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ABSTRACT. In this paper, we consider Beta(2 — o, ) (with 1 < a < 2) and related A-
coalescents. If T denotes the length of an external branch of the n-coalescent, we prove
the convergence of n® T when n tends to oo, and give the limit. To this aim, we
give asymptotics for the number o™ of collisions which occur in the n-coalescent until the
end of the chosen external branch, and for the block counting process associated with the
n-coalescent.

1. INTRODUCTION

1.1. Motivation and main results. In modern genetics, it is possible to sequence whole
genomes of individuals. In order to put these informations to maximal use, it is important
to have well-fitting models for the gene genealogies of a sample of individuals. The standard
model for gene genealogies of a sample of n individuals is Kingman’s n-coalescent (see [23],
[24]). Kingman’s n-coalescent is a continuous-time Markov process with state space P, the
set of partitions of {1,...,n}. The process starts in the trivial partition ({1},...,{n}) and
transitions are only possible as mergers of exactly two blocks of the current state. Each such
binary merger occurs with rate 1. These mergers are also called collisions.

For many populations, Kingman’s n-coalescent describes the genealogy quite well. Kingman
showed in [24] that the ancestral trees of a sample of size n in populations with size N evolv-
ing by a Wright-Fisher model will converge weakly to Kingman’s n-coalescent for N — oo
(after a suitable time-change). This result is relatively robust if population evolution devi-
ates from the Wright-Fisher model (see [24] or [25]). However, there is evidence that there
are populations where the gene genealogies of a sample are not described well by Kingman’s
n-coalescent. Examples of such populations can be found in maritime species, where one
individual can have a huge number of offspring with non-negligible probability (see [1], [9]
[19], [17] and [13]).

A whole class of potential models for gene genealogies of a sample was introduced indepen-
dently by Pitman and Sagitov (see [27] and [28]): The class of n-coalescents with multiple
collisions. A n-coalescent with multiple collisions is a continuous-time Markov process with
state space P, where all possible transitions are done by merging two or more blocks
of the current state into one new block. Every n-coalescent II(™ is exchangeable, meaning

7ol L 1) for every permutation 7 of {1,...,n}. The transition rate of a merger/collision
of k of b present blocks is given by
1
(1) ok = / 281 — 2) 272 A(da)
0
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for a finite measure A on [0, 1] (this definition is due to Pitman [27]). Since the process
is characterized by the measure A, it is also called a A-n-coalescent. Note that Kingman’s
n-coalescent is a A-n-coalescent with A being the Dirac measure §p in 0.

An important subclass of A-n-coalescents are Beta n-coalescents characterized by A being a
Beta distribution, especially for the choice of parameters 2 —« and « for a € (0,2). The class
of Beta(2 — o, a)-n-coalescents appears as ancestral trees in various settings. They appear in
the context of supercritical Galton-Watson processes (see [29]), of continuous-state branching
processes (see [6]) and of continuous random trees (see [2]). They also seem to be a class
where suitable models for the ancestral tree can be found for samples from species who do
not fit well with the Kingman-setting (see [5, 13]). Note that for o — 2, the rates of the
Beta(2 — «, a)-n-coalescent converge to the rates of Kingman’s n-coalescent. In this sense,
Kingman’s n-coalescent can be seen as a border case of this class of Beta n-coalescents.

For o = 1, Beta(2—a, «) is the uniform distribution on [0, 1]. The corresponding n-coalescent
is the Bolthausen-Sznitman n-coalescent. It appears in the field of spin glasses (see [8], [10])
and is also connected to random recursive trees (see [18]).

Let us denote by II(") = (Hgn))tzo a n-coalescent. In this paper, we are interested in three
functionals of n-coalescents

e the length 7 of a randomly chosen external branch ;
e the number o™ of collisions which occur in the n-coalescent until the end of a ran-
domly chosen external branch ;

e the block counting process R(™) = (Rgn))tzoz Rgn) = |H§n)| is the number of blocks of
.
Note that 7™ can also be characterized as the waiting time for the first collision of a randomly

chosen individual and o™ as the number of collisions we have to wait to see the randomly
chosen individual merge. For ¢ € {1,...,n} define

T .= inf {t| {i} ¢ H,E”)}
as the length of the ith external branch and
o™ = inf {k|{i} ¢ ™}

as the number of collisions until the end of the ith external branch, where 7 is the state
of the n-coalescent after k£ jumps. Due to the exchangeability of the n-coalescent, we have
T £ Tl(n) and o™ <& agn). Since we are only interested in distributional results, for the
remainder of the article we will identify 7(") with Tl(n) and ¢(™ with JYL).

If the n-coalescent is used as a model for an ancestral tree of a sample of individuals/genes,
the functionals 7™ and ¢(™ can be interpreted biologically. The length of an external branch
measures the uniqueness of the individual linked to that branch compared to the sample, since
it gives the time this individual has to evolve by mutations that do not affect the rest of the
sample (see the introduction of [11] for more information). It was first introduced by Fu and
Li in [15], where they compare mutations on external and internal branches of Kingman’s
n-coalescent in order to test for the neutrality of mutations.

The functional ¢(™ was first introduced in [11], though n — ¢(® was also analyzed in [7] as
the level of coalescence of the chosen individual with the rest of the sample. In both articles,
the functionals were defined for Kingman’s n-coalescent.

