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Abstract

In this paper, we consider the Beta(2− α, α)-coalescents with 1 < α < 2 and
study the moments of external branches, in particular the total external branch

length L
(n)
ext of an initial sample of n individuals. For this class of coalescents,

it has been proved that nα−1T (n) (d)→ T, where T (n) is the length of an external
branch chosen at random, and T is a known non negative random variable. We

obtain that for Beta(2−α, α)-coalescents with 1 < α < 2, lim
n→+∞

n3α−5E[(L
(n)
ext−

n2−αE[T ])2] =
((α− 1)Γ(α+ 1))2 Γ(4− α)

(3− α)Γ(4− 2α)
.
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1. Introduction

1.1. Motivation

In a Wright-Fisher haploid population model with size N , we sample n individuals at present
from the total population, and look backward to see the ancestral tree until we get the most recent
common ancestor (MRCA). If time is well rescaled and the size N of population becomes large, then
the genealogy of the sample of size n converges weakly to the Kingman n-coalescent (see [33],[34]).
During the evolution of the population, mutations may occur. We consider the infinite sites model
introduced by Kimura [32]. In this model, each mutation is produced at a new site which is never seen
before and will never be seen in the future. The neutrality of mutations means that all mutants are
equally privileged by the environment. Under the infinite sites model, to detect or reject the neutrality
when the genealogy is given by the Kingman coalescent, Fu and Li[22] have proposed a statistical test
based on the total mutation numbers on the external branches and internal branches. Mutations on
external branches affect only single individuals, so in practice they can be picked out according to

the model setting. In this test, the ratio L
(n)
ext/L

(n) between the total external branch length L
(n)
ext and

the total length L(n) measures in some sense the weight of mutations occurred on external branches
among all. It then makes the study of these quantities relevant.

For many populations, Kingman coalescent describes the genealogy quite well. But for some others,
when descendants of one individual can occupy a big ratio of the next generation with non-negligible
probability, it is no more relevant. It is for example the case of some marine species (see [1], [9],
[19], [24], [26]). In this case, if time is well rescaled and the size of population becomes large, the
ancestral tree converges weakly to the Λ-coalescent which is associated with a finite measure Λ on [0, 1].
This coalescent allows multiple collisions. It has first been introduced by Pitman[38] and Sagitov[39].
Among Λ-coalescents, a special and important subclass is called Beta(a, b)-coalescents characterized
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2 Jean-Stéphane Dhersin, Linglong Yuan.

by Λ being a Beta distribution Beta(a, b). The most popular ones are those with parameters 2 − α
and α where α ∈ (0, 2).
Beta-coalescents arise not only in the context of biology. They also have connections with super-

critical Galton-Watson process (see [40]), with continuous-state branching processes (see [6], [2], [20]),
with continuous random trees (see [4]). If α = 1, we recover the Bolthausen-Sznitman coalescent
which appears in the field of spin glasses (see [8], [10]) and is also connected to random recursive trees
(see [25]). The Kingman coalescent is also obtained from the Beta(2 − α, α)-coalescent by letting α
tend to 2.

For Beta(2−α, α)-coalescents with 1 < α < 2, a central limit theorem of the total external branch

length L
(n)
ext is known (see [31]). The aim of this paper is to study its moments. The results obtained

can be extended to more general coalescent processes (see [16] ). We should say that in this case, the
moment method is not able to obtain the right convergence speed in the central limit theorem, which
illustrates some limitations of moment calculations.

1.2. Introduction and main results

Let E be the set of partitions of N := {1, 2, 3, ...} and, for n ∈ N , En be the set of partitions of Nn :=
{1, 2, · · · , n}. We denote by ρ(n) the natural restriction on En: if 1 ≤ n ≤ m ≤ +∞ and π = {Ai}i∈I
is a partition of Nm, then ρ(n)π is the partition of Nn defined by ρ(n)π = {Ai

⋂
Nn}i∈I . For a finite

measure Λ on [0, 1], we denote by Π = (Πt)t≥0 the Λ-coalescent process introduced independently
by Pitman[38] and Sagitov[39]. The process (Πt)t≥0 is a càd-làg continuous time Markovian process
taking values in E with Π0 = {{1}, {2}, {3}, ...}. It is characterized by the càd-làg Λ n-coalescent

processes (Π
(n)
t )t≥0 := (ρ(n)Πt)t≥0, n ∈ N. For n ≤ m ≤ +∞, we have (Π

(n)
t )t≥0 = (ρ(n)Π

(m)
t )t≥0

(where Π(+∞) = Π).
Let ν(dx) = x−2Λ(dx). For 2 ≤ a ≤ b, we set

λb,a =

∫ 1

0

xa−2(1− x)b−aΛ(dx) =

∫ 1

0

xa(1− x)b−aν(dx).

