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ASYMPTOTICS OF THE MINIMAL CLADE SIZE AND RELATED

FUNCTIONALS OF CERTAIN BETA-COALESCENTS

ARNO SIRI-JÉGOUSSE AND LINGLONG YUAN

Abstract. This article shows the asymptotics of distributions of various functionals of the Beta(2−
α, α) n-coalescent process with 1 < α < 2 when n goes to infinity. This process is a Markov process
taking values in the set of partitions of {1, . . . , n}, evolving from the intial value {1}, · · · , {n} by
merging (coalescing) blocks together into one and finally reaching the absorbing state {1, . . . , n}.
The minimal clade of 1 is the block which contains 1 at the time of coalescence of the singleton
{1}. The limit size of the minimal clade of 1 is provided. To this, we express it as a function of the
coalescence time of {1} and sizes of blocks at that time. Another quantity concerning the size of the
largest block (at deterministic small time and at the coalescence time of {1}) is also studied.

1. Introduction and main results

Coalescent theory was initiated by Kingman ([23, 24, 25]) to model the genealogical tree of a
sample of n individuals of a certain population. The so-called Kingman n-coalescent is a continuous-
time Markov chain taking values in Pn, the set of partitions of Nn = {1, 2, · · · , n}. It starts from n
singletons {1}, {2}, · · · , {n} representing n individuals (or lineages) and at any time, each couple of
blocks merges (or coalesces) independently into one block at rate 1. The process reaches almost surely
in finite time the absorbing state {1, 2, · · · , n} which is called MRCA (most recent common ancestor).
Kingman showed that the genealogy of a sample of size n in a population evolving according to the
Cannings population model of size N converges in the sense of finite dimensional distribution to the
Kingman n-coalescent when N goes to ∞, under some assumptions over the reproduction law in the
Cannings model. Roughly speaking, it is required that one individual in the population should not
have a lot of progenies so that its children occupy a large ratio of the next generation. This assumption
happens to fail in some marine species (see [20], [16], [9], [1]). To model this phenomenon, Pitman ([27])
and Sagitov ([29]) introduced at the same time the Λ n-coalescent, denoted by Π(n) = (Π(n)(t), t ≥ 0).
It is characterized by a finite measure Λ on [0, 1].

The process Π(n) is still a continuous-time Markov chain starting from {1}, {2}, · · · , {n}, but with
the following dynamics: at any time t ≥ 0, if Π(n)(t) has b blocks (b ≥ 2), then each k-tuple (2 ≤ k ≤ b)
of blocks coalesces together into one at rate

λb,k :=

∫ 1

0

xk−2(1 − x)b−kΛ(dx). (1)

As a consequence, the rate to the next coalescence is

gb :=

b
∑

k=2

(

b

k

)

λb,k. (2)

In particular, the Kingman n-coalescent is a special Λ n-coalescent with Λ being the Dirac measure
at 0.
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Definition (1) is a reformulation of two properties of the process Π(n) (see [27]). The first one is
exchangeability. Let ρn be a permutation of Nn. The map ρn induces naturally a map ρ̄n on Pn.
Then we have

ρ̄n ◦Π(n) (d)
= Π(n).

The second one is consistency. For any 2 ≤ m ≤ n, let ̺n,m be the natural restriction from Nn to Nm

and ¯̺n,m the induced map from Pn to Pm. Then

¯̺n,m ◦Π(n) (d)
= Π(m).

These two properties also imply that one can build a projective limit process, the so-called Λ-
coalescent, denoted by Π = (Π(t), t ≥ 0), taking values in the set P of partitions of N. For any
restriction ̺n from N to Nn and its induced map ¯̺n from P to Pn,

¯̺n ◦Π
(d)
= Π(n).

The Beta(2−α, α)-coalescent with 0 < α < 2 is a special and important example of Λ-coalescents. In
this case, Λ is the Beta measure with parameters 2− α and α. If α tends to 2, then the limit process
obtained is the Kingman coalescent. If α = 1, the process obtained is the celebrated Bolthausen-
Sznitman coalescent ([8]). This article deals with the case 1 < α < 2 and, for the sake of simplicity,
we will refer to Beta(2 − α, α)-coalescent as Beta-coalescent. This class of coalescent processes was
introduced by Schweinsberg ([31]) and deeply studied in [2],[3]. In particular, in [3], many results
on the small-time behavior of various functionals of the Beta-coalescent are discovered. Meanwhile,
many asymptotic studies, motivated by biology, have been developed for the Beta n-coalescent (see
for example [12], [22], [13], [11]) , when n goes to ∞.

In this paper, we aim to study more asymptotic results on some functionals of the Beta n-coalescent
with 1 < α < 2 when n grows to ∞. We denote

A ∼ B,

if A
B tends deterministically or randomly to 1 in the limit, depending on different contexts. Here

A,B can be functions, sequences of real values, random variables. Denote by
a.s.
→ the almost sure

convergence and by
P
→ the convergence in probability.

The length of the external branch of individual i, also called unicity of individual i by biologists

([28]), is denoted by T
(n)
i . It is the coalescence time of {i}, defined as follows

T
(n)
i := sup{t : {i} ∈ Π(n)(t)}.

The length of a randomly chosen external branch provides a measure of the genetic variation of the
population since it gives some information on the “distance” of an individual to the rest of the sample.
Exchangeability of the coalescent implies that

T
(n)
i

(d)
= T

(n)
1 , 1 ≤ i ≤ n.

The law of T
(n)
1 has interested many people since the first article [7] dealing with the Kingman

coalescent case. We give a short survey of results already discovered.

• Kingman: nT
(n)
1 converges in distribution to a random variable with density 8

(2+t)31t≥0

([7],[10]).

• Beta-coalescent with 1 < α < 2: nα−1T
(n)
1

(d)
−→ T , where T is a random variable with density

function fT :

fT (t) =
1

(α− 1)Γ(α)
(1 +

t

αΓ(α)
)−

α
α−1−11t≥0. (3)

(see [13] where the result is stated in a more general case).
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• lim
n→∞

gn
nµ(n)

= 0 where gn is defined in (2) and µ(n) =
∫ 1

1/n x−1Λ(dx) : µ(n)T
(n)
1 is asymptoti-

cally distributed as an exponential random variable with mean 1 ([33]). This class of processes
contains Beta-coalescents with 0 < α < 1 (see also [27], [26], [19] for other proofs) and the
Bolthausen-Sznitman coalescent (see also [14], [17] for other proofs).

In this paper, we prove the following

Theorem 1.1. Consider a Beta n-coalescent with 1 < α < 2. For any fixed k ∈ N, as n → ∞,

nα−1(T
(n)
1 , · · · , T

(n)
k )

(d)
−→ (T1, · · · , Tk), (4)

where (Ti, i ∈ N) are i.i.d. copies of T with density (3).

A similar result has been proved for Bolthausen-Sznitman coalescent ([14]), but the asymptotic

independence is not true for coalescents satisfying
∫ 1

0
x−1Λ(dx) < ∞ ([26]).

Let K(n) = (K(n)(t), t ≥ 0) denote the block-counting process of Π(n), i.e., K(n)(t) stands for the
number of blocks of the partition Π(n)(t) for t ≥ 0. Define

Q(n) := K(n)((T
(n)
1 )−)−K(n)(T

(n)
1 ) + 1,

where (T
(n)
1 )− is the time just prior to T

(n)
1 . In other words, Q(n) is the number of blocks involved in

the coalescence event of {1} in Π(n).

Theorem 1.2. Consider a Beta n-coalescent with 1 < α < 2. Q(n) converges in law to a random
variable Q taking values in {2, 3, · · · } such that for any k ≥ 2

qk := P(Q = k) =
(α − 1)Γ(k − α)

Γ(k)Γ(2− α)
. (5)

Furthermore, Q(n) and T
(n)
1 are asymptotically independent.

Notice that in the Kingman coalescent, Q(n) = Q = 2 almost surely. The following proposition
shows that, for Λ-coalescents satisfying

∫

[0,1] x
−1Λ(dx) < ∞, Q(n) converges in probability to infinity.

Proposition 1.3. Consider a Λ n-coalescent with the characteristic measure satisfying
∫ 1

0
x−1Λ(dx) <

∞, then Q(n) converges in probability to infinity.