For the biological interpretation of o™ we see the n-coalescent as an ancestral tree of a
sample of size n. Each collision in the n-coalescent then resembles the emergence of an
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ancestor of the sample. ¢(™ — 1 is the number of ancestors of the sample which emerge
before the most recent ancestor of the randomly chosen individual /gene emerges. In this line
of thought, ¢(™ gives the temporal position of the first ancestor of the chosen individual /gene
among all ancestors of the sample, which are the (") collisions in the n-coalescent. Thus,
% gives the relative temporal position of the first ancestor of the chosen individual/gene
among all ancestors of the sample (until the most recent common ancestor). In this sense,

we mterprete ol ; as a measure of how ancient the chosen individual/gene is compared to the
rest of the sample

In this article, we focus on the asymptotics of (™, ¢(™ and R(™ for n — co. The asymptotics
of these functionals are already known for some A-n-coalescents. For T(™ we have

e A = &y (Kingman coalescent): nT'(™ KN T, where T has density ¢ —
[11], [21)),
e A = Beta(1,1) (Bolthausen-Sznitman coalescent): log(n)T) 4 Exp(1) (see [14]),
o A with u_y = fo “TA(dzx) < oo: T 4 Exp(u—1) (see [26], see also [16])
for n — oo. For (™, we have
o A=20dyg: 0™ /n 4 Beta(1,2) (see [11]),
o A= Beta(1,1): 26050 4 Betq(1,1) (See [14)),
o A with u_o = fo “2A(dz) < o0: o™ & Geo(1=) (see [16])

for n — oo, where Geo(p) is the geometric distribution on N with parameter p.
We will analyze the asymptotics for 7", (™ and R for A-n-coalescents with A fulfilling

p(t) = Cot =@ + Ot~ F¢ ) t—0

for some Cy > 0, a € (1,2) and ¢ > 1 — 1/, where p(t ft x72A(dx). Note that this class
of n-coalescents includes all Beta(a,b)-n-coalescents w1th parameters a € (0,1) and b > 0.
In this class of n-coalescents, we have the following asymptotics for 7™, ¢ and RM:
(n) d
® nETOc 1) — 0,
[ ] na 1T(n) — m((l — 0')1704 — 1)

e for any ty > 0,e > 0, P( sup |n~ lRinz W= (14+Co(2 = a)t) V(D] > ¢) -0,
0<t<tg

(2+t) (See [7}7

for n — oo , where o 4 Beta(1,a). We also prove the following asymptotic result for
the block counting process of the Kingman coalescent:For any ty > 0,¢ > 0 , we have
P( sup \n*1R§211 —(1+t/2)7Y > €) = 0 when n — oo.

0<t<to

Note that if we see the Bolthausen-Sznitman n-coalescent as a Beta(1,1)-coalescent and
Kingman’s n-coalescent as the borderline case of a Beta distribution with parameter a =
1, the convergence results for (™) shows a nice continuity in the parameters of the limit
distributions in the range of Beta(2 — «, a)-n-coalescents with a € [1,2]. Our convergence
result itself is even somewhat true in the border cases 1 and 2 (if one wages (a — 1)~! — oo
for @ — 1 against log(n) — oo for n — oo for the Bolthausen-Sznitman n-coalescents). Also
note that T obtained as the limit variable of n7(™ in Kingman’s case has the same law as
2((1—0)~1—1), which gives again a nice continuity in results. The continuity also appears for
the block counting process: replacing a by 2 in the formula for the Beta(2—a, a)-n-coalescent
gives the formula for Kingman.



4 JEAN-STEPHANE DHERSIN, FABIAN FREUND, ARNO SIRI-JEGOUSSE, AND LINGLONG YUAN

Finally we can remark that together with the known asymptotics # % o —1 for this

class of n-coalescents (see [12], [17] and [20]), we have o™ /7(") 4 5.

To prove these results, we will exploit some techniques from [12]. In [12], they were used
to analyze the asymptotics of a part of the height of a n-coalescent and the number of
collisions in a n-coalescent for the same class of n-coalescents as analyzed in the present
paper. For the convergence result for T, we present two proofs. One mimic the approach
in [11], using the convergence result for (™ and T = Zf:(? T;, where T; is the waiting time
between the i —1th and ith collision/jump of the n-coalescent. The other proof is based on the
representation of T as the first jump time of a Cox process driven by a random rate process
which depends only on the block counting process associated with the remaining individuals
labelled {2,3,...,n}. We use a recursive construction suitable for any A n-coalescent: This
construction consists in adding individual 7 to a coalescent process constructed by individuals
from 1 to n except ¢ such that consistence relationship is fulfilled.

1.2. Organization of the paper. In section 2, we recall some known technical results which
can all be found in [12]. In section 3, we obtain the asymptotic result about ¢(™ and also
about the ratio between o™ and 7(™. Section 4 studies the small time behavior of the block
counting process R, Depending on the property of R™ our first method taking T™) as
the first jump time of a Cox process gives the asymptotic behavior of T(™ hence of T in
section 5. In section 6, another method is provided by taking into account the fact that 7™
is the sum of o™ initial waiting times for the coalescent process II(™ to jump from one state
to the following.

2. PRELIMINARIES

In this Section, we recall some results from [12].

Consider a n-coalescent with multiple collisions characterized by a finite measure A on
[0,1]. Let v(dr) = 27 2A(dx) and p(t) = v[t,1]. When the process has k blocks, the next
coalescence event comes at rate g, given by

2) Ik = kzl (gf_: 1) ko1 = /(0 ) (1 —(1—2)* — k(1 - x)k_l)A(jf)_

/=1

Forn > 1, z € (0,1), let B, , be a binomial r.v. with parameter (n,z). Recall that for
1 <k <n, we have

(3) P(Bpo > k) = = 1)7‘1('n — /01 tk—l(l _ t)n_k dt.

Use the first equality in (2) and (3) to get

e '3 (1)t r-btan

- / B(By, > 2)u(dz)

0

1
= n(n — 1)/0 (1 — )" %tp(t) dt.
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All along this paper, the following hypothesis will be assumed
(4) p(t) = Cot™* 4+ O(t~T¢).
For some Cy > 0, € (1,2) and ¢ > 1 — 1/a, Lemma 2.2 of [12] gives us that, for n > 2,

(5) gn = Col'(2 — a)n® + O(no~ ™G D),

Recall that we call 7(™ the number of coalescence events until reaching the common an-

)

cestor of the initial population (of size n). For k > 0, denote by Yk(n the number of blocks
remaining after k& jumps. Notice that Y™ is a decreasing Markov chain with Yo(n) =n and
Yk(n) =1 for k > (M) Let X,gn) = Yk(ﬁ)l — Yk(n) be the number of blocks we lose during the
kth coalescence event. We write Xén) =0.

