
              

City, University of London Institutional Repository

Citation: Hiabu, M., Mammen, E., Maria Dolores, M-M. and Nielsen, J. P. ORCID: 0000-
0002-2798-0817 (2020). Smooth backfitting of proportional hazards with multiplicative 
components. Journal of the American Statistical Association, doi: 
10.1080/01621459.2020.1753520 

This is the accepted version of the paper. 

This version of the publication may differ from the final published 
version. 

Permanent repository link:  https://openaccess.city.ac.uk/id/eprint/23990/

Link to published version: http://dx.doi.org/10.1080/01621459.2020.1753520

Copyright: City Research Online aims to make research outputs of City, 
University of London available to a wider audience. Copyright and Moral 
Rights remain with the author(s) and/or copyright holders. URLs from 
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study, 
educational, or not-for-profit purposes without prior permission or 
charge. Provided that the authors, title and full bibliographic details are 
credited, a hyperlink and/or URL is given for the original metadata page 
and the content is not changed in any way. 

City Research Online



City Research Online:            http://openaccess.city.ac.uk/            publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


Smooth backfitting of proportional hazards with

multiplicative components

Munir Hiabu ∗1, Enno Mammen2, M. Dolores Mart́ınez-Miranda3 and Jens

P. Nielsen4

1School of Mathematics and Statistics, University of Sydney, Camperdown

NSW 2006, Australia

2Institute for Applied Mathematics, Heidelberg University, Im Neuenheimer

Feld 205, 69120 Heidelberg, Germany

3Department of Statistics and Operations Research, University of Granada,

Campus Fuentenueva s/n. 18071 Granada, Spain

4Cass Business School, City, University of London, 106 Bunhill Row,

London, EC1Y 8TZ, United Kingdom

January 9, 2020

∗munir.hiabu@sydney.edu.au (Corresponding author)

Acknowledgement: We are grateful to the authors of Lin et al. (2016), who provided us with code for the

calculation of their estimator.

1



Abstract

Smooth backfitting has proven to have a number of theoretical and practical ad-

vantages in structured regression. By projecting the data down onto the structured

space of interest smooth backfitting provides a direct link between data and estima-

tor. This paper introduces the ideas of smooth backfitting to survival analysis in a

proportional hazard model, where we assume an underlying conditional hazard with

multiplicative components. We develop asymptotic theory for the estimator. In a com-

prehensive simulation study we show that our smooth backfitting estimator successfully

circumvents the curse of dimensionality and outperforms existing estimators. This is

especially the case in difficult situations like high number of covariates and/or high

correlation between the covariates, where other estimators tend to break down. We

use the smooth backfitter in a practical application where we extend recent advances of

in-sample forecasting methodology by allowing more information to be incorporated,

while still obeying the structured requirements of in-sample forecasting.

1 Introduction

Nonparametric models suffer from the curse of dimensionality in high dimensional data

spaces. Random forests (Breiman, 2001) circumvent the dimensionality problem by assum-

ing that not all variables are relevant and that the function of interest can be approximated

well by piecewise constant functions; see Wright and Ziegler (2017) for a recent survival

implementation. An alternative is to introduce some structure that stabilizes the system.

Introducing structure has the additional advantage that it allows to visualize, interpret, ex-

trapolate and forecast the properties of the underlying data. In this paper, we concentrate

on structured models. The smooth backfitting algorithm of Mammen et al. (1999) consideres

the simplest nonparametric structure in the regression context - the additive structure. It

has many theoretical and practical advantages to earlier approaches of regression backfitting.
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The popular regression backfitting approach of Hastie and Tibshirani (1990a) are numerical

iterating-procedures estimating one component given the estimates of the rest. In contrast,

smooth backfitting is a direct projection of the data down onto the structured space of in-

terest. This direct relationship between data and estimates gives a more solid grip on what

is being estimated and the theoretical properties underlying it, see also Nielsen and Sperlich

(2005) and Huang and Yu (2019). The purpose of this paper is to introduce smooth backfit-

ting to the field of survival analysis and nonparametric smooth hazard estimation. While the

additive structure is the most natural and most widely used in regression, the multiplicative

structure seems more natural in hazard estimation. The omnipresent Cox regression model

is a proportional hazard model (also known as Cox proportional hazard model) and many

extensions and alternatives to the Cox regression model have been formulated in a multi-

plicative framework. We will therefore consider the multiplicative structure in this paper.

It can be used in applications to test Cox regression or other proportional hazard models

either visually or quantitatively. But this is beyond the scope of this paper. Multiplicative

smooth backfitting is theoretically more challenging than additive smooth backfitting. The

smooth backfitting multiplicative regression structure was analysed by Yu et al. (2008) as a

special case of generalized additive models. Yu et al. (2008) showed that the multiplicative

structure - in contrast to the simpler additive case - provides asymptotic theory with a num-

ber of non-trivial interactions between exposure available in different directions. Naturally,

the asymptotics provided here for smooth backfitting of multiplicative hazards contains sim-

ilar interactive components in the asymptotic theory. The survival projection introduced

in this paper is different and less intuitive than the nonparametric regression considered in

Mammen et al. (1999, 2001). As in density estimation, see Jones (1993), hazard estimation

requires a projection of a dirac-delta-sequence related to the jumps of the counting process,

see also Nielsen (1998) and Nielsen and Tanggaard (2001). We provide a simple algorithm

first projecting the data down onto an unstructured estimator, and then further projecting
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the unstructured estimator down onto the multiplicative space of interest. Our numerical

algorithms are greatly simplified by a new principle of weighting the projection according to

the final estimates.

