1729(2)$
$62.2(1)$
$1188(1)$
$1199(1)$
87. 7 (4)
$863(4)$
88 (4)
91 4(4)
6. 4(

89 5(4)
177 2(5)

TABLE 2.10 cont.
b) Bond andea

(1) 1 -S(1)-S(2)	6 6. 2 (1)	U(1)-S(1)-C(11)	$92365:$
S(2)-S(1)-c(11)	32.54)	U(1)-s(2)-si1)	6e. 6(1)
U(1)-S(2)-c(11)	O1. Sc 5)	S(1)-S(2)-C(11)	$31.6(5)$
$U(1)-5(3)-5(4)$	E0. $3 \times 1)$	U 1 1)-S(3)-c(21)	92. 7(E)
S(4)-S(3)-C(21)	32 6(6)	(1) 1)-S(4)-S(3)	6e 6(1)
$U(1)-5(4)-C(21)$	92. 4 (6)	S(3)-S(4)-c(21)	32 (6)
$U(1)-S(5)-S(6)$	$61.2(1)$	U $1.1-5(5)-6(31)$	$93.3(6)$
S(6)-S(5)-C(31)	32. 8 (6)	U(1)-5 (6)-s(5)	6e. A 1)
U(1)-S(6)-c(31)	92. 566)	S(5)-S(6)-C(31)	$33.2(6)$
C(11)-N(11)-C(12)	124.6(13)	C(11)-N(11)-C(14)	119.5(17)
C(12)-N(11)-C(14)	$114.4(16)$	$C(21)-N(21)-C(22)$	120.8(16)
C(21)-N(21)-C(24)	121.4(16)	C(22)-N(21)-C(24)	117.5(15)
C(31)-N(31)-C(32)	124.6(15)	C. 31$)-H(31)-C(34)$	118.7(15)
C(32$)-N(31)-C(34)$	116.7(15)	$C(1)-H(1)-C(2)$	$112.7(35)$
c(1)-N(1)-C(3)	$113.1(24)$	C(2)-N(1)-C. 3)	$93.3(23)$
C(1)-N(1)-C(4)	116.1(17)	$C(2)-N(1)-C(4)$	109.5(24)
C(3$)-N(1)-C(4)$	149.8(34)	S(1)-E(11)-S(2)	115.9(8)
S(1)-C(11)-H(11)	124.3613)	S(2)-C(11)-N(11)	119.4(14)
$N(11)-C(12)-C(13)$	113.6(27)	N(11)-C(14)-C(15)	119.1(26)
S(3)-C(21)-S(4)	115.3(11)	S(3)-C(21)-N(21)	123.1(14)
S(4)-C(21)-N(21)	121.6(14)	H(21)-c(22)-c(23)	110.6(18)
$N(21)-C(24)-C(25)$	113.9(23)	S(5)-C(31)-S(6)	114. 1 $^{\text {(9) }}$)
S(5)-C(31)-N(31)	124.4(13)	S(6)-C(31)-N(31$)$	121.6(13)
H(31)-C(32)-C(33)	189.1(18)	N(31)-C(34)-C(35)	118.8(20)
N(1)-C(2)-C(3)	43.9(14)	N(1)-C(3)-C(2)	$42.8(16)$

TADLE 211

Deviationa frow planel (defined by starred atoms) asd Inter-plane anglea for complex [1]

Deviation (A)

Mane 1
$S(1)^{*}-0.17 ; S(2)^{*} 0.11 ; S(3)^{*} 0.14 S(4)^{*}-0.06 ; S(5)^{*} 0.01 ; S(6)^{*}-0.03$
Plana 2
$S(1)^{*} 0.00 ; S(3) * 0.00 ; C(35) * 0.00 ; N(3) * 0.00$
Plane 3
$S(4)^{*} 0.00 ; S(5) * 0.00 ; C(15)^{*} 0.00 ; N(1)^{*} 0.00$
Frane 4
$S(2)^{*} 0.00 ; S(6)^{*} 0.00 ; C(25)^{*} 0.01 ; N(2)^{*} 0.00$

Angles between phame ${ }^{(0)}$

Frane	Ame	Plane	Angle
1:2	6.3	2:3	6.0
1:3	6.3	2:4	4.2
1:4	6.3	3:4	9.4
Anale between 0-0 Itwe end plares			
Plane	Ample	Plane	Angle
1	89.0	2	83.0
3	83.9	4	82.7

TABLE 2.12

Deviations from pianes (defined by starred atoms) and inter-plane angles for molecule 1 of complex [2]

Deviations (\AA)
Plane 1
$S(1)^{*}-0.12 ; S(2)^{*} 0.12 ; S(3)^{*}-0.05 ; S(4)^{*} 0.08 ; S(5)^{*} 0.06 ; S(6)^{*}-0.10$
Plane 2
$S(1)^{*} 0.00 ; S(2) * 0.00 ; C(11)^{*} 0.00 ; \mathrm{N}(11)^{*} 0.00$
Plane 3
$\mathbf{S}(3)^{*} 0.01 ; \mathbf{S}(4)^{*} 0.02 ; \mathrm{C}(21)^{*}-0.02 ; \mathrm{N}(21)^{*} 0.02$
Plane 4
$\mathrm{S}(5)^{*} 0.00 ; \mathrm{S}(6)^{*} 0.00 ; \mathrm{C}(31)^{*}-0.01 ; \mathrm{N}(31)^{*} 0.02$

Angles between planes(${ }^{\circ}$)

Plane	Angle	Plane	Angle
$1: 2$	5.5	$2: 3$	15.1
$1: 3$	10.4	$2: 4$	9.8
$1: 4$	15.0	$3: 4$	22.6
Angle between O-O line and planes			
			Angle
Plane	Angle	Plane	6.3
1	89.1	2	15.5

TA BLE 212 come

 for molecule 2 of enmplex (2]

Deviations (A)

Flane 1
$S(7)^{*}-0.25 ; S(8)^{\star} 0.18 ; S(9)^{*} 0.20 ; S(10)^{\star}-0.15 ; S(11)^{*} 0.08 ; S(12)^{*} 0.12$
Prate 2
$S(7)^{*} 0.00, S(8)^{*} 0.00, C(41)^{*} 0.00 N(41)^{*} 0.00$
Hane 3
$S(9)^{*} 0.00 ; S(10)^{*} 0.00 ; C(51)^{*} 0.00 ; N(51) * 0.00$
Plane 4
$s(11)^{*} 0.00 ; \$(12)^{*} 0.00 \mathrm{C}(61)^{*} 0.02 ; N(61)^{*} 0.00$

Anglet between planean ${ }^{(2)}$

Fane	Angle	Plane	Angle
$1: 2$	8.9	2:3	1.9
1:3	7.7	2:4	7.5
1:4	3.8	3:4	5.8
Ande between 0-0 lime and plamed			
Pane	Asple	Pame	A ${ }^{\text {arde }}$
1	89.4	2	9.5
3	8.3	4	5.4

TABLE 213
 olf molecwle 1 of complen [3]

Deviatioen (\AA)
Patan 1
$S(1)^{*} 0.16 ; S(2)^{*}-0.23 ; S(3) 0.28 S(4) *-0.17 ; S(5) * 0.05 ; S(6)-0.05$
Fara 2
$S(1) * 0.00, S(6) * 0.00 ; C(24) * 0.00, N(22) * 0.00$
Fan 3
$\$(2)^{*} 0.01 ; S(3)^{*} 0.01 ; C(27)^{*}-0.02 ; N(23)^{*}-0.01$
Flame 4
$S(4)^{*} 0.00 ; S(5)^{*} 0.00 ; C(21)^{*} 0.00, N(21)^{*} 0.00$

Arylea between plamex ${ }^{\circ}$)

Pan	Ande	Pane	A ${ }^{\text {a }}$ /
$1: 2$	8.0	2.3	19.5
1:2	11.6	2.4	1.8
1:4	6.8	3.4	18.0
Ande betweer 0-0 line and planea			
Mama	Angle	Plane	Anple
,	87.3	2	6.5
3	13.0	4	5.0

TABLE 2.13 come

Devintions from plamen idellmed by marred atome) and Inter-plame andea for molecule 2 of complex [3]

Devitatona (A)
Plame 1
$S(7)^{*}-0.23 ; S(9) * 0.22 ; S(9) *-0.23 S(10)^{*} 0.24 ; S(11)^{*}-0.24 ; \mathbb{S}(12) * 0.24$
Plane 2
$5(7)^{*} 0.0 ; S(8) * 0.00 ; C(17)^{*} 0.01 ; M(13) * 0.00$
Fing 3
$\$(9)^{*} 0.01 ; \mathrm{S}(10)^{\bullet} 0.01 ; \mathrm{C}(14)^{*}-0.04 ; \mathrm{N}(12) 0.02$
Phane 4
$S(11)^{*} 0.00 ; S(12)^{*} 0.00 ; \mathrm{C}(11)^{*}-0.02 ; \mathrm{N}(11)^{*} 0.01$

Pata	A ${ }^{\text {a }}$ (a)	Pame	*
1:2	10.5	2:3	13.9
1:3	9.3	2:4	19.7
1:4	15.1	3:4	24.3

Flave	Ars
1	68.3
3	12.5

Fana
2
4

TA夆LE 2.14
Deviathan from plates (deled by starred atoma) and later-plane anglea for complex [4]

Deviathom (A)
Plane 1
$S(1)^{*} 0.19 ; S(2)^{*}-0.30 ; S(3)^{*} 0.32 S(4)^{*}-0.24 ; S(5)^{*} 0.12 ; S(6)^{*}-0.10$
Fame 2
$S(1)^{\oplus}-0.01 ; S(2)^{*}-0.01 ; N(11)^{*}-0.01 ; C(11)^{*} 0.04$
Pigne 3
$S(3) * 0.00 ; S(4)^{*} 0.00 ; N(21)^{*} 0.00 ; C(21) 0.00$
Pine 4
$S(5)^{\bullet} 0.00 ; S(6)^{*} 0.00 ; N(31)^{*} 0.00 ; C(31)^{*} 0.01$

Anglea between plaman(${ }^{\circ}$)

Fane	Angle	Plane	Ande
$1: 2$	13.9	$2: 3$	25.3
$1: 3$	14.5	$2: 4$	1.0
$1: 4$	13.2	$3: 4$	25.0

Angle between O-O line and plamen

Fane	Aegle	Plane	Alale
1	89.5	2	77.5
3	75.5	4	77.2

Reftrences

1. R.G. Peamon. J. An. Chem. Sac., vol. 85, p. 3533, 1963.
2. M.Delepine, Bull. Soc. Churn. Fr., vol. 3, p. 643. 1908.
3. L. Malateate, Gaxz. Chim, /imi, voi. 69. p. 408, 1939.
4. R.G. Jones, E. Binachalder, G.A. Martin Jr., J.R. Thirte, H. Gilmen. J. Amer. Chem. Soc., p. $4971,1957$.
5. R.A. Zingero, J. Amer. Chem. Soc., vol. 78, p. 3568, 1956.
6. H Albers S. Linge, Chem. Ber., vol. 85, p. 278, 1952.
7. S. Bonatti, M. Frazind, Atti. Accad Nazl. Lacel Rend Classe Scl. Fis. Mar. Nas, vol. 41, p. 264, 196.
8. CJ. Rodden, Analytical Chemitory of the Manhatien Project. p. pplo70. 1930.
9. E.B. Sendell, Colorinetric Determination of Trace Metals., p. pp603, 1950.
10. K. Gleu, R. Schwab, Angew. Chem., val. 62, p. 320, 1950.
11. I.D. Muryke, E.D. Romanenko, N.N. Temanaeva, Russ. J. /rorg. Chem., voi. 11, p. 648, 196.
12. K. Bowman, Z. Dori, Chem. Commun., p. 636, 1956.
13. P. Zneflo, A. Cinquand, G. Mazzochin. fnort. Chim. Acia., vol. 21, p. 195, 1977.
14. R. Grazimi, B. Zarl, A. Cessol, G. Hombieri, E. Forsellini, E. Tondello. /nors. Chem., vol. 9, p. 2116, 1970.
15. A. Cassoi, B. Zerli, E. Tondello, Annu. Meet. Chim. Inorg., p. 121, 1968.
16. T.M. Siddel, C.F. Voinin, J. Inorg. Nacl. Chem., vol. 34, p. 2078, 1972.
17. E. Forsellini, G. Bombieri, R.Graziani, B. Zarli, Inorg. Nucl. Chem. Letr., vol. 8, p. 461, 1972.
18. S.M. Sinimyna, N.M. Sinimyn, fuss. J. Imorg. Chem., vol. 10. p. 499, 1965 .
19. J.Chatr, L.A. Duncanson, M.L. Venanzi, Namere, vol. 177, p. 1042, $1 \% 65$.
20. J. Chmit, L.A. Duncaryon, M.L. Venenzi, Swomen Kemis aitehsi, vol. B29, p. 75, 1956.
21. R. Gravimi, B. Z-rit, A. Cenol, G. Bornbieri, E. Farsellini, E. Tondello, Inorg. Chem., vol. 9, p. $2116,1970$.
22. N.W. Alcock, Crystallographic Compusing. Pp. p271-278, Copenhagen, Munkagaterd.
23. G.M. Sheldrick. SHEIXTL User Mannat, Nicolet Instnment Co., 1981.
24. R.G. Denning. "Properties of the $\mathrm{UO}_{2}^{*}(\mathrm{n}=1$ 2) loon," Gmelln nopl. wol. A6, 1983.
25. A.E. Storey, F.Zonnevijle, A.A. Pinkerton, Inorg. Chim. Acta, vol. 75, p. 103, 1983.

CHAPTER 3

Two pyridine - asetylacetonate complexes of uranium(VI)

3.1. Intraduction

The synthesis and structure of diozobis(pentanc-2.4-dionato)pyridineuraniums VI) han previously been reported.' This is notable amongst complexes involving the uranyl ion for the lange deviation from linearity of the O-U-O bond angle, $173.5(8)^{\circ}$. A large number of other complexes of dioxouranium (V1) with β-diketones have been reported ${ }^{2}$ but in the main these concentrate on the infre red spectral assignment of v_{1} and $\mathrm{v}_{3} \mathrm{O}-\mathrm{U}-\mathrm{O}$. The only other uranyl complex of pentane-2,4-dione which has been characterised structurally is that of aquadioxobis(pentane-2.4dionato)uranium(V1). ${ }^{\mathbf{3} 4}$ This pretent chapter describes the synthesis and structural characterisation of a further two such complexes: dioxobis(1,3-diphenylpropare-1,3dionato)pyridineuranium(VI) (5], and dioxobis(1-butoxypentane-2.4-dionato)pyridineuranium(VI) [6]. From these it becomer apparent that contrary to earlier hypotheses', pyridine-urenyl repulsions do not determine the extent of the linearity of the uranyl group. UO_{2} (acac) $)_{2} \mathrm{H}_{2} \mathrm{O}$ is one of the earliest reported compounds of uranium and ith preparation in 1909^{5} was followed by the pyridine analogue in 1927.6 Infre red data were obrained larer. ${ }^{7,0}$

B-Dicarbonyl compounds are very versatile and exhibit a great variety of coordination modes beaides the usual bidentate behaviour of mono-anions. 9.10 Acetylacetone can coordinate to the uranyl group through one orygen as in UO_{2} (acac) (acach $^{(11}$ where the diketone acta as a neurral donor. This is obrained by evaporating a suspension of UO_{2} (ecac) $\mathrm{h}_{\mathbf{2}} \mathrm{H}_{3} \mathrm{O}$ in acetylacetone. ${ }^{12}$ Other complenes which involve this mode of bonding include $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}-2 \mathrm{HL}$ ($\mathrm{HL}=1$ -phenyl-3-(2-pyridyl) propane-1,3-dione) ${ }^{13}$

There is even less data available on the neptunyl analogues, structural information being
 [6] were prepared

3.2. Experimental

3.2.1Preparation

Compounds [5] and [6] were prepared by adaptation of the method deacribed by Hager.' This involved addition of a methenolic colution of uranyl nitraze ($0.56 \mathrm{~g}: 1.42 \mathrm{mmol}$) wa methanolic solution containing two equivalents of ligand ($0.25 \mathrm{~g} ; 2.8 \mathrm{mmol}$). Dropwise addition of the stoichionetric amount of pyridine ($0.20 \mathrm{~cm}^{3}: 2.4 \mathrm{mmol}$) caused turbidity of the solution, and crystal deposited on standing. These were recrystallised from methanol. The neptuayl
analoguen were prepared by easentially the rame method using 0.25 mmol of freshly prepared neptunyl (VI) nitrate, and reducing the quantides of the other reagenta to the seme proporions. The neptunium crystals were mounted th a glove bor and encapsulated in a Lindeman capiliary for rediation protecrion. Several cryatals were examined to ohrain a suitable single cryatal, but all were found to be twinned or failed to give a satisfactory diffraction penern.

3.2.2. Dala Collection and Structure Refinement

Data on [5] and [6] were collected with a Syntex P2, four circle diffretometer. Beckground intenities were measured $=$ each end of the acm for 0.25 of the sean time. Three standerd reflections, monitored every 200 reflections, thowed alight chmigea during data collection and the date wert rescaled for this. Unit cell dimensions and standard devitions were obtained by least squares fit to 15 reflections (25520529). Observed reflections [$/ / 6(1) \geq 3.0$] were corrected for Lorentz, polarisation and sbsorption effects, the lant with ABSCOR. ${ }^{19}$ Derails for each compound are given in Teble 3.1
 P2/a and the position of the uranium atom was determined from a three dimensional Patienson mip. The atomic coordinases of the lighter non-hydrogen atoms wer foond by successive Fourier syntheses and all were refined anisotropically. Hydrogen atoms were inserted at calculamed positions with fixed isotropic tempernare facton Un-0.07 \mathbf{R}^{2}.