The Markov property makes that the law of the first jump X%n) will be of much interest.

We will look at some properties of an). Notice that

() = = i 1 = vidx
(6) P(X;" = k) = gn/o P(By,. =k + 1)v(dz)
and thus
(n) CJoP(Bag 2 k+Dr(dz)  (n—2)1 [y (1 -t leRp(t) dt
(1) PX;Y >k)= o THe D g d

Under the same assumptions on p(t), setting €9 > 0 and

n=¢ if (<a-—1,
(8) Op={nlmot0 if (=a -1,
nl-a it (>a-1,

Lemma 2.3 of [12] tells us there exists a constant Cy s.t. for all n > 2, we have

my_ 1 |
o) (- | < oo

Moreover, from Lemma 2.4 of [12], there exists a constant Cig s.t. for all n > 2, we have

2 2
(10) E [<X1(n)> ] < CIOTL-
In
We consider ¢,, the Laplace transform of an): for u > 0, ¢p(u) = E[e*“)qn)]. Assume
that p(t) = Cot=® 4+ O(t=*C) for some Cy > 0,a € (1,2) and ¢ > 0. Let g9 > 0. Recall ¢,
given by (8). Then we have (see [12], Lemma 2.5) , for n > 2,

U u®

a—1+a—1

(11) ¢n(u) =1- + R(na u)a

where R(n,u) = (upy, +u?) h(n,u) with SUPyefo,k]n>2 [(n, u)| < oo for all K > 0.
Moreover, if we assume that ¢ > 1—1/c and set 7 > 1, then (from [12], Lemma 3.2) there
exist £1 > 0 and C12(K) a finite constant such that for all n > 1 and u € [0, K], a.s. with
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ap =n"",

Tn

(12) >

i=1

R(Y.("l),uan) < Cra(K)n™ .

71—

We will also use the following result : Let V = (V;,t > 0) be a a-stable Lévy process with
no positive jumps (see chap. VII in [3]) with Laplace exponent 1(u) = u®/(a — 1): for all
u >0, Efe™"V] = ¢t"/(@=1) We assume that p(t) = Cot~* + O(t~**¢) for some Cy > 0 and
¢ > 1—1/a. Recall that 7(™ is the number of coalescing events in the n-coalescent until
reaching its absorbing state. Let

[nt] AT()

n —1/ n 1
v =t 3 (X - —)
k=1

for t € [0,a — 1), and

(n)
T (n)
M) _ o 1/aNx™m Loy e T
Vooi=n g:l( B a—l) n (n 1

Then,
(13) V" te0,a—1]) = (Vi,t € [0,a— 1))

in the sense of convergence in law of the finite-dimensional marginals (see [12], Corollary 3.5,
see also [17, 20]).

3. EXTERNAL BRANCH

Consider a n-coalescent with multiple collisions characterized by a finite measure A on
[0,1]. Recall that v(dx) = 27 2A(dx) and p(t) = v[t,1] which is assumed to satisfy (4). A
n-coalescent takes its values in P, the set of partitions of {1,...,n}. Fori >0, let m; = Wz(n)
be the state of the process after the ¢th coalescence event.

Pick at random an individual from the initial population and denote by T the length of
the external branch starting from it. Because of exchangeability, 7™ has the same law as
the length Tl(n) of the external branch starting from the initial individual labelled by {1}. A
quantity of interest will be o(™, the number of coalescence events we have to wait to see the
randomly chosen external branch merging. Again because of exchangeability, ¢(™ has the
same law as

o\ = inf{i > 0,{1} ¢ m},
the time we have to wait to see the external branch linked to individual 1 merging. We can
write

n €q
(14) T = 3

where the e;’s are i.i.d. exponential random variables with mean 1. Note that the formula
also holds true for 7™ and o™ (just omit the subscripts). For the remainder of the chapter,
we will identify o) with UYL).

In this section, we will determinate the asymptotic law of o™ for a class of coalescents
containing the Beta-coalescent with o € (1,2).
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Theorem 3.1. We assume that p(t) = Cot~* + O(t=°+¢) for some Cy > 0, a € (1,2) and
¢(>1—1/a. Then

(n)
(15) 7 d

n(a—1) n—oo 7

for n — oo, where o 4 Beta(1,a).

Recall that in this class of n-coalescents, we also have 7(") /n 4 a—1 (from [12], see also
[17] and [20]) for n — co. Slutsky’s theorem gives a convergence result for o™ /(") which
measures how ancient the chosen individual is compared to the rest of the sample

Corollary 3.2. We assume that p(t) = Cot=® 4+ O(t=**¢) for some Cy > 0, a € (1,2) and
¢(>1—1/a. Then
)

T(n)

d
— 0,

for n — oo, where o 4 Beta(l,a).

proof of Theorem 3.1. For convenience, we set
(1) () =0,if0<a<bacZibeZy,Z; ={0,1,2,..}.
(2) log(0) = —o0.