We consider a multiplicatively structured proportional hazard model:

α(t, z) = α0(t)α1(z1) · · ·αd(zd), (1.1)

where αk, k = 0, . . . , d, are some smooth and positive one-dimensional functions and z =

(z1, . . . , zd) ∈ Rd are possibly time t-dependent covariates. We do not impose any further

structural assumption on αk. This is in contrast to the semiparametric Cox proportional

hazard model where all components, with exception of the baseline hazard α0, are assumed

to take a log-linear shape. We do expect that smooth backfitting of proportional hazard

models can be generalized to much the same way as the Cox proportional hazard model is

generalized. As one recent example that could be interesting to treat as a smooth backfitting

problem, see Hsu et al. (2018).

Estimators for model (1.1) can be categorized in four groups: (i) Therneau et al. (1990)

and Grambsch et al. (1995) start with the Cox model and investigate smoothed residual

plots; (ii) Hastie and Tibshirani (1990a,b), O’Sullivan (1988, 1993), Sleeper and Harrington

(1990) and Huang (1999) consider splines via penalized partial likelihood; (iii) Linton et al.

(2003), Honda (2005) build on marginal integration (Linton and Nielsen, 1995) and (iv) Lin

et al. (2016) use kernel smoothers starting from a global partial likelihood criterion.

Lin et al. (2016) prove asymptotic efficiency of their estimator and they show by a

detailed simulation study that their estimator outperforms the proposals in Huang (1999),

Linton et al. (2003), Honda (2005). For this reason in this paper we take their estimator

as benchmark. It has been argued that in additive regression models smooth backfitting is

less affected by sparseness of high-dimensional data and by strong correlated covariables, see
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Nielsen and Sperlich (2005). In this paper we will show that this also holds for our smooth

backfitter in a multiplicatively structured proportional hazard model. For this purpose we

study the smooth backfitter in settings which include challenging high dimensional data and

highly correlated covariates. The smooth backfitting approach turns out to show a very good

performance compared to all other estimators and to be very robust to both, high dimensional

and correlated data. In particular in high-dimensional settings it strongly outperforms the

approach of Lin et al. (2016) that already for low dimensions runs into instabilities and

numerical problems. In this paper, we do not treat the problem of variable selection. It

would in particular be interesting to investigate Lasso approaches or nonparametric tests on

the significance of one component. For the development of tests our theory may be used as

a first step.

The paper is structured as follows. Section 2 contains the mathematics of the underlying

survival model. In Section 3 the smooth backfitting estimator is defined as a projection of

unstructured hazard estimators. This is done for unstructured hazard estimators that can

be written as a ratio of smooth occurrence and smooth exposure. An example is given by the

local constant Nadaraya-Watson estimator. In Section 4 asymptotic properties are outlined

for the smooth backfitting estimator. Details are explained in the Supplementary Material of

this paper. Section 5 contains our finite sample study illustrating the strong performance of

smooth backfitting. In Section 6 we consider a sophisticated version of in-sample forecasting

generalising earlier approaches via our proportional hazard model, see Mammen et al. (2015),

Hiabu et al. (2016) Lee et al. (2015, 2017, 2018). A smooth extension of the popular actuarial

chain ladder model that is used in virtually all non-life insurance companies in the world

while estimating outstanding liabilities. In-sample forecasting is possible because of the

imposed multiplicative structure.
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2 Aalen’s multiplicative intensity model

We consider a counting process formulation satisfying Aalen’s multiplicative intensity model.

It allows for very general observations schemes. It covers filtered observations arising from

left truncation and right censoring and also more complicated patterns of occurrence and

exposure. In the next section we describe how to embed left truncation and right censoring

into this framework. In contrast to Linton et al. (2003) we will hereby allow the filtering to

be correlated to the survival time and be represented in the covariate process. We briefly

summarize the general model we are assuming.

We observe n iid copies of the stochastic processes (N(t), Y (t), Z(t)), t ∈ [0, R0], R0 > 0.

Here, N denotes a right-continuous counting process which is zero at time zero and has jumps

of size one. The process Y is left-continuous and takes values in {0, 1} where the value 1

indicates that the individual is under risk. Finally, Z is a d-dimensional left-continuous

covariate process with values in a hyperrectangle
∏d

j=1[0, Rj] ⊂ Rd.The multivariate process

((N1, Y1, Z1), . . . , (Nn, Yn, Zn)), i = 1, . . . , n, is adapted to the filtration Ft which satisfies

les conditions habituelles (the usual conditions), see Andersen et al. (1993) (pp. 60). Now

we assume that Ni satisfies Aalen’s multiplicative intensity model, that is

λi(t) = lim
h↓0

h−1E[Ni((t+ h)−)−Ni(t−)| Ft−] = α(t, Zi(t))Yi(t). (2.1)

The deterministic function α(t, z) is called hazard function and it is the failure rate of an

individual at time t given the covariate Z(t) = z.