The above proposition is even true in the Bolthausen-Sznitman coalescent case (see Remark 3.2).
A quantity of interest in biology is the minimal clade size. It is the size of the minimal clade of a

randomly chosen individual (or of the individual 1, considered in this paper). The minimal clade is
the block that contains 1 at the time {1} is coalesced. The size of the minimal clade tells how many

individuals share the genealogy with individual 1 after time T
(n)
1 . Let us denote the minimal clade

size by Y (n). In the Kingman case, Blum and François ([7]) showed that

P(Y (n) = k) =
4

(k + 1)k(k − 1)
, k = 2, · · · , n− 1; P(Y (n) = n) =

2

n(n− 1)
.

Freund and Siri-Jégousse [18] studied the case of the Bolthausen-Sznitman coalescent. In this case

lnY (n)

lnn

(d)
−→ U[0,1],

where U[0,1] is a uniform variable over [0, 1]. Asymptotics of moments were also found.
We state out our result by at first giving some notations.

• Let µ be Slack’s probability distribution on [0,∞) (see [32]) characterized by its Laplace
transform

Lµ(λ) =

∫ ∞

0

e−λxµ(dx) = 1− (1 + λ1−α)−
1

α−1 , λ ≥ 0. (6)
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• Define a 1-parameter family of laws (not a process) (β(t), t ≥ 0) such that for any k ≥ 1

P(β(t) = k) =
1

Γ(k)

(

t

αΓ(α)

)
k−1
α−1

∫ ∞

0

e−x( t
αΓ(α) )

1
α−1

xkµ(dx). (7)

The following result could be regarded as a consequence of Theorem 1.2.

Theorem 1.4. Consider a Beta n-coalescent with 1 < α < 2. Let (βi(t), t ≥ 0)i≥1 be i.i.d. copies of
(β(t), t ≥ 0) and Q, T be random variables defined respectively in (5) and (3). Assume that (βi(t), t ≥
0)i≥1, Q, T are all independent. Then

Y (n) (d)
−→ Y = 1 +

Q−1
∑

i=1

βi(T ). (8)

The law of Y can be described as follows: for any l ≥ 2,

P(Y = l) =

∫ ∞

0

l
∑

k=2

qk
∑

i1+···+ik−1=l−1

(

Πk−1
j=1P(β(t) = ij)

)

fT (t)dt.

Next, we establish a close relation between the random variable Q and the family (β(t), t ≥ 0).
Notice that lim

t→0+
P(β(t) = 1) = 1.

Proposition 1.5. 1) For any k ≥ 2,

qk = (α− 1)Γ(α) lim
t→0+

P(β(t) = k)

t
. (9)

2) The Laplace transform of Q is

E[e−λQ] = lim
t→0+

E[(α − 1)Γ(α)
e−λβ(t)1β(t)≥2

t
] = e−λ

(

1− (1− e−λ)α−1
)

(10)

for any λ ≥ 0.

The law of Y looks quite complicated, which may harm the applicability of the result. However
the clarification given below could at some point improve the situation.

Corollary 1.6. If k tends to ∞, one has P(Y > k) ∼
∫

∞

0
tα−1fT (t)dt

((α−1)Γ(α))α−1Γ(1−(α−1)2)k
−(α−1)2 .

If α goes to 1, k−(α−1)2 goes to 1. This is consistent with the Bolthausen-Sznitman case where

Y = ∞ almost surely. If α tends to 2, k−(α−1)2 goes to k−1. This is in fact not consistent with
the law of Y in the Kingman case. The corollary reveals some kind of “discontinuity” between the
Beta-coalescent and the Kingman coalescent.

The size of the block containing one specific integer evolves in an increasing way at different speed.

It is clear that at time (T
(n)
1 )− the block containing 1 is still of size 1 while other blocks could have

grown quite a lot. One way to measure this speed is to consider the size of the largest block at time

T
(n)
1 . We denote this variable by W̃ (n). The bigger W̃ (n) is, the more inhomogeneous the speed is.

To study W̃ (n), we first consider the size of the largest block at any time t, denoted by W (n)(t). In
this way, we have

W̃ (n) = W (n)(T
(n)
1 ).

Theorem 1.7. Consider a Beta n-coalescent with 1 < α < 2,

W (n)((α − 1)αΓ(α)n1−αt)

n
1
α

(d)
−→ W (t), (11)

where W (t) is a positive random variable with a type-2 Gumbel law, i.e., for any x ≥ 0, P(W (t) ≤

x) = e−x−α (α−1)t
Γ(2−α) .
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The methodology employed to prove the above theorem is similar to that used in the proof of
Proposition 1.6 in [3], although there are some small differences.

The following result about W̃ (n) happens to be a straightforward consequence of the above theorem.

Corollary 1.8. As n tends to ∞,
W̃ (n)

n
1
α

(d)
−→ W̃ , (12)

where W̃ is a positive random variable such that for any x ≥ 0,

P(W̃ ≤ x) =

∫ ∞

0

e−x−α t
αΓ(α)Γ(2−α) fT (t)dt.

This paper is organized as follows. In Section 2, we study external branch lengths and the block-
counting process in small time and prove Theorem 1.1. In Section 3, we focus on the way of coalescing
an external branch and prove Theorem 1.2, Proposition 1.3, Theorem 1.4, Proposition 1.5 and Corol-
lary 1.6. Section 4 is devoted to the size of the largest block and Theorem 1.7 and Corollary 1.8 are
proved.

2. External branch lengths

2.1. Ranked Λ-coalescent. Assume from now on that 1 < α < 2. Let Π = (Π(t), t ≥ 0) be the
Beta-coalescent and denote by K = (K(t), t > 0) the block-counting process of Π, i.e., K(t) stands for
the number of blocks of Π(t). It is known that Π is coming down from infinity: for any t > 0, K(t) is
finite almost surely ([30]). Recall that for any t ≥ 0, Π(t) is an exchangeable random partition of N.
Applying Kingman’s paintbox theorem on exchangeable random partitions ([23]), almost surely, for
every block B ∈ Π(t), there exists the following limit which is called the asymptotic frequency of B:

lim
m→∞

1

m

m
∑

i=1

1i∈B.

Furthermore, when t > 0, the sum of all asymptotic frequencies equals 1 ([27]).When t = 0, every
block is a singleton and hence has the asymptotic frequency 0. Pitman ([27]) shows that almost surely
for all t ≥ 0, every block in Π(t) has the asymptotic frequency. Hence if t > 0, one can reorder all the
asymptotic frequencies in a non-increasing way to define a sequence Θ(t) = {θ1(t), θ2(t), · · · , θK(t)(t)}

where θ1(t) ≥ θ2(t) ≥ · · · ≥ θK(t)(t) and
∑K(t)

i=1 θi(t) = 1. At time t = 0, since every block has asymp-
totic frequency 0, one can naturally set Θ(0) = {0, 0, · · · }. Then the process Θ = (Θ(t), t ≥ 0) is well
defined and called the ranked Λ-coalescent.

Given Θ(t) with t > 0, one can recover the distribution of Π(t) using again Kingman’s paintbox
theorem. Let us at first divide [0, 1] into K(t) intervals such that the lengths of intervals correspond
one to one to the elements of Θ(t). Then we throw individuals 1, 2, · · · uniformly and independently
into [0, 1]. Finally, all individuals within one interval form a block and this procedure provides a
random exchangeable partition which has the same law as Π(t). It is of course possible, thanks to the
consistency property, to build the restricted partition Π(n)(t) using the same procedure but throwing
nothing but n particles instead of an infinity.This construction will be the key point of our proofs.

2.2. Properties of the ranked Λ-coalescent. Let K(t, x) := #{i : θi(t) ≤ x} for any x ∈ [0, 1].
Let ς(t) be a size-biased picking of Θ(t), i.e., ς(t) is a discrete random variable such that

P(ς(t) = θi(t)|Θ(t)) = θi(t)×#{j : θj(t) = θi(t), 1 ≤ j ≤ K(t)}, 1 ≤ i ≤ K(t). (13)

One can construct or regard ς(t) in the following way: Suppose that [0, 1] is divided into K(t) intervals
whose lengths are in one-to-one correspondence to the elements of Θ(t). We throw a particle uniformly
and independently over [0, 1] and ς(t) is the length of the interval containing this particle.