Notice that o™ < (M) Let Y = (Vk, k > 0) denotes the filtration generated by Y (™), For
any t > 0, we have

P(o™ > nt|y) = P(c™ > nt, 7 > nt|Y)
|nt|AT(m)

— H P({1} € m|{1} € m-1,Y)
=1

(n)

Y -1
|nt|AT(m) ( i-1
X

| nt] AT (1)

= 1l

p v

(n) (n)

x™ 4 o x4

: (:)r <1ifi#7", and = (:)r
Yisi Yisi

We can hence write

Notice that =1ifi=rM,

=1

[nt|AT(m) X(n) 41
log (]P’(U(") > nt|y)> = Z log (1 - Z)

and proceed to a power series expansion :

log (IP’(U(”) > nt\y)) =194+ 1®

n
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with
|nt | AT(m) 1
oy () (v) ™
i=1
and o
[nt]AT™ (n) (n)
X, +1 XU +1
L= 3 (= =)+ S,
T B T
(n)
where Ifj) can be —oo if 21 — 1. Let us look further at IT(LP. The idea is to replace

v

Xi(n) by the limit of its expectation.
1 5+ 5,

nt
with .
[nt]AT(™
1 )\ L
== 3 <a1 +1> (YZ(—%) ,
i=1
" (2) e (n) 1 )\~
2 n n
ot = — Zz; <Xi _a—1> (Yi—l) :

We will use three lemmas whose proofs are given in the rest of the Section.
Lemma 3.3, with n = 1, tells us that, when 0 <t < a—1

t —1
(1) B « x t
1 — 1- der = al 1——.
(16) Joi — a—l/o( a—1> x aog( a—1>

Lemma 3.4 gives, for 0 <t < a —1,

[nt|AT()
n 1 n)\ 1
(17) I = —nte-tpl-t/e 37 <X§>—a_1>(nﬂ) 50,
i=1
Finally, Lemma 3.5 gives, for t < o — 1,
(18) % 5.

Adding (16), (17) and (18), we get that for t < a — 1

log (]P’(a(”) > nt|y)> 5 alog <1 _ ! 1> ,
o —

and thus N
Pwm>mwﬂ<u-t>.

a—1
While we know that P(¢(™) > nt|)) < 1,then
t [0
Pwm>n@:MMHm>mWﬂ%<L—l>.
o —
We thus obtain that, for z € (0,1),
P(e™ > n(a—1)z) = (1 —z)%.
(n)

and then that ﬁ converges in distribution to a Beta(1, «) law. O
n(a —
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Lemma 3.3. We set v,(t) = fg (1 - ﬁ)_n dx,n € R. We assume that p(t) = Cot™ +

O(t=*¢) for some Co > 0, a € (1,2) and ¢ > 1~ 1/a. For any 0 <t <a—1 and7n€R,
we have

(1) Let tg € [0, — 1) and 6 > 0. The following convergence in probability holds when

n — oo:
LTLtJ/\T(") n
n@=1/2-6 g In~1 Z (YZ(ZLD — vy(t)] = 0.
0<t<to P

(2) Lett € [0,a —1). The following convergence in distribution holds when n — co:

LntJ/\T(") _ t
ey (V) ) [ ara - Dy,
=1 0

Proof. The case n = o — 1 is given by Theorem 5.1 in [12]. Following the same arguments, it
is easy to get the general result. O
Lemma 3.4. For any t < o — 1, the following convergence in distribution holds :

[nt]AT()

ol 3 (Xf")—l )(1@(”1)>_11>(va(t))1/“v1,

. a—1
=1

—Q
where (Vi)¢>0 is an a-stable Lévy process with no positive jumps and v, (t) = fg (1 — ﬁ) dz.

Proof. Let § € (0, — 1), to =a—1—0 and t € [0, to].
Let e € (0,1 — =%5) and 8 =1— -5 —e > 0. We have

[t | AT() 1 1
e 3 <X§") B a—l> (y}_ﬂf) = Ayt + B,
=1
with
|nt|AT(m)

n 1 n)\ !
A=t (= ) () gy

=1

and
|nt | AT(m) 1 1
_ o 1-1/ (n) _ (n)\
B =n Z; (Xi a— 1) (YH) L) <npy
1=
We will show that B,; converges to 0 in probability and that A,; weakly converges to
(Vo ()Y/*V] as n — co.

Convergence of A,;. Let ZZ-(n) =n (YZ(_Hl) -

1
) 1{}2@;2%}. We have that sup,, ;>4 ZZ-(n) <p!

a.s..
By using (11), it is enough to prove that

Efexp(—udp)] —— e (®u/@-D),
n— o0
for any u positive. Where eV»(®)v*/(e=1) s the Laplace transform of (vy(t))/*V;.
Taking uZi(n) as Zi(n), we shall only consider the case u = 1.
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Let us consider n~! ZZLZJATW (Z.(n))a = po-l Z}Zﬁww (YZ(_nl)

)

—Q
) 1{32(_7L;2n5}. We have,

because the process (Yi(n),i > 0) is decreasing, that

[nt| AT() o Lt Ar(™) —a
Put Y (Zi(n)> Aot Y (yi(jD ) = P(3i; V") < np)
i=1 i=1
(n)
< PY ntjaromy—1 < 15)
(Int)AT(™))—1 1
<P Y (X -——)ze).
j=1

Use (13) to get that the right-hand side of the last inequality converges to 0 as n goes to
infinity. Using also Lemma 3.3 with n = «, we have that

|nt] Ar(1)

i=1
as n — 0o. We can thus deduce that

[nt | AT()

(19) Y (Z}”))“ 2 oalt),
i=1
as n — o0.
For a > 0, we set

k

()

) i—1
=1

The process (Mr(;l,z,k‘ > 1) is a bounded martingale w.r.t. the filtration )). Notice that

E[Méag] =1. As X =0 and Zi(n) =0 for i > 7™, we also have
kAT
My =exp | Y (—”” “az{" X" ~log d,n w”‘“aZé”)))
i=1
Using R(n,u) defined in (11), we get that :
(a)
Mn,|_ntj
[nt]Ar(™) 1 [t | AT (™) n-1 (aZ(n))a |nt] Ar(™)
_ _ —1/a Z(n) X(n) I i B Y(n) “1/a Z(n)
exp ; n aZ; (X, a—l) ; — 1 ; R(Y,"1,n aZ;"’)
Lnt) Ar(m) (aZ(n)>a Lnt) Ar(™)
= exp (—(lAnt) exp —n_l Z ﬁ — Z R(Yk(ﬁ)p n_l/aaZZ.(n))
i=1 =1
Let