2.1 Left truncation and right censoring time as covariates

The most prominent example for Aalen’s multiplicative intensity model is filtered observa-

tion due to left truncation and right censoring. We now show how to embed model (1.1)
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with covariate, Z, possibly carrying truncation and censoring information into Aalen’s mul-

tiplicative intensity model. Every covariate coordinate can carry individual truncation infor-

mation as long as it corresponds to left truncation. That is, we observe (T, Z) if and only if

(T, Z(T )) ∈ I, where the set I is compact and it holds that if (t1, Z(t1)) ∈ I and t2 ≥ t1, then

(t2, Z(t2)) ∈ I, a.s.. The set I is allowed to be random but is independent of T given the

covariate process Z. Furthermore, T can be subject to right censoring with censoring time

C. We assume that also T and C are conditional independent given the covariate process

Z. This includes the case where the censoring time equals one covariate coordinate. In con-

clusion, we observe n iid copies of (T̃ , Z∗, I, δ), where δ = 1(T ∗ < C), T̃ = min(T ∗, C), and

(T ∗, Z∗) is the truncated version of (T, Z), i.e, (T ∗, Z∗) arises from (T, Z) by conditioning

on the event (T, Z(T )) ∈ I.

Then, for each subject, i = 1, . . . , n, we can define a counting process Ni as Ni(t) =

1
{
T̃i ≤ t, δi = 1

}
, with respect to the filtration Fi,t = σ

({
T̃i ≤ s, Z∗i (s), Ii, δi : s ≤ t

}
∪N

)
,

where N is a class of null-sets that completes the filtration. After straightforward computa-

tions one can conclude that under the setting above, Aalen’s multiplicative intensity model

(2.1) is satisfied with

αz(t) = α(t, z) = lim
h↓0

h−1Pr{Ti ∈ [t, t+ h)| Ti ≥ t, Zi(t) = z},

Yi(t) = 1
{

(t, Z∗i (t)) ∈ Ii, t ≤ T̃i
}
.

3 Estimation

We tackle the problem in two steps. First the data are projected down onto an unstructured

space resulting in an unstructured estimator of the d+1−dimensional hazard function α(t, z);

see (1.1). In the second step, the unstructured estimator is projected further down onto

the multiplicative space of interest resulting in d + 1 one-dimensional smooth backfitting
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estimators of the multiplicative components, (α0(t), α1(z1), . . . , αd(zd)). For the first step

we assume to have an unstructured estimator with simple ratio of smoothed occurrence

and smoothed exposure. Our theory will encompass all estimators with this simple ratio

structure. We discuss in Section 4 and in the accompanied Supplementary Material that

our estimation procedure works under quite general assumptions. In particular we do not

need the unstructured estimator of the first step to be consistent. The final structured

estimator circumvents the curse of dimensionality even if consistency is not assured in the

first step. This is reassuring noting that the unstructured estimator will most probably have

exponentially deteriorating performance with growing dimension d.

We introduce the notation Xi(t) = (t, Zi(t)). We also set x = (t, z), with coordinates

x0 = t, x1 = z1, . . . , xd = zd, and write the hazard as α(t, z) = α(x).

3.1 First step: The unstructured estimator

To estimate the components of the structured hazard in (3.2) below, we will need an unstruc-

tured pilot estimator of the hazard α first. We propose the local constant kernel estimator,

α̃LC . Its value in x is defined as

α̃LC(x) = lim
ε→0

arg min
θ0∈R

n∑
i=1

∫ {
1

ε

∫ s+ε

s

dNi(u)− θ0
}2

(3.1)

× κn(Xi(s))Kb(x−Xi(s))Yi(s) ds.

In the following, we restrict ourselves to a multiplicative kernel, i.e., for , (u0, . . . , ud) ∈ Rd+1,

K(u0, . . . , ud) =
∏d

j=0 k(uj), and a one-dimensional bandwidth b with boundary correction

κn(x) =
∏d

j=0

(∫
Kb(xj − uj) duj

)−1
and Kb(u) =

∏d
j=0 b

−1k(b−1uj), where for simplicity of

notation the bandwidth b > 0 does not depend on j. More general choices would have been

possible with the cost of extra notation.
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We get α̃LC(x) = ÔLC(x)/ÊLC(x), with smoothed occurrence and smoothed exposure

given by

ÔLC(x) =
n∑
i=1

∫
κn(Xi(s))Kb(x−Xi(s))dNi(s),

ÊLC(x) =
n∑
i=1

∫
κn(Xi(s))Kb(x−Xi(s))Yi(s)ds.

Under standard smoothing conditions, if b is chosen of order n−1/(4+d+1), then the bias

of α̃LC(x) is of order n−2/(4+d+1) and the variance is of order n−4/(4+d+1), which is the opti-

mal rate of convergence in the corresponding regression problem, see Stone (1982). For an

asymptotic theory of these estimators see Linton et al. (2003).