Systematic ahsencea for [6] indicated an A-centred cell, with a choice of three possible space mroupa: A2,ma. Am 2a, and Amma a non-standerd seminga of Come 2, Ama 2, and Cmom reapectively. Cracm was initially selected, and the cell rotated to conform. Parterson maps were calculated and structure solution artempted in each possible space group but this was successful only in Cow 2. Refinement of a $\mathrm{If}^{\prime \prime}$ multiplier showed that the correct hand had been choeen. The x and 2 -coordinases of the uranium atom were held fixed to define the origin. Anisotropic temperanure factora were used for tll atoms except bydrogens which were inserted at fixed poadtions and not refined ($\mathbf{U}=0.07 \mathbf{i}^{\text {n }}$). An attempt to include the hydrogen atoms for the methyl group wid unaccessful as the refined perameters did not converge. The large thermal parbineent for the conreapooding carbon asoms sugest that these groupt are slighly disondered. though no alternative panitions were detectable on the Fourier synthesis. The thermal paramesen and implamible bond distance from $\mathbf{C (4)}$ suggest that it may also be disondered between two position which ere not frer seperated from each other.

Final refinement of F wa by cancaded least squares methods. A weighting scheme of the form $W=1 / K \sigma^{2}(P)+{ }_{n}\left(F^{2}\right)$ was applied. The relnively large renidual peaks on the final Fourier sntheais for [6] were in the neighbourhood of the metal ions. Calculations were performed using the SHEIXTL. ${ }^{16}$ syatem on © Deta General DG30 apart from the abrorption conrection on a

Burrougha B6a00. Scenering factom in the analytical form and anomaloua diapertion factors were tiken from the Interuacional Tablea. 11

Infira red spectra of the complexes were taken with a Pertin Ehmer 100 Spectrophotomener using Nujol mulls between KBr diacs in the region $1000-400 \mathrm{~cm}^{-1}$, and berween silicon pistes for the region $500-150 \mathrm{~cm}^{-1}$. These confirmed the spectra previously reported for UOXench py with nligh ahifrs in v_{2} and v_{1} (Table 3.1).

Final armic coordinater are given in Tables 3.2-3.3. Bond lengthe and angles around the uranium atom for [5] and [6] are listed in Table 3.4, and compered with those valuea found for UO_(acach py [7]. Full bond length and angles are given in Tabler 3.5-6. Information on deviations from planes is piven in Table 3.7. Figure 1.1 shows the molecule and numbering scheme for [5]. The pecking diagrem for [5] can be seen in Figure 3.2. Figure 3.3 shows the molocule and numbering scherne for [6] with the packing diagram in Figure 3.4.

3.3. Dincuandom

The complexes exhibit pentagonal-bipyramidal geonetry about the uranyl (VI) atom, involving two bidentate p-diketonate ligands and a pyridine molecule. Thus they have similar geometries to [7]. and aquedioxobis(pentane-2.4-dionmo)uranium(V) ${ }^{14}$ the only other uranyl β diketonates to have been srudied suructurally. In none of our complexes was the magniude of the distortion of the acolnyl bond angle an great as the 173.9(a) found in [7], though that in [6] spproaches it ($175.8(8)^{0}$)

The pacting diagram of [5] (Figure 3.2) appears to be dominated by a face-to-face alignment of the phenyl rings, while for [6], the relatively low density correlares with the molecules heing held epert by conterts berween the methyl groups. In compleir [5], the groupt contining the β-carbon atoms are oriented such that $\mathrm{C}(034)$ lise below ($0.0 \mathrm{O}(5) \mathrm{A}$) the equatorial plane. In parallel with this distortion, the $\mathbf{C}(41)-\mathbf{C}(46)$ ring lier completely above this plane (hough not symmetrically), with deviations in the range $0.20-0.62(5) \mathrm{A}$. The B carbon (C(012)) of the other ligend lies above the plane $(0.15(5) \boldsymbol{A})$ and the $\mathrm{C}(11)-\mathrm{C}(16)$ ring is positioned below the plane (0.11 - $0.51(5) k$). Again this diaplecement is not symmetrical. These ringe are twisted ourwards away from one another (see Figure 3.1 and Table 4) with pairn $C(15), C(16)$ and $C(45), C(46)$ having maximum displacementa below and above the plane repoctively. The pyridine ligand aloti into the cavity with a substantial out of plane twint (C(51),C(52),C(53) are directed helow the piene, and C(54). C(55) above).

The other pheayl ringz on the ligands are twisted inwards towerds one mother, and are dinplaced above and below the equatorial plane. Deviations for $\mathbf{C}(21)$ - $\mathbf{C}(26)$ lie in the range $0.23(5) \AA$ below ($\mathrm{C}(25)$) and $0.50(5) \boldsymbol{\lambda}$ above ($\mathrm{C}(22)$). Similarly for $\mathrm{C}(31)-\mathrm{C}(36)$, deviationt are in the range $0.43(5) \AA$ below ($\mathrm{C}(32)$) and $0.76(5) \AA$ above ($\mathrm{C}(35)$).

In complex [6]. primed aums are related to unprimed ones by a mirror plane. The β carton ($\mathrm{C}(3)$) in this complex lies beluw the equmorial plane by $0.37(5) \mathrm{A} . \mathrm{C}(2)$ and $\mathrm{O}(5)$ ere both displaced below the plane (0.35 and $0.17(5) \mathbb{R}$ reapectively) $\mathrm{C}(5)$ is found above the plane ($0.23(5) \lambda$), and the orientation of the t-butyl group with respect to the plane if such that $C(6)$ is above ($1.65(5) \mathbf{N}), C(7)$ is virtually co-plenar $(0.09(5) \AA)$, and $C(8)$ in directed below the plane (0.93(5) $\mathbf{A})$.

The ligand dimensions in eath complex tre as expected, (epent from the possible disorder in [6]), an are the U-O distances to the chelating ligands. The U-N distances are tonger than U-O (eq) a predicted from the covalent ndii; they are significantly longer than that found in complex [7]. The pyridine ring in complex (9] is rwisted out of the equetorial plane, forming an angle with this plane of $36.9(2)^{\circ}$, whils in cornplex [6], it lies perallet to the uranyl group(90.0° nwint). (in [7], the out of plene iwist is $48.7(10)^{\circ}$). These twisu presumably reduce interference with the diketonate groupa, but musi have the effect of increasing repulsions berween the o-hydrogen atoms on the pyridine and the actinyl oxygen atoms.

It is surprising to find that neither of the O-M-O groups in complexes [5] or [6] show substantial non-linearity compared to 由hat found in [7]. The pyridine - uranyl repulsions were believed to be reaponsible for the non-linesor O-U-O group in this complex; bowever atudy of the pyridine-H to acrinyl-O distances shows that thin steric infuence is lest in [7] than in the other complexes, yet the distortion of the actinyl boad is greatest (Table 3.6). Furthermore there is no apparent correlation between O-M-O bood angles and M-O(axial) bond lengts which could eccount for this. The one parameter which does show a correlation with the distortion is the U-N distance. It may therefore be that direci O-N repulsion in the actinyl coordination sphere ia reaponaible for the beni O-U-O group in [7]. In their tum, the M-N distances show an inverse correlation with the M-O(equatorial) distances, implying that the acac groups in [3]-[6] are rather more strongly held than in [7], leading to steric pressure and slight weakening of the M-N bond.

FIGURE 3.1 (a) The $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{8} \mathrm{U}$ [5] molecule showing the atomic numbering scheme

FIGURE 3.1 (b) side-on view of $[5$) showing deviations out of plane

FIGURE 3.2 Packing diagram for [5].

FIGURE 3.3 view of the $\mathrm{C}_{39} \mathrm{H}_{27} \mathrm{NO}_{8} \mathrm{U}$ [6] molecule showing the atomic numbering scheme

FIGURE 3.4 Packing diagram for (6)

-69 -

TABLE 3.1

Crymed Data and Data Collection Condillome

Comprand	[5]	[6]
Formula	$\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{U}$	$\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{NO}_{5} \mathrm{U}$
M	795.6	663.5
2	4	4
Crysal System	Monoclinic	Orhorbombic
/ik	10.158(2)	15.939(9)
w/	21.937(8)	19.532(8)
c/A	13.888(4)	9.777(6)
-	103.49(1)	
Syuternatic Absencea	0¢0:k $\mathrm{m}_{\text {2n }}$	
		motid 12
Space Group	P2/m	Cuce 2,
Cryare size/nrn.	.19x.100. 20	.13m.04×. 29
Man. tranamission factor	0.57	0.74
Min. trenamission factor	0.28	0.65
20(max)	50	50
Scan range about $\boldsymbol{K}_{\mathbf{a}_{1}}-\boldsymbol{K}_{\boldsymbol{a}} \boldsymbol{\mu}$	-1.05/+0.9	-. $91+1.0$
Reflectiont collected	5776	1551
Reflections observed	3269	1178
$(1 / \sigma / U)>3.0]$		
Weighting consunt: E	0.00016	0.00150
\mathbf{R} (find)	0.036	0.048
$\mathbf{R w}_{\boldsymbol{w}}$ (final)	0.033	0.048
max on Anal difference Fourtier	0.74	
min an final difference Fourier	-0.56	-1.49
$\max 8 / \%$ (final cycle)	0.142	0.058

$$
\text { - } 70
$$

TABLE 3.1 cone

A colyticel ansi lafra-red data

Compound	[5]	[6]
Formula	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{4} \mathrm{U}$	$\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{NO}_{4} \mathrm{U}$
M	795.6	663.5
C (found)	50.63	37.65
(expected)	52.84	38.01
H (found)	2.68	4.99
(expected)	3.40	5.77
N (found)	1.24	1.98
(expectied)	1.76	211
$\checkmark \mathrm{U}=0$	913	890
$\vee \mathrm{C}=0$	1720	1700
v U-N	1480	1480

TABLE 1.2

Atomic coordlatel $\left(x 10^{4}\right)$ for［ 1 ］，with meandard deviations in partnthese．

	k	4	r	11
UK13	$561(1)$	0293（1）	733－613	4661）
Q＜1）	58i 5）	5568 （5）	$2257(4)$	62（2）
6 12 ）	（1996）	7021（3）	$7685(4)$	60\％ $0^{(2)}$
$0(1)$	2853（5）	6424is）	$3525(4)$	6tit 2 ）
ç1）	3820（ 7 ）	5824 3）	$8174(5)$	44（3） 8
C（11）	$5112(7)$	$5686(3)$	890155	$46(5) 1$
c（1）	5261（9）	SESA： 4 \％	$987565)$	67 4 ）
C（13）	6415（9）	56961 4）	195726 ${ }^{\text {（1）}}$	78（4）
C（14）	7451（8）	5376（4）	$10 \leq 23$（ ${ }^{-}$）	$67(4) x$
C（15）	73日4，\＄	$522364)$	937E（ ${ }^{\text {a }}$	83（4）
C（15）	$6158(8)$	$5378(4)$	8663 （6）	$7564)$ 事
C（12）	3693 （7）	$5756(4)$	$7159(5)$	5143）
C（2）	2588 8）	5781（3）	845e45）	46 （3）
O（2）	1385（5）	5918 （ 5 ）	$6655(4)$	75 3 3
c（21）	2424（7）	5651 （3）	$5385(5)$	4763
c $2 \pm$ ）	3551（8）	5556（4）	5080：5）	636
C（23）	34889	$5378(4)$	＋124（6）	67（ ）\％
C（24）	2145（9）	5297（ ）	3419 （6）	614331
C（25）	1022（8）	$5.555(4)$	3779（5）	62 63）
C（26）	1146（7）	5559（4）	$4755(5)$	5763）
0 （3）	$-1250(5)$	$6359(5)$	$6571(4)$	61（2）
c（3）	－2491（7）	$6434(3)$	$6345(5)$	47（3）
C（E1）	－316867）	$6439(3)$	5256（5）	$4363) 4$
cis2）	－2635（8）	$6833(4)$	408145）	$55(5) *$
Cく3す）	－3167（9）	$60124 * 2$	$3667(6)$	60゙ 3 ）
C（34）	－42日A（ 9 ）	6594（4）	32344 E）	78（4）
C（35）	－4724（9）	$6797(4)$	3794（E）	75 （ 4 ）
C（3E）	－4239（8）	$6818(4)$	$4815(5)$	$59(3) 4$
Cく834）	－3289（7）	$6783(3)$	7816（5）	4963）
C（4）	－2584 7 ）	6838 （3）	\＆日tac 5 ）	44（3）
0，4）	－1341（5）	672843	8598643	64（2）t
c（41）	－3362（8）	$7154(3)$	s64t（5）	46（3）
c（42）	－4693（8）	$7357(4)$	8306（6）	65 4 ${ }^{\text {2 }}$＊
C（43）	－5357（9）	$7658(4)$	8304（7）	77（4）
C（4）	－4694（9）	$7786(4)$	9558 ${ }^{\text {c }}$	32（4）
C 45 ）	－3才79（9）	$7599(4)$	10225 ${ }^{2}$ ）	$89(5)$
C（46）	－2712（3）	7282（4）	9olsí）	ter ${ }^{\text {（ }}$（
N（1）	1212¢（）	E503（ J）	9809 4）	$52(2)$ 車
C（51）	4e5i8）	6． $54(4)$	10．394，5）	6すくすり
C（52）	$773614)$	6．341（4）	11414（E）	Eड54）
c（53）	1953（1t）	－644（4）	11s45（6）	$72(4)$
C（5））	274969）	Es7964）	1させ6゙も）	$67(4) 4$
C（55）	$2352(8)$	－790，4）	1日25日（	6263）

＂Equivalent isotropic U defined as one third of the trace of the orthogonalised U_{4} tensor

72 －

TABLE 3.3

Atomic coordinates（ $\mathbf{m}^{\mathbf{d}}$ ）for［6］，with standard deviathons in parentheges．

	\％	－	2	4
れ」う	E	825e：1）	75Ad	5031）＊
Qid）	0	7149 ${ }^{\text {a }}$	727－（18）	癿く732
6－2；	E	$5 \times 1 \overline{\text {－}}$	3d5se18；	63（ 5 ） 2
（i） 3 ；	－i429，${ }^{\text {a }}$		$8351(12)$	65i4）
䃑4；	－9419）	sidefiti）	5774（16）	876）
Ci 1	－ 0 esti 12；	575ek	S699：19）	55（6）
C（2）	－1822＇14，	$5478(5)$	4522（25）	90 （3）
C（3）	－225714	5875 （3）	－0064 18）	58（6）＊
Ci4；	－2idosf3）	2213i7）	7454（1）	121（16）＊
0 （5）	－2323il3）	0520\％\％，	8573（15）	$78(5) x$
C（5）	－Esati is）		Sojesiz5）	14041134
C（6）	－2553633\％	7471（id）	5442634）	149815）
ごて）	－3705イE゙i	8．735（29）	10957（ +5$)$	223i24）
C（8）	－2348（22）	－337（14）	109050 29）	113（13）
W（1）	＊	E5：15il）	18d96：25）	60（8）
（－11）	d	6（46）（5）	11621（29）	59（9）1
Ci12）	${ }^{+}$	6229（13）	12489（124）	－2（ 1 （1）
（1） 13$)$	\pm	6886（15）	12850（46）	1日（11）
C（14）	${ }^{3}$	－587（18）	11870i35）	1196193＊
c（15）	0	$7201(17)$	$189900^{\circ} 5$	193（17）

Equivalent isotropic \mathbf{U} defined ar one third of the trace of the orthogonalised U_{4} sensor

- 73.