[nt | AT(™) Zz(n) o ;
=t

=1
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and write
E [exp (*Ant)] = A+ A,
with A1 = E [e_A"t (1 — eA")] and A; = E [e_A"t eA"].
First of all, let us prove that A; converges to 0 when n tends to oco. Recall that the r.v
ZZ.(n) are uniformly bounded by 37! a.s.. Thanks to (12), we have

[nt] AT () (22(”))a [nt | AT()
_ 2 _ ¢ n “1/a ~(n
Ele 2A”t]:IE M( EntJ exp [ n7! Z 1 + Z R(Yk(_)l,2n 1/ ZZ-( )) <M,
i=1 i=1
where M is a finite constant which does not depend on n. By Cauchy-Schwarz’ inequality,
we get that

(20) (A< (B[ [1—e™])* SB[ E[(1-e™)’] < ME[(1-e)’].

The quantity A,, is bounded and goes to 0 in probability when n goes to infinity (see (19)).
Therefore, the right-hand side of (20) converges to 0. This implies that lim,,_,., A; = 0.
Let us now consider the convergence of As. Remark that

LntJAT(">
Ay=E | MY ex Lo Vezm)
Recall that E[MSEMJ] = 1. Using (12), we get
exp (C12(5_1)n—51 + Ua_(t)1> < Ay <exp (012(5_ yn 4 aa_(t)1>

We get that lim,, .o A2 = eve(®)/(a=1) which achieves the proof.
Convergence of B,;. Here, we will use a similar approach as the one we used on the first

half of p.10. The process (Y;(n),i > 0) is decreasing. So if for some i < |nt|, Yl(fl) < nf, then

(n) _
we have YL f-1 < nf. Thus we get By = Bntl{ <<S1)m7(n)) <) Moreover,

(n) (Int|AT(m))—1 . 1
s < S - g

, a—1
7j=1
and then for any £ > 0
P(|But| > €') = P(1,ym) | Bnt| > €')
o (IntjAr(m)y— <
(n)
({YV(Lntj/\TW) < nﬂ)
(Int|Ar(m))—1 1
<P(n! x™_ = >,
S D DG e

j=1
Use (13) to get that the right-hand side of the last inequality converges to 0 as n goes to
infinity.
O

Now we deal with I,(i) .
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Lemma 3.5. We assume that p(t) = Cot=% + O(t=**¢) for some Cy >0 and ¢ > 1 —1/a.
Then, for any t < a — 1, we have

Lnt] AT (n) (n)
X, 1 X +1
IP= Y —m- T+ T By,
=1 1/vifl }/;,1

when n — 0.

Proof. Let 0 <t < «a— 1. First of all, remark that:

(n)
Y,
Int) a—1-—1t
(21) - L o1

Indeed,
Yo n—(nth/e-1) Y - 1/(a-1)

9

n n n
and we conclude using (13) and the convergence of P(7(™ > |nt|) to 1. Let us write

19| = A, + B,
with
An = |1 |1{Y(”) (1-t/(a=1)n/2}
and
’ nt ll{Y(")> 1-t/(a—1)) n/2}

The convergence (21) implies that A,, tends to 0 in probability. To prove the convergence of
By, let us first notice that for a € (0,1), there exists a constant C'(a) such that, if B, , is a
binomial r.v. with parameter (n,z), then

1
(22) 0< —/0 E [1{2<Bn’z<(1_a)n}(ln(l —

Indeed, there exists a constant C’(a) such that for u € (0,1—a), 0 < —In(1—u)—u < C'(a)u?
Hence,

Buay B“)] v(dz) < C(a).

n n

0< —/ E [1{2§Bn,m§(1—a)n}(1n(1 - —=)+ )] v(dz)
0 n n
L Bnm 2
< C/(a)/o E |:1{2<an <(1—a)n}( n, ) } v(dz)
1
< C'(a) / E [(BW)?] v(da)
0 n
! Bn,x(Bn,x - 1)
<2C'(a )/ E [?22] v(dz)
—20"(a fO - 12 wvlde) _ O(a).
n
Let us set a = (1 —t/(aw — 1))/2. Hence B,, = ] ot |1{Y(") - } Notice that if n is large

enough such that an > 2, then if YL(er)J > an we have 7" > nt. Moreover, if YL(nt)j > an, for
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1 < nt, we have Y;(n) > an > aYi(fl) and XZ.(n) = Yl(fl) — Yi(n) <(1- a)Yl(fl) < (1- a/Q)Yi(fl).
Using (6), (22) and (5), we get that

E[By]
[nt) (n) (n)
X, +1 X7 +1 (n)
< 2 EE(n( = =)+ = om aax <aman @ L) sam Vi)
i=1 i—1 i—1
Lt 1 B ) B, )
1 Yi 1@ Yii1s (n)
SZE[_E[/O Loen ) <Omay iy yzany g 0 = Te) @Y
i=1 i—1" Y, i—1 i—1
C(a/2)nt
_Claf2nt o
Gan
when n tends to co. This achieves the proof of the Lemma. O

4. A RESULT ON SMALL-TIME BEHAVIOR OF THE BLOCK PROCESS

We now turn to the study of the length of an external branch picked at random, denoted
by T(). For any integer k between 1 and (™, define A](Cn) as the time when the kth jump
is achieved. This variable can be expressed as a sum of k independent exponential random

variables. More precisely,
EAT(™)

Y
i=1 ng,"f

where the ¢;’s are independent standard exponential variables. Notice that T = A((:EZO. We
will first study asymptotics of A,gn). For this, we use a two-step approximation method close

to Section 4 of [12]. Define first

n) EAT()

1(n

Ay’ = Z Joim
=1 Iy

obtained replacing the e;’s by their mean,and

1 EAr(m)
i(n) _ (n) —a
A= Col'(2 — ) 2 ()

obtained replacing g, by its equivalent in (5).