3.2 Second step: The structured smooth backfitting estimator

In this section we will project the unstructured estimator of the previous section down onto

the multiplicative space of interest. Other choices that have a simple ratio structure of

occurrence and exposure are possible. Due to filtering, observations are assumed to be only

available on a subset of the full support, X ⊆ R =
∏d

j=0[0, Rj]. Our estimators are restricted

to this set and detailed assumptions on X and the data generating functions are given in

the Supplementary Material. Our calculations simplify via a new principle we call solution-

weighted minimization. We assume that we have the solution and use it strategically in the

least squares weighting. While the definition is not explicit, it is made feasible by defining

it as an iterative procedure. In the sequel we will assume a multiplicative structure of the

hazard α, i.e.,

α(x) = α∗
d∏
j=0

αj(xj), (3.2)
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where αj, j = 0, . . . , d, are some functions and α∗ is a constant. For identifiability of the

components, we make the following further assumption:

∫
αj(xj)wj(xj) dxj = 1, j = 0, . . . , d,

where the wj’s are some weight functions.

We also need the following notation:

Ft(z) = Pr (Z1(t) ≤ z| Y1(t) = 1) , y(t) = E[Y1(t)].

By denoting ft(z) the density corresponding to Ft(z) with respect to the Lebesgue measure,

we also define E(x) = ft(z)y(t) and O(x) = E(x)α(x).

We define the estimators α̂∗ and α̂ = (α̂0, . . . , α̂d) of the hazard components in (3.2) as

solution of the following system of equations:

α̂k(xk) =

∫
Xxk

Ô(x)dx−k∫
Xxk

α̂∗
∏

j 6=k α̂j(xj)Ê(x)dx−k
, k = 0, . . . , d, (3.3)∫

α̂k(xk)wk(xk) dxk = 1, k = 0, . . . , d. (3.4)

Here Xxk denotes the set {(x0, . . . , xk−1, xk+1, . . . , xd)| (x0, . . . , xd) ∈ X}, and

x−k = (x0, . . . , xk−1, xk+1, . . . , xd). Furthermore, Ê and Ô are some full-dimensional estima-

tors of E and O – not necessarily the one provided in the previous section. We will discuss in

the Supplementary Material that the system above has a solution with probability tending

to one. In the next section and in the Supplementary Material we will show asymptotic

properties of the estimator. We will see that we do not require that the full-dimensional

estimators Ê and Ô are consistent. We will only need asymptotic consistency of marginal

averages of the estimators. This already highlights that our estimator efficiently circumvents
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the curse of dimensionality.

In practice, system (3.3) can be solved by the following iterative procedure:

α̂
(r+1)
k (xk) =

∫
Xxk

Ô(x)dx−k∫
Xxk

∏k−1
j=0 α̂

(r+1)
j (xj)

∏d+1
j=k+1 α̂

(r)
j (xj)Ê(x)dx−k

, k = 0, . . . , d (3.5)

After a finite number of cycles or after a termination criterion applies, the last values of

α̂
(r+1)
k (xk), k = 0, ..., d, are multiplied by a factor such that the constraint (3.4) is fulfilled.

This can always be achieved by multiplication with constants. This gives the backfitting

approximations of α̂k(xk) for k = 0, ..., d.

3.3 Interpretation as direct projection

The strength of our smooth backfitting estimator is that it can be motivated directly from

a least squares criterium on the data without ad-hoc adjustment. The estimator α̂ can be

motivated as solution of

lim
ε→0

arg min
θ

n∑
i=1

∫ ∫ {
1

ε

∫ s+ε

s

dNi(u)− θ(x)

}2

×Kb(x−Xi(s))Yi(s) ds dν(x), (3.6)

where θ runs over some space of smooth multiplicative functions of the form θ =
∏d

j=0 θj(xj).

To see this, consider the estimator α = (α∗, α0, . . . , αd) that minimizes

arg min
α

∫
X

{
α̃LC(x)− α∗

d∏
j=0

αj(xj)

}2

w(x)dx. (3.7)

For ν(x) = w(x)/ÊLC(x)dx the solution of (3.7) is exactly (3.6). With that choice, we get

α∗ =

∫
X α̃(x)

∏d
j=0 αj(xj)w(x)dx∫

X

{∏d
j=0 αj(xj)

}2

w(x)dx
,
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and (α0, . . . , αd) can be described via the backfitting equation

αk(xk) =

∫
Xxk

α̃(x)
∏

j 6=k αj(xj)w(x)dx−k∫
Xxk

α∗
{∏

j 6=k αj(xj)
}2

w(x)dx−k

, k = 0, . . . , d. (3.8)

The asymptotic variance of kernel estimators of α is proportional to α(x)/E(x), see e.g.