TARLE 3A

Selected bond lengtha (A$)$ and bond anden (${ }^{\circ}$) around the metel atoca with ationdard deviation In parentlenes. \dagger

a)Band length	[5]	[6]	[7]
M-O(11)	1.751(5)	1.746(18)	1.83(1)
M-O(12)	1.747(6)	1.771(14)	
M-O(1)	2.360(5)	$2.440(14)$	2.34(1)
M-O(2)	2.299(6)	2.281 (15)	2.44(1)
M-O(3)	2.317(4)	.	
M-O4)	2.367 (5)	-	-
M-N(1)	2.575(6)	2.595(24)	2.47(1)
b) Prand Amplea	[5]	[1]	[7]
O(11)-M-O. 12)	177.9(2)	175.8(8)	173.58)
O(11)-M-O(1)	90.3(2)	$87.1(4)$	89.1 (5)
O(11)-M-O(2)	91.8(2)	93.1(6)	89.6(6)
O(11)-M-N(1)	86.7(2)	$91.1(7)$	93.2(5)
O(11)-M-O(4)	$90.1(2)$	-	-
O(1)-M-O(3)	90.8(2)	\cdots	-
O(12)-M-N(1)	$91.2(2)$	84.77)	-
O(12)-M-O(1)	88.6(2)	91.4(4)	-
O(12)-M-Q(2)	89.6(3)	$90.2(6)$	-
O(12)-M-O(4)	89.7(2)	-	-
O(12)-M-O(3)	$91.1(2)$	*	-
O(1)-M-O(2)	70.5(2)	71.9(5)	71.1(4)
O(3)- M-O(4)	70.1(2)	-	-

[^3]TABLE 3．5
Full bond lengths（ X ）

For compound（5］

（4．1）-6.11 ）	1． 354.5 ）
UF1；－0i1；	2 367（5）
UC 1）－063；	$2329(4)$
UA1）－N（1）	2．575（6）
Ći l－C（11）	$1492(9)$
C（1）－E（ 12 ）	1 374611）
C（12）－c（13）	1 383（11）
c $(14)-C(15)$	
（cala）－ciz）	1 玉7アis）
Caz）－C（21？	1 \＆3s：${ }^{\text {a }}$ ）
C（2）－－i 2 e	1．402（9）
C（23）－C（24）	$13 \log 11)$
（ 25 ）－6iso）	1 38て（11）
Cく3）－cisi）	$1518(9)$
（ $(51)-\binom{$（ }{3}	1 385（11）
（ $(32)-\left(\begin{array}{c}3 \\ 3\end{array}\right.$	1． $391(1 \theta)$
（ $(304)-\mathrm{C}(35)$	1． $303(13)$
c（034）－c（4）	$1483(9)$
C（4）－C（4）	1 4s8（11）
C（41）－C（46）	$1398(8)$
$e(+5)-c(44)$	1．378（12）
C（45）－c（40）	$1582(14)$
N（1）－E（55）	$1359(14)$
C（52）－C（53）	
C（54）－c゙（55）	1．392：12）

Far compound［6］

（1），－－act；	1． $746(18)$	（1）－－	1．771（14）
（i．$: 5-0,3)$	2 4 46（14）	U（1）－0i4）	c．281（15）
Ui＇）－NiJ）	$2595(24)$	U（1）－0（3）${ }^{\text {（ }}$ ）	2．439（14）
Uく1；－6343；	$2251(15)$	0 a 5 ）－c（4）	i． $468(47)$
O（4）－c（ c $^{\text {（ }}$ ）	i． $2479(24)$	（11）－c（2）	d 511（31）
Ci 1 ）－103）	1 379（28）	（－5）－（：4）	1． $637(55)$
（－1）－0is）	153465 ）	0i5）－c（5）	1 408（2）
（15）－6ic）	1． 435940 ？	c（5）－cis）	1512（47）
（6） 5 －6 6 ）	1．646， 373	N（1）－6（11）	1 371（36）
NS1）－C（15）	1．200933）	C（11）－cis）	$1+79(12)$
（ $\because 2$（2）－c（15）	$1352.54)$	C（13）－6゙14）	13785 （3）
（ 14 ）－cif）	i．4808 49）		

TABLE 3.6
Full bond angles（ ${ }^{\circ}$ ）for compound（ 5 ］

0． 11 ）－4c1）－0（12）	17759
ni 12）－4（1）－6．1）	38785
	39．763；
$0<113-461)-0(3)$	$90.8(2)$
	$1459(2)$
$0(11)-418)$－12	90．312）
Or $13-15(1)=$ ci 4 ）	$144262)$
$0 \times 3)-1615-0(4)$	69 9 2 ）
aita）－U11）－Ni！	91 （12）
$0(2)-4<1)-\operatorname{lic})^{\prime}$	142 or2）
$0(4)-$ U（ 1 ）－ik（ $i)$	$72.5(2)$
o（1）－cr1）－6（1t）	$116.5<8)$
C（11）－c（ $13-\mathrm{C}(1212)$	121．7（7）
C（1）－C（1t）－L（16）	125．367
C（11）－C（12）－C（13）	120．9：3）
c（13）－E（14）－C（15）	118．1（7）
c（11）－c（16）－c（15）	121．518）
C（a12）－c（2）－0（2）	122．8（7）
$0(2)-C(2)-C(21)$	114．5（6）
C（2）－C（21）－C（22）	122 5ios
c（22）－C（21）－E（26）	$118.8(\vec{r})$
c（22）－C（25）－C（24）	120．7（a）
c（24）－c（25）－E（26）	120．067）
（1） 1 ）－OC3）－C（3）	140．4（5）
0（3）－c（3）－c（ 0354	124．2（6）
C（3）－c（31）－E． 3 （ 2 ）	117．9（0）
c（32）－C（31）－C（36）	119．36）
C（ 32$)-C(33)-C(34)$	120．（0）
c（34）－C（ $353-[(36)$	12e．s（s）
C（3）－L゙（ 3 34）－C（4）	122．3（6）
C（034）－c（4）－ci41）	$119.8(6)$
U（1）－O（4）－C（4）	138．7（5）
c（4）－c（41）－c（46）	115．417）
C（41）－C（42）－C（45）	121．3（7）
C（ 43$)-\mathrm{C}(44)-\mathrm{C}(45)$	129 8（0）
C（41）－C（46）－C（45）	120．2（s）
U（1）－N（1）－E゙く55）	123．0（5）
N（1）－C（51）－C（52）	124．54）
C（52）－c（53）－C（54）	119．94）
N（1）－C（55）－C（54）	$123.8(8)$

11，－u（1）－0．1）	9 AB （2）
0：11）－u（1）－0i2）	91 6（2）
	70．s（z）
（ai 12）－U（1）－0（3）	$91.1(2)$
	75．042）
0i（2）－（191）－0i4）	89.6 （2）
a（2）－以11）－064	144．9（2）
at（1）－U（1）－N（i）	36．912）
a（1）－（l）（1）－Ni 1 ）	$718(2)$
O（ 3 ）－ 4 （1）－N（1）	142．3（2）
U（1）－0¢1）－C（1）	158．0（4）
o（1）－6： 1 ）－C（12）	$1218(6)$
C（1）－E゙く11）－C（12）	119．9（7）
c（12）－c（11）－c（10）	$116.8(7)$
C（12）－C（13）－C（14）	121．5（3）
$C(14)-C(15)-C(16)$	121．36）
c（1）－C（al2）－c（2）	125 6（7）
C（12）－E（2）－çz1）	$122.5(7)$
U（1）－0（2）－c（2）	$139.5(4)$
c（2）－c（21）－c（26）	118.6 （7）
C（21）－c（22）－c（23）	119．7（7）
C（23）－C（24）－Ci25）	120．1（7）
c（ 21$)-\mathrm{c}, 26)-\mathrm{c}(25)$	120．5（7）
$043)-\binom{3}{0}-6(31)$	115．0\％）
C（31）－c（3）－C（ 6134$)$	12e．（1）
C（3）－c（31）－L（36）	122．1（7）
C（31）－E（32）－C（35）	119．4（7）
C（35）－C（34）－C（35）	120．3（ 7 ）
C（31）－C（36）－C（35）	119．6（s）
C（034）－c（4）－0（4）	124． $12(7)$
$0(4)-\mathrm{C}(4)-\mathrm{C}(11)$	116．2（6）
C（4）－C（41）－C（42）	122．9（7）
C（42）－C（41）－L（46）	118．7（s）
C（ 42$)-c(43)-C(44)$	119 5（S）
C（ 44 ）－ci 45$)-c(46)$	$1195(8)$
U（1）－N（1）－C（51）	124．2（5）
C（ 51 ）－N（1）－C（55）	$116.5(6)$
c（51）－c（ 52 ）－c（ 53$)$	117．4（9）
c（53）－C（54）－c（55）	118．ecs）

TABLE 3.6 cont．
Full bond angles（ ${ }^{(}$）for complex［6］

0i ()$-4(1)-0(2)$	175．3is）	0（1）－U（1）－0（3）	371 （4）
0（2）－Wくi）－0（3）	9144 ）	0（1）－vi 1$)-0(4)$	$93.166)$
$0(2 ;-U(i)-0(4)$	98．2（6）	$0(3)-U(1)-0(4)$	71．9（5）
O（1）－UC1；－Ni 1$)$	91．167）		84．7（7）
$0(3)-U(1)-N(i)$	69． 3 （3）	0（ $4 ;-(4,1)-N(1)$	1＊6．7（4）
	37．164）	$0(2)-(61)-0(3 a)$	$91.4(4)$
（i） 3 ）－U（1）－0（ 3 a）	（58．06）	0（ 4 ；－U（i）－0イ3a）	150．0（5）
N（ 1 ）$-\sqrt{\prime \prime}(1)-0<3 a)$	$69.363)$	d（1）－U（1）－bisa）	$93.2(6)$
$0(2)-(V) 1)-6(4 a)$	$94.1(6)$	$0(3)-(k i)-6(4 a)$	（50．0（5）
ai $+j-$ U $(1)-6 i 43 j$	－8．167）	N（1）－（Ki $)$－bi（4a）	140．7（4）
U（1）－0（3）－C（4）	115．0（20）		$135.6(13)$
$0(4)-6(1)-c(2)$	112．0617）	0（ 4 j－ci 1 ）－cis）	126．1（18）
C（2）－C（i）－Cくら）	121．5615）	c（1）－Cく 3 ）－Cく 4 ）	115．9（27）
U（3）－Ci＋；－C（3）	142．5626）	$0!3 ;-C(4)-0$（5）	\＄4．S（36）
c 23$)-c(4)-0(5)$	116．842）	C（4）－6（5）－c（5）	130． 5 （28）
	110．1（21）	－ 5 （ $)^{\text {－}}$（ $(5)-c(7)$	97． $2(25)$
c（0）－C（5）－ç 7 ）	118． $3(35)$	$0 i 5)-C(5)-c(8)$	$106.2(20)$
c（6）－c（5）－C（s）	129．4（27）	C（7）－c（5）－c（8）	189．6（27）
U（1）－N（1）－C（11）	119．4（17）	$U(i)-N(1)-c(15)$	$116.3(21)$
（＜11）－H（i）－C（15）	124．7（27）	N（1）－C（11）－C（12）	$117.7(27)$
ci11）－c（12）－cis）	（19．3（60）	C（12）－ci（3）－C（14）	120．3（61）
C（13）－C（14）－C（15）	$1282(32)$	N（1）－C（15）－C（14）	$117.9(50)$

- 77 -

TABLE 3.7

Complex [5]

$O(1)^{*}-0.03 ; C(1)^{*} 0.01 ; C(2)^{*} 0.10 ; O(2)^{*}-0.07 ; U(1)^{*}-0.02 ; O(3)^{*}-0.03 ; C(3)^{*}-0.06 ; O(4)^{*}$ $0.09 ; \mathrm{C}(4)^{\bullet} 0.04 ; \mathrm{N}(1)^{*}-0.04 ; \mathrm{C}(012) \mathrm{0.15;} \mathbf{C (0 3 4)}-0.08 ; \mathrm{C}(11)-0.11 ; \mathrm{C}(12)-0.07 ; \mathrm{C}(13)-0.26$; $\mathbf{C}(14)-0.49 ; \mathbf{C}(15)-0.51 ; \mathbf{C}(16)-0.31 ; \mathbf{C}(21) 0.15 ; \mathbf{C}(22) 0.50 ; \mathbf{C}(23) 0.45 ; \mathbf{C}(24) 0.08 ; \mathbf{C}(25)$ -0.23; $\mathrm{C}(26)-0.18 ; \mathrm{C}(31) 0.02 ; \mathrm{C}(32)-0.43 ; \mathrm{C}(33)-0.28 ; \mathrm{C}(34) 0.31 ; \mathrm{C}(35) 0.76 ; \mathrm{C}(36) 0.60$.

Complex [6]

$\mathrm{O}(3)^{\bullet} 0.13 ; \mathrm{C}(4)^{*}-0.01 ; \mathrm{C}(1)^{*}-0.20 ; \mathrm{O}(4)^{\bullet} 0.16 ; \mathrm{U}(1)^{*} 0.01 ; \mathrm{O}(3)^{\bullet} 0.13 ; \mathrm{C}(4)^{*}-0.01 ; \mathrm{C}(1)^{*}$ -0.22; $\mathbf{O}(4)^{*} 0.16 ; \mathrm{N}(1)^{*}-0.22 ; \mathrm{C}(2)-0.35 ; \mathbf{C}(3)-0.37 ; \mathbf{C}(5) 0.23 ; \mathrm{C}(6) 1.65 ; \mathbf{C}(7) 0.09 ; \mathbf{C}(8)$ -0.93; ©(S) 0.17;

TABLE 3 .

Comparieon of M-N bond lengthy ($\boldsymbol{\lambda}$), O-M-O bond anglea ($\boldsymbol{(})$, Inter-plane anglen, and proximity of (pyridine) H - O (uranyl) atoma t

compound	$[5]$	[6]	[7]
M-N/R	$2.569(6)$	$2.595(2)$	$2.47(1)$
O(11)-M-Q(12) P	$177.9(2)$	$175.8(8)$	$173.5(8)$
equatorial/pyridyl anglep	$36.9(2)$	$90.0(0)$	$48.7(10)$
Q(11)H(51)	2.14	2.677	3.179
$O(12)-H(55)$	3.145	2.634	-

[^4]
References

1. N.W. Acock, D.J. Flanderi, and D. Brown, J. Chem. Soc. Datton Trans., p. 679. 1984.
2. K.W. Bagnall, Gmelin Handbuch Suppl Vol E.I. p. I. 1979.
3. E. Frasson, G. Bombieri, and C. Panattoni, Coord. Chem. Revs., vol. 1, p. 145, 1966.
4. N.W. Alonck and D.J. Flanders. Acta Cryst., vol. C43. p. 1480, 1987.
5. W. Blitz and J.A. Clinch, Z. Anorg. Allgem. Chem., vol. 40. p. 218, 1904
6. K. Hager, Z. Anorg. Allgem. Chem., vol. 162. p. 82, 1927.
7. L. Sacconi. G. Cerodi, and P. Paoletti. J. Chem. Soc, p. 4257. 1958.
8. L. Sacconi. G. Ceroti, and P.Paplewi, J. Inorg. Nucl. Chem., vol. B. p. 93, 1958.
9. R.M. Pike, Coord. Chem. Rev., vol. 2, p. 162, 1967.
10. S. Kawaguchi, Coord. Chem. Rev., vol. 70, p. 51, 1986.
11. J.M. Haigh and D.A. Thornton, Inorg. Nucl. Chem. Left, vol. 6, p. 231, 1970.
12. A.E. Comyns, B.M. Gatehouse, and E. Wait, J. Chem. Sor, p. 4655, 1958.
13. L. Secconi and G. Gimnnoni, J. Chem. Soc., p. 2368. 1954.
14. N.W. Alcock. D.J. Flenders, M. Pennington, and D. Brown, Acta Cryse., vol. C43. p. 1476, 1987.
15. N.W. Alcock, Crystallographic Compuzing. pp. p271-278, Copenhagen, Munksgand.
16. G.M. Sheldrick, SHELXTL User Manmal, Nicolet Instrument Co., 1983.
17. International Tables For X-Ray Crystallography, IV, Kynoch Press, Birmingham, 1974.

CHAPTER 4

The cryatal and molecular etructure of dioxahin(pyridine)dinitratouranium (VI)

4.1 Introduction

Relatively few uranyl complexes are known which contain a U-N bond; they include $\mathrm{UO}_{2} \mathrm{Cl}_{2} \cdot 2 \mathrm{NH}_{3}{ }^{1}\left[\mathrm{UO}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}\right]_{\mathrm{Cl}_{2}}{ }^{2}\right.$ and the tide complex $\left[\mathrm{UO}_{2}\left(\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}\right.$. [8]. The aquaanalogue, aquadioxobis(nitrito)pyridineuranium(VI), was first prepared by Barr and Horton. ${ }^{3}$ The bis(pyridine) complex, [8], is prepared from this by replecement of the water molecule by pyridine. A detiled infra red study of the aqua complex with both pyridine and substituted pyridines shows a decrease in $v\left(\mathrm{UO}_{2}{ }^{*}\right.$) from $930 \mathrm{~cm}^{-1}$ (pyridine) to $924 \mathrm{~cm}^{-1}$ (α-picoline) to $921 \mathrm{~cm}^{-1}$ (α benrylpyridine). Study of the nitrate stretching bands ($-1275 \mathrm{~cm}^{-1}$) indicated that there was no change in strength of the $\mathrm{U}-\mathrm{O}\left(\mathrm{NO}_{3}\right)$ bond in this series of compounds. This also shows that the substiments in α-picoline and -benzylpyridine do not influence the uranyl ion through the pyridine ring, but do so directly, since there is no change in the frequency of the ONO_{2}^{-}vibrations. The substitution of water for pyridine to give [8] leads to a slight increase in $v\left(\mathrm{ONO}_{2}^{-}\right.$) spliting. indicative of an increase in the $\mathrm{U}-\mathrm{O}\left(\mathrm{NO}_{3}\right)$ bond strength. ${ }^{4}$

4.2 Experimental

4.2.1 Preparation

The complex was prepared by the method described by Barr and Honton. Pyridine (0.40 g ; 5.1 mmole) was added to a stirred solution of uranyl nitrate ($2 \mathrm{~g} ; 5.1 \mathrm{mmole}$) in ethanol, causing precipitation of the aquopyridine complex. This was filtered and washed with ether, and vacuum dried. This product was then dissolved in pyridine and reprecipitated $\boldsymbol{a O}_{2}(\mathrm{py})_{2}\left(\mathrm{NO}_{3}\right)_{2}$ by cooling after the addition of an equal volume of ether. The bright jellow crystals were washed with ether and dried. The crystals were found to lose pyridine on standing

4.2.2 Data Collection

Freshly prepared crystals were used because of the problem caused by the loss of pyridine. To minimise this problem turther, the mounted crystals were encapsulated in a Lindemann capilliary in an ammosphere saturated with pyridine. Data were collected with a Synter P2, automatic four-circle diffractometer. Maximum 20 was 50°, scan range of $4 /$ - 1.1° (28) around $K_{\alpha_{1}}-K_{\alpha_{1}}$. ecan apeed $5-29.3^{9} \mathrm{~min}^{-1}$ depending on the intensity of a 2 a preacan. Heckground intensides were measured at each end of the scan for 0.25 of the scan time. Three standard reflections.
monitored every 200 reflections, showed slight changes during date collection; the data was rescaled to correct for this. Unit cell dimensions and standand deviationa were obtained by leatat squares fit to 15 high migle reflections, ($25 \leq 0 \leq 29$). The crysul was recentered on 8 of these reflections every 100 reffections to maintain the unit cell perameters. Of the 1414 reflecuions collected. 826 were considered to he oheerved, ($/$ /O(I) ≥ 3.0), and were corrected for Lorentr, polariaation and absorption effects, the lat by Gaussian methoda. The crystal dimension were 0.41 ㅍ $0.49 \times 0.57 \mathrm{~mm}$, giving rise to maximum and minimum tranmistion factoris of 0.112 and 0.031 respectively.