Π(n) is a Markovian process with values in En, and its transition rates are given by: for ξ, η ∈ En,
qξ,η = λb,a if η is obtained by merging a of the b = |ξ| blocks of ξ and letting the b − a others
unchanged, and qξ,η = 0 otherwise. We say that a individuals (or blocks) of ξ have been coalesced

in one single individual of η. Remark that the process Π(n) is an exchangeable process, which means

that, for any permutation τ of Nn, τ ◦Π(n) (d)
= Π(n).

The process Π(n) finally reaches one block. This final individual is called the most recent common
ancestor (MRCA). We denote by τ (n) the number of collisions it takes for the n individuals to be
coalesced to the MRCA.

We define by R(n) = (R
(n)
t )t≥0 the block counting process of (Π

(n)
t )t≥0: R

(n)
t = |Π(n)

t |, which equals

the number of blocks/individuals at time t. Then R(n) is a continuous time Markovian process taking

values in Nn, decreasing from n to 1. At state b, for a = 2, ..., b, each of the
(
b
a

)
groups with a

individuals coalesces independently at rate λb,a. Hence, the time the process (R
(n)
t )t≥0 stays at state

b is exponential with parameter:

gb =

b∑
a=2

(
b

a

)
λb,a =

∫ 1

0

(1− (1− x)b − bx(1− x)b−1)ν(dx) = b(b− 1)

∫ 1

0

t(1− t)b−2ρ(t)dt, (1)

where ρ(t) =
∫ 1

t
ν(dx). We denote by Y (n) = (Y

(n)
k )k≥0 the discrete time Markov chain associated

with R(n). This is a decreasing process from Y
(n)
0 = n which reaches 1 at the τ (n)-th jump. The

probability transitions of the Markov chain Y (n) are given by: for b ≥ 2, k ≥ 1 and 1 ≤ l ≤ b− 1,

pb,b−l := P(Y
(n)
k = b− l|Y (n)

k−1 = b) =

(
b
l+1

)
λb,l+1

gb
, (2)

and 1 is an absorbing state.
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We introduce the discrete time process X
(n)
k := Y

(n)
k−1 − Y

(n)
k , k ≥ 1 with X

(n)
0 = 0. This process

counts the number of blocks we lose at the k-th jump. For i ∈ {1, . . . , n}, we define

T
(n)
i := inf

{
t| {i} /∈ Π

(n)
t

}
as the length of the i-th external branch and T (n) the length of a randomly chosen external branch.

By exchangeability, T
(n)
i

(d)
= T (n). We denote by L

(n)
ext :=

∑n
i=1 T

(n)
i the total external branch length

of Π(n), and by L(n) the total branch length.
For several measures Λ, many asymptotic results on the external branches and their total external

lengths of the Λ n-coalescent are already known.

1. If Λ = δ0, Dirac measure on 0, Π(n) is the Kingman n-coalescent. Then,

(a) nT (n) converges in distribution to T which is a random variable with density fT (x) =
8

(2+x)31x≥0 (See [7], [12], [27]).

(b) L
(n)
ext converges in L2 to 2 (see [22], [18]). A central limit theorem is also proved in [27].

2. If Λ is the uniform probability measure on [0, 1], Π(n) is the Bolthausen-Sznitman n-coalescent.
Then (log n)T (n) converges in distribution to an exponential variable with parameter 1 (see [21],

[41]). For moment results of L
(n)
ext, we refer to [14] and for central limit theorem, we refer to [30].

3. If ν−1 =
∫ 1

0
x−1Λ(dx) < +∞, which includes the case of the Beta(2 − α, α)-coalescent with

0 < α < 1, then

(a) T (n) converges in distribution to an exponential variable with parameter ν−1 (see [23, 37]).