Recall the measure µ defined in (6). It is easy to check that
∫ ∞

0

yµ(dy) =
dLµ(λ)

dλ
|λ=0 = 1. (14)
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Proposition 2.1. We have

lim
t−→0+

sup
x≥0

∣

∣

∣

∣

∣

∣

P(ς(t) ≤ t
1

α−1 x|Θ(t))−

∫ x(αΓ(α))
1

α−1

0

yµ(dy)

∣

∣

∣

∣

∣

∣

= 0, a.s. (15)

Proof. In order to simplify the notations, let us denote f(t, x) = P(ς(t) ≤ t
1

α−1x|Θ(t)) and f(x) =
∫ x(αΓ(α))

1
α−1

0 yµ(dy). Let

St = sup
x≥0

∣

∣

∣t
1

α−1K
(

t, t
1

α−1 x
)

− (αΓ(α))
1

α−1 µ
(

[0, x(αΓ(α))
1

α−1 )
)∣

∣

∣ .

It is shown in Theorem 1.4 of [3] that

lim
t−→0+

St = 0, a.s. (16)

Observe that

f(t, x) =

K(t)
∑

i=0

θi(t)1
{θi(t)≤t

1
α−1 x}

=

n−1
∑

j=0

K(t)
∑

i=0

θi(t)1
{t

1
α−1 jx

n
<θi(t)≤t

1
α−1 (j+1)x

n
}
. (17)

Then

f(t, x) ≥ I
(n)
1 :=

n−1
∑

j=0

K(t)
∑

i=0

t
1

α−1
jx

n
1
{t

1
α−1 jx

n
<θi(t)≤t

1
α−1 (j+1)x

n
}

and

f(t, x) ≤ I
(n)
2 :=

n−1
∑

j=0

K(t)
∑

i=0

t
1

α−1
(j + 1)x

n
1
{t

1
α−1 jx

n
<θi(t)≤t

1
α−1 (j+1)x

n
}
.

For n fixed and applying (16), one gets for t → 0+

I
(n)
1

a.s.
−→

n−1
∑

j=0

jx

n
(αΓ(α))

1
α−1 µ

(

( jx

n
(αΓ(α))

1
α−1 ,

(j + 1)x

n
(αΓ(α))

1
α−1 )

]

)

,

and

I
(n)
2

a.s.
−→

n−1
∑

j=0

(j + 1)x

n
(αΓ(α))

1
α−1 µ

(

(jx

n
(αΓ(α))

1
α−1 ,

(j + 1)x

n
(αΓ(α))

1
α−1 )

]

)

.

The above two limit values converge to f(x) as n goes to ∞. Then we can conclude. �

It is straightforward to see that

Corollary 2.2. For any f ∈ C0
b [0,∞) and c ≥ 0, M ∈ R+ ∪ {∞},

E

[

f(ct−
1

α−1 ς(t))1
{0≤ct

−
1

α−1 ς(t)≤M}
|Θ(t)

]

a.s.
−→

∫ Mc−1(αΓ(α))
1

α−1

0

f
(

c(αΓ(α))−
1

α−1 y
)

yµ(dy)

when t → 0+.
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2.3. External branches. We start the proof of Theorem 1.1 with a simpler version.

Proposition 2.3. Let {T
(n)
i , 1 ≤ i ≤ k} and T be as in Theorem 1.1. The following almost sure

convergence holds as n goes to ∞:

P(nα−1T
(n)
1 > t, nα−1T

(n)
2 > t, · · · , nα−1T

(n)
k > t|Θ(n1−αt))

a.s.
−→ P(T > t)k (18)

for any t ≥ 0. As a consequence,

nα−1T
(n)
1

(d)
−→ T. (19)

Remark 2.1. The convergence (19) has already been obtained in [13] using two different methods.

Proof. For the sake of simplicity in notations, let tn = n1−αt. Let us build Π(n)(t) from Θ(t) and the
paintbox construction (using n particles). We now prove (18) for k = 2. The proof for k > 2 and
k = 1 follows similarly. Let ς̄(tn) be an independent copy of ς(tn), conditionally on Θ(tn). Then,

P(nα−1T
(n)
1 > t, nα−1T

(n)
2 > t|Θ(tn))

=

K(tn)
∑

i,j=1,i6=j

θi(tn)θj(tn)
(

1− θi(tn)− θj(tn)
)n−2

=

K(tn)
∑

i,j=1

θi(tn)θj(tn)
(

1− θi(tn)− θj(tn)
)n−2

−

K(tn)
∑

i=1

θi(tn)
2
(

1− 2θi(tn)
)n−2

=E[
(

1− ς(tn)− ς̄(tn)
)n−2

|Θ(tn)]− E[ς(tn)
(

1− 2ς(tn)
)n−2

|Θ(tn)],

Using Corollary 2.2, the second term converges almost surely to 0. Let M be a real positive number
and write the first term as

E[
(

1− ς(tn)− ς̄(tn)
)n−2

|Θ(tn)] = I1 + I2,

where

I1 = E[
(

1− ς(tn)− ς̄(tn)
)n−2

1ς(tn)≤Mn−1,ς̄(tn)≤Mn−1 |Θ(tn)],

I2 = E[
(

1− ς(tn)− ς̄(tn)
)n−2

1{ς(tn)≤Mn−1,ς̄(tn)≤Mn−1}c |Θ(tn)].

By Proposition 2.1,

I2 ≤ 1− P(ς̄(tn) ≤ Mn−1|Θ(tn)])
2 a.s.
→ 1− (1−

∫ ∞

Mt
1

1−α

yµ(dy))2.

The limit value goes to 0 as M tends to ∞. For I1, notice that x 7→ (1−n−1x)n−2 converges uniformly
to x 7→ e−x for 0 ≤ x ≤ 2M as n tends to ∞. Then

I1 − E[exp (−nς(tn)− nς̄(tn)) 1ς(tn)≤Mn−1,ς̄(tn)≤Mn−1 |Θ(tn)]
a.s.
→ 0.

Now, thanks to Corollary 2.2, we get

E[exp (−nς(tn)− nς̄(tn)) 1ς(tn)≤Mn−1,ς̄(tn)≤Mn−1 |Θ(tn)]

=E[exp (−nς(tn))1ς(tn)≤Mn−1 × exp (−nς̄(tn)) 1ς̄(tn)≤Mn−1 |Θ(tn)]

a.s.
→





∫ M−1(αΓ(α)
t

)
1

α−1

0

e−(αΓ(α)
t

)
−

1
α−1 yyµ(dy)





2

M→∞
→ (1 +

t

αΓ(α)
)−2 α

α−1 .

Then we can conclude. �
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2.4. The block-counting process in small time. Recall that K(n) = (K(n)(t), t > 0) and K =
(K(t), t > 0) are respectively the block-counting processes of Π(n) and Π.

Lemma 2.4. Let t > 0 and tn = n1−αt. We have

E[K(n)(tn)|Θ(tn)] =

K(tn)
∑

i=1

1−
(

1− θi(tn)
)n

. (20)

and

Var(K(n)(tn)|Θ(tn)) =

K(tn)
∑

i=1

(

1− θi(tn)
)n(

1− (1− θi(tn))
n
)

+

K(tn)
∑

i,j=1,i6=j

(

1− θi(tn)− θj(tn)
)n

−
(

1− θi(tn)
)n(

1− θj(tn)
)n

. (21)

Furthermore,
E[K(n)(tn)|Θ(tn)]

n

a.s.
−→ (1 +

t

αΓ(α)
)−

1
α−1 , n → ∞. (22)

and
V ar(K(n)(tn)|Θ(tn))

n

a.s.
−→ (21−α +

t

αΓ(α)
)−

1
α−1 − (1 +

t

αΓ(α)
)−

1
α−1 , n → ∞. (23)

Remark 2.2. It can be deduced from (22) and (23) that

K(n)(tn)

n(1 + t
αΓ(α) )

− 1
α−1

P
→ 1,

whereas, interestingly, due to Proposition 2.1 or Theorem 1.1 of [3],

K(tn)

n( t
αΓ(α) )

− 1
α−1

a.s.
→ 1. (24)

Proof. The equalities (20) and (21) come directly from (4.1) and (4.2) in [21]. The arguments to prove
(22) and (23) include (24) and those used in the proof of Proposition 2.1. To be more clear, we just
show the proof of (22) and leave the other to the readers.

E[K(n)(tn)|Θ(tn)]

n
=

K(tn)

n
−

K(tn)
∑

i=0

n−1(1− θi)
n

≤
K(tn)

n
−

n−1
∑

j=0

n−1(1−
j + 1

n
)n
(

K(tn,
j + 1

n
)−K(tn,

j

n
)
)

.