Proposition 4.1. We assume that p(t) = Cot=*+0(t=°*C) for some Cy > 0 and > 1—1/a.
Then, for any t < a — 1, we have

P 1 t
- COF(Q—a)((l_a—l

a—1 4(n) 11—«
n ALntJ ) —1),
when n — 0.

The proof is a straight consequence of Lemma 3.3 with 7 = « and the following Lemmas
4.2 and 4.3.

Lemma 4.2. Under the assumptions of Proposition 4.1, we have

na—l(A(") _A(”)

P
nt) ~ Alne) = 0

when n — 0.
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Proof. Use (5) to get

~( ) A( ) \_ntj/\7<") ( ) —x ( ) —mil’l((,l)
Al = ALy = Z (Yi—l) 0 <<Yz‘—1> ) .
The result then follows from Lemma 3.3 with n = o + min(¢, 1). O

Lemma 4.3. Under the assumptions of Proposition 4.1, we have

na—l(A( n) A( n)

P
nt) = Alnepy) = 0

when n — 0.

Proof. Recall that Y = (M, k > 0) denotes the filtration generated by Y. Conditionally on

6 p—
Y, the random variables — are independent with zero mean. We deduce that

I
2
[nt | AT(™)

E a—1 A(n) _A n2e—2g e —1
sup(n ( |nt] LntJ)) V| = sup |y
t>0 t>0 i1 Iy™

i—1
[nt] AT () 1 2
i=1 Iy

where we used Doob’s inequality for the inequality. Thanks to (5) and Lemma 3.3 with
2

7(n) . ..
n = 2a, we get the 4n2a—2 ZLntJA ( 1( : > converges to 0 in probability.
-1
O

Heuristically, combining Theorem 3.1 and Proposition 4.1, we should get that n® 17" =
na_lAi_@L) converges in law to m((l — o)t~ —1). This line of proof will be followed in
the last section. However, in the next we will first present another way to prove this result
with a method based on exchangeable coalescents consistency property. As a first step to this
approach, we end this session with a result about small-time behavior of the block-counting

process.
Let Rgn) denote the number of blocks of the n-coalescent TI(™ at time ¢. The initial value

Rén) is n. We show that the limit law of the process R(™ is deterministic under a certain
time rescaling

Theorem 4.4. We assume that p(t) = Cot=* +O(t=*+¢) for some Cy > 0 and ¢ > 1—1/a.
For any tg > 0, > 0, we have

(23) P( sup \nilREZLa —(1+Cor(2—a)t)y Ve D> e =0,
0<t<to

when n — o0.
Proof. Let 0 <r < a— 1, we have the following relation :

LnrJ/\T(")
n) _ (n)
Rym = Y =n - Z X;
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Let ¢t € [0,tp], and define
(24) r(t) = (@ —1)(1 — (14 Col(2 — a)t) /(@)
on [0, to]. Notice that

1 (- r(t)
Col'(2 — o) a—1

Then thanks to Proposition 4.1, no—14M
[nr(t))

Using the remark at the beginning of the proof in Lemma 3.5, we get the convergence

e —1) =t.

converges in probability to .

1R Viwy =, 1) 5 1/(a-1)
_ n I 1— -1 (2 — —1/(a—
n RA(L?r(t)J n ( o 1) (14 Col'(2 — a)t) ;

when n — co. Moreover, since RE") is decreasing, then for any 0 < 6 < 1,

: (n) (n) (n)
nh_{folo P(R ) < Ripiear SR
[nr(t—6t)] [nr(t+46t)]

)= 1.

(n)
tnl—o

The constant § being arbitrary, we thus obtain the convergence in probability of n 'R
to (14 Col'(2 — a)t)~1/(e=1),
We obtain (25) using again the fact that R™ is a decreasing process.
O

In fact, the symptotic result concerning block counting process of Kingman coalescent is
also valid. The method is almost identical to that emploied in the above Theorem. In the

context of Kingman coalescent, we use the same notations ), Agn), R™M).
Theorem 4.5. In the setting of the Kingman coalescent, for any tg > 0, > 0 , we have

(25) B( sup TR — (14 /2)7 > ) =0
>U00

when n — 0.

Remark that this Theorem shows a nice continuity from Beta coalescent(the process that
we consider is more general which contains Beta coalescent) to Kingman coalescent. In
Theorem 4.4, if we let o = 2, the result is just we want to prove in this Corollary.

Proof. Recall that Agn) is the time when i-th jump is achieved. When II(™ has b individuals
at some time ¢, then the process encounters the following coalescence at rate (g) where

two randomly chosen individuals will be coalesced. II(™ remains 1 when all individuals are
coalesced.
For 0 <t < a—1, we have

® n—|nt]+1 .
n o ek
ALntj - Z (b)
k=n 2
where e;s are i.i.d unit exponential variables. Notice that
n—|nt|+1
1 1 1



16 JEAN-STEPHANE DHERSIN, FABIAN FREUND, ARNO SIRI-JEGOUSSE, AND LINGLONG YUAN

as n tends to co. There exist a constant K > 0, such that,

n—|nt]+1

n 1 K
Var(nA(Ln)tJ) = Z 712(@)2 < —
k=n 2
So we deduce that
nA™ By 2 g
L] 1—t Cl—t

as n converges to oo.
We denote by f~1(t) := t/(t + 2) the inverse function of f(t).
Similarly, R™ is decreasing, so

P(R} <R", <R} —1
( Aln=1a-am) = T T AL 1)) ’
as n tends to oo for any 0 < § < t.
w
Roly i d
So —r— — m — 0.
Furthermore,
(n) (n) _
i _ Mgty _n=nfNO) ) gy o
n n n 1+1¢/2
R<n)_1 d 1
as n tends to oo. So —f2— — T
Using again the decreasing property of Rgn), we finish the proof. O

5. THE LENGTH OF AN EXTERNAL BRANCH PICKED AT RANDOM

Dynamics of any exchangeable coalescent with multiple mergers are characterized by rates
b, which suit a consistent relationship (this is Pitman’s structure theorem, see [27], Lemma
18):

(26) Aok = Apr1k+1 + Aoy k-

This relationship comes from the fact that k given merging blocks among b can coalesce in
two ways while revealing an extra block : either the coalescence event implies the extra block
(and then k£ + 1 blocks will merge) either not. Thus we get a recursive construction of the
n-coalescent process I1(™).