(b) L(n)/n converges in distribution to a random variable L whose distribution coincides with

that of
∫ +∞

0
e−Xtdt, where Xt is a certain subordinator (see page 1405 in [17] and [36] ),

and L
(n)
ext/L

(n) converges in probability to 1 (see [37]).

4. If Λ is the Beta(2− α, α) measure with 1 < α < 2, then we get the Beta(2− α, α)-coalescents.
Note that nα−1T (n) converges in distribution to T which is a random variable with density
function (see[15])

fT (x) =
1

(α− 1)Γ(α)
(1 +

x

αΓ(α)
)−

α
α−1−11x≥0. (3)

For central limit theorems of L
(n)
ext and L(n), we refer to [31, 29].

In the rest of the paper, we only consider the Beta(2− α, α) coalescents, 1 < α < 2 . In that case,
we have

ν(dx) =
1

Γ(α)Γ(2− α)
x−1−α(1− x)α−1 dx.

T denotes a random variable with density (3). If (an)n≥1 and (bn)n≥1 are two real sequences, we
define an ∼ bn when lim

n→+∞
an/bn = 1 is true.

Theorem 1. 1. The total external branch length L
(n)
ext satisfies

lim
n→+∞

n3α−5E[(L
(n)
ext − n2−αE[T ])2] = ∆(α),

where E[T ] = α(α− 1)Γ(α) and ∆(α) = ((α−1)Γ(α+1))2Γ(4−α)
(3−α)Γ(4−2α) .

2. As a consequence, nα−2L
(n)
ext

(L2)→ E[T ].
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Remark 1.1. • For the second part of the theorem, the convergence in probability and almost
surely can be found from [4], [5], [3] by Berestycki et al.

• The first part of the theorem gives n(5−3α)/2 as the convergence speed for L
(n)
ext tending to

n2−αE[T ] in the sense of second moment. But as shown in [31],

L
(n)
ext − n2−αE[T ]

n1/α+1−α
(d)→ α(2− α)(α− 1)1/α+1Γ(α)

Γ(2− α)1/α
ζ,

where ζ is a stable random variable with parameter α. Our moment method fails to get the right
speed of convergence in distribution.
To prove this result, the first idea is to write

E[(L
(n)
ext − n2−αE[T ])2] = nV ar(T

(n)
1 ) + n(n− 1)Cov(T

(n)
1 , T

(n)
2 ) + (nE[T

(n)
1 ]− n2−αE[T ])2. (4)

Hence we have to get results on the moments of the external branches. This is given by the
next theorems. The first one gives the asymptotic behaviour for the covariance of two external
branch lengths.

Theorem 2. The asymptotic covariance of two external branch lengths is given by:

lim
n→+∞

n3(α−1)Cov(T
(n)
1 , T

(n)
2 ) =

∫ 1

0
((1− x)2−α − 1)2ν(dx)

3− α
((α− 1)Γ(α+ 1))3 = ∆(α).

Remark 1.2. ∆(α) is the limit only in the case of Beta(2 − α, α)-coalecents, but the result can be
extended to more general Λ-coalescent (see [16]).

Notice that ∆(α) is strictly positive implies that Cov(T
(n)
1 , T

(n)
2 ) is of order n3−3α and T

(n)
1 , T

(n)
2

are positively correlated in the limit which is similar to Boltausen-Sznitman coalescent and opposite
of Kingman coalescent (negatively correlated) (see [14]). To prove this theorem, we have to give the

asymptotic behaviours of E[T
(n)
1 T

(n)
2 ] and E[T

(n)
1 ] (Theorem 4). We also get from Theorem 4 that the

third term in (4) satisfies

(nE[T
(n)
1 ]− n2−αE[T ])2 = O(n6−4α). (5)

The second one gives the asymptotic behaviour of moments of one external branch length, hence we can

estimate nV ar(T
(n)
1 ). We then see that n(n− 1)Cov(T

(n)
1 , T

(n)
2 ) is dominant in E[(L

(n)
ext−n2−αE[T ])2]

(see (4)). Then we can conclude for Theorem 1.

Theorem 3. For Beta(2− α, α)-coalescent, we have

1. If 0 ≤ β < α
α−1 , then lim

n→+∞
E[(nα−1T

(n)
1 )β ] = E[T β ].