In the same way,

E[K(n)(tn)|Θ(tn)]

n
≥

K(tn)

n
−

n−1
∑

j=0

n−1(1 −
j

n
)n
(

K(tn,
j + 1

n
)−K(tn,

j

n
)
)

While (16) shows that

sup
0≤j≤n−1

∣

∣

∣

∣

t
1

α−1
n

(

K(tn,
j + 1

n
)−K(tn,

j

n
)

)

− αΓ(α)
1

α−1µ
((

(
αΓ(α)

t
)

1
α−1

j

n
, (
αΓ(α)

t
)

1
α−1

j + 1

n

])

∣

∣

∣

∣

= sup
0≤j≤n−1

∣

∣

∣

∣

n−1t
1

α−1

(

K(tn,
j + 1

n
)−K(tn,

j

n
)

)

− αΓ(α)
1

α−1µ
((

(
αΓ(α)

t
)

1
α−1

j

n
, (
αΓ(α)

t
)

1
α−1

j + 1

n

])

∣

∣

∣

∣

≤2Stn
a.s.
−→ 0.
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Notice also that

lim
n→∞

n−1
∑

j=0

(1−
j

n
)n = lim

n→∞

n−1
∑

j=0

(1 −
j + 1

n
)n =

∞
∑

j=1

e−j < ∞.

Hence using (24), almost surely,

E[K(n)(tn)|Θ(tn)]

n
∼

(

αΓ(α)

t

)
1

α−1



1−
n−1
∑

j=0

(1−
j

n
)nµ
((

(
αΓ(α)

t
)

1
α−1

j

n
, (
αΓ(α)

t
)

1
α−1

j + 1

n

])





n→∞
→

(

αΓ(α)

t

)
1

α−1

(1−

∫ ∞

0

e−y( t
αΓ(α) )

1
α−1

µ(dy))

=

(

1 +
t

αΓ(α)

)− 1
α−1

.

�

We are now able to prove our first result.

Proof of Theorem 1.1. We will prove only the version for k = 2. For any 0 ≤ t1 ≤ t2, write

P(nα−1T
(n)
1 > t1, n

α−1T
(n)
2 > t2)

= P(nα−1T
(n)
1 > t1, n

α−1T
(n)
2 > t1)P(n

α−1T
(n)
2 > t2|n

α−1T
(n)
1 > t1, n

α−1T
(n)
2 > t1).

Proposition 2.3 gives that the first term of the above product has limit value

P(T > t1)
2=

(

1 +
t1

αΓ(α)

)− 2
α−1

.

Lemma 2.4 implies that conditional on {nα−1T
(n)
1 > t1, n

α−1T
(n)
2 > t1}, the random variable K(n)(n1−αt1)

n

converges in probability to (1 + t1
αΓ(α) )

− 1
α−1 . For any j ≥ 2, let T̃

(j)
1 be independent of Π(n) and have

the same law as T
(j)
1 . Using the Markov property of Π(n), one obtains

P(nα−1T
(n)
2 > t2|n

α−1T
(n)
1 > t1, n

α−1T
(n)
2 > t1)

= P(nα−1T̃
(K(n)(n1−αt1))
1 > t2 − t1|n

α−1T
(n)
1 > t1, n

α−1T
(n)
2 > t1)

P
→ P

(

T > (t2 − t1)

(

1 +
t1

αΓ(α)

)−1
)

=

(

1 +
t1

αΓ(α)

)
1

α−1
(

1 +
t2

αΓ(α)

)− 1
α−1

when n tends to ∞. Then we can conclude. �

3. The way of coalescing an external branch

3.1. The size of the jump. Let us look at the random variable Q(n).

Proof of Theorem 1.2. Assume that at some time t, K(n)(t) = b and {1} ∈ Π(n)(t). The coalescence
of {1} with some other k − 1 blocks happens at rate

λ1,b,k :=

∫ 1

0

(

b− 1

k − 1

)

xk(1 − x)b−kx−2Λ(dx) =
Γ(k − α)Γ(b − k + α)

Γ(α)Γ(2 − α)Γ(k)Γ(b − k + 1)
.
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The total rate at which the singleton {1} participates in a coalescence event is

g1,b : =

∫ 1

0

b
∑

k=2

(

b− 1

k − 1

)

xk(1− x)b−kx−2Λ(dx)

=

∫ 1

0

(1 − (1− x)b−1)x−1Λ(dx)

=

∫ 1

0

(b − 1)(1− t)b−2ρ1(t)dt, (25)

where

ρ1(t) =

∫ 1

t

x−1Λ(dx) ∼
t1−α

(α− 1)Γ(α)Γ(2 − α)

when t tends to 0+. We get, thanks to Stirling’s formula,

g1,b ∼
bα−1

(α− 1)Γ(α)

when b tends to ∞. If the next coalescence after t involves {1}, then using the strong Markov property
of Π(n), the probability for {1} to coalesce with some other k − 1 blocks is

λ1,b,k

g1,b
∼ qk =

Γ(k − α)(α − 1)

Γ(k)Γ(2− α)
(26)

when b tends to ∞. In this way, if we know the value K(n)((T
(n)
1 )−), then we can obtain the probability

for {1} to coalesce with k − 1 blocks. Notice that
K(n)((T

(n)
1 )−)

n converges in distribution to (1 +
T

αΓ(α) )
− 1

α−1 (see Corollary 5.3 of [13] or implicitly from Theorem 1.1 and Lemma 2.4), one can get

the following, due to (26),

P(Q(n) = k) = E[
λ
1,K(n)((T

(n)
1 )−),k

g
1,K(n)((T

(n)
1 )−)

] −→ qk (27)

when n tends to ∞.
The asymptotic independence of T

(n)
1 and Q(n) is clear, since Q(n) only depends on K(n)((T

(n)
1 )−)

which tends to ∞ in probability when n goes to ∞. Then we can conclude. �

Remark 3.1. Following the same arguments, Theorem 1.2 is still valid for the more general class of
coalescents satisfying the following condition when t tends to 0:

∫ 1

t

x−2Λ(dx) ∼ Ct−α, C > 0.

Remark 3.2. We can use similar arguments in the Bolthausen-Sznitman case to get that P(Q(n) =
k) → 0 for any k ∈ N. The result actually remains true for the more general class where

∫ 1

t

x−2Λ(dx) ∼ Ct−1, C > 0.

Proof of Proposition 1.5. 1) Recall that qk = Γ(k−α)(α−1)
Γ(k)Γ(2−α) . It then suffices to prove that

lim
t→0+

P(β(t) = k)

t
=

Γ(k − α)

Γ(k)Γ(α)Γ(2 − α)
.
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To simplify the notations, let tα =
(

t
αΓ(α)

)
1

α−1

and ρx = µ([x,∞)). Recall (7) and let 0 < η < 2−α
2 ,

then for any k ≥ 2,

P(β(t) = k) =
tk−1
α

Γ(k)

∫ ∞

0

e−xtαxkµ(dx)

=
tk−1
α

Γ(k)

∫ ∞

0

ρxe
−xtαxk−1(k − xtα)dx

= I1 + I2,

where

I1 =
tk−1
α

Γ(k)

∫ t−η
α

0

ρxe
−xtαxk−1(k − xtα)dx,

I2 =
tk−1
α

Γ(k)

∫ ∞

t−η
α

ρxe
−xtαxk−1(k − xtα)dx.

For t small enough, it is easy to get I1 ≤ k
Γ(k) t

k(1−η)−1
α = o(t). To deal with I2, recall from Equation

(33) of [3] that

ρx = µ([x,∞)) ∼
x−α

Γ(2 − α)
(28)

when x goes to ∞. Notice that t−η
α goes to ∞ when t tends to 0+. Let 0 < ε < 1, then for t small

enough, we have

1− ε <
ρx

x−α/Γ(2− α)
≤ 1 + ε, for allx ≥ t−η

α .

Since ε can be arbitrarily small, using a change of variable y = xtα, one gets

t1−α
α I2 →

1

Γ(k)Γ(2− α)

∫ ∞

0

e−yyk−1−α(k − y)dy =
αΓ(k − α)

Γ(k)Γ(2 − α)

when t → 0+. Then we can obtain (9).