Let us define I1("2) as the coalescent process of individuals labelled from 2 to n. Now we

consider the individual labelled by 1. The lineage of this individual can be ’connected’ to
Im2)

e cither at any of its jump times, in which case block {1} participates to a multiple
merger implying at least 3 blocks, and we call this collision “Type 1”7 (see Figure 1),

e or at any other time to one of the present blocks and then participates to a binary
collision, and we call it “Type 2” (see Figure 2).

(n.2) (n.2)

From now on, our analysis is conditional on II Between two jump times of II ,
assuming that there are b blocks in H(”J), the extra block coalesces at rate bAyyq 2. If the
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FiGURE 1. n = 5. Individual 1 is chosen. Type 1: individual 1 encounters a
multiple collision.

FiGURE 2. n = 5. Individual 1 is chosen. Type 2: individual 1 encounters a
binary collision

extra block remains unconnected just before a coalescence event implying k£ blocks among b,
then it will participate to this event with probability

(Z) o1 2" (1 — ) Fu(dx) /g _q1_ >\b+1,k'
() [ 2*(1 = 2)bFu(dx) /gy Ao,k

This equality comes from (26). Let us see how to get the law of 7, the coalescence time of
individual 1. We define by R("™2) the block counting process of II(™2). Notice that it has the
same law as R, We introduce

(27)

° Tc(n) the first jump time of a Poisson process né”) directed by the measure Vén) =

2
R,gn )AR£"’2)+1,2dt;

° Tén) the time of the first appearance of '"Head’ in the following coin flip, independent

of 17((;”) : at each jump time t of Rgn’Q), we toss a coin, and get "Head’ with probability

AREZL‘% +1,R§’j‘2) —R{M? 4

and "Tail” with probability —

/\Rg’j‘2>+1,R£’j‘2) —r{M? 4

1—

(see (27)).

Ap(n2) p(n,2 2 2) o(n2 2
r{™? R(™?) (™) r{™? R(™?) _Rp(m2)

Then, conditionally on II(™2) T(™) and T, c(n) A Tcgn) have the same law.

Remark 5.1. A more formal way to interpret 7 is as follow. Let £ be Cox process directed

A (n,2) (n,2) (n,2)
(n) (n) (n) _ Ry ALR TRy A

by random measure v; ° + v, ', where v, ' =) {tis ajump time} X 12 (na) (n2)
R,V R R 41

d¢, and

8; is the Dirac measure in t (see [22, p.226]). Then T has the same law as the first jump
time of £(")
Let us now give our main result
Theorem 5.2. The following convergence holds :
1
are o
for n — oco. The density function of T is

ﬁﬂ):aai?;ah1+qm@—amfla t>0.

noipm & = — o)l 1),

In particular, in the Beta(2 — «, «) case, the density is
1 t _a
t) = 1 a=1 t>0.
o) = M T ar@) y t2

Proof. For the sake of simplicity, we will make the proof only in the Beta(2 — a, ) case. The
proof can be extended to the more general case where (4) is satisfied with the details omited
here. In this special case, Cy = (al'(a)T'(2 — a))~! and dynamics are given by
Blk—a,b—k+a)
b = ;
B(a,2 — «)
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where B(a,b) is a Beta function of parameters a and b.

(n,2)

Define r,gn’Q) as the number of jumps of the process II up to time n!'=%. It is a

straightforward consequence of Proposition 4.1 that

(2,m)
(28) ki

t), —

for t — oo, where r(t) is defined in (24).
For i > 0, in the process I1(™2) we denote by Y.(n’Q) the number of blocks remaining after
1 jumps which equals 1 from the time all individuals are coalesced to 1, and Y(n D _p 1.
Let Xl-(n D) — Yi(ff) — Yi( 2 he the number of blocks we lose during the ith coalescent event.
We write Xén) = 0. Notice that (Y (™2 X(™2) has the same law as (YD, x(=1))
Using the description given above, we have
P(n®'T™ > )
— B[P AT > 112
= EP(n T > (m2)pne T > ¢t2))

(n)
T
n,2 t )\1+§/i(;”1v2>71+X§”72>

(n,2)
= Blewp(- [ [ w0 Rt -2y uganas ]

i=1 )/;@172),14-)(2(”’2)

D) " n
(n2) BC—a,ROD, +a—1) v X" a1
sn dS) H
=1

t
- F o -« )
[exp( /0 n R B2—aa) ( ) ].

We decompose the term in the expectation into two parts: the exponential on one side and
the product on the other.
Let us first look at the exponential term. Using Stirling’s formula we get that, for 0 < s <,

noy B(2—a, R +a-—1 R™2) ya—1 (n2) (n
( 72) ( 8n1 ) nl—a( Snl ) +( snl )a 1f( 2) )7

l-a
R =
" snie B2 - a,a) INGY! n sni—e

where f = f (t){t>0} is a deterministic function which converges to 0 as t converges to co.

The sequence (R( 12)a,n > 2) is decreasing so, thanks to Theorem 4.4, we deduce that

(n,2)
SUp(< sgt(%)a LF(R 8212)(1) converges in probability to 0 as n tends to co. Consequently,

using again Theorem 4.4, we get that

B2-a,R™Y, +a-1) ¢
- 1 ap(n,2) ) T heploo P —a
(29)  exp( /0 R, BE = a.a) ds) = (1+ aF(a)) , N — 00.