2. If β ≥ α
α−1 , then lim

n→+∞
E[(nα−1T

(n)
1 )β ] = +∞.

1.3. Organization of this paper

In sections 2 and 3, we give estimates of E[T
(n)
1 ] and E[T

(n)
1 T

(n)
2 ] respectively. Both E[T

(n)
1 ] and

E[T
(n)
1 T

(n)
2 ] satisfy the same kind of recurrence which allows to get their estimates and they lead to an

estimate of Cov(T
(n)
1 , T

(n)
2 ) in section 3. The main tool is Lemma 5.1 given in appendix A. In section

4, we deal with Theorem 3. Section 5 is the appendix where are given some proofs omitted before.

2. First moment of T
(n)
1 by recursive method

2.1. Preliminaries

For s > −α, we define the measure

ν(s)(dx) := (1− x)sν(dx) =
1

Γ(α)Γ(2− α)
x−1−α(1− x)α−1+s dx; (6)
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The collision rates of the Λ-coalescent associated with the measure ν(s) is given by

g(s)
n :=

∫ 1

0

(1− (1− x)n − nx(1− x)n−1)ν(s)(dx) ∼ nα

Γ(α+ 1)

when n tends to ∞.
We introduce the quantity ρ(s)(t) :=

∫ 1

t
ν(s)(dx).

Lemma 2.1. For s > −α, we have when t tends to 0:

1. ρ(s)(t) = t−α

Γ(α+1)Γ(2−α) −
(α−1+s)t1−α

(α−1)Γ(α)Γ(2−α) + o(t1−α) ;

2.
∫ 1

t
ρ(s)(x)dx = t1−α

(α−1)Γ(α+1)Γ(2−α) +
∫ 1
0
x−α((1−x)α−1+s−1)dx

Γ(α)Γ(2−α) − 1
(α−1)Γ(α)Γ(2−α) +O(t2−α) ;

3. limt→0+

(∫ 1

t
ρ(s)(x)dx− t1−α

(α−1)Γ(α+1)Γ(2−α)

)
exists, and its value is

C(s) =

∫ 1

0
x−α((1− x)α−1+s − 1)dx

Γ(α)Γ(2− α)
− 1

(α− 1)Γ(α)Γ(2− α)
·

In particular, if s ≥ 1− α, C(s) = Γ(α+s)
Γ(s+1)Γ(α)(1−α) .

Proof. The result for ρ(s)(t) is straightforward since

ρ(s)(t) =

∫ 1

t

1

Γ(α)Γ(2− α)
x−1−α(1− x)α−1 dx.

For
∫ 1

t
ρ(s)(x)dx, using integration by parts, we have

∫ 1

t

ρ(s)(x)dx = −tρ(s)(t) +

∫ 1

t
x−α(1− x)α−1+sdx

Γ(α)Γ(2− α)

= − t1−α

αΓ(α)Γ(2− α)
+

∫ 1

t
(x−α(1− x)α−1+s − 1)dx

Γ(α)Γ(2− α)
+

∫ 1

t
x−αdx

Γ(α)Γ(2− α)
+O(t2−α)

=
t1−α

(α− 1)Γ(α+ 1)Γ(2− α)
+

∫ 1

0
x−α((1− x)α−1+s − 1)dx

Γ(α)Γ(2− α)
− 1

(α− 1)Γ(α)Γ(2− α)
+O(t2−α),

which gives also the existence and the first definition of C(s).
If s = 1 − α, C(s) = 1

(1−α)Γ(α)Γ(2−α) . If s > 1 − α, using again integration by parts obtains

C(s) =
∫ 1
0
x−α((1−x)α−1+s−1)dx

Γ(α)Γ(2−α) − 1
(α−1)Γ(α)Γ(2−α) = Γ(α+s)

Γ(s+1)Γ(α)(1−α) .

We then define two values A :=

∫ 1

0

((1 − x)1−α − 1 − (α − 1)x)ν(1)(dx), B :=

∫ 1

0

((1 − x)2(1−α) −

1− 2(α− 1)x)ν(2)(dx), which will be used many times later.

Lemma 2.2. If A,B are defined as above, then A = α(α2−α− 1)Γ(α− 1) and B = 1
(α−1) ( Γ(4−α)

Γ(4−2α) +

(α2 − α− 1)Γ(α+ 2)).