4.2.3 Crysml Data

Diosobin(pyridine)dinitrempursium(VI); [8]; $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{U}, \mathrm{M}=552.24$. monoclinic, space group $\mathrm{P} 2_{1} / \mathrm{a}, \mathrm{a}=16.456(3), \mathrm{b}=7.861(3), \mathrm{c}=5.719(1) \mathrm{A}, \mathrm{B}=95.12(2)^{\circ}, \mathrm{U}=736.8(4) \mathrm{A}^{3}, \mathrm{Z}=$ 2, $D_{c}=2.48 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Mo}-\mathrm{K}_{\omega}\right)=104.9 \mathrm{~cm}^{-1}, \mathrm{~F}(000)=496$

4.2.4 Structure Solusion

 in the refinement rather than rotating to the standard $P 2_{1} / \mathrm{c}$. The position of che uranium anom was found by the Paterson routine of SHEL XTL' and the remaining lighter atoms by succeasive Fourier ayntheses. Anisouropic temperature factors were used for all except the hydrogen atoms which were inserted at fired positions ($U=0.07 \mathbb{X}^{2}$) and not refined. Final refinement on F was by cancaded least squares methode. A weighting scheme of the form $\left.\mathbf{W}=1 / K o^{2}(F)+g^{\left(F^{2}\right)}\right)$ wes applied with $\mathrm{g}=0.00090$. Calculationa were carried out on a Dara General DG30 using the SHEXXIL ayatem. Final $\mathrm{R}=0.075$, $\mathbf{w R}=0.066$. All of the relatively large residuals on the final difference map lay close to the uranium atom. Largest positive and negative peaks on a final differnce Fourier synthesis were at heghts of 4.26 and $-3.69 \mathrm{el} \mathbf{R}^{-3}$ Scattering factors in the analytical form and anomalous dispersion factors were taken from the International Tables. ${ }^{6}$ Atomic coordinates are given in Table 4.1. Bond lengths and angles around the wranium atom are listed in Table 4.2. Table 4.3 contains details of the least squares planes. A full lint of bond lengths and angles is given in Table 4.4
4.3 Dincuandon

Crystal decomposition resulted in a reiatively poor dera set. giving poor final refinement as indicated by the R-factort. In addition, the large size of the crystal introduced errars into its meakurement for absorption correction purposes. As a result it would be unwise to draw two many conclusions from the structure, and only the general features are discussed below.

The complex exhibita the unual centrosymmetric hexagonal-bipyramidal geometry sbout the central uranium atom which is coordinated to twa nitrogen atoms and four oxygen atoms in
the equatorial plane as shown in Figure 4.1. The packing diagram. Figure 4.2, indicates a face to
 other bexagonal bipyramidal complexea ($1.78(3) \mathcal{X}) .^{7}$ The urenyl group is conatrained by aymmetry to be linear. The nitrate group lies in the equatorial plane, but in wisted slighty auch thas the angle $\mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(2)$ in $83.2(6)^{\circ}$ whilst $\mathrm{O}(1)-\mathrm{U}(1)-\mathrm{O}(4)$ is $90.4(6)^{\circ}$. Thim twist is turther illustrated by the angle of $79.5(5)^{\circ}$ between the $O(1)-Q(1 A)$ uranyl line and the plane of the nitrate ligand, rather than 90° if it lay in the equatorial plane. The U-N(pyridine) bond, $\mathbf{2 . 5 4 3 (1 5) A}$, is similar to orher U-N distances $(2.578(13) \AA)^{8}$ and not dissimilar from the valuea encountered in Chapter 3 (e.g. $2.569(6) \AA$). The pyridine molecule is also twisted slightly auch that $\mathbf{C}(1)$ In directed away from $\mathbf{O}(1)$. The plane of the pyridine molecule forms an angle of $11.7(3)^{\circ}$ with the plane of the nitrate group. and $2.0(5)^{\circ}$ with the $\mathrm{O}-\mathrm{O}$ (uranyl) line. There would appear to be no inurnolecular contacts between pyridine- H and uranyl- O (contact distances 2.73(5) A$).$
-82.

FIGURE 4.1 View of the $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{U}$ molecule [8]

FIGURE 4.2 Packing diagram for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{U}$ molecule [8], viewed down b.

TABLE 4.1
Atamic coordimates ($\mathrm{x} 1 \mathrm{O}^{\text {A }}$) and
 standard deviarions in parentheses

- fom	x	y	$=$	U
U(1)	50788	5400	0	4201)
ar 1)	5270 (8)	S952(22)	-2587(25)	59(5) ${ }^{\text {c }}$
$0(2)$	5774 ${ }^{\text {a }}$)	$7368(18)$	2934(24)	55(5)*
O(3)	5261(15)	9853(2k)	2731(39)	75才7)
$0(4)$	4478(7)	7770819)	1344(24)	62(5)t
N(1)	5190(10)	8350(24)	2095(26)	5216)
N(2)	3522(9)	5654(26)	-1416(33)	52(6) ${ }^{\text {a }}$
C(1)	2936(15)	$5109(23)$	-183(42)	53(7)
c(2)	2118(17)	5254(23)	-854 (57)	65(14)
C(3)	1904(11)	6027(36)	-2954(40)	64(9)*
C(4)	2487(12)	6598(34)	-4329 (35)	66(8)*
C(5)	3516(11)	-418(29)	-3449(34)	56(7)*

- Equivalent isotropic U defined an one third of the trace of the orthogonalised U_{i} tensor.

TABLE 4.2

Bond lengths（ α ）and angles（＂）

（standard deviations in parentheses．

a）Bond lengths

析1：－0＜1）	1	－51（15）	（6） $19-0$（2）	2． 48 si （13）
U／ $13-0(4)$	2	$483615)$	U（1）－N（ 2 ）	2． 543 （15）
U（1）－0く1a）	1	751 （15）	（1） 1 －0（2a）	2． $486(15)$
U 1 1 7 －0（4a）	2	488（15）	U（1）－N（2a）	2543 （15）
ar $\mathrm{E}^{\text {a }}$－$-\mathrm{N}(1)$	1	251（22）	Q（ 3 ）－N（1）	1． 21 ¢゙（25）
Di 4 ）－N（1）	1	302（2）	N（E）－C（1）	1 310，3e？
N（2）－C（5）	1	333（27）	$C(1)-C(2)$	1 383（37）
	1	363（38）	c 33$)-C(4)$	1．370（31）
c（4）－c（5）	，	$418(27)$		

b）Bond anglea

a（1）－U（1）－0（2）	85．2（6）	a（1）－UK 1$)$－（2） 4 ）	9＋4（E）
$0(2)-1 K 1)-0(4)$	$514(4)$	$0(1)-(1 / 1)-\mathrm{N}(2)$	8\％4（E）
$0(2)-U(1)-N(2)$	116．0（5）	O（ 2 ）－U1，1）－N（2）	E5 2（5）
17（1）－U61；－0¢1ay	136.	0 2 ）－（k1）－06 13）	Q4 8（6）
$0(4)-4(1)-0)^{\text {a }}$（a）	S日．ह（E）	N（2）－U6i i－ur 1 a）	92 6́（ ）
	34．8（6）	0623－461－0，2a）	180
	128．6（4）		64 115？
O（1a）－U（1）－Di2a）	35． 2 （6）		80 （6）
$0(2)-U(1)-0(43)$	$125.6(4)$		180
	（14．8（5）		90^{4}（t）
	51.4 （4）	Q（1）－U（1）－N（z）	碞 6（5）
0¢2）－u（i）－H（2a）	－4．6i5）	71（ 4 ）－Uく1）－M（2a）	114 85（ ）
N（2）－Li（1）－Hiza）	156		St 4（E）
D（2a）－（U（i）－N（2a）	It 0 （5）	6） 4 a $)=(141)-N(23)$	6 ¢ 2 ¢ 5 ）
	－9．20）		95 711：
OC 2 － $4(1)-645)$	13\％．1（10）	Di 2 ）－M（1	［：S 3（17）
	12t． 6 （19）	Liくi）－Miz）－C（i）	$11=7(14)$
（if $13-\mathrm{N}(2)-C(5)$	$122.413)$	C（i）－N（ 2$)-[(5)$	118＜（17）
M（2）－C（1）－cis	125 3¢3		116265
	121 4i土n		11FTCiO
$N(\hat{2}-2-5$（5）－C（4）	1si stis？		

TABLE 4.3
Deviations (\AA) from mean planes
starred atoms define planes, e.s.d's $+/-0.05 \AA$).

Plane 1
$\mathrm{N}(1)^{*} 0.01 ; \mathrm{O}(2)^{*} 0.00 ; \mathrm{O}(3)^{*} 0.00 ; \mathrm{O}(4)^{*} 0.00$
Plane 2
$\mathrm{N}(2)^{*}-0.01 ; \mathrm{C}(1)^{*} 0.00 ; \mathrm{C}(2)^{*} 0.00 ; \mathrm{C}(3)^{*} 0.01 ; \mathrm{C}(4)^{*}-0.01 ; \mathrm{C}(5)^{*}-0.02$
Plane 3
$\mathrm{C}(1)^{*} 0.00 ; \mathrm{N}(2)^{*} 0.00 ; \mathrm{C}(5)^{*} 0.00$
Line 4
O(11)*; O(21)*
Angles between plane normals and line (${ }^{\circ}$)
1:2
11.7

TABLE 4.3

Deviation (i) from meatr planea
stirred atom define planes, e.i.d's $+/-0.05 \mathrm{~h}$).

Plame 1
$N(1)^{*} 0.01 ; O(2)^{*} 0.00 ; O(3) * 0.00 ; O(4)^{*} 0.00$
Plane 2
$\mathrm{N}(2)^{*}-0.01 ; \mathrm{C}(1)^{*} 0.00 ; \mathrm{C}(2)^{*} 0.00 ; \mathrm{C}(3)^{*} 0.01 ; \mathrm{C}(4)^{*}-0.01 ; \mathrm{C}(5)^{*}-0.02$
Plane 3
$C(1)^{*} 0.00 ; N(2) * 0.00 ; C(5) * 0.00$
Llae 4
O(11)* $\mathbf{O (2 1) *}$
Anglea hetween piane marmali and line (${ }^{\circ}$)

$1: 2$	10.7
$1: 3$	11.3
$1: 4$	87.8
$2: 3$	1.9
$2: 4$	88.5
$3: 4$	88.1

References

1. E. Gluecknuf and H.A.C. McKay, Nature, vol. 165, p. 594, 1950.
2. L.I. Kmpain ad J.C. Sullivan, J. Phys. Collodd. Chew., vol. 55, p. 346, 1951.
3. H. Barr and A. Horton, J. Amer. Chem. Soc., vol. 74, p. 4430, 1952.
4. I.M. Kopeshova, I.K. Shasov, D.S Umreiko, and R.I. Shamanovalaya, Ruse. J. Inorg. Cheme, vol. 12, p. 1748, 1967.
5. G.M. Sheldrick, in SHFIXTL User Mannat, Nicolet Instrument Co., Madieon, Wia., 1981.
6. International Tables for X-Ray Cryspallography Vol IV. Kynoch Press, Birminghm, 1974.
7. R.G. Denning. "Properties of the UO2'." Gmelin Handbuch, URAN nippl, vol. A6, pp. 3179.
8. N.W. Aloock, D.J. Finders, and D. Brown, /norg. Chim. Acta, vol. 94, p. 271. 1994.

CHAPTERS

The dructare of a 1,10-phenanthroline compler of uramyl ecetate

5.1 Introduction

Previous wort. ${ }^{1}$ described complezes of the bidentare N-donor ligand $\mathbf{2 , 2}$-dipyrityl with urioyl nitrate and acetere. The abllity of this ligand to swist about the I, 1' C-C bond permita it to be accommodated in the equarorlal plane of a hexnganal bipyramid. As an extention of this, it was of intereat to guhatitute the more rigid ligand $-1,10$-phenanthroline, which has dimillay geornetry to dipyridyl, bur in comarnined by the benzene ring which joins the two pyridyl rings. Thit chapter describea the tuther refinement of the highly disordered complex with urayl acerate.

3.2 Experimental

5.2.1 Preparavion

The compound was prepared by the technique of liquid diffusion, layering a atmrated solution of uranyl acetate ($2 \mathrm{~cm}^{3}$) on top of a seturated solution of 1,10 -phenminthroline (2 cm) and cerefully sealing the mbe. When the iwo solutions had completely mixed, the cryatals which had formed at the interface were tluered off and washed with ice cold echmol. The product was found to be an (OH)-bridged dimer from the structure determination.

5.2.2 Dava Collection

Data wert collected with ${ }^{-}$Syntex $P 2_{1}$ automatic four-circle diffrectometer for 28 in the range $2.5-50^{\circ}$ whith asan range of $+/-1.0^{\circ}$ (20) around $K_{=}=K_{\alpha}$. Beckground inminides were measured at each end of the ccen for 0.25 of the scan time. Three standurd reflections, monitored every 200 reflections, showed alight changes during ditt collection; the din were reacaled to correct for this. Unit cell dimemions and standiad deviations were obenined by least mumea fit to 15 high angle reffections. Of the 2861 reflections collected, 1994 were considered to be observed, $(/ / \sigma / / 23.0$), and were corrected for Lorentz, polarisation and absorption effects, the lat with ABSCOR. ${ }^{2}$ The cryach drmeasions were $0.30 \times 0.18 \times 0.67 \mathrm{~mm}$, giving rise woximum and minirsum tranamiasion freter of 0.076 and 0.023 respectively. The denaity could bot be measured because of the solubility of the crystals.

3.2.3 Cryatal Dava

 $\mathrm{C}_{\mathbf{2}} \mathrm{H}_{2} \mathrm{~N}_{1} \mathrm{O}_{10} \mathrm{U}_{2}\left(\mathrm{n} \mathrm{C} \mathrm{C}_{2} \mathrm{H}, \mathrm{OH}\right), \mathrm{M}=1005.36$, monoclinic. space group $\mathrm{C} 2 / \mathrm{c}, \mathrm{a}=\mathbf{2 3 . 3 2 0 (6)}, \boldsymbol{b}=$
$9.945(4), c=15.97 \mathrm{~g}(4) \hat{A}, \beta=119.14(2)^{\circ}, U=3237(2) \mathrm{A}^{\mathrm{s}}, 2=4 . D_{c}=2.07 \mathrm{~g} \mathrm{~cm}^{-1}, \mu\left(\mathrm{Mo}-\mathrm{K}_{\mathrm{a}}\right)=$ $95.27 \mathrm{~cm}^{-1}$

5.2.4 Surucare Solusion

 groupt: C2/c and Cr. The position of the uranium alom was found by the Pamerson routine of SHEL XTL 3 and the remaining lighter atoms by auccessive Fourier syntheses. Structure solution in C2/c located the phenanthroline ligand (and acetate group) and indicared that the molecule wes a centrosymmetric dimer. However, maps showed two bridging atoms impleusibly cloee ta each other, the uranyl oxygen poaitions were aleo duplicated. Refinement was continued with both sets of positions included athalf occupency. A group of residual peelks distani from the main complei were interpreted as a partially occupied solvent molecule (presumably ethanol) approximared by 2 cerbons with 0.5 occupancy. and in addition a smaller bridging peak wat also located (final occupancy for these atomx 0.4 .04 and 0.2). A finul $R=0.060 ш R=0.067$ was obtained. All of the relarively large residuals on the Innal difference maps lay clone to the uranium anoma. The true itructure is presumably a non centroaymmetric dimer with one set of urnyl oxygen atoms on each uraniuri; this givex reuxanuble O(axial)-U-O(equatorial) angles. An amempt to refine the strucure in space group Cr was however unsuccessful, either because of the high correlations between paeudo-related morna or because the actual cryatal atudied was made up of molecules in both orientations.

Anisotropic temperature factors were used for the ordered atoms, and hydrogen atoms were incerted ar fixed positions ($\mathbf{U}=0.07 \mathbf{R}^{\prime}$). Hydroxy hydrogen atoms were not included. Final refinement on F was by cascaded least squeres methods. A weighting scherne of the form $\mathbf{W}=$ $1 /\left(\sigma^{2}(\mathbf{P})+\boldsymbol{s}\left(F^{7}\right)\right.$ was applied. Calculations wert carried out on a Dati General DG30 using the SHFI XTL syatern. Initial calculations were performed on a Bale General NOVA 3 computer. Scamering factors in the analytical form and anomalous dispersion factors were taken from the International Tables. 4 Asomic coordinatea ere given in Table 5.1. Bond lenghs and anglea around the uranium atom are listed in Table 5.2 . Table 5.3 containa detila of the least squares plenes.

53 Dhecualon

The complex exhibitr a diatorted hexagoal-bipyramidal geometry about the central uranyl group which is coordinated to two nitrogen atoms and four oxygen atoma (rwo from the acetare ligand and two from the hydroxy-bridge) in the equatorial plane, and thus is similar to the complexes with 2,2 -dipyridyl and nitrate complexes which the rame bite diatance (N...N mem of $2.67(2) \mathbf{R}$ is the four complexes praviously described).