Linton and Nielsen (1995). This motivates the choice w(x) = E(x)/α(x). However, this

choice is not possible because E(x) and α(x) are unknown. One could use w(x) = Ě(x)/α̌(x)

where Ě(x) and α̌(x) are some pilot estimators of E and α. We follow another idea and we

propose to weight the minimization (3.7) with its solution. We choose

w(x) =
Ê(x)∏
i α̂i(x)

, (3.9)

and heuristically, by putting αj = α̂j and by plugging (3.9) into (3.8), we get (3.3).

4 Asymptotic properties of the smooth backfitter of

multiplicative hazards

In the Supplementary Material we show that α̂j converges to the true αj with optimal one

dimensional nonparametric rate n−2/5, given that the bandwidth b is chosen of order n−1/5.

This means in particular that the asymptotic rate does not depend on the dimension d.

Under regularity assumptions, in Theorem 3 in the Supplementary Material we show that

n2/5{(α̂j − αj)(xj)− αj(xj)Bj(xj))} → N(0, α2
j (xj)σ

2
j (xj)),

where Bj(xj) can be formally defined as the j-th component of a projection of the bias of

the unconstrained estimator onto the multiplicative space and σ2
j (xj) is the variance of a

12



weighted average of the unconstrained estimator where the other components are integrated

out.

In the simulation study of the next section we show that estimation seems to work well

even when d is of similar order as n. This is, we believe, a major strength of our smooth

backfitting estimator.

A few notes on the proof. The estimator α̂j is defined as solution of a nonlinear operator

equation. Asymptotic properties are derived by approximating the estimators of this equa-

tion by a linear equation that can be interpreted as one equation that arises in nonparametric

additive regression models (Mammen et al., 1999), and then one shows that the solution of

the linear equation approximates the estimation error in the multiplicative model. The linear

equation and its solution is well understood from the theory of additive models. This is our

essential step to arrive at an asymptotic understanding of our estimator α̂j. Assumptions

are of standard nature in marker dependent hazard papers and they can be verified for the

local constant estimators we are interested in, see in particular Nielsen and Linton (1995),

Nielsen (1998) and Linton et al. (2003) for related arguments. However, the conditions are

formulated more general and they are not restricted to the local constant smoothers. They

are not even tight to kernel smoothers. Any smoother could be used as long as it obeys the

structure of being a ratio of a smoothed occurrence and a smoothed exposure.

5 Simulation study

In this section we present detailed simulations of the smooth backfitter. The Supplementary

Material contains additional simulation results for the setting discussed in Honda (2005)

and Lin et al. (2016). In these latter settings, the performance of the smooth backfitter is

similar to the estimator of Lin et al. (2016). And both estimators outperform the estimators

considered in Honda (2005).
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In the simulation study below, and with additional results in The Supplementary Mate-

rial, we compare our estimator with the estimator of Lin et al. (2016). The models of these

simulations contain high-dimensional and correlated covariates and in particular, we will

show that our estimator – in contrast to Lin et al. (2016) – works in high dimensions where

the dimension of the covariates is of similar order as the sample size and also in cases with

higher correlation between the covariates. To highlight the impact of increasing dimension

we will consider the dimensions d = 2 and d = 9. Further results for dimensions d = 30 and

d = 99 can be found in the Supplementary Material. The low dimensional setting, d = 2,

with uncorrelated covariates is similar to the setting of Honda (2005) and Lin et al. (2016),

and the difference between our estimator and the estimator of Lin et al. (2016) are indeed

marginal in this case. However, below and in the Supplementary Material we show that this

changes drastically with increasing dimension and/or correlation.

5.1 The setting

Since the estimator of Lin et al. (2016) is based on a partial likelihood approach, it does not

estimate the baseline hazard, α0. We will consider the sub-model

α(x) =
d∏

k=0

αk(xk) = exp

{
d∑

k=1

ηk(xk)

}
,

i.e., we assume a constant baseline hazard, α0 ≡ 1. More specifically, we assume that

the survival times Ti follow an exponential distribution with parameter value α(Xi), (i =

1, . . . , n). We add right censoring with censoring variables Ci that follow an exponential

distribution with parameter 4
7
α(Xi), (i = 1, . . . , n). We will compare the estimators for

ηk, k = 1, . . . , d. Our proposed estimator is derived as η̂SBFk = log(α̂k) and we compare it to,

η̂Lin et al.
k , proposed in Lin et al. (2016).
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We used the following two models:

Model 1: ηk(zk) =


−zk if k is odd,

2zk if k is even.

Model 2: ηk(zk) =


2 sin(πzk) if k is odd,

2zk if k is even.

The covariates (Zi1, . . . , Zid) are generated as follows. We first simulate (Z̃i1, . . . , Z̃id) from

a d-dimensional multi-normal distribution with mean equal 0 and Corr(Zij, Zil) = ρ if j 6= l,

else 1. Afterwards we set

Zik = 2.5π−1arctan(Z̃ik).

This has been independently repeated for every individual i = 1, . . . , n. After trying sev-

eral bandwidths, if not said otherwise, we present the results for a bandwidth b = 0.3 for

both estimators in every model. As kernel function k, we used the Epanechnikov kernel.