Proof. Using integration by parts two times,

A =
α

Γ(2− α)

1

α(α− 1)

∫ 1

0

x1−α (−α(α− 1)(1− x)α−2 + 2α(α− 1)(1− x)α−1 − α(α− 1)2x(1− x)α−2
)
dx

=
1

Γ(2− α)(α− 1)
(−Γ(α+ 1)Γ(2− α) + 2(α− 1)Γ(α+ 1)Γ(2− α)− (α− 1)Γ(3− α)Γ(α+ 1))

= α(α2 − α− 1)Γ(α− 1).

In the same way, one gets B = 1
(α−1) ( Γ(4−α)

Γ(4−2α) + (α2 − α− 1)Γ(α+ 2)).
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2.2. The main result

Theorem 4.

E[T
(n)
1 ] = (α− 1)Γ(α+ 1)n1−α +

(α− 1)2(Γ(α+ 1))2

2− α

(
A+ (α− 1)C(1) − C(0)

)
n2(1−α) + o(n2(1−α)).

The idea is to use the recurrence satisfied by E[T
(n)
1 ](see [14]):

E[T
(n)
1 ] =

1

gn
+

n−1∑
k=2

pn,k
k − 1

n
E[T

(k)
1 ]. (7)

Let L = (α − 1)Γ(α + 1) and Q = (α−1)2(Γ(α+1))2

2−α (A + (α − 1)C(1) − C(0)). We transform the

recurrence (7) to

(
E[nα−1T

(n)
1 ]− L

)
nα−1 −Q =

(
nα−1

gn
− (1−

n−1∑
k=2

pn,k
k − 1

n
(
n

k
)α−1)L

)
nα−1 −Q(1−

n−1∑
k=2

pn,k
k − 1

n
(
n

k
)2(α−1))

+

n−1∑
k=2

(
n

k
)2(α−1)pn,k

k − 1

n

(
kα−1(E[kα−1T

(k)
1 ]− L)−Q

)
. (8)

Hence we get a recurrence

an = bn +

n−1∑
k=2

qn,kak, (9)

with

an =
(
E[nα−1T

(n)
1 ]− L

)
nα−1 −Q,

bn =

(
nα−1

gn
− (1−

n−1∑
k=2

pn,k
k − 1

n
(
n

k
)α−1)L

)
nα−1 −Q(1−

n−1∑
k=2

pn,k
k − 1

n
(
n

k
)2(α−1)),

qn,k = (
n

k
)2(α−1)pn,k

k − 1

n
.

With this notations, the theorem can be written lim
n→+∞

an = 0. It is then natural to study

the behaviour of bn when n tends to ∞. To this aim, we should get asymptotics of 1/gn, and∑n−1
k=2 pn,k

(k−1)l
(n)l

(nk )r, r ≥ 0 and l ∈ N, where (n)l is (the same for (k − 1)l):

(n)l =

{
n(n− 1)(n− 2) · · · (n− l + 1) if n ≥ l ≥ 1,
0 if l > n ≥ 1.

2.2.1. Asymptotics of 1/gn For any c, d ∈ R, we have

Γ(n+ c)

Γ(n+ d)
= nc−d(1 + (c− d)

c+ d− 1

2
n−1 +O(n−2)). (10)

This is a straightforward consequence of Stirling’s formula:

Γ(z) =
√

2πzz−1/2e−z(1 +
1

12z
+O(

1

z2
)), z > 0. (11)

Then we can proceed to: For any real numbers a and b > −1,∫ 1

0

(1− t)n+atbdx =
Γ(n+ a+ 1)Γ(b+ 1)

Γ(n+ a+ b+ 2)
= Γ(b+ 1)n−1−b

(
1 + (−1− b)b+ 2a+ 2

2
n−1 +O(n−2)

)
.

(12)
Using (12), we get the following lemma.
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Lemma 2.3. For Beta(2− α, α)-coalescents, we have

gn =
nα

Γ(α+ 1)
− (

α(α− 1)

2Γ(α+ 1)
+

2− α
Γ(α)

)nα−1 + o(nα−1),

and
1

gn
= Γ(α+ 1)

(
1 + (−α2/2 + 3α/2)n−1 + o(n−1)

)
n−α. (13)

Proof. It is straightforward using Lemma 2.1 and g
(s)
n = n(n − 1)

∫ 1

0
t(1 − t)n−2ρ(s)(t)dt for any

s > −α.