Pigure 5.1 shows an ideallsed view of [9], in which one pair of urany] 0 atoms is ansocisted with each uranium atorth, and in which only one set of bridging OH groupa is included. Detailed diacuastion of the dimenaions in hampered by the disorder which leads to abnormal velues for \mathbf{U} O(uranyl) distencen, whose apperent range is $1.57(2)-1.96(2) A$, compared so the average U-O diatance in other hexagonal bipyramdel compleres (1.78(3) \mathbf{X}). ${ }^{5}$ However the U-N and U-
O(equmorial) bond lengthasem to be leas affected, and are broadly similar in value to thoee previcurly reported. ${ }^{6.7}$ The U-O(bridging) and (acetate) bond lengths have normal values (range 2.34(5)-2.42(4) and 2.46(1)-2.47(2)2). Again these are similar to values previously obeerved but there in a ponsible lengthening of the U-N(ligand) bonds w $2.63(3)$ and $2.63(2) \mathbf{A}$ compared to 2.56(2) found in the nitrate complex. The phenanthroline ligand is pivoted ax anit about the line from U to the centre of the $\mathrm{S}-\mathbf{5}^{\prime} \mathrm{C}-\mathrm{C}$ bond producing an O ...N (acetate-phenanthroline) conret of ($\mathbf{2} .97(2)$) which is illighly manger than the equivalent dianance found in the 2,2'-dipyrityl compley (2.96(1)A). This twint, indicarive of steric strain. produceit an mige of $12.6(2)^{*}$ between the plane of the ligand, and the plane containing the uranium and equatorial oxygen atoms. This may be caused by the need to accormmodate the more rigid ligand in the equatorial plane, but it should also be borne in mind the one complex has two nitrave ligends and the ocher hat one aretheie and two hydroxiden. The atome which form the equatorial plane, are again puckered with deviations in the range $\mathbf{0 . 1 8 (5)}$ to $0.15(5) \mathrm{A}$. The coordineting ligands are aubatentially displeced
 placed slightly out of the the equatorial plane with a bite. (2.20(1) $\mathbf{K})$. similar to that found in the 2,2 tipyridyl analogue, (2.16(1) and 2.17(1) $)$). The packing diagram, Figure 9.2 , again indicates a face to face alignment of the aromatic ringa
91.

FIGURE 5.1 View of (9], as an idedised noncentrosymmetric dimer, with $O(11)$ and $O(21)$ associated with $U(1)$ and $O(12)$ and $O(22)$ (as the centrosymmetrically related equivelents O (129) and $\mathrm{O}(22)$) associated with M 17 ; only $\mathrm{O}(51)$ and O 517 are included as bridging hydraside positions.

FIGURE 5.2 Packing diagran for [5], viewed down b. The alternative positions for the uranyl
and bridging oxygen atoms can be seen.

TABLE S．I
Atomic coordinates $\left(\times 10^{\circ}\right)$ and equivalent isotropic temperature factors（ \AA^{2} I 10^{\prime} ）for（9］ stanaard deviations in parentheses．

1． 6
U（1）
di 11
1］： 21 ：
b）12？
UK2？
1）． 3 ）
64：
（1）5：？
（2） 52
（2） 55 ）
N（1）
N（2）
C（1）
Cr2）
くく 3
Ci4） C＜5
c（ 6 ）
C（7）
C（8）
（ (0)
（ (14)
©（1：）
C（12）
（ (13)
c（14）
creas） C（adz） C（083） c（ela）

34% i： $3:$	2128 lict
	880－91\％
－15： 5 ：	943563%
Tote！！2：	83400（20）
350， 6 隹：	956（ 23 ）
＋2－310	98547 13．
342067 ？	0 05s：14）
2552c 12 ？	855s：22）
35E5611？	7 Ta （ 27
2404425）	699．953）
45566 \％	72496：2）
3442（7）	6525（13）
5122 10．	S463＾22）
5727 （10）	s27esza）
$5-68$（10）	$74681624)$
5166 ¢	E690（6）
5136411	5549 （19）
4590814 ）	$5132(20)$
3987 （9）	$55.55(17)$
3411616）	47 A （18）
2s30（12）	5420（26）
2932（11）	$5904(24)$
a985：－	－208（15）
	$6965(13)$
3036， 9 ）	16258（17）
415さ（11）	11591（22）
こa81（3s）	1420（75）
2429（41）	2593（33）
$2239(50)$	$2124\{92$ ）
is，96（30）	1378（79）

$(1$

530\％，tis	64（1）2
E－11614）	5365）
$4401(19)$	Y18）
6018817）	－7\％
44，心617）	76：6）
－381（10）	94（8）
－542（11）	10sく3）
4035（18）	48＜5）
5732：17）	49（6）
4592641）	51（12）
$5249(16)$	$6 \mathrm{E}(7) 1$
4059（18）	61（6）＊
5885（17）	142（13）
$5897(18)$	145815）
5286（17）	1日4く13）＊
4573 （13）	7ec93\％
5872（15）	9e（13）
5ア0心（15）	sectiot
3396（12）	71（9）
2701（15）	91（12）
2718．14）	1日8゙12）＊
3472（14）	95（15）
305769）	53¢7）
4615（11）	58（3）＊
6751（12）	78イ9）＊
7426（18）	115 13）
－939（56）	146（26）
5455（56）	153（23）
4733（79）	s9（24）
444日（60）	71（19）

＊Equiverent isocropic U defined as one third of the trace of the orthognnalised U_{4} tensor．
-94.

TABLE 3.1

Dond leagtha (i) and anden (") about

the uranlum atom
(siandard deviations in parentheser. Disorder in the structure introduces inaccuracies in the values)

a) Band lengtha

$U(1)-O(1)$	$1.9(3)$
$U(1)-O(2)$	$162(4)$
$U(1)-O(3)$	$2.50(2)$
$U(1)-O(4)$	$2.46(3)$
$U(1)-O(5)$	$2.34(5)$
$U(1)-O(6)$	$2.41(4)$
$U(1)-N(1)$	$2.65(3)$
$U(1)-N(2)$	$2.63(2)$

b) Bond anglea

O(1)-U(1)-O(2)
Q(1)-U(1)-O(3) O(2)-U(1)-O(3) O(1)-U(1)-O(4) O(2)-U(1)-O(4) O(1)-U(1)-O(5)
$O(2)-U(1)-O(5)$
$O(1)-U(1)-O(6)$
O(2)-U(1)-O(6)
O(1)-U(1)-N(1)
O(1)-U(1)-N(2)
O(2)-U(1)-N(1)
Q(2)-U(1)-N(2)
O(3)-U(1)-N(1)
O(3)-U(1)-N(2)
O(4)-U(1)-N(1)
O(4)-U(1)-N(2)
O(3)-U(1)-O(4)
O(5)-U(1)-O(6)
N(1)-U(1)-N(2)
168.3(24)
85.8(9)
103.4(17)
89.4(13)
$90.5(21)$
$116.1(7)$
53.4(26)
81.9(15)
87.1(25)
77.1 (15)
93.7(12)
$86.1(15)$
86.2(13)
$70.9(8)$
133.0(8)
122.4(7)
173.7(7)
52.69)
34.5(12)
63. ${ }^{(1)}$

-93.

TARLE 3.3

Deviation (A) from mean plazes
starred atom define planes, e.s.d's $+1-0.05 \mathrm{~A}$).

Pane 1
$U(1)^{*}-0.01 ; O(3) * 0.02 ; O(4)^{*} 0.02 ; C(13)^{\star}-0.03$
Plane 2
$N(1)^{*}-0.03 ; N(2)^{*} 0.01 ; C(1)^{*} 0.02 ; C(10)^{*} 0.00 ; C(11)^{*} 0.01 ; C(12)^{*}-0.01$
Fiane 3
$O(3)^{*} 0.02 ; \mathrm{O}(4)^{*} 0.02 ; \mathrm{C}(13)^{*}-0.01 ; \mathrm{C}(14)^{*} 0.00$
Llne 4
O(11)* O(21)*
Angles between plame narmals and lise (")

$1: 3 \quad 3.4$
$1: 4 \quad 7.6$
2:3
16.2

2:4
21.1
$3.4 \quad 6.5$

Referencel

1. N.W. Alcack, D.J. Flanders, and D. Brown, /norg. Chim. Ack, vol. 94, p. 271, 1984.
2. N.W. Alcock, Crysrallographic Compusing, pp. p271-278, Copenhazen, Munkganard.
3. G.M. Sheldrick, in SHELXTL User Manmad, Nicolet Inatrument Co., Medison, Wia., 1981.
4. International Tables for X-Ray Crysallography Voi N, Kynoch Press, Birminghem, 1974.
5. R.G. Denning. "Properiex of the UOH"." Gmelin Handbuch, URAN suppi. vol. A6, pp. 31-79.
6. G. Bandoli, D.A. Clemente, G. Maragoni, and G. Paolucci, J. Chem. Soc., Chem. Cоштел., p. 235, 197\%.
7. G. Bandoli, D.A. Clemente, G. Maragoni, and G. Psolucci, J. Chem. Soc., Datton Trans. p. 1304, 1980.

- 97 -

CHAPTER 6

Same Unexpected Side Reactions - Three Further Structure

6.1. Introduction.

It was atated earlier (Chaprers 1 and 2) that the preparation of complexes contining U-S bonds in difficult; a reault of hard and soft acid and base internctions. This problem is further compounded by the fact that the uranyl ion will complex preferentially with other donora which are present in solution. This chapter describes three complexes obtained during attemptr to prepare U-S bonded apecies. Two of these. [10] and (11], invoive S-S bonda formed by the oxidation of the ligand. The third complex [12]. illustrates this preferred complexation of donors other then sulphur.

62 Expertmental

6.2.1 Preparation

Bia (tetraphenylarsonium) cis - cis (1,2-dicymnoethylene-1,2-dithiolate) dimer, [10]; wan isolared during an attempt to prepare the 1,2 -dicyanoethylene- 1,2 -dithiol alt of uranium (VI). The thiol ligand was prepared uning the method deacribed by Davison and Holm. ${ }^{1} 0.50 \mathrm{~g}$ of this ligand in methanol was then added to a solution of uranyl acetate (0.58 g) producing an olive green coloured solution. When addition was complete, the mixture was heated at reflux for $\mathbf{2}$ hrs When cool, the volume of solvent was reduced und the first sign of procipitation. The solution was then filtered and tetraphenylarsonium chloride (1.0 g) in methanol edded. After further cooling, yellow needle-like crystals had formed, which were shown by structure determination to be the cis-cis disuiphide.

Dimethylthiopyrimidine dimer [11], was formed in an attempt to prepare the dimethylthiopyrimidine product of uranyl nitrate described by Baghlaf er. a.. ${ }^{2}$ Dimethylmercaptopyrimidine (0.71 g) dissolved in methanol (doped with dimethylsulphoxide) was added to a solution of uranyl nitrate (1.0 g) in methanol. The colour of the solution became yellow-orange. The volume of solvent was reduced by 50%, and the solution allowed to sund. After 48 hrs , small well-defined block-like crystals were observed. Structural study showed these to be the dimeric, oxidised form of the ligand.
$\mathrm{Bis}(\mathrm{N}, \mathrm{N}$-dimethylformamide)dinitratodioxournium(VI) [12], wan isolated during a further anempt to prepare the dimethyl thiopyrimidine complex with uranyl nitrate. The ligand (0.7 g) in acetonitrile wes added to uranyl nitrate in acetonitrile. The mixture wan warmed gently under
conditions of reflax, then allowed to cool. When cool, the volume of solvent wes reduced alighty, and the solution stored $\boldsymbol{m} \mathbf{0}^{\circ} \mathrm{C}$ for 7 days. Orage-red pyramid-llike crystals wese filtered off, and recryatallised from meetonitrlle. These beceme optaque when left in the open for several days, but were stable for weeks If contained in a vial. As a result of thin, suitable cryatala were immediately encapsulated in a Lindemann capillary for the puposes of structure determination.

6.2.2 Dava Collection and Sonuctural Solution

For all three compounda, dan were collected with a Syntex $\boldsymbol{P} \mathbf{2}_{1}$ aumomatic four-circle diffractometer. Maximurn 20 wn 50° for all three complexen. Scan range of $+1-1^{\circ}$ (20) around $K_{\mathrm{a}}-K_{\mathrm{a}}$, scan speed $2.5-29.3^{\circ} \min ^{-1}$ depending on the intensity of a 2 prescan. Background intenitian were mearured at each end of the scan for 0.25 of the scan ome. Three standard reflections were monitored every 200 reflections These showed slight changen during dam collection for [10] and [11]; the datia was reacaled to correct for this, but were itable for [12]. Unit cell dimeation and atandard deviations were oberined by leas squares fit to 15 high angle reflections. In each cese, of the refection collected, the criterion (//o(/)>3.0) wa used wo deem wherher or not they were observed. If so, they were corrected for Lorentz, polaritition and absorption eftectr, the last with ABSCOR. ${ }^{3}$

All three complexes were solved using SHELXTL' on a Dan General DG30 computer. The position of the uraium atom in compound [12] was determined from a three dimensional Partersion map. Lighter non-hydrogen atoms for all three complexea were located by aubsequent Fourior syntheses and refined misotropically. Hydrogen atoms were inserted at calculated posicions with incoropic temperature factors $\mathrm{U}=0.07 \mathrm{~K}^{2}$.

6.2.3 Crysal Dava

 $F(000)=1076, R=4.53, R w-4.70, g=0.0003$. Cryatal dimensions were $0.47 \times 0.14 \times 0.28 \mathrm{~mm}$ giving rise to maximum and minimum tranmission factors of 0.87 and 0.72 .

 and minimum tranamisaion fecters of 0.39 and 0.23 .
$\mathrm{C}_{4} \mathrm{H}_{1} \mathrm{O}_{10} \mathrm{U},[12] ; \mathrm{M}=540.23$, monoclinic, $P 2 \mathrm{I} / \mathrm{m}, \mathrm{m}=5.616(2), \mathrm{b}=8.458(3), \mathrm{c}=15.984(5) \lambda$.

$\mathbf{R}=2.72, \mathrm{Rw}=2.75, \mathrm{~g}=0.00062$. Crystal dimensions were $0.57 \times 0.45 \times 0.46$ giving rise to makimum and minimum tramission factors of 0.18 and 0.11

6.3 Discusalon

Complexes [10] and [11] should be viewed as oxidation products. Such oxidations are reported to occur in resctions of thiols with a number of one-electron oxidising agents, producing in the first instance with 1,2-dicyanoethylene-1,2-dithiol the cis-cis disulphide [10].

[10]
The uranyl ion in the reactions producing [10] and [11] presumably serves as this one electron oxident, and in itrelf reduced to uranium(V). However, this specien is relarively ungrable (Sea 1.1) and diaproportionatea to give uranium(IV) and uranium(VI), which could then be used in further oxidation reactions. Spectroscopic characterisation of the final solutions to identify the uranium specien present were not performed, these species would be expected to be predominantly uranium(VI), since any uraium(IV) species produced would be oxidised by the reaction conditioas to urtnium(VI).

The crystal structure identified [12] not is the desired thio complex, but at the dimethylformanide adduct $\mathrm{UO}_{2}\left(\mathrm{CON}_{\left(\mathrm{CH}_{3}\right)}\right)\left(\mathrm{NO}_{3}\right)_{2}$. This wan apparently formed by the preferential coordination of dimethylformamide impurity present in the acetonitrile. The structure of [12] has receatly boen reported by Martin-Gil et. al. ${ }^{5}$ Our redetermination is of comparable accuracy and shows no differences from the publinhed structure. Further information la therefore not included.

Atomic coordinatea, bond lengths and angles for [10] - [11] are given in Tables 6.1-6.2. The anion of [10] is illusmated in Figure 6.1. Figure 6.2 shows the pecking diagram for this. Complex [11] is illutrated in Figure 6.3, with iu packing diagram in Figure 6.4.
. 100 -

Flyure 6.1 View of [10] showing atomic numbering scheme

Figure 6.2 Packing diagram for [10]

. 103 .

Floure 64 Packing diagram for [11]
． 104 ．

TABLE 6.1

Atomic coordinatei（A z 10° ）bond langhe（ A ）and angles（ ${ }^{\circ}$ ）for for［10］（standard deviations in parentheses）
a）Atomic coordinates

	x	y	2	U
As（1）	1926（1）	6289（1）	－383i ${ }^{\text {a }}$	48く1）＊
N（01）	$6643(4)$	9026 （6）	3410（3）	80¢（2）＊
N（02）	4025（4）	3690（6）	212153）	r8（2）
S（1）	8880̇（1）	6289（2）	2097（1）	59（1）＊
S（2）	4842（1）	6944（2）	1185（1）	7881）＊
c（01）	6122（4）	7ot9（6）	2302（3）	48（2）＊
C（02）	5236（4）	7848（6）	1851（3）	52（2）＊
C（a11）	6424（4）	8469（7）	2917（3）	55（2）
c（e21）	45773（	8888（7）	2012（3）	56（2）＊
c（11）	1387（4）	7494 （ 5 ）	197（3）	46（2）＊
c 12 ）	291744）	8027（7）	787（3）	55（2）＊
c（13）	1623（4）	8822（7）	1237（3）	61（2）＊
c（14）	618（5）	9898（7）	1034（3）	62（3）＊
c（15）	－102（4）	8599（6）	518（3）	60（2）＊
c（16）	374（4）	7787（6）	54（3）	58（2）＊
c（21）	3098（8）	$7136(12)$	－587（5）	50（4）
c（22）	3993（4）	6324（6）	－661（3）	56（2）＊
C（23）	4723（5）	6988（7）	－832（3）	68（3）＊
C（24）	4691（5）	64日3（7）	－924（3）	82（3）＊
C（25）	3913（5）	9141（7）	－857（4）	83（3）
C（26）	3093（5）	8544（7）	－687（4）	69（3）
c（31）	935（4）	680日（6）	－1220（3）	53（2）＊
c（32）	396（5）	4774（7）	－1324（3）	59（2）＊
c（33）	－3006（5）	4595（8）	－1922（3）	73（3）＊
c（34）	－484（5）	5616 （9）	－24日9（3）	89（3）＊
c（35）	59（8）	6822（18）	－2302（4）	118（4）＊
c（36）	772（6）	7835（7）	－1708（3）	88（3）＊
C（41）	2212 （4）	4557（6）	86（3）	46（2）
C（42）	2071（5）	4416（7）	744（3）	6133）
C（43）	2278（5）	3188（7）	1085（3）	73（3）＊
c（44）	2626（5）	$2181(7)$	$774(3)$	7603）
c（45）	2755（5）	2213（7）	111（3）	77（3）
c（46）	2549（5）	3459（7）	－242（4）	63（3）＊

＊Equivalent isotropic U defined as one third of the trace of the orthogonalised U_{4} vensor．