Convergence of the product term is obtained by the same method as in proof of Theorem
3.1, combined with the convergence in (28). To avoid showing almost the same reasoning, we
leave the details to readers. This way, we have

S (1:2)
2 2
v XM ra—1 g t | aca

Tt
(30) 1;[1 Y0 - (14 aI‘(a)> a1, n— 0.
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The product of (29) and (30) then converges in probability to (1 + alf(a))_o‘/(o‘_l). Since

this product is bounded, we get that

t ),% N
a— n Q.
al(a) ’

We achieve the proof. O

P(n® 7™ > ¢) — (1+

As a consequence of Theorem 5.2, we can get an asymptotic result on the size of the
population at the moment of collision of individual 1.

Corollary 5.3. The following convergence holds :
n Y S 1+ Gr2 - o)) Ve =10

for n — co. Moreover, the density function of this limit is axo‘_ll{ogmgl}.

Proof. In terms of block counting process, we have YU(ZZ) — RW
(n)
nlfa(naflT(n))

Hence, if 9 > 0, we deduce from Theorem 4.4 that
(n)

Rnl—a(na—lT(n))

n
This achieves the proof. O

: (n)  _
" 7y Notice that R, =

. Using Theorem 5.2, we known that n® 7™ converges in distribution to 7.

d (e
1{na*1T(n)<to} — 1{T<t0}(1 +Col'(2 — a)T) 1/(a=1),

6. AN ALTERNATIVE PROOF FOR THEOREM 5.2

In this section, we present an alternative proof for Theorem 5.2 using the convergence
results for o™ from Theorem 3.1. First, we need a stronger version of Proposition 4.1 which
gives weak convergence in the path space. Recall that

) kenr(m) ..
1 n z : (2
b g 7
i=1 Yl&";

where the e;’s are independent standard exponential variables.

Proposition 6.1. We assume that p(t) = Cot=*+0(t=2*¢) for some Cy > 0 and ¢ > 1—1/a.
Then, for any t < a — 1, we have

a—1 (n) d 1 - S

in the sense of convergence in the path space DI[0,t] for n — oo.

)T = 1)s<ts

Proof. Note that Theorem 4.1 states

_ n P 1 S _
AL S e ) T ),

for 0 < s < a—1and n — oo. So for every fixed s € [0, ], we have pointwise convergence in
probability in (31). This implies weak convergence of all finite dimensional distributions due
to the subsequence criterion for weak convergence. In order to show weak convergence in the
path space, we will show tightness for the distributions from (31). Since the limit process is
continuous, it suffices to show that the condition (i) of [4, Theorem 7.3] and condition (7.12)
from [4, Corollary 7.4] are fulfilled (see [4, Corollary 13.4]). For the present processes, these
conditions translate to showing that for every e > 0 and n > 0,
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(i) there exists a > 0 s.t. P(no‘*lA(LgJ) > a) < n for n big enough and

(ii) there exists a 0 < 0 < 1 so that

—1 a—174(n) (n)
o P (“ (A pmin160)] ~ Alnets)) = 6) <

for n big enough and any ¢; € [0, ¢].

Condition (4) is trivially fulfilled, for condition (ii) we can use Theorem 4.1 to show that for
n — 00,

P (o AR nisn) — Al ) = €) = P(fmin(t +0,6) = f(1) = o),

where f(s) := m((l — 517 —1). Note that P(f(min(t; + 6,t)) — f(t1) > €) <
P(f(t) — f(t —6) > ¢€) € {0,1}. Since f is continuous, you can now choose § small enough
that f(t) — f(t — J) < € and then n big enough to fulfill (ii). Thus, we have shown tightness

of the distributions in (31) which establishes the desired weak convergence O
Now we come to the alternative proof of Theorem 5.2.

Alternative proof of Theorem 5.2. Fix t € [0,a — 1). We have

1 s

(o /e = 1), (0" AL es) S (0 (Grrp =y (1~ 55

)T = 1))s<),

for n — oo. Due to Skorohod-coupling, we can assume that this convergence also holds

almost surely. Since s — (m((l — —5)17® — 1)) is continuous on [0,], the almost
sure convergence of (na_lA(Lzz | )s<t in D0, ¢] is even almost sure uniform convergence on [0, ¢]

(see [4, p. 124]). For any series (z,)nen on [0,t] with z,, — z, we thus have noe—14M

[nan ]
m((l — —2)17@ — 1) almost surely for n — co. The only problem left is that AR
may take values in [0, « —1) and not only in some subset [0, ¢]. To remedy this, note that if we
restrict all random variables on {0 < a—1— 2} for k € N, we have o™ (w)/n<a—1- 1 for

n = n(w) big enough for almost allw € {0 < a—1— %} Thus, by using the Skorohod-coupling

for the series (¢ /(n(a — 1)), (naflA(LZlJ)sga_l_%), we have

a— n d 1 o -«
LAl (( )y —1),

T Bl T GT2—a) a1

almost surely on {0 < a—1— %} for the coupled versions of these random variables (note
that o < T(")). Since o is Beta-distributed, we have, for k£ — oo,

a— n 2 a— n
PUn A ) € dNfo Sa—1— 2~ PetAl) e,

This shows

a—1p(n) _ pa—14(m) 4 _
et nt A = Col'(2 — ) ( a—1
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The only thing left to prove is that 7" has density fp. This is done by computing the
distribution function

1 o

Col'(2 — oz)((1 Ca-—1
= Plo<1—(1+GCl(2-a))aT)

P( )T -1) <)

1—(14+Col(2—a)t) &1
/ a(l —z)%dx

0
= 1-(1+CI'(2—a)t) a1,

and finally by differentiating. O
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