Performance is measured via the integrated squared error evaluated at the observed points:

ISEk = n−1obs
∑
iobs

(ηk(Ziobsk)− η̂k(Ziobsk))
2 ,

ISEodd = {ISEk|k = odd}, ISEeven = {ISEk|k = even},

where iobs runs over all observed individuals and nobs < n is the number of observed indi-

viduals. The next two subsections discuss the outcomes of the simulations for d = 2 and

d = 9.
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5.2 Dimension d = 2

In low dimensions both estimators perform satisfactorily. Already in dimension d = 2, for

Model 1, it occurred that the algorithm of Lin et al. (2016) stopped before the final calculation

of the estimator. This happened for three simulation samples out of 1200 (6 settings ×200

samples each) runs. The algorithm stopped at a step where a matrix has to be inverted that

is nearly singular. In contrast, our estimator does not need to invert matrices and we did

not have any singularity or convergence issues for our estimator. Performance-wise, we refer

to Figure 2 displaying boxplots of the integrated squared errors of both estimators. The two

estimators perform similar with a small advantage towards our smooth backfitting estimator.

The smooth backfitting estimator performs especially better for the smaller sample size

n = 200. While Lin et al. (2016) performed better in Model 2 with no correlation, the

performance of the smooth backfitting estimator seems more stable when correlation is added.

Figure 1 shows the 200 sample estimates of the first component α1 of Model 2 with ρ = 0.8.

The estimator of Lin et al. (2016) struggles especially at the boundaries and this is more

pronounced with a small bandwidth (left panel). If bandwidth is increased (right panel),

the estimate of Lin et al. (2016) seems over-smoothed and it is not able to replicate the full

magnitude of the local extrema at −0.5 and −0.5.

5.3 Dimension d = 9

When the dimension d is increased to 9, the estimator of Lin et al. (2016) breaks down

considerably more often than in the case d = 2, i.e., in 59 (4+5+48+1+1 out of 1200) cases

in Model 1 and 9 times in Model 2; see Table 1. Note that in the more extreme cases of

d = 99, provided in the Supplementary Material, nearly all simulations of Lin et al. (2016)

(780 and 607 out of 800 for Model 1 and Model 2, respectively) broke down. In contrast,

our estimator converged in all cases considered. Performance-wise we refer to Figure 4
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Figure 1: Estimates of α1 from 200 simulations. Left panel uses a bandwidth of 0.2 and

right panel a bandwidth of 0.3.

displaying boxplots of the integrated squared errors of both estimators. We see that for

d = 9 the smooth backfitter performs better in every setting. The better performance is

more pronounced when more correlation is present. Figure 3 shows 200 sample estimates of

the first component α1 of Model 2 with ρ = 0.8. The results are similar as in the case d = 2,

but now more pronounced: The estimator of Lin et al. (2016) struggles at the boundaries and

if bandwidth is increased (right panel), the estimate of Lin et al. (2016) seems too smooth

and is not able to replicate to full magnitude of the local extrema at −0.5 and −0.5.

6 In-sample forecasting of outstanding loss liabilities

The so-called chain ladder method is a popular approach to estimate outstanding liabili-

ties. It started off as a deterministic algorithm, and it is used today for almost every single

insurance policy over the world in the business of non-life insurance. In many developed
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Figure 2: Boxplots of the integrated squared errors. Simulations are taken out where the

algorithm for the calculation of the estimator in Lin et al. (2016) stopped without calculation

of all values of the estimator. The value n.sim is the number of the remaining simulations,

i.e., 200 minus number of break downs.
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Number of breakdowns in Lin et al. (2016) for d = 9
(out of 200 simulations)

Model 1 Model 2
ρ = 0 ρ = 0.5 ρ = 0.8 ρ = 0 ρ = 0.5 ρ = 0.8

n=200 4 5 48 0 0 9
n=500 0 1 1 0 0 0

Table 1: Number of breakdowns in the algorithm of Lin et al. (2016) out of 200 simulations

for dimension d = 9.
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Figure 3: Estimates of α1 from 200 simulations. Left panel uses a bandwidth of 0.2 and

right panel a bandwidth of 0.3.

countries, the non-life insurance industry has revenues amounting to around 5%. It is there-

fore comparable to - but smaller than - the banking industry. In every single product sold,

the chain ladder method (because actuaries hardly use other methods) comes in, estimating

the outstanding liabilities that eventually aggregate to the reserve - the single biggest num-

ber of most non-life insurers balance sheets. The insurers liabilities often amount to many

times the underlying value of the company. In Europe alone those outstanding liabilities are
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Figure 4: Boxplots of the integrated squared errors. Simulations are taken out where the

algorithm for the calculation of the estimator in Lin et al. (2016) stopped without calculation

of all values of the estimator. The value n.sim is the number of the remaining simulations,

i.e., 200 minus number of break downs.
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estimated to accumulate to around e 1trn. It is therefore of obvious importance that this

estimate is not too far from the best possible estimate. We describe in this section how the

methodology introduced in this paper can be applied to provide a solution to this challenging

problem.