TABLE 6.1 cont．

e）Bond lengthat

1）	1． $598(6)$
As（1）－C（31）	1．921（5）
	1．129（8）
S（1）－C（ $\mathrm{Cl}^{(1)}$	$1.759(6)$
S（2）－c（02）	1．744（5）
C（11）－C（011）	1．422（3）
$C(11)-C(12)$	1．392（7）
C（12）－C（13）	1．376（9）
C（14）－C（15）	1．30̈6（8）
ci（21）－C．（22）	1.3896135
c（22）－C（23）	$139369)$
C（24）－C（25）	1． 311 （10）
C（31）－C（32）	1． $385(9)$
C（32）－C（33）	1． 306 （8）
C（34）－C（35）	1．372（13）
C（41）－C（42）	1．376（8）
$c(42)-C(43)$	1．363（9）
C（44）－C（45）	$1372(18)$

i）	1．922（11）
Gs（1）－C（41）	1．912（5）
$N\left(\theta_{2}\right)-C(021)$	1．137（9）
S（1）－S（1）	2． $051(3)$
C（01）－c（02）	1．359（7）
Ci日2）－C（021）	1．426（9）
C（11）－C（16）	1． 382 （ ）
C（13）－C（14）	1．379（9）
c（15）－c（16）	1．385（9）
c（21）－C（26）	1．372（15）
E（23）－c（ 24$)$	1．376（10）
C（25）－c（25）	1．369（11）
C（51）－C（36）	1． $376(8)$
C（35）－C゙（34）	1． $364(16)$
C（35）－C（36）	1．372（18）
C（41）－c（46）	1．375 9）
C（43）－L゙（44）	1．356（10）
C（45）－C（46）	1．389（9）

b）Bond angles

$C(11)-A \leq(1)-C(21)$ C（21）－As（1）－C（31） $C(21)-A s(1)-C(41)$ C（01）－S（1）－s（1a）
$S(1)-C(\theta 1)-C(\theta 11)$ $s(2)-C(02)-C(\theta 1)$ C（e1）－C（02）－C（821） $N(02)-C(021)-C(02)$ As（1）－C（11）－C（16） C（11）－C（12）－C（13） c（13）－c（14）－C（15） $C(11)-C(16)-C(15)$ As（1）－C（21）－C（26） C（21）－C（22）－C（23） C（23）－C（24）－C（25） $C(21)-C(26)-c(25)$ As（1）－C（31）－C（36） C（ 31$)-C(32)-C(33)$ $c(33)-c(34)-c(35)$ C（31）－C（36）－C（35） As（1）－C（41）－C（46） $C(41)-C(42)-C(43)$ $C(43)-C(44)-C(45)$ C（41）－C（46）－C（45）
$188.8(4)$
$118.8(3)$
$112.6(4)$
$184.2(2)$
$121.6(4)$
$123.8(5)$
$118.9(5)$
$177.7(5)$
$128.5(4)$
$119.6(5)$
$121.6(6)$
$119.3(5)$
$118.2(8)$
$117.8(7)$
$121.9(7)$
$118.3(5)$
$118.6(4)$
$119.2(6)$
$119.7(6)$
$118.2(7)$
$119.7(4)$
$128.2(6)$
$126.7(6)$
$118.6(6)$

C（11）－As（1）－C（31） $188.6(2)$ C（11）－As（1）－C（41） C（31）－As（1）－C（41） $S(1)-C(E 1)-C(82)$ C（82）－C（81）－C（e11） S（2）－C（62）－C（021） N（ 11$)-C(411)-C(a 1)$ As（1）－C（11）－C（12） C（12）－C（11）－C（16） $c(12)-c(13)-c(14)$ C（14）－C（15）－C（16） As（1）－C（21）－C（22） C（22）－c（21）－c（26） C（22）－C（23）－C（24） $C(24)-C(25)-C(26)$ HS（1）－C（31）－C（32） C（32）－C（31）－C（36） C（32）－C（33）－C（34） C（34）－C（35）－C（36） As（1）－C（41）－C（42） $C(42)-C(41)-C(46)$ $c(42)-c(43)-c(44)$ C（44）－C（45）－C（46）
$107.7(2)$
109 a（2）
117．1（4）
121．9（5）
$117.2(4)$
178．4（6）
119．1（4）
120．3（5）
$119.6(5)$
128．1（6）
120． $3(8)$
121．4（9）
119．8（6）
121．6（7）
12日．3（4）
121． 0 （5）
$120.5(7)$
$121.3(7)$
119．7（4）
128．6（6）
120．1（6）
119．9（6）

TABLE 6.2

Atamic coardinatea（ $\mathcal{A} \times 10^{\circ}$ ），bond length（ \mathcal{X} ）and angles（ ${ }^{\circ}$ ）for［11］（standard deviations in parentheses）
a）Atomic coordinates

3¢11）	－585i 1）
－（1i）	$3104(3)$
裸（11）	9eSoi（2）
が12）	3928i ${ }^{\text {（ }}$
（1才）	18046 （3）
C（E）	168S1（4）
C（14）	10359：3）
C（15）	10353：${ }^{\text {¢ }}$
（is6）	11735：4）
E（2i）	07311）
H（zi）	6761く2）
H（22）	$55104 \geq$ ）
ciz1）	63d7isj
C．25）	$5340(5)$
（i23）	$6817(4)$
Cく24）	551ぎ3）
C（25）	$5087(3)$
（20）	$4150(4)$

6EI9（1）	2－30＜
Jご175）	52583.
	35（5） 3 ）
－163i＋）	348コく3；
5i：zes）	3385： 3 ；
1580is	4 $6+3$（5）
3572（5）	161F（4）
5455（ 6 ）	5014 ${ }^{\text {¢ }}$
64di：	335Ex 5；
$473312)$	2710゙く1）
4ėesi4）	537（3）
31556 ${ }^{\text {（ }}$	112593）
$4189(4)$	1282（3）
46こご5）	－535（4）
	－141／（5）
311＊゙く5）	－993（4）
20669（5）	30（4）
17030）	－104（5）

－
－0ilis 58.93 $58(1) 1$
$45 i()$
$59(2) 1$
3elz；1
60 0 （2）

54（3）
Ficl）
5911）＊
5361）
54il）

36゙3ン4
－6：2）
－3゙さう＊
85（2）
－Equivaleat isotropic Udefined an one third of the trace of the
orthotenalised U_{i} tentor．
b）Band leegth

$S(11)-C(11)$	$1.509(4)$
$C(11)-H(11)$	1
$N(11)-C(12)$	$1.340(5)$
$C(12)-C(13)$	$1.455(5)$
$C(14)-C(15)$	$1.374(-3)$
$S(21)-C(21)$	$1.778(4)$
$N(21)-C(22)$	$1.365(5)$
$N(22)-C(25)$	1
$C(22)-C(24)$	$1.367(6)$
$C(25)-C(26)$	$1.477(7)$

$5(11)-5(21)$ （ill）－Fis 12 ） Ni（2）－（i（15） C（1こうー心て14） C（15）－L（16） N（21）－C（21） N（22）－C（21） C（22）－C（23） c（24）－C（25）

823（2） 312（6） 331（6） 564（6） 515（7） 3（6）6） 317（5） － $483(8)$ 1．372（8）
c）Bond angles

C（11）$\cdot 5(11) \cdot 5(21)$ Sil1）－C（11）．M（12） C（11）－N（11）－C（12） N（11）－C $(12) \cdot C(13)$ $C(15)-C(12)-C(14)$ N（12）－C（15）－C（14） C（14）－C（15）－C（10．） C（21）－N（21）－C（22） S（21）－C（21）－N（21） N（21）－C（21）－N（22） $N(21)-C(22)-C(24)$ $C(22)-C(24)-C(25)$ N（22）－C（25）－C（20）
$105.9(2)$
$116.5(3)$
$114.8(3)$
$116.6(4)$
$122.8(4)$
$121.7(4)$
$121.9(4)$
$114.2(3)$
$124.1(3)$
$123.0(4)$
$121.9(5)$
115
$117.8(5)$

S（11）－C（11）－N（11） N（11）－C（11）－N（12） C（11）－N（12）－C（15） $N(11)-C(12)-C(14)$ C（12）－C（14）－C（15） N（12）－C（15）－C（16） S（11）－S（21）－C（21） C（21）－N（22）－C（25） S（21）－C（21）－N（22） N（21）－C（22）－C（23） （ $(23)-C(22) \cdot C(24)$ Hiz2）－C（25）－C（24） C（24）－C（25）－C（26）
$1196(3)$ 129.914 114．5（4）
121．（4）
$118.5(4)$
116．4（4）
146．1（2）
116．4（4）
$118.8(3)$
$116 . e(4)$
$122.8(4)$
$1192(4)$
123 （i5）

- 107 .

Referemen

1. A. Devison and R.H. Holm, Imorg. Syrfh., vol. X, McGraw Hill Book Co., 1967.
2. A.O. Baghlaf, M. Isheq, O.A.S. Ahmed, and M.A. Al-Julani, Polyhedron, vol. 4, p. 853, 1985.
3. N.W. Alcock, Crysiallogrophtc Compuring. pp. p271-278, Copenhagen, Munkgangd.
4. G.M. Sheldrick, SHELXTL User Manmal, Nicolet Insmument Co., 1981
5. J. Martin-Gil, F.J. Martin-Gil, A. Pearles, J. Fayon, and M. Martinez Ripoll, Acta Cryar, vol. C39, p. 44, 1983.

CHAPTER 7

EXPERIMENTAL SECTION

7.1. The Collection of X-rey Diffrection Data.

7.1.1 Crystoi Selecrion

The first and perhapa most important stage in the collection of X-ray data is cryatal selecdion since a poor crystel would generate a poor date met. For a crystal to be suitable, two main requirements must be met: (a) it must be of proper size (and shape); and (b) it must poaseas uniform interal structure. The choice of size is a balance of wo contridictory fectors, though 0.5 $10.5 \times 0.5 \mathrm{~mm}$ ir generally a good compromise. This arises from the fact on the instrument used, indeod on moat instruments, a plateau of uniform intensity in the primary beam of dimentions 0.5 $\mathbf{x} \mathbf{0 . 5 m m}$ can be obreined, so if a crysal were to exceed this size, not all parts of it would be enpoed to the aame rediation intensity. The second effect which in important in determining erystal size is aheorption of X -rays by the cryalal, which follows the usual Lembert-Beer law, such that the intenaity / of a beam nfter passing through a thickncas t of ahaorber is given by:

Imlent

Where 4_{0} is the intensity of the incident hem and μ ta the linetr aboorption coefficient. Since the intensities of the diffrected ray from a given cryatil are proportional so itr volume l.e. the amount of material present, there is an advantage in selecting as lage a crystal a porsible. Because of absorption however, there is an optimum thickness. For any greater thicknesa diffrected raya which have pased through the cryatal will thow decrease in intensity. This optimum thickneas is a function of the linear absorption coefficient, and is given by

A second serious problem associsted with absorption arises from crystal shape, and manifeats itself in the fact that the incident and difficted raya may have different average path lengths to the cryatal for different reflections. As a result, theac reflections will auffer to varying extents from abeorption, and ayatematic error will be introduced into the observed Intenaides. This in particularly apparent in plate-like and needle-like cryatals. One way to overcome this is to shape the cryanal, bough this hat many dismivantages. A socoad, much betrer and more accurate, method which in appplicable to all cryatals is to mesaure the crystal precisely, so that the exact ahape fa known, hence the beam path length can be compuied, and the data corrected for

- 109 -

abeorption effects.

To meet the second reqirement above, the cryazal muat be pure and single, i.e. not nwinned cr composed of microscopic subcryatal. Al a first teat for twinning, the cryatal may be viewod under a polarising microscope. If rotated about an axis normal to the polariaing material, the crytaln should either appear uniformly dark in all positions or be bright and extinguish once every 90°. Cryanals which are made up of two or more fragmentr with different arientations (1.e. are rwinned) will reveal thermselves by displaying both dark and light regions at one time. If the eryatala are "amall'" and single, several are selected and mounted.

7.1.2 Crystat Mourting and Proceedure

Crystali are mont readily mounted under a binocuar wide-field diseacring microdeope. A suitable cryand which fulfills the criveria above is plaed on a microscope alide and parhed gently with a needle until one end projectir beyond the edre of the slide. A small quantity of Araldite is then mixed, and a small amount placed on the end of a thin quatz fibre, (the other end having firs beea secured in wax in a grub screw). Then the (free) end of the fibre in then aligned with the end of the cryatal and the two gently puahed together and allowed mos. Araldite is used aince it in frirly ripid setting. but affords enough time to orient the crystal should this be required, and il amorphous, afect which is most important since the portion of the mounting immediately adjacent to the cryiul often protrudes into the X-ray beam. The pin which holds the quatre fibre is then ecrewed into a goaiometer head and the cryatal is accurately measured ensuring that the orientation of each face relative to the angular -icale is known and can be kept constant during the dern collection.

The cryatal is then transferred to a Synuex P2, diffractometer (Figure 7.1) which is operated via a teriet of computer programs described in detail by Sparks, ${ }^{2}$ who hat has also outlined the procedures for centering and subsequent deta collection. ${ }^{3}$ The poaition of the cryatal on the gonioneser head. G, is adjusted through a series of translational movements until it is visully centred in the path of the X-ray beam, at the intersection of the 0 and I axea (C in Figure 7.1). This in accomplished with the aid of an accurnely aligned teleacope with a cross-wire atuched to he circle.

Once manually centered in the X-ray beam, a rotation photograph can be taken. The x and 20 circlen are positioned $\mathbf{m a n}^{\mathbf{0}} \mathbf{0}^{\boldsymbol{r}}$ and the ϕ ciscle is rotated as the crysul is bathed in the X -ray beam for $10-15$ minutes. The diffraction patien obegined (recordod on polaroid film) hat mem symmetry. This is illustrated in Figure 7.2. The $\mathbf{2 r}$ and 2 y coordinates of these are measured and input to a program which seti X and $\mathbf{2 0}$ for each reflection correaponding to the equadion:-

$$
x=\tan ^{-1} \frac{y}{x}
$$

FIGURE 7.1. The four circles of the diffractometer

FIGURE 7.2. The puttern of sprits on tilm fram a rotation photograph.

$20=\cos ^{-1} \frac{2 y}{\sqrt{x^{2} y}+2 d^{2}}$

where d is the diatance from the crystal to the centre of the Polaroid film. With the $\mathbf{2 0}$ and \mathbf{x} circlea set for the calculated position of a reflection, the $\$$ circle is rotated until the reflection enters the detector aperture. Once the position of the reflection is found. itt position is refined by the determination of positions of half-height peak intensity, proceding through a seriea of iterations until any variations lie within the tolerances $0.02^{\circ}, 0.01^{\circ}$ and 0.04° for 28,0 and χ reapectively. In the balf-height method, the intensity at the estimated peak centre is first measured. The program then atepr in negaive and positive directions to determine the position where half that intensity is found. Half the distance between these two point is then taken as a bever eatimate of the peak centre. The position of the reflection will only be refined if its intensity is greater than a preset minimum value, which is normally set to 1000 c.p.s.

A minimum of I reflections should be centered in this way, (a maximum of 15 is permitted by the program). From the refined angular parameters, the anto-indexing program generates 30 posaible axial solutions for a unit cell, printing out their lengtha(\mathcal{X}) and the cosines of the anglea between them. The solutions of shortest length compatible with any apparently orthogonal sets of axes are selected. This is then tested for the correct lattice symmetry. In some cases the true unit cell may not be readily apparent in the solutions duc to crystal twinning or the preaence of satellite subcrysin). For this reason the maximum number of reflections possible should be used, and through trial and error, one or more of these may be omitted leaving only those from one component for use in the determination of the unit cell.

The selected cell is then examined by taking Polaroid photographs of each axis in turn, thus confirming the true symmetry of the cell. An axis of symmetry for example would be revealed by the axin photograph containing diffraction spots related by a mirror plane. Such an axis would correspond to the unique axis of a monoclinic cell, the c -axis of a heragonal cell or any axis of a unit cell of higher symmetry. The photographs will also show any falnter Interieaving layers of apots at fractions $\left[\frac{1}{n}\right]$ berween the major layers indicating the order, n, by which the axis length needs to be multiplied. A disordered array of diffraction spots on the photograph in indicative of twinning and another crystal should be chosen and the procedure repeated.

More precise unit cell parameters with the hal indices and refined angles of the reflections used in their calcularion are derived from a least squares program. This program will also calculate the indicea of any omitted reflections (above), and if these are integer valuea they can be included in the least squarea calculation to give unit cell parmeters of greater precision.

Unit cell parameters of much greater procision are obtained by running the least squares program based on a set of centered reflections of higher 20 values. The 15 high angle reflections are selected by running a rapid data collection program through a section of the $\mathbf{2 0}$ range $\mathbf{2 0 ^ { \circ }} \mathbf{- 3 0 ^ { \circ }}$.

112 -

depending on how atrongly diffrecting the cryand in. Thia preliminary dane collection can also be used to determine if the unit cell is primitive or centred and if it is described in the correct Bravais lamice. If the lartice chosen is incorrect the use of a transformation matrix to produce the correct lanice at this point will save a great deal of computer time as a later date. The atrongeal 15 high-angle reflections from the dans set are input in the program and the original centering program used to refine their positions. The final least aquares calculations will be based on these reflections and the standard deviations of the unit cell parameters may also be calculared.

The computer now has the information specifying the orientation of the unit cell axes and a day collection program can now be started using thila Informasion to set the appropriate avimuthal angle for ech reflection. Before this is done, it is useful to plot a profile of one or more of the atronger reflections to deternine the shape of the peak. If a doublet is obtained, then in in a likely indication that the crystal is twinned and the erystal should be discarded. From the shape of the peak, it is possible to select the angular range of each reflection that has to be covered in the data collection.