2) A simple calculation shows that P(β(t)≥2)
t converges to 1

(α−1)Γ(α) when t tends to 0+. Hence the

first equality of (10) holds, using the dominated convergence theorem. For the second equality, the
formulas (7) and (6) imply that

E[e−λβ(t)] =
∑

k≥1

e−λk
P(β(t) = k)

= e−λ

∫ ∞

0

e(e
−λ−1)xtαxµ(dx)

= e−λ
(

1 + (tα(1− e−λ))α−1
)

α
1−α . (29)

Meanwhile, using the same arguments

P(β(t) = 1) = (1 + tα−1
α )

α
1−α .

Then we can obtain (10). �

Let us consider the case of coalescents satisfying
∫ 1

0 x−1Λ(dx) < ∞.

Proof of Proposition 1.3. In this case, the process Π(n) can be constructed using a subordinator. This
construction can be found on page 7 of [19] and the original idea is in [27]. Let ν(dx) = x−2Λ(dx) and

ν̃ be the push-forward of ν by the transformation x → − ln(1− x). Let (S̃t, t ≥ 0) be a subordinator

with Lévy measure ν̃ and St = e−S̃t . Then (St, t ≥ 0) is a non-increasing positive pure-jump process
with S0= 1. Put individuals 1, 2, · · · , n uniformly and independently over (0, 1]. Let t1 be the first
time when (St1 , St1−] contains at least one individual, then we set Π(n)(s) = {{1}, {2}, · · · , {n}} for
0 ≤ s < t1. We regroup the individuals located in (St1 , St1−] into one block and let Π(n)(t1) be the
set of this block and the rest singletons. The block is then put uniformly and independently into
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(0, St1 ]. Find the next time t2, such that (St2 , St2−] contains at least one block (singleton or not)
and we regroup all blocks in this interval into one bigger block which will be again put independently
into (0, St2 ]. In general, at each time t, Π(n)(t) is the set of the blocks located in (0, St] and also the
union of blocks located in (St, St−]. This operation can be iterated until reaching the MRCA and the
process resulted has the same law as Π(n).

Notice that this construction is consistent, i.e., if we add a n + 1-th individual to get Π(n+1), the
structure of Π(n) is conserved. To see how many blocks will merge with {1} in the limit, we assume
that {1} is put into (St1 , St1−] at a certain time. As n goes to ∞, the number of singletons put into
the same interval also goes to ∞ with probability 1. According to the construction, all singletons put
for the first time into the same interval will be coalesced together. Hence Q(n) converges in probability
to infinity. �

3.2. Minimal clade size. Let (s
(n)
i (t), 1 ≤ i ≤ K(n)(t)) be the increasing sequence of the smallest

elements of blocks of Π(n)(t). We have the following lemma.

Lemma 3.1. For any t > 0 and k ∈ N, let tn = n1−αt and define the event En,k = {s
(n)
1 (tn) =

1, · · · , s
(n)
k (tn) = k}. Then

P(En,k|Θ(tn))
a.s.
−→ 1

as n tends to ∞.

Proof. We only need to prove that the probability for individuals 1 and 2 to be in the same block of

Π(n)(tn) tends to 0. The case of k ≥ 3 follows in the same way. Let us write this event {1
tn∼ 2}. Then

P(1
tn∼ 2|Θ(tn)) =

K(tn)
∑

i=1

θi(tn)
2

= E[ς(tn)|Θ(tn)]
a.s.
−→ 0,

where the convergence is due to Corollary 2.2. �

Theorem 3.2. Let t > 0 and tn = n1−αt. For 1 ≤ i ≤ K(n)(t), let K
(n)
i (t) be the size of the block

containing s
(n)
i (t). Then for any k ∈ N and (r1, . . . , rk) ∈ N

k, as n → ∞,

P(K
(n)
1 (tn) = r1, · · · ,K

(n)
k (tn) = rk|Θ(tn))

a.s.
−→

k
∏

i=1

P(β(t) = ri) (30)

where β(t) is defined in (7).

Proof. Let tn = n1−αt. Define the event En,r = {K
(n)
1 (tn) = r1, · · · ,K

(n)
k (tn) = rk} and recall En,k

defined in Lemma 3.1. Let (ςi(tn), 1 ≤ i ≤ k) be k independent copies of ς(tn) which is defined in (13),
conditional on Θ(tn). For 1 ≤ i ≤ k, ςi(tn) denotes the size of the subinterval into which i is thrown
in the paintbox construction of Π(n)(tn) with n ≥ k. Due to Lemma 3.1, for n large enough we can
almost surely approach P(En,r|Θ(tn)) by

P(En,r|En,k,Θ(tn)) = E[

(

n− k

r1 − 1, · · · , rk − 1

)

Πk
j=1(ςj(tn))

rj−1(1 −
k
∑

j=1

ςj(tn))
n−

∑
k
j=1 rj |En,k,Θ(tn)].

The Lemma 3.1 implies again that the difference

E[

(

n− k

r1 − 1, · · · , rk − 1

)

Πk
j=1(ςj(tn))

rj−1(1−
k
∑

j=1

ςj(tn))
n−

∑
k
j=1 rj |En,k,Θ(tn)]

− E[

(

n− k

r1 − 1, · · · , rk − 1

)

Πk
j=1(ςj(tn))

rj−1(1 −
k
∑

j=1

ςj(tn))
n−

∑
k
j=1 rj |Θ(tn)]
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converges almost surely to 0. We then obtain

E[

(

n− k

r1 − 1, · · · , rk − 1

)

Πk
j=1(ςj(tn))

rj−1(1−
k
∑

j=1

ςj(tn))
n−

∑
k
j=1 rj |Θ(tn)]

=E[Πk
j=1

1

(rj − 1)!
(nςj(tn))

rj−1e−nςj(tn)|Θ(tn)] + oa.s.(1),

where oa.s.(1) is a term converging almost surely to 0 when n tends to ∞. The result thus follows
from Corollary 2.2. �

We next show how the external branch of 1 is connected to the whole process. Let Π(2,n) be the
restriction of Π(n) from Nn to {2, 3, · · · , n}. By consistency and exchangeability of Π(n), Π(2,n) has
the same law as Π(n−1) except for the integer notations. Given Π(2,n), one can attach {1} to Π(2,n)

following the recursive construction introduced in [13]. One thing important is that nα−1T
(n)
1 and

Π(2,n) are asymptotically independent. The following lemma is given in the proof of Theorem 5.2 of
[13].

Lemma 3.3. Let t ≥ 0. As n tends to ∞,

P(nα−1T
(n)
1 ≥ t|Π(n,2))

P
−→ (1 +

t

αΓ(α)
)−

α
α−1 . (31)

Now we are able to deal with the minimal clade size.

Proof of Theorem 1.4. Recall that Q(n) is the number of blocks involved in the coalescence of {1}.
Then Y (n) is just the sum of the Q(n) block sizes (one of these blocks is {1}). It suffices to determine
the size of each block involved in the coalescence event. By exchangeability of the coalescent, the

Q(n) − 1 blocks not being {1} will be chosen randomly at time (T
(n)
1 )−. Hence by the strong Markov

property of Π(n), the joint distribution of the sizes of the randomly chosen Q(n) − 1 blocks has the

same law as the distribution of (K
(n)
2 ((T

(n)
1 )−), · · · ,K

(n)

Q(n)((T
(n)
1 )−)). Hence

Y (n) (d)
= 1 +

Q(n)

∑

i=2

K
(n)
i ((T

(n)
1 )−).