We analyze reported claims from a motor business line in Cyprus. The same data set has

been used by Hiabu et al. (2016) and it consists of the number of claims reported between

2004 and 2013. During these 10 years (3654 days), n = 58180 claims were reported. The

data are given as {(T1, Z1), . . . , (Tn, Zn)}, where Zi denotes the underwriting date of claim

i, and Ti the time between underwriting date and the date of report of a claim in days,

also called reporting delay. Hence, in the notation of the previous sections, the covariate

underwriting date, Z(t) = Z, does not depend on time and has dimension d = 1. The data

exist on a triangle, with Ti + Zi ≤ 31 December 2013 = R0, which is a subset of the full

support R = [0, R0]
2 (0 = 1 January 2004). The aim is to forecast the number of future

claims from contracts written in the past which have not been reported yet. Figure 5 shows

the observed data that lie on a triangle, while the forecasts are required on the triangle

that added to the first completes a square. Here it is implicitly assumed that the maximum

reporting delay of a claim is 10 years. Actuaries call this assumption that the triangle is

fully run off. In our data set, this is a reasonable assumption looking at Figure 5.

The classical chain ladder method is able to provide a simple solution to the above

problem. Recently, Mart́ınez-Miranda et al. (2013) have pointed out that this method can

be viewed as a multiplicative density method: the original, un-truncated random variable

(T, Z) having density f(t, z) = f1(t)f2(z); and the authors suggested to embed the method

in a more standard mathematical statistical vocabulary to engage mathematical statisticians

in future developments. In particular, Mart́ınez-Miranda et al. (2013) showed that one could

consider the traditional chain ladder estimator as a multiplicative histogram in a continuous

framework, and presented an alternative by projecting an unconstrained local linear density
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Figure 5: Histogram of claim numbers of a motor business line between 2004 and 2013. Axis

z represents the underwriting time (in months) and axis t the reporting delay (in months).

down onto a multiplicative subspace. This approach was called continuous chain ladder and

it has been further analyzed by Mammen et al. (2015); Lee et al. (2015, 2017), providing full

asymptotic theory of the underlying density components. A related approach by Hiabu et al.

(2016); Hiabu (2017) proposes to transform the two-dimensional multiplicative continuous

chain ladder problem to two one-dimensional continuous hazard estimation problems via an

elegant time-reverting trick. The application considered in this paper generalizes the most

important of these reversed hazards to a two-dimensional multiplicatively structured hazard.

In this way the continuous chain ladder is improved and generalized allowing more flexibility

for the estimation of outstanding liabilities in the insurance business.

In Hiabu et al. (2016) it is assumed that T and Z are independent, which means that

the underwriting date of a claim has no effect on the reporting delay. We are not going to

impose such a strong restriction. In order to discuss the independence assumption, consider

Figure 6. The points in the plots are derived by first transforming the data into a triangle
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Figure 6: Scaled quarterly hazard rates of the first four development quarters.

with dimension 3654× 3654,

Nt,z =
n∑
i=1

I
(
Ti = t, Zi = z

)
, (t, z) ∈ {1, 2, . . . , 3654}2, t+ z ≤ 3654

and then aggregating the data into a quarterly triangle, (NQ
t,z), with dimension 40× 40, see

also Hiabu (2017). Then, for t = 2, . . . , 5, one derives the quarterly hazard rate as ratio

of occurrence and exposure, α(t, z) = NQ
t,z/
∑z

l=1N
Q
t,l . These values are then scaled by an

eye-picked norming factor, α0(t), t = 2, . . . , 5, letting α(t, z) start at around 1 as a function

of z with fixed t. The final values, α1(t, z) = α0(t)α(t, z), are displayed in Figure 6. We only

show plots for t ≤ 5 since almost all claims are reported after five quarters.

If the independence assumption of Hiabu et al. (2016) is satisfied, the points should lie

around a horizontal line in each plot. If the multiplicative hazard assumption of this paper is
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satisfied, then any smooth shape is allowed, but all four graphs must be equal after correction

for noise. This is because under the model which will be defined below, the graphs, α1(·, ·),

with the first component fixed, mimic a quarterly version of α1.

Inspecting the four plots, one can argue to see a negative drift of similar magnitude in

each graph, the values decaying from around 1 to 0.8. This indicates that the approach of

this paper should give a better fit to the data compared to the model of Hiabu et al. (2016).

From this discussion we now continue with embedding our observations in the propor-

tional hazard framework. Afterwards we will show how the hazard estimate can be used

to forecast the number of outstanding claims. First note that we cannot apply the ap-

proach of this paper directly, since in this application we only observe T if T ≤ R0 − Z,

which is a right truncation. Analogue to Hiabu et al. (2016), we transform the ran-

dom variable T to TR = R0 − T . This has the result that the right truncation trun-

cation becomes left truncation, TR ≥ Z. Thus we consider the random variable TR

as our variable of interest. With the notation considered in Section 2.1, we now have

T = TR, d = 1, Z(t) = Z, δ = 1, I = {(tR, z) ∈ R|0 ≤ z ≤ tR}. We conclude that

the counting process Ni(t
R) = 1

{
TRi ≤ tR

}
, satisfies Aalen’s multiplicative intensity model

with respect to the filtration given in Section 2.1 and

αz(t
R) = α(tR, z) = lim

h↓0
h−1Pr{TR ∈ [tR, tR + h)| TR ≥ tR, Z = z},

Yi(t
R) = 1

{
(tR, Zi) ∈ I, tR ≤ TR,∗i

}
.