The full datu collection is carried out. The procedure is programmed to scan systematically and sequentially each refection in reciprocal space bounded by the limiting sphere. The $0-2 \theta$ ecan technique in uted in which the a-circle. which controls the rotation of the reflecting crystallographic plane, moves ar half the angular rate of the detector as the profile of the refiection is recorded. A preliminary scan of 2 seconds is used to determine a suitable scan rute for each reflection within the limits of $2.0-29.3^{\circ} \mathrm{min}^{-1}$ depending on the intensity of this pre-scan. The background counts on either side of the reflection are also measured to give a true eatimate of the integrated intengity through their profiles. Throughout the data collection, a number of standard reflections (usually three) are monitored every 200 reflections so that any decay of the crysial induced by expoasure to X-ritys can be ascertained and the data rescaled if necessary. The data obtained from each reflection is writuen onto a 9 -track magnetic tape which is on-line during the running of the date colloction program. The data ia then transferred to Data General DG30 computer for structure solution, and the structure solved by use of the heavy-atom method incorporated into a package of package programs in the SHFilXTL. system, or if no one atom is significandy heavier than the others, direct methods ${ }^{\text {cen }}$ be used, a truly "bieck box" technique involving the calculation of a combination of phases for a sub-set of reflection data until a poastble solution is reached. The use of this technique was not required in this work-

In some cases the procision of the data collected may be enhanced by carrying out the data collection at low temperatures (typically $-120^{\circ} \mathrm{C}$ e $-100^{\circ} \mathrm{C}$). and in others the use of low emperatures may stabilise the compound under study enabling the dare collection to be carried out. The low temperatures in the region of the crystal are achieved by using the Syntex LT-1 low temperature attachment on the diffractometer. This antachment plays a stream of cooled, dry nitrogen gas
over the cryatal, the gea heing frrit cooled by a ham oxchanger in a Dower of liquid nitronea and thea heaved to the required iernperanre.

7.2 Techniques used in hariln. Neptrmann-217

The neptunium 237 used was aupplied as the dioxide. This was oxidised so NpO by prolonged boiling in concentrated nitric acid ${ }^{7}$ (with the addition of fluorkde ion to aid dissolution). The neptunium(V) could then be oxidised to nephunium(VI). The oxident, partially ozonised oxygen, it produced by the pasage of oxygen through an electrical diacharge. The gas mirture in parsed through the Np(V) solutica in diluned (4M) nitric acid, (or echmol) which in hemed in a water beth maintained af $60^{\circ} \mathrm{C}$. The $\mathrm{Np}(\mathrm{V}) \rightarrow \mathrm{Np}(\mathrm{VI})$ oxidntion, proceeded repidly and wer accompanied by a colour chane from dart-green to brown. This oxiderion and that of Np(VI) are thermodynamically favoured by the potential of the $\mathrm{O}_{4} / \mathrm{O}_{1}$ couple, ${ }^{\mathrm{I}}$ which is greater than those for $\mathrm{Np}(\mathrm{VI}) / \mathbf{N p}(\mathbf{V})$ and $\mathrm{Np}(\mathbf{V I} / \mathbf{N p}(\mathrm{IV})$:-

$$
\begin{aligned}
& \mathrm{NpO}_{2}+e_{t}^{-} \mathrm{NpO}_{t} ; \mathrm{E}^{\bullet}=1.236 \mathrm{~V} \\
& \mathrm{NpO}_{2}^{+}+4 \mathrm{H}^{+}+2 e^{-} \rightarrow \mathrm{Np}^{4}+2 \mathrm{H}_{4} \mathrm{O} ; \mathrm{E}^{v}=0.938 \mathrm{~V} \\
& \mathrm{O}_{3}+2 \mathrm{H}^{+}+2 e \rightarrow \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} ; \mathrm{E}^{-}=2.07 \mathrm{~V}
\end{aligned}
$$

If the nepanium is impure, it can be precipitated an the hydroxy apecies $\mathrm{NpO}_{2} \mathrm{NOH}_{2}$ by the cerreful addition of dilute aquona emmonie. This precipitate can then be centrifuged, followed by anccenive waghing wh watri and acetose to remove the impuritias. The hydroxide can then be redimolved in dilute nitric acid.

In some cases the neptunium supplied contains some plutonium which would account for - aignificent proportion of ita a-ectivity. For example, the activity of a ample of neptunium which is chemically fairly pure but containg some plutonium (ie $99 \%{ }^{231} \mathrm{~Np}$; $1 \%{ }^{2 \pi} \mathrm{P} \mathrm{P}$) would be
 years : ${ }^{24} P_{k}: 1,1,2 \mathbf{2 . 0 \times 1 0 ^ { 4 }}$ years).

To reduce the hazards introduced by any such contamination, this element munt be removed. This in achieved by anion exchnnge chromatography following the precipitaion of the neptunium and plutonium hydroxiden by mmmonia The addition of a saturated solution of ammonium iodide in concentresed hydrochloric ecid brings about the reduction of Np (YI) \rightarrow $\mathrm{Np}(\mathrm{V})$ and $\mathrm{Pu}(\mathrm{IV}) \rightarrow \mathrm{Pu}(I I I)$. Thir solution is then put onto a column of AO 1-X4 reain, followed by a sufficient volume of 0.2 M emmonium iodide in concentrated hydrochloric acid to elute through the blue $\mathrm{Pu}(\mathrm{III})$, which is not retioined on anion exchangers at any acid concentration. Np(VI), converiely, has a high distribution coefficient in anion exchange reaina at thin acid concentration a Fifure 7.3 ahow. ${ }^{9}$

FIGURE 7.s. A plot of the distribution coefficient (Kid) of $\mathrm{Np}(\mathrm{V} \mid$) in hydrochloric acid on the anion exchange resin Amberlite IR \AA an (adapted from ref. 8)

The distribution coefficient, ${ }^{10} \boldsymbol{K}_{\mathbf{1}}$ of an ionic species on the reain is given by

$$
K_{d}=\frac{m_{g}}{m_{e}} \times \frac{\text { Vodune of solution }}{\text { Mass co resin }}
$$

where m_{1} and m_{4} are the fraction of the ion on the resin and in solution reapectively. Thun the Np (VI) remains adsorbed at the top of the solumn and can be eluted an a separate fraction with $\mathbf{2 M}$ hydrochloric acid. Such a separation typically reduces the a-activity due to plutonium-238 иo $\mathbf{2 - 3 \%}$, (i.e. 0.02-0.03\% 2sepu by masa). This made the material sufficienty safe for it to be handled in a fumehood in solusion. Over a relerively thont period of time, the $\mathrm{NpO} \boldsymbol{z}^{+}$ions in colution reduce to NpO_{2}. Consequently, the Np (VI) solution must be prepared freshly before each complex preparation.

All operations, including the uual cryatel mounting techniquea, on solid neprunium compounda were carried out in a depressurised glove box to eliminate the risk of contamination. Crystala were mounted on quartz fibres with Araldite and were then encapaulated with Lindernann glase capillaries. The mounted cryatels were then transferred to a fume hood and monitored carefully to confirm the absence of any redioactive contamination. The capillaries were coated with a solution of Bostik in acetone to ensure that any residual contamination was safely fixed to the glass and to strengthen the capillary.

The quantitiea of ${ }^{T H} \mathrm{~Np}$ handled in each preparation did not exceed 30 mg . obreined as a mixture of 5 and 6 oxidation stres from an aqueous nitric acid stock solution. A more accurate eatimate of the neptunium content may be obtained by rediometric analysia of an active source. The source is preperred by diluting $10 \mu \mathrm{l}$ of the stock solution to 100μ with water using micropipenes and transferring a 10μ aliquot to a prepared tantalum disc. The diace is about 35 mm in diameter and is prepared by carreful wahing and the application of a thin coating of "Zapon' lecquer around the edge. The active solution is spresd to the perimeter bounded by the lecquer aided by the addition of two dropa of a aurfactint. The evenly-spread layer of nepanium soludion ts then evaporated gently under in thfre-red limp and then roasted in a bunsen flme. This producea - coating of tantalum oxide impregnated with about $\mathbf{3 0} \mu \mathrm{g}$ of neptunium (i.e. fixed activity).

Using a Simpaon counter, the α-counts on the source can be determined by averging a series of 2 minute readinga. Greater precision can be obtained by extending the counding perdod.

Referemcel

1. N.W. Alcock, Acia Cryst., vol. A26. p. 437, 1970
2. R.A. Sparks. Abstracts of the American Crystallographic Association, p. 20. Ottmat, Canada 1970.
3. R.A. Sperks. in Crystallographic Compuring Techniques, ed. F.R. Ahmed, pp. 452-467, Munksgand, Copenhagen, 1976.
4. W. Clegg, Acta Cryst., vol. A36, p. 321, 1980.
5. G.M. Sheldrick, SHELKTZ User Mamwal, Nicolet Instrument Co., 1981.
6. M.M. Woolfion, in Direct Methods in Crystallography, Oxford University Prean, 1961.
7. "The Actiniden," in Comprehensive Imorganic Chemistry, Vod. 5. ed. A.F. TrotmanDickenson, Pergamon, New York, 1973.
8. F.A. Comon and O. Wilhinmon, in Actuanced /norganic Chemistry (4hh Edin.), p. 492, Intersciences, 1980.
9. C. Keller, in The Chemisery of the Tranguraniwn Elements, pp. 310-311,462-463, Verlat Chemie, 1971
10. E. Lederer and M. Lederen, in Chromatography: A review of principles and applicarions; Ch. 11. Elsevier Publishing Company, 1957.

CHAPTER :

Cenclulom and Arean of Further Study

E. 1 Conclugion

In Chapter 1, it was ntated that the neture and number of equatorial donor ligands bay litile or $n o$ effect on the length of the U-Oranyl) bood ${ }^{1}$ Table $\boldsymbol{t} .1$, in which these bood lengthe wre given with the relevent equataring donor ligand for each compound atudied, confima this. The reaults of this thesis alno show the predicted gradation in the equatorial U-L(ligand) bonda, with U-S being longeal, U-N intermedine, and U-O shortest. This is illustrated in Table 8.2. The difference between the meng bond lengtha is greater than can be amribured vo a imple difference in the covalent rediua of sulphur ($1.85 \AA$) nitrogen ($1.55 \AA$) and oxygen ($1.40 \AA$), and munt be due to some inherent pecking effects.

TABlesel

Eftect of equatiorial coordination number and domor atom on the nam length of the U-O(UOH) hond (A)

Compound
[1]
[2]
[3]
[4]
[5]
[6]
[8]
[9]

ECN.
6
6
6
6
5
5
6
6

Donor Atoms
$6 S$
$6 S$
$6 S$
$6 S$
$N, 40$
$N, 40$
$2 N, 40$
$2 N .40$

UO hond
$1.755(5)$
1.755(11)
1.76(13)
1.798(11)
1.751(5)
$1.747(6)$
1.751(15)
$1.62(4)-1.93(3)$

[^5]- 118 .

TABLE 82

Compoued	U.S	$\mathbf{U}-\mathbf{N}$	$\mathbf{U - O}$
[1]	2.911(2)-3.021(2)	-	-
[2]	2900(7)-2.991(6)	-	-
[3]	2.985(6)-2.962(6)	-	-
[4]	2.900(5)-2.940(5)	-	-
[5]	-	2.575(6)	2.294(6)-2.367(5)
[6]	-	$2.595(24)$	2.281(15)-2.440(14)
[1]	-	2.543(15)	2.486(13)-2.588(15)
[9] ${ }^{\circ}$	-	2.63(2)-2.653)	2.34(5)-2.50(2)
Mean	2.946(2)	2.571(n)	2.335(10)
A	s		
N	0.375		
0	0.611		

[^6]
3.2 Arese of further etady

It wat one of our initial aima to extend this work by replecing the central metal atom in these complexes by neprunium, and plutonium. This was largely prevented by administrative problems, Although some synthetc wort was done - the nepiunium analogues of [5] and [6] were isolated - no single crystals were obcained. This needs further inveatigation. Previous work ${ }^{\mathbf{2} .3}$ has accomplished auch a zubatitution (using neptumium) and confirmed the presence of an actinide contraction of 0.037 and 0.034 \& repectively. Such a contraction is greterer than the difference in the metallic redii of these two aroms ($0.02 \hat{K}$). ${ }^{4}$ and between the covalent bond length found in $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{C}-\mathrm{O}: 1.43(3) \boldsymbol{A})^{3}$ and $\mathrm{CH}_{3} \mathrm{NH}_{2}$ (C-N : $1.48(1) \lambda$). ${ }^{6}$ It has not yet been establinhed what effect occurn for plutonium. For the dithiocerbamate complexes described in Chapter 2, it would probably be neceasery to use neptuniwn(V). NpOf. rather than neptunium(VI). This is a result of the mild reducing tendency of dithiocarbamates coupled with the relative instability towerds reduction of neptanium(VI) (eee Chapter 1).

Finally. the effect of varying the donor atoms in the dithiocarbamate complexea described in Chapter 2 could be studied. A series of complexes with R-COS (monothiocarhamates) and RCS_{a} (dizelenocsmamates) donors uing the asme R - groups as found in Chaprer 2, could be investigated to monitor how steric crowding and equatorial puckering affect the uranyl bond angle. In relation to this erea of chemistry, one curious and unerpected observation was made. In an initial attempt to synthexise tris(\mathbf{N}, \mathbf{N}-diethyldithiocarbamaro)dioxournium(VI) ([4]. Chapter 2) the product isolated was a dimer, apparently containing a peroside bridge. It has not been poasible to confim or dirprove this by chemical mens. The true charicter of this compound, and if a peroxide, the formation route will also be of great interest.

Referencen

1. R.G. Denning. "Propertiea of the UOH' $(\mathrm{n}=1,2)$ lons," in Gmelin Handbuch URAN Suppl. Vol A6, pp. 31-79, 1983.
2. M.M. Roberts. "Structwral Smolies of Uranyl and Neptunyl Compleres', Thesis for PhD. Degree, University of Warwick, 1981.
3. D.J. Flanders, 'Structural Studies of Actinide Compoundr'. Thesis for PhD. Degree, University of Warwick, 1985
4. W. Muller, A CS. Symp. Series 131: Lanthanide and Actinide Chemistry and Spectroscopy. Chapter 9., 1980.
5. K.J. Tauer and w.N. Lipecomb, Ack. Cryst., vol. 5. p. 660, 1952.
6. M. Atoji and W.M. Lipacomb, Acta. Cryst., vol. 6. p. 770, 1953.

APRENDIXA

Structure Solathon and Cryaningraphte Theary.

A1.1 Duftraction of X-Rays

The fundemental characteristic of crystale is a very high degroe of internal onder, i.e. the mams of which the crymal is componed are arrangod periodically in three dimensions. The regularity of the exteran frces of well developed crymala led to the idea that they were brilt from blocics of a reguiarly repeating unit - the und cell. The lavice formed by these infinfely repeaning umit cells is exsentially the same ata three dimensional diffrection grating and con be abown mon
 the cell. Thts was firk ahown by von Laue in 1912^{1} who proved the wavelike chrocter of X rays. The diffrection pettern obtained can be shown to arie from reinforcing refections which oceur a shown in Figure A.1. when the angle is auch the the path length (2x) between the coincident ribya is λ, whe X-ray wevelength, or an inmegral multiple of 2 Thin condition in antisfied the the Brege equation:

2d $\sin 9=\pi 2$

where d is the interplanar specing defined by the atoms in the planes and n is an integer. The process of diffiraction is generally described at arising from a flxed set of planes by adjuating the position of the incident ray until Bragg's law is astisfied. It may also be viewed an involving a Ared incident heam in which case "reflection'" occurt from plenes set at the correct Bragg angle, 0. with reapect to the bean, and genermeat a refloceod ray deviming through 29. This in the case experimentally. The family of planes which give rise to reflections in this way ere deacribed by the Miller intices (htd). As shown in Pigure A.2, each plane intersects the a b and c axes of the unit cell at fractions $a / h, b / k$ and c / l respectively.

A1.2 Symanery and Spece Groap

To anigo hty valwea io a perieular reflection, it is obvioully meoesery to locme and characmaiet the unit cell. Diffiration of X-ray by a cryanal producea a pamern of apos (on a Glm) which contaim information about the relative positious and typea of amms in the unit cell. In genertl, the umit cell is characterised by six parameters - three axial lengths, and three interaxial anglen, and must belong wo of the cryatal systems listed in Table A. I. Also listed fre the unit cell promevern that chanemerise each. ${ }^{2}$ As shown in Table A. I, it is aleo poasible for certain types of latice polnt centering to be preacal Combinstion of the seven cryatal gyatem with the pasibie centerina producea a wotl of 14 Bravaly latices. Figure A. 3 thows the verious forms of leftice centering found The lattice may exist in the following formin P (primitive), \mathbf{R} (rhombohetrel), 1 (body ceatered), C (centered on one face-denoted A.B.or C econdingly) or F

A.1. The diffraction of X-reya from cryatal planes.

A.2. The derivation of Milter indices (Akd) for any plames of reflection (ABC) within the unit cell.

System	Number of lattices in system	Lattice symbols	Nature of unit. cell axes and angles ${ }^{(1)}$	Lengths and angles to be specified	Symmetry of lattice ${ }^{(1)}$
Triclinic	1	P	$a \neq b \neq c$ $a \neq \beta \neq \gamma$	$\begin{aligned} & a, b, c \\ & a, \beta, \gamma \end{aligned}$	I
Monoclimid ${ }^{(1)}$	2	Ist setting $\left.\right\|_{P} ^{P}$	$a \neq b \neq c$ $a=\beta=90^{\circ} \neq \gamma$	a, b, c	$2 / \mathrm{m}$
		2nd setting $\left.\right\|_{C} ^{P}$	$a \neq b \neq c$ $a=\gamma=90^{\circ} \neq \beta$	$a_{\beta}^{a, b, c}$	
Orthorhombic	4	$\begin{aligned} & P^{(0)} \\ & l^{\prime} \\ & \underline{F} \end{aligned}$	$a \neq b \neq c$ $a=\beta=\gamma=90^{\circ}$	a, b, c	mmm
Tetragonal	2	${ }^{P}{ }^{(s)}$	$\begin{aligned} & a=b \neq c \\ & a=\beta=\gamma=90^{\circ} \end{aligned}$	a, c	$4 / \mathrm{mmm}$
Cubic	3	P P P F	$\begin{aligned} & a=b=c \\ & a=\beta=\gamma=90^{\circ} \end{aligned}$	a	m3m
Trigonal	1	$R^{(6)}$	$\begin{aligned} & a=b=c \\ & a=\beta=y \\ & <120^{\circ}, \neq 90^{\circ} \end{aligned}$	${ }^{a}$	3 m
Hexagonal	1	$P^{(\prime)}$	$\begin{aligned} & a=b \neq c \\ & a=\beta=90^{\circ} \\ & y=120^{\circ} \end{aligned}$	a, c	6/mmm

TABLE A.1. The 14 Bravais lattices and conventional unit cells.