LetK(2,n) = (K(2,n)(t), t ≥ 0) be the block-counting process of Π(2,n) and (K
(2,n)
1 (t),K

(2,n)
2 (t), · · · ,K

(2,n)

K(2,n)(t)
(t))

be the vector of the block sizes of Π(2,n)(t), increasingly ordered by their least elements. Notice that

if t < T
(n)
1 , K

(n)
i (t) = K

(2,n)
i−1 (t) for 1 ≤ i ≤ K(n)(t). Therefore

Y (n) (d)
= 1 +

Q(n)−1
∑

i=1

K
(2,n)
i ((T

(n)
1 )−). (32)

The formula (27) shows that the law of Q(n) is uniquely determined by K(2,n)((T
(n)
1 )−). As long as

K(2,n)((T
(n)
1 )−) goes to ∞, Q(n) converges in law to a distribution which depends only on α. While

(22) and (19) imply that the variable K(2,n)((T
(n)
1 )−) goes to ∞ with probability 1. Hence Q(n) is

asymptotically independent of (T
(n)
1 ,K(2,n)((T

(n)
1 )−)). Furthermore, Lemma 3.3 gives that T

(n)
1 and

K(2,n)((T
(n)
1 )−) are asymptotically independent. In total, Q(n), T

(n)
1 and (K(2,n)((T

(n)
1 )−)) are all

asymptotically independent. In the limit, using Theorem 3.2,

Y (n) (d)
−→ Y

(d)
= 1 +

Q−1
∑

i=1

βi(T ),

whereQ, T, (βi(t))i∈N are all independent and follow respectively the limit laws ofQ(n), T
(n)
1 , (K

(2,n)
i (t))i∈N

for fixed t ≥ 0. Then we can conclude. �
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Proof of Corollary 1.6. Consider the Laplace transform of Y . For any λ > 0, using (29)

E[e−λY ] = e−λ
E[(E[e−λβ(T )])Q−1]

= e−λ
E

[ (

e−λ
(

1 + (Tα(1− e−λ))α−1
)

α
1−α

)Q−1 ]

where Tα =
(

T
αΓ(α)

)
1

α−1

. Denote ∆ := e−λ(1 + (Tα(1 − e−λ))α−1)
α

1−α . Using (10), one gets

E[e−λY ] = E[e−λ(1 − (1−∆)α−1)]

= I1 + I2,

where I1 = E[e−λY 1
Tα>λ−

1
2
], I2 = E[e−λY 1

Tα≤λ−
1
2
]. The density (3) of T implies, when λ → 0+

I1 = O(λ
α
2 ) = o(λ(α−1)2). (33)

Notice that there exists C34 > 0 such that for any 0 < ε < 1, if λ is small enough, we have

|∆1
Tα≤λ−

1
2
− (1 +

α

1− α
(Tαλ)

α−1)1
Tα≤λ−

1
2
| ≤ ε(Tαλ)

α−11
Tα≤λ−

1
2
+ C34λ. (34)

Letting λ → 0+ and using (33), (34), one obtains

E[e−λY ] = 1− (
α

α− 1
)α−1λ(α−1)2

E[T (α−1)2

α ] + o(λ(α−1)2).

Thanks to Lemma 5.4 of [3] or Theorem 8.1.6 of [5], we get

P(Y > k) ∼
( α
α−1 )

α−1
E[T

(α−1)2

α ]

Γ(1− (α− 1)2)
k−(α−1)2 =

∫∞

0
tα−1fT (t)dt

((α− 1)Γ(α))α−1Γ(1− (α− 1)2)
k−(α−1)2

when k → ∞. �

4. The largest block

In this section, we aim to prove Theorem 1.7 and Corollary 1.8. We start with a technical lemma.

Lemma 4.1. Let k > 0 and X be a random variable distributed according to µ. Define X such that
conditional on X, X is a Poisson variable with parameter X

k . Then for any x > 0,

lim
n→∞

nP(X ≥ xn
1
α ) =

(kx)−α

Γ(2 − α)
.

Proof. First of all, let us consider two technical results. Let M = ⌊xn
1
α ⌋.

1) Using Stirling’s formula for M ! and a change of variable, we get that for any 0 < β < 1,
∫ Mβ

0

e−t t
M

M !
dt =

∫ Mβ

0

eM−t

(

t

M

)M

(2πM)−
1
2 (1 +O(M−1))dt

=

∫ β

0

eM(1−t+ln t)(
M

2π
)

1
2 (1 +O(M−1))dt

= O(eM(1−β+ln β)M
1
2 ). (35)

The last equality is due to the fact that 1− t+ ln t is negative and increasing for t ∈ (0, 1).
2) If β > 1, then

∫ ∞

Mβ

e−t t
M

M !
dt =

∫ ∞

β

eM(1−t+ln t)(
M

2π
)

1
2 (1 +O(M−1))dt.
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Notice that 1 − t + ln t is strictly decreasing and concave over [β,∞], then there exists a positive
number ε such that 1− t+ ln t ≤ −εt for any t ≥ β. Therefore,

∫ ∞

Mβ

e−t t
M

M !
dt ≤

∫ ∞

β

e−εMt(
M

2π
)1/2(1 +O(M−1))dt = O(e−εMβM−1/2). (36)

Now we can turn to the study of X . Thanks to successive integrations by parts,

P(X ≥ M + 1) = E[

∫ X
k

0

e−t t
M

M !
dt]. (37)

Let 0 < β1 < 1 and β2 > 1, then we have

P(X ≥ M + 1) = I1 + I2 + I3,

where

I1 = E[

∫ X
k

0

e−t t
M

M !
dt1{X<kMβ1}],

I2 = E[

∫ X
k

0

e−t t
M

M !
dt1{kMβ1≤X≤kMβ2}],

I3 = E[

∫ X
k

0

e−t t
M

M !
dt1{X>kMβ2}].

Now let n tend to infinity. By (35), we get

0 ≤ nI1 ≤ nP(X < kMβ1)

∫ Mβ1

0

e−t t
M

M !
dt −→ 0. (38)

It is easy to verify that
∫∞

0 e−t tM

M !dt = 1 for any integer M ≥ 0. Then using together (28) and (36),
we obtain

lim
n→∞

nI3 = lim
n→∞

nP(X > kMβ2) =
(kxβ2)

−α

Γ(2− α)
. (39)

In the same way, we have

0 ≤ nI2 ≤ nP(kMβ1 ≤ X ≤ kMβ2) −→
(kxβ1)

−α

Γ(2− α)
−

(kxβ2)
−α

Γ(2− α)
, n → ∞. (40)

If β1 and β2 are close enough to 1, nI2 can be bounded by an arbitrarily small positive number for n
large enough. Combining (38), (39) and (40), we conclude this lemma. �

To prove Theorem 1.7, we will use classical relations between Beta-coalescents and continuous-state
branching processes (CSBPs) developed in [6] (see also Section 2 of [3]). We give a short summary to
provide a minimal set of tools. A continuous-state branching process (Z(t), t ≥ 0) is a [0,∞]-valued
Markov process (in continuous time) whose transition functions pt(x, ·) satisfy the branching property

pt(x+ y, ·) = pt(x, ·) ∗ pt(y, ·), for all x, y ≥ 0.

For each t ≥ 0, there exists a function ut : [0,∞) → R such that

E[e−λZ(t)|Z(0) = a] = e−aut(λ). (41)

If almost surely, the process has no instantaneous jump to infinity, the function ut satisfies the following
differential equation

∂ut(λ)

∂t
= −Ψ(ut(λ)),

where Ψ : [0,∞) −→ R is a function of the form

Ψ(u) = γu+ βu2 +

∫ ∞

0

(e−xu − 1 + xu1{x≤1})π(dx),

where γ ∈ R, β ≥ 0 and π is a Lévy measure on (0,∞) satisfying
∫∞

0 (1∧x2)π(dx) < ∞. The function
Ψ is called the branching mechanism of the CSBP.
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As explained in [4], a CSBP can be extended to a two-parameter random process (Z(t, a), t ≥ 0, a ≥
0) with Z(0, a) = a. For fixed t, (Z(t, a), a ≥ 0) turns out to be a subordinator with Laplace exponent
λ 7→ ut(λ) thanks to (41).

There exists a measure-valued process (Mt, t ≥ 0) taking values in the set of finite measures on
[0, 1] which characterizes (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1). More precisely, (Mt([0, a]), t ≥ 0, 0 ≤ a ≤ 1) has
the same finite-dimensional distributions as (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1). Hence (Mt([0, a]), 0 ≤ a ≤ 1)
is a subordinator with Laplace exponent λ 7→ ut(λ) and Z(t) = Mt([0, 1]) is a CSBP with branching
mechanism Ψ started at M0([0, 1]) = 1. In particular, if the branching mechanism is Ψ(λ) = λα and

hence Lévy measure is given by π(dx) = α(α−1)
Γ(2−α)x

−1−αdx, for all t > 0, Mt consists only of finite

number of atoms. For the construction of (Mt([0, a]), t ≥ 0, 0 ≤ a ≤ 1), we refer to [2, 6, 15].
A deep relation has been revealed in [6] between the Beta-coalescent and the CSBP with branching

mechanism Ψ(λ) = λα and Lévy measure π(dx) = α(α−1)
Γ(2−α)x

−1−αdx. The relationship is described by

the following two lemmas which are respectively Lemma 2.1 and 2.2 of [3] and will be important in
the sequel.

To save notations, from now on, (Z(t), t ≥ 0) always denotes a continuous state branching process
(Z(t, 1), t ≥ 0).