In Section 3.1 we suggested a local constant estimator as pilot. In this application we

prefer a local linear estimator because we anticipate high mass at the boundaries. The local

linear estimator (Nielsen, 1998) has an automated boundary correction. We estimate the

unstructured hazard as ratios of occurrence and exposure from a local linear estimation
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(Gámiz et al., 2013):

ÔLL(x) = n−1
n∑
i=1

∫ {
1− (x−Xi(s))D(x)−1c1(x)

}
Kb(x−Xi(s))dNi(s),

ÊLL(x) = n−1
n∑
i=1

∫ {
1− (x−Xi(s))D(x)−1c1(x)

}
Kb(x−Xi(s))Yi(s)ds,

where the components of the (d+ 1) - dimensional vector c1 are

c1j(x) = n−1
n∑
i=1

∫
Kb(x−Xi(s))(xj −Xij(s))Yi(s)ds, j = 0, . . . , d,

and the entries (djk) of the (d+ 1)× (d+ 1) - dimensional matrix D(x) are given by

djk(x) = n−1
n∑
i=1

∫
Kb(x−Xi(s))(xj −Xij(s))(xk −Xik(s))Yi(s)ds.

Note that we have X = I. The components of the multiplicative conditional hazard are then

computed as in (3.5). These estimators require the choice of the bandwidth parameter, which

was assumed to be scalar in order to simplify the notation in this paper. In this application we

generalize this restriction allowing for different smoothing levels in each dimension, namely

reporting delay and underwriting time. The bandwidth parameter is then a vector b =

(b0, b1) and we estimate it using cross-validation, see further details in the Supplementary

Material. To alleviate the computational burden of cross-validation we aggregated the data

triangle Nt,z considering bins of two days when applying a discrete version of the estimators

described in the Supplementary Material. After several trials we run the cross-validation

minimization over b0 ∈ {1300, 1400, 1500, 1600, 1700, 1800} and b1 ∈ {2, 3, 4, 5}. The cross-

validated bandwidth components were b0 = 1600 and b1 = 3 (unit=2 days).

The results of the estimation procedure are given in Figure 7 and Figure ??. Figure 7

shows the estimated components of the multiplicatively structured hazard estimator. The
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Figure 7: The estimated multiplicative hazard components .

function α2 which captures the underwriting date effect, seems, up to a possible boundary

effect, linear. This suggests that a semiparametric approach with nonparametric baseline

hazard and linear covariate effect might be suitable. While we do not investigate this point

further in our data illustration, this particular case illustrates nicely how our nonparametric

approach could be employed for model selection.

Finally the total number of outstanding claims, i.e. the reserve, can be estimated as

Reserve =
n∑
i=1

∫ R0

R0−Zi
f̂Zi

(t)dt∫ R0−Zi

0
f̂Zi

(t)dt
, f̂z(t) = α̂0(R0 − t)α̂1(z) exp

{
−
∫ R0−t

0

α̂0(s)α̂1(z)ds

}
.

Note that f̂z(t) is an estimator of the conditional density of the survival time T . The reserve

can be also decomposed further to provide the ’cash flow’ of the next periods. If the future

is divided into M periods, each of them with length δ = R0/M , then the amount of claims

forthcoming in the ath (a = 1, 2, . . . ,M) period can be estimated by

ReserveP (a) =
n∑
i=1

∫ (R0−Zi+aδ)∧R0

(R0−Zi+aδ−1)∧R0
f̂Zi

(t)dt∫ R0−Zi

0
f̂Zi

(t)dt
.

Table 2 shows the estimated number of of outstanding claims for future quarters. We

compare the approach of this paper with the results derived by Hiabu et al. (2016) and

the traditional chain ladder method. The two latter approaches have in common that they
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Table 2: Number of outstanding claims for future quarters; 1 = 2014 Q1, . . . , 39 = 2022 Q3.

The backfitting approach in this paper (SBF) is compared with the chain ladder method

(CLM) and the approach in Hiabu et al. (2016).

Future quarter 1 2 3 4 5 6 7 8 9 10 11 12 – 39 Tot.
Hiabu et al. (2016) 970 684 422 166 14 5 3 2 1 1 1 0 2270

CLM 948 651 387 148 12 5 3 2 1 1 1 0 2160
SBF 872 621 400 130 53 7 4 3 2 1 1 1 2193

assume independence between underwriting date, Z, and reporting delay, T . We see that

while all approaches estimate a similar total number of outstanding claims (reserve), those

two approaches have distributions over the quarters that are very different from the results

obtained by the method proposed in this paper. It seems that the violation of the inde-

pendence assumption has not a big influence on the reserve, since it balances the different

development patterns arising from different periods out. However, the problem becomes

quite serious if one is interested in more detailed estimates like the cash flow.
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