P

F

C

I
A.3. The possible types of lattice centering.
(centered on all feoss) forms. The correct choice can be deduced from the peneral ayatemetic abeences in the reflection deas:

P	No absence
I	$h+k+1 \sim 2 \pi$
C	$n+* \pm 2 n$
F	$n+ \pm$ 2n.tit $\#$ 2n
	$4+1 \times 2 \pi$
R	$-1+4+2 n$

Athough the latise as found may be centered on any face, it it unally preferable to reorient the axes to the coaventional setring: eg. C- In monoclinic, C2fc; © A- in orthorhombic, Ama 2. However a B-centered monoclinic cell ahould be transformed to a primitive \mathbf{P} cell. form. One exception is in the orthorhombic system where Ama 2 (No.40) cocurs as a stendand setting.

The aatignment of the correct Bravaik lattice in the firat atage in the determination of the space group to which the crystal belongs. Each apace group contains a unique set of symmetry elements them deacribe the arrangement of atoms within the unit cell. These symmetry operations maty be divided into two typen, the first involving point symmetry, i.e. rotation axes, rotationinvertion axes, and mirror planes; and the second which involves spece symmetry or tranalation, nomely merew axes and glide planes. There are 230 apece groupa. ${ }^{3}$ many of which can be uniqualy determined from the syitematic abaences. Operations of the first type of symmetry elementa do not create syatematic abeences, wheress the presence of operations of the eecond type con be deduced from the systernmic aboencea.

A screw aris (n / m) describes the distributions of a set of atoma (the esymmetric unit) rosered relaive to one another through (360/n) ahout an axir and a frictional shift (m/n) along the unit cell axis to which the ecrew axir is parallel. Thus 2 , desigarates a 2 -fold screw anis with a tranalation between successive pointo of $1 / 2(\mathrm{~m} / \mathrm{n})$ of a unit tranaletion. If for example such an axia were parallel to the b-axin of the unit cell, the aystematic absence for the $0 \mathbf{0} 0$ refections
 Laid down diften from the inidial point only by an integral number of unit translations; i.e. the positions of these points within their respective unit cells are identical.

The combination of a mirror plane and a translation parallel to the reflecting pline producea a glide planc. The translation in such a plane is tlong edge or face diagonal of the unit cell, and in most canen, of magninude half the axial or diagonal length. A c-glide for exnorpie hat a trapalation $1 / 2$ aloag c and reflection normal to the b direction. Thia glide plane it recognised by the syatematic abence hor $/ \mathrm{h} \cdot \mathrm{On}$

Thus the space group P2/f, for ermmple, would coatain a primitive cell (P), with $\mathbf{2}_{1}$ screw ats naming along the at direction perpendiculer to the c-glide plene. The systemetic aheonces, and their relaved symmery opertions are surmarieed in Table A.2 (ref:2)

A13. Data Relouction

Once al the reflection date ere stored on diat (Chuper 7, the integrated intensities for each
 tities which ene usod in the calculetion of electron denaity maps, from which the momic position tre determined. Thir in accomplished uting the deta reduction program in SHIEIXTL ${ }^{4}$ The two permenen ere reiarod by the equation:

$$
\begin{equation*}
\left|F_{w, w}\right|=\sqrt{\frac{K I_{M I}}{L p}} \tag{2}
\end{equation*}
$$

 being conatant for any given set of messurements, and L and p are the Loneatz and polarisation factorn. The Lorente factor, L, depends upon the mesaurement technique usted, and for diffracsometer dans la given by:

$$
\begin{equation*}
L=\frac{1}{\operatorname{kin}} \tag{A.3}
\end{equation*}
$$

It is important because the time required for a reciprocal latice point to peas through the sphere of neflection is not conatant, but variea with its position in rectprocal eppece and direction of appoach. The polarismion fackr. P, arisea hecause of the nature of the X-ray bean and the menner in which its rettection efficiency varien whith the reflection angle, and is elven by:

$$
\begin{equation*}
p=\frac{1+\tan ^{3} z^{2}}{2} \tag{A.4}
\end{equation*}
$$

The derivition of these equationa can be found in ref (5).
One of the major tunctions of the output from the date reduction progrem in to serve at
 astumed arrangernent of aom, and compare these with those actually ohnerved. The den reduction progrm therefore genermen a list of $\boldsymbol{H} \boldsymbol{k} \boldsymbol{d} \boldsymbol{F}$ and $\boldsymbol{a}(F)$ values after correction for any Inet in intentity due to cryatal decomposition. Verintion in the intronities obeanned for a set of check refections (monftered every 200 reflections) is used to calculate this correction. Refections with faulty beckgrounda are eliminated from the dera These are ideanified by: with fenlity beckgrounda me identified by

$$
\begin{equation*}
B_{1}-B_{2}>10 \sqrt{B_{1}+B_{2}}+0.002\left(P-B_{1}-B_{1}\right) \tag{A.5}
\end{equation*}
$$

where B_{i} and $B_{\text {, are the lef }}$ and right backeround oo eacb aide of P the peak. Reflections with intensities 1 /o($) \times 3.0$ ere aleo eliminated from the output fle. The exclusion of there low intentity

Type of reflection	Condition for postible sellection ${ }^{(1)}$	$\begin{aligned} & \text { Glide plane or screw axis } \\ & \text {) or }\left\}^{\text {sen }} \text {] or }\right\} \end{aligned}$			Systems of ares involved		
		Orientation	Component	Symbol ${ }^{\text {(1) }}$			
4. ${ }^{0}$	A-2n	(001)	a/2	a	Monoclimic (It setting). tetragonal	Orihorhombic	
	$k-2 n$		$8 / 2$	b			
	$h+k=2 n$		$a / 2+b / 2$	ת			
	$\begin{aligned} & h+k=4 n \\ & (h, k=2 n) \end{aligned}$		$a / 4 \pm b / 4$	d			
0 kl	$k=2 n$	(100)	B/2	b	Orthorhombic, tetragonal, eubic		
	1-2n		$c / 2$	c			
	$k+1-2 n$		$b / 2+e / 2$	п			
	$\begin{aligned} & k+1-4 n \\ & (k, l-2 n) \end{aligned}$		$b / 4 \pm c / 4$	d			
H01	$1-2 \pi$	(010)	c/2	c	Monoclinic (2nd selting)	Orthorhombic	
	$h-2 r$		a/2	a			
	$1+h=2 n$		$c / 2+a / 2$	n			
	$\begin{aligned} & 1+h=4 n \\ & (1, h-2 n) \end{aligned}$		$c / 4 \pm a / 4$	d			
hhi2ht	1-2n	(1I00)	c/2	c	Hexagonal		
hTOU	1-2n	(1120)	c/2	c			
hht	(2h+) $1=2 n$	(1IO)	$(a / 2+b / 2+) c / 2$	(n) e	Rhambahedral ${ }^{(1)}$	Terragonal, cubic ${ }^{(3)}$	
	$2 h+1=4 n$		$a / 4+b / 4+r / 4$	d			
800	h-2n	(100)	d/2	$2{ }_{1}$	Ortharhambic, letragonal ${ }^{\text {cubic }}$		
				41			
	$h=4 n$		9/4	4, 4,			
0ko	$k-2 n$	[010]	B/2	2	Monoclinic(2nd se	ing), orthorhombi	
001	I-2n	[001]	c/2	21	Monoclinic (Ist selling). orthorhambi		
				4,	Tetragonal		
	$1=4 n$		c/4	4, 4,			
0001	$1-2 n$	2-axis	c/2	61	Hexagonal		
	1-3n		c/3				
	$1=6 n$		c/6	$6{ }_{1} .6$			

TABLE A.2. Detarmination of tranalation elementa of aymmetry from apecial reflectional.
reflection will usually reault in a lower R-factor for the refined stricture and will ave significantly on computadion times.

Aher this initial processing, an aborption comection should alwaya be applied unleas the material under considenaior hat a very low lifear absorption coeficient. Thin absorption correction is now usually performed using the Gausion integration method in SHELXTL4. The incident radiation of intensity t, it therefore attenuted by an amount which can be calculamed from the equation:

$$
\begin{equation*}
I=/, e+w \tag{A.6}
\end{equation*}
$$

where I is the meatured intensity and μ it the linear ahaorption coefficient given by the equation:

$$
\begin{equation*}
\mu=\sum\left(\sigma_{i} A_{i}\right) \propto Z / U \tag{A.7}
\end{equation*}
$$

where σ_{i} is the linem abeorption coefficieat of anom i for the X-ray wavelength being used and n_{4} if the number of nuch anoms in the molecule.

Al.A The Structure Pector and Putterana Function

The atrucure factor $F_{\text {wis }}$ is the resultant of j waves scattered in the direction of the reflection hed by the $/$ tama in the unit cell. Each of these waves will have an associsted ampliude which in proportional to the actatering factor of the atom, f_{J}, and a phase a with reppect to the wave scentered by the hypothetical origin. In order to calculate the structure factor, the phase problem needs oo be solved. To get an eatimate of the phase, it is necescary to calculate a set of suncture factorn, F_{c}, based on an epproximate model of the actiol structure. The phase a sasociated with each of the obeerved structure factor moduli, is given by:

$$
\begin{equation*}
F_{0}=\left|F_{0}\right| \cos \alpha+d\left|F_{a}\right| \sin \alpha \tag{A.8}
\end{equation*}
$$

and the beat estimate of the phases can be obtained by calculating a set of structure factors, $F_{\text {e }}$. baced on an approximate model of the actual atructure to be determined and a calculation of an approximation of the urue electron density from the observed atructure factor amplitudes, \mid Fol , with the calculeted phases. The atructure factor is the Fourier transform of the scamering density (eloctrons in the molecule) aempled at the reciprocal landice point htl.

The expretaion deacribing the distribution of electron density, $p_{\text {ow }}$, in the unit cell in:

$$
\begin{equation*}
\rho_{x y}=\frac{1}{V} \sum_{n} \sum \sum F_{n k}[\cos 2 \pi(h x+k y+l z)-i \sin 2 \pi(h x+k y+l z)] \tag{A.9}
\end{equation*}
$$

whert $F_{\text {w }}$ coataina the phase information and ean represent either F, or F_{e} and V ia the unit cell volume. The cotine and sine terms result from the consideration of the phase differences berween the hypothetical origin and the point x, y, z

The majority of the compounds contained in this thesis contain one (or more) heavy moms uranium - tn the asymmetric unit An such, they constitute a spacial case aince the heavy atom will dominate the acetrering of X-rays, and the majority of the phase difterences are due to thin heavy atom. The Paterson function in a Fourier ayntheais using only the indicea and the $|\boldsymbol{F}|^{2}$ -value of each diffracted bean. Since the coefficienta are equeres, they dre phaselens. The Panerson fruction P (UVW) is siven by

$$
\begin{equation*}
\left.P_{(U V E)}=\frac{1}{V} \sum_{n=1} \sum_{1} \sum_{1} \right\rvert\, F_{m} f_{\cos } 2 \pi(H U+t V+W W) \tag{A.10}
\end{equation*}
$$

The peaks in the map correspond wine vecton becwoen any two pain of atoms in the structure
 son pent depends on the number of electrons in the atoms between which the vector occurn. If there are only a few heavy anom present, the higheat peala will correapond of the vectors berween the teavy arona. The position of the heavy alom can then be found and used to calculife the F_{x} valuen.

Als. Structure Solution and Reforment

Once the heavy atom has heen located, the asumption is then made that it dominates the diffinction parmern, and the phase angle for each diffrected beam for the whole structure is approzimated by that for the heavy nom. ${ }^{6}$ To locate the lighter aroms, it in necesaly to calculste a difference Fourier syntheain based on ΔF valuea for each reflection, where

$$
\begin{equation*}
\Delta F=\left|F_{d}\right|-\left|F_{a}\right| \tag{A.11}
\end{equation*}
$$

This will produce a map with pealor corresponding to the remaining tom positions and these cen be used to obeln a more precise eatimation of the phesea arnociased with the F_{e} valuea which will epproach the true values associated with F_{s}.

Further refinement in the ammic positions can be made using lent squares methoda to minimine a function D given by:

$$
\begin{equation*}
D=\sum_{i=1}^{\infty} W_{r}\left(\left|F_{0}\right|-\left|F_{c}\right|\right)^{2} \tag{A.12}
\end{equation*}
$$

where W, if the weighting function epplied to reflection r. The relinbility of a structure during the procest of refinement in indicated by the cloweness in agreerneat between the valuen of $F_{\text {a }}$ and $F_{\text {a }}$
for each refection. This in monilored by the rexidulal factor A, where

$$
\begin{equation*}
n=\frac{\Sigma\left|\left[\left|F_{o}\right|-\left|F_{c}\right|\right]\right|}{\Sigma\left[\left|F_{o}\right|\right]} \tag{A.13}
\end{equation*}
$$

and the convergence of F. and F, produces a value of about 0.05 for most amall atructumes.
Becouse moma are never at reat, but alway have an associated thernal mocion each atom in the structure han anaciared remperature factor so that the stomic scanering factor for a hypothetical monn atere, f, if replaced by

$$
\begin{equation*}
f e^{-x} \operatorname{lic}+e x y \tag{A.14}
\end{equation*}
$$

 the mean-equare amplitude ($\overline{U^{\prime}}$) of atranic viluration by

$$
\begin{equation*}
A=\operatorname{ar} \underline{t}^{2} \bar{U}^{2} \tag{A.15}
\end{equation*}
$$

An increase tm termperature will be accompanied by a mose diftuse electron cloud. This ia shown by a rise in B, and at Figure A. 4 indicates, the \mathbf{X}-ry diffraction intenaity fells off with increang stegh. An a remult of thits decremse in tntenaty, the data collected in the ligher angle regione will contribute to a greater resolution of the final atructure.

A more precise deacription of the thermal motion of the atoms in given by the wee of anirooropic temperatere foctora. These axsume that thermal motion is ellipaoidal, producing ais additional paramotert per mom on which to bese the final reftnemeat. They are incorporated into the function ahove uned io modify f (eq. 13):
where the U^{\prime} arma deacribe the axis leagehn of the tharmal ellipaoid projected alone the cryatal axis and the U^{U} term relate to the orientation of the crystallogrophic ares with reapect to the ellipaoid principle ares.

There are a number of other errors th the dan which require corroction during the final refinement. The first of these are the syamemetic erron to the reflections collected with high F_{a} and low sime valuet. An malyits of the average (AF) ${ }^{2}$ valuea for these reflections it retalar inter-
 Ins acherne it therefore introduced to give a more even apread of (AF) valuen. Decanionally. depending bpon the cryatel monicity, ${ }^{5.7}$ an extinction correction in lao required. Figure A.5
 will show a gredual losa in intenaity with the depth of the reflection in the cryate. There will also be a loen of inteasity due to the coincidence of a doully reflected bean (ehown by a broken tine)

A.4. The variation of the atomic acattering factor (f) with inf $/$.

A.5. The effect of extinction.
-A12-
with the incidens beirn, the two beams being 180° out of phase.
A correction for extinction ${ }^{\mathbf{4}}$ can be aplied in the lat stages of the leant squarea refinement by converting F, to the extinction corrected \mathcal{P} where:

$$
\begin{equation*}
F_{z}^{*}=k F_{c}\left[1+g \mid(2 \theta) F_{i}\right]^{-*} \tag{A.17}
\end{equation*}
$$

 the crytal and the geometry of the reflecting position. Thus the function minimised by the leat equerea refinament in:

PAGINATION ERROR

-A14-

References

1. M. von Lime. Sirsher. Mauh. Phyack. H. Bayer Atad Wiss Mwenchen, p. 303, 1912
2. DJ. Finaters, Ph.D. Thesir, University of Warwick, 1985.
3. Insernational Tables for X-nay Crymtallography, D. Reidel Publighing Company, Dordrecht : Holimen / Boation : U.S.A., 1983.
4. G.M. Sheidrck, SHELXTL User Mannal, Nicolet Instrument Ca., 1911.
5. G.H. Shout and L.H. Jensen, in X-Ray Structure Determination, MeMillm, London, 196月.
6. J.P. Gimaker and K.N. Truehlood, Cryaid Strmarre Amarisis, Oxford Univenity Preas, 1985. Second Edition
7. J.D. Dumbz, X-ray Anatysit and the Soncoure of Organic Molecules, Cornall Univerity. London, 1979.
E. A.C. Leman, Acta. Cryat., val. 23, p. 664, 1967.

APMRNDEX

Palal Structure Pactor Tablee

The sancture fector tables for compounds [3], [6], and [8] have already been deposited with the edinor of Acta Crysellognaphica es these atructurea have been published ar accepted for publication in that joureal. The tables for the remaining structures will slso be deposined when the structures are published and so have heen omithed from this chesis. These tobles are avadiable on request.

[^0]:

[^1]:

[^2]: ＊Equivalent isotropic U defined as one third of the trace of the orthogonalised U_{4} tensor．

[^3]: inclutad ara coniparam

[^4]: \dagger Atomic numhering an for Table 5

[^5]: *Severely disordered structure

[^6]: *Severely disorder in this molecule. These resulta not used to calculate mean and \mathbf{A} values.