Lemma 4.2. Assume (Z(t), t ≥ 0) is a CSBP with branching mechanism Ψ(λ) = λα and let (Mt, t ≥
0) be its associated measure-valued process. If (Π(t), t ≥ 0) is a Beta-coalescent and (Θ(t), t ≥ 0)
is the associated ranked coalescent, then for all t > 0, the distribution of Θ(t) is the same as the

distribution of the sizes of the atoms of the measure
M

R−1(t)

Z(R−1(t)) , ranked in decreasing order. Here

R(t) = (α − 1)αΓ(α)
∫ t

0 Z(s)1−αds and R−1(t) = inf{s : R(s) > t}.

Lemma 4.3. Assume Ψ(λ) = λα. For any t ≥ 0, let D(t) be the number of atoms of Mt, and let
J(t) = (J1(t), · · · , JD(t)(t)) be the sizes of the atoms of Mt, ranked in decreasing order. Then D(t) is

Poisson with mean γt = ((α − 1)t)−
1

α−1 . Moreover, conditional on D(t) = k, the distribution of J(t)
is the same as the distribution of (γ−1

t X1, · · · , γ
−1
t Xk) where X1, · · · , Xk are obtained by picking k

i.i.d. random variables with distribution µ and then ranking them in decreasing order.

Remark 4.1. From the relation between (Mt, t ≥ 0) and (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1) and also the fact
that for all t > 0, Mt consists only of finite number of atoms (the number is actually D(t)), for a given
t > 0, there exist 0 ≤ a1, · · · , aD(t) ≤ 1 such that {Z(t, a1)−Z(t, a1−), · · · , Z(t, aD(t))−Z(t, aD(t)−)}
are exactly the values of the atoms ofMt. By the strong Markov property of (Z(t, a), t ≥ 0, 0 ≤ a ≤ 1),
for s ≥ t, the jumping at s can only happen at the points {(s, a1), · · · , (s, aD(t))}. Therefore, D(t)
decreases on t.

The idea of the proof of Theorem 1.7 is as follows: Let tn = n1−αt. Lemma 4.2 shows that

Θ(tn) has the same law as
M

R−1(tn)

Z(R−1(tn))
. Moreover it is proved in Lemma 4.2 of [3] that R−1(tn)

tn

P
→

1
(α−1)αΓ(α) , as n goes to ∞. Hence one can compare the block sizes at time tn to those at time

R−1((α−1)αΓ(α)tn). To this, we use the paintbox construction and the closeness between the measures
Mtn

Z(tn)
and

M
R−1((α−1)αΓ(α)tn )

Z(R−1((α−1)αΓ(α)tn))
. This idea can be executed through two steps.

1) Analysis of the largest block size at time tn with the measure
Mtn

Z(tn)
: If D(tn) 6= 0, let

J̄i(tn) =
Ji(tn)
Z(tn)

for 1 ≤ i ≤ D(tn). Let {d1(tn), · · · , dD(tn)(tn)} be an interval partition of [0, 1] such

that the Lebesgue measure of di(tn) is J̄i(tn). Build a partition of Nn from a paintbox associated
with {d1(tn), · · · , dD(tn)(tn)}. Let Ni be the number of integers in di(tn) and N = max{Ni : 1 ≤ i ≤
D(tn)}.

Lemma 4.4. Let x > 0. Then
1)

lim
n→∞

P(N ≤ xn1/α) = exp(−
(α− 1)tx−α

Γ(2− α)
).



ASYMPTOTICS OF THE MINIMAL CLADE SIZE AND RELATED FUNCTIONALS OF CERTAIN BETA-COALESCENTS17

2) Let 0 < y < x. Then

lim
n→∞

P(∃i : Ji(tn) < n
1−α
α y,Ni ≥ xn

1
α ) = 0. (42)

Proof. 1) It is well known that if we throw a Poisson number of parameter nZ(tn) on [0, 1], the number
of integers in di(tn), denoted by Ni, is a Poisson variable of parameter nJi(tn). Conditional on all
Ji(tn)’s, all Ni’s are independent. Let N be the maximum of all Ni’s. Then, using Lemmas 4.1 and
4.3,

P(N ≤ xn1/α) = E[Π
D(tn)
i=1 P(Ni ≤ xn1/α)] −→ exp(−γ1−α

t

x−α

Γ(2− α)
) = exp(−

(α− 1)tx−α

Γ(2− α)
), n → ∞.

Lemma 4.3 implies that Z(tn) tends in probability to 1 as n goes to infinity. Hence N and N are
close in the limit and standard comparison techniques allows to conclude.

2) As Z(tn) converges to 1, (42) is equivalent to

lim
n→∞

P(∃i : Ji(tn) < n
1−α
α y,Ni ≥ xn

1
α ) = 0.

Let Ñ = max{Ni : Ji(tn) < n
1−α
α y}. It is necessary and sufficient to show that lim

n→∞
P(Ñ ≥

xn
1
α ) = 0. Notice that conditional on Ji(tn), Ni is a Posson variable with paprameter nJi(tn).

Let {P1(yn
1
α ), P2(yn

1
α ), · · · } be a sequence of i.i.d. Poisson variables with parameter yn

1
α and also

independent of D(tn). Then

P(Ñ ≥ xn
1
α ) ≤ P

(

max{Pi(yn
1
α ) : 1 ≤ i ≤ D(tn)} ≥ xn

1
α

)

= 1− E[(P(P1(yn
1
α ) < xn

1
α ))D(tn)].

Using (37) and (35), one gets

P(P1(yn
1
α ) < xn

1
α ) = 1− o(

1

n
).

Meanwhile, Lemma 4.3 tells that D(tn)
n converges in robability to γt as n goes to infinity. Hence we

can conclude. �

Remark 4.2. The key point to prove (42) is that Z(tn) converges to 1 in probability, D(tn)
n is asymptot-

ically bounded by a positive value from above. The distribution of {Ji(tn)}1≤i≤D(tn) is not necessary
to know. One can still find (42) true if we replace tn by a random time and conditions for Z(tn) and
D(tn) are satisfied at the same time.

2) A tool lemma for the transfer from
Mtn

Z(tn)
to

M
R−1((α−1)αΓ(α)tn )

Z(R−1((α−1)αΓ(α)tn))
: Let (A1, · · · , Ak)

and (B1, · · · , Bk) be two partitions of [0, 1] with k ≥ 1. We throw away n particles uniformly and
independently on [0, 1] and regroup those within the same intervals of (B1, · · · , Bk), which gives a
sequence of k numbers (NB1 , · · · , NBk

) such that NBi
is the number of particles located in Bi. We can

obtain the law of this sequence in another way using (A1, · · · , Ak): We throw n particles uniformly
and independently on [0, 1]. Let I := {i : 1 ≤ i ≤ n, l(Ai) ≤ l(Bi)}, where l(·) denotes the Lebesgue
measure. If a particle falls in Ai where i ∈ I, then move this particle to Bi. If a particle falls in Ai

where i ∈ Ic, then do the following: we attach to this particle an independent Bernoulli variable with

parameter l(Bi)
l(Ai)

. If the Bernoulli variable gives 1, then the particle is put into Bi. Otherwise, this

particle will be put into Bj for j ∈ I with probability

l(Bj)− l(Aj)
∑

j∈I(l(Bj)− l(Aj))
. (43)

We denote by NB
Ai

the new amount of particles in Bi. We have the the following result.

Lemma 4.5. The following identity in law holds.

(NB
A1

, · · · , NB
Ak

)
(d)
= (NB1 , · · · , NBk

).
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Proof. Notice that only the measure of each element of (A1, · · · , Ak) and (B1, · · · , Bk) matters, one
can always assume that [0, 1] is divided in a way that Ai is contained in Bi for i ∈ I and Bi is contained
in Ai for i ∈ Ic. So if a particle is located in Ai for i ∈ I, it is also located in Bi. But if a particle

is located in Ai for i ∈ Ic, with probability l(Bi)
l(Ai)

it is located in Bi. Assume that this particle is not

located in Bi, then it must be in ∪j∈IBj/Aj . Using the uniformity of the throw, this particle falls in
Bj with probability (43). �

The above two steps allow to start the proof of Theorem 1.7. But before that, let us just recall
some technical results from [3]. Let ε > 0, t > 0 and tn = n1−αt. Let t− = (1 − ε)tn, t+ = (1 + ε)tn
and t∗ = (α − 1)αΓ(α)tn. Define the event B1,t := {t− ≤ R−1(t∗) ≤ t+}. It can be found in Lemma
4.2 of [3] that there exists a constant C44 such that

P(B1,t) ≥ 1− C44t∗ε
−α. (44)

Also from Lemma 5.1 of [3], there exists a constant C45 such that for all a > 0, t > 0 and η > 0,

q(a, t, η) = P( sup
0≤s≤t

|Z(s, a)− a| > η) ≤ C45(a+ η)tη−α. (45)

Thus, if we define B2,t := {1− n
1−α
2α ≤ Z(s) ≤ 1 + n

1−α
2α , ∀s ∈ [t−, t+]}, we can obtain that

P(B2,t) ≥ 1− C45t(1 + ε)(1 + n
1−α
2α )n

1−α
2 . (46)

Proof of Theorem 1.7. Lemma 4.2 tells us that for any s ≥ 0, we have

MR−1(s)

Z(R−1(s))

(d)
= Θ(s).

Let π be the partition of Nn obtained from a paintbox associated with
M

R−1(s)

Z(R−1(s)) . Then π
(d)
= Π(n)(s).

If R−1(s) ≥ t−, we can as well at first build a partition from a paintbox associated with
Mt

−

Z(t−) and

then use Lemma 4.5 to get π. This kind of construction is the key of this proof.

For s ≥ t−, one builds a partition of Nn from a paintbox associated with (mi(s)
Z(s) , 1 ≤ i ≤ D(t−)).

We denote this partition by V (n)(s) = (V1(s), V2(s), · · · , VD(t−)(s)) . Let I
(n)
i (s) be the number of

particles in V
(n)
i (s).

For s ≥ t−, let M
(n)(s) = sup{I

(n)
i (s), 1 ≤ i ≤ D(t−)} be the size of the largest block of V (n)(s).

Let x > 0 and B3,t = {∃k : Ink (t−) ≥ xn
1
α , Jk(t−) ≥ n

2(1−α)
α , sup

t−≤s≤t+

|mk(s)− Jk(t−)| ≤ εJk(t−)}.

On the event B3,t, we have that M (n)(t−) ≥ xn
1
α . Conditional on B1,t we can build the parti-

tion V (n)(R−1(t∗)) from a paintbox associated to the partition Z(t−)
−1(J1(t−), . . . , JD(t−)(t−)) and

Lemma 4.5. Let B(m, p) be a binomial variable with parameters m ≥ 2 and 0 ≤ p ≤ 1. Lemma 4.5
implies

P

(

M (n)(R−1(t∗)) ≥ (1− 2ε)xn
1
α |B1,t ∩B2,t ∩B3,t

)

≥P

(

B

(

⌈xn
1
α ⌉,

mk(R
−1(t∗))Z(t−)

Jk(t−)Z(R−1(t∗))
∧ 1

)

≥ (1− 2ε)xn
1
α |B1,t ∩B2,t ∩B3,t

)

≥P

(

B

(

⌈xn
1
α ⌉, (1− ε)

1− n
1−α
2α

1 + n
1−α
2α

)

≥ (1− 2ε)xn
1
α

)

=P

(

(xn
1
α )−1B

(

⌈xn
1
α ⌉, (1− ε)

1− n
1−α
2α

1 + n
1−α
2α

)

≥ (1 − ε)− ε

)

.

A law of large numbers argument implies that

P

(

M (n)(R−1(t∗)) ≥ (1− 2ε)xn
1
α |B1,t ∩B2,t ∩B3,t

)

≥ 1− ε (47)
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for n large enough. Now observe that

P(B3,t) = P(∃k : Ink (t−) ≥ xn
1
α , Jk(t−) ≥ n

2(1−α)
α )

× P( sup
t−≤s≤t+

|mk(s)− Jk(t−)| ≤ εJk(t−)|{∃k : Ink (t−) ≥ xn
1
α , Jk(t−) ≥ n

2(1−α)
α )

= P(∃k : Ink (t−) ≥ xn
1
α , Jk(t−) ≥ n

2(1−α)
α )

× (1− E[q(Jk(t−), t+ − t−, εJk(t−))|∃k : Ink (t−) ≥ xn
1
α , Jk(t−) ≥ n

2(1−α)
α )

≥ P(∃k : Ink (t−) ≥ xn
1
α , Jk(t−) ≥ n

2(1−α)
α )(1 − 2tC45n

(1−α)(2−α)
α (1 + ε)ε1−α).

Using Lemma 4.4,

P(∃k : Ink (t−) ≥ xn
1
α , Jk(t−) ≥ n

2(1−α)
α ) ∼ P(∃k : Ink (t−) ≥ xn

1
α ) = P(M (n)(t−) ≥ n

1
αx)

∼ 1− exp(−(1− ε)
(α − 1)tx−α

Γ(2− α)
).

In consequence,

lim inf
n→∞

P(B3,t) ≥ 1− exp(−(1− ε)
(α− 1)tx−α

Γ(2− α)
)

when n tends to ∞. Then, thanks to (44) and (46), we deduce that

lim inf
n→∞

P(B1,t ∩B2,t ∩B3,t) ≥ 1− exp(−(1 − ε)
(α− 1)tx−α

Γ(2− α)
).

Combining the latter with (47), we obtain

lim inf
n→∞

P

(

M (n)(R−1(t∗)) ≥ (1− 2ε)xn
1
α

)

≥ 1− exp(−(1− ε)
(α− 1)tx−α

Γ(2− α)
). (48)

Next, we seek to find an upper bound for P

(

M (n)(R−1(t∗)) ≥ xn
1
α

)

. Conditional on B1,t, we

construct V (n)(t+) from V (n)(R−1(t∗)) using the method in Lemma 4.5. Let

B4,t = B1,t∩{∃k : I
(n)
k (R−1(t∗)) ≥ xn

1
α ,mk(R

−1(t∗)) ≥ n
2(1−α)

α , sup
R−1(t∗)≤s≤t+

|mk(s)−mk(R
−1(t∗))|

mk(R−1(t∗))
≤ ε}.

Similarly as for the lower bound,

P

(

M (n)(t+) ≥ (1− 2ε)xn
1
α |B2,t ∩B4,t

)

≥P

(

B

(

⌈xn
1
α ⌉,

Z(R−1(t∗))mk(t+)

Z(t+)mk(R−1(t∗))
∧ 1

)

≥ (1 − 2ε)xn
1
α |B2,t ∩B4,t

)

≥P

(

B

(

⌈xn
1
α ⌉, (1− ε)

1− n(1−α)/α

1 + n(1−α)/α

)

≥ (1− 2ε)xn
1
α

)

−→ 1. (49)

Using the strong Markov property of the CSBP and (45), we have

P(B4,t) = P(B1,t ∩ {∃k : I
(n)
k (R−1(t∗)) ≥ xn

1
α ,mk(R

−1(t∗)) ≥ n
2(1−α)

α }) (50)

× (1− 2tC45n
(1−α)(2−α)

α (1 + ε)ε1−α) (51)

Notice that using (45), in the sense of convergence of probability

lim
n→∞

sup
t−≤s≤t+

Z(s) = lim
n→∞

inf
t−≤s≤t+

Z(s) = 1

Together with (44), we get the following convergence in probability

lim
n→∞

Z(R−1(t∗)) = 1.
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Remark 4.1 tells that D(t) is decreasing on t. Under B1,t, D(t−) ≤ D(R−1(t∗)) ≤ D(t+). It is then

easy to deduce that D(R−1(t∗))
n is asymptotically bounded from above by a certain positive number.

Now we can apply Remark 4.2 and get

P(B4,t) = P(∃k : I
(n)
k (R−1(t∗)) ≥ xn

1
α ) + o(1) = P(M (n)(R−1(t∗)) ≥ xn

1
α ) + o(1). (52)

Using (49), (46) and (52)

lim sup
n−→∞

P(M (n)(R−1(t∗)) ≥ xn
1
α )

≤ lim
n−→∞

P(M (n)(t+) ≥ (1− 2ε)xn
1
α )

=1− exp(−(x(1 − 2ε))−α (α− 1)t(1 + ε)

Γ(2− α)
). (53)

Since ε can be arbitrarily small, (48) and (53) allow to conclude. �

Finally, observe that Corollary 1.8 is obtained from a combination of Lemma 3.3 and Theorem 1.7.
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