2.2.2. Calculus of
∑n−1
k=2 pn,k

(k−1)l
(n)l

(nk )r

Lemma 2.4. Consider any Λ-coalescent process, associated with measure ν. Let l ∈ {1, 2, · · · , n− 2}
fixed. Then for any real function f :

n−1∑
k=2

pn,k
(k − 1)l

(n)l
f(k) = E[

(n− 1−X(n)
1 )l

(n)l
]Eν

(l)

[f(n−X(n−l)
1 )],

where Eν(l)

[∗] means that the Λ-coalescent is associated with the measure ν(l).

Proof. Recall the definitions of gn and pn,k(see (1), (2)). We have

n−1∑
k=2

pn,k
(k − 1)l

(n)l
=

n−1∑
k=l+1

∫ 1

0

(
n−l

n−k+1

)
xn−k+1(1− x)k−1ν(dx)

gn

=

n−1∑
k=l+1

∫ 1

0

(
n−l

n−k+1

)
xn−k+1(1− x)k−1−lν(l)(dx)

gn

=

n−1−l∑
k=1

∫ 1

0

(
n−l

n−k−l+1

)
xn−k−l+1(1− x)k−1ν(l)(dx)

gn
=
g

(l)
n−l
gn

. (14)

Then,

n−1∑
k=2

pn,k
(k − 1)l

(n)l
f(k) =

(
n−1∑
k=2

pn,k
(k − 1)l

(n)l

) ∑n−1
k=2 pn,k

(k−1)l
(n)l

f(k)∑n−1
k=2 pn,k

(k−1)l
(n)l

= E[
(n− 1−X(n)

1 )l
(n)l

]

∑n−1
k=l+1

∫ 1

0

(
n−l

n−k+1

)
xn−k+1(1− x)k−1−lf(k)ν(l)(dx)

g
(l)
n−l

= E[
(n− 1−X(n)

1 )l
(n)l

]

∑n−1−l
k=1

∫ 1

0

(
n−l

n−k−l+1

)
xn−k−l+1(1− x)k−1f(k + l)ν(l)(dx)

g
(l)
n−l

= E[
(n− 1−X(n)

1 )l
(n)l

]Eν
(l)

[f(Y
(n−l)
1 + l)] = E[

(n− 1−X(n)
1 )l

(n)l
]Eν

(l)

[f(n−X(n−l)
1 )].

This achieves the proof of the lemma.

In consequence,

n−1∑
k=2

pn,k
(k − 1)l

(n)l
(
n

k
)r = E[

(n− 1−X(n)
1 )l

(n)l
]Eν

(l)

[(
n

n−X(n−l)
1

)r]. (15)
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We have to study E[
(n−1−X(n)

1 )l
(n)l

] and Eν(l)

[( n

n−X(n−l)
1

)r]. The latter is given by Proposition 5.1 in

appendix A. The following lemma studies the former.

Lemma 2.5. Consider a Beta(2− α, α) n-coalescent. Let l ∈ {1, 2, · · · , n− 2} fixed. We have

E[
(n− 1−X(n)

1 )l
(n)l

] = 1− lα

n(α− 1)
+ Γ(α+ 1)

 l∑
j=2

(
l

j

)
(−1)j

∫ 1

0

xjν(dx)− C(0)l

n−α + o(n−α),

Proof. We have

E[
(n− 1−X(n)

1 )l
(n)l

] = E[1−
l−1∑
i=0

X
(n)
1 + 1

n− i
+

l∑
j=2

∑
i1,··· ,ij all different

(−1)j
(X

(n)
1 + 1)j

(n− i1)(n− i2) · · · (n− ij)
].

For E[
∑l−1
i=0

X
(n)
1 +1
n−i ], we use Lemma 5.2 in appendix B. While using Lemme 5.3, we get

E[

l∑
j=2

∑
i1,··· ,ij all different

(−1)j
(X

(n)
1 + 1)j

(n− i1)(n− i2) · · · (n− ij)
]

=n−αΓ(α+ 1)

l∑
j=2

(
l

j

)
(−1)j

∫ 1

0

xjν(dx) +O(n−min{1+α,j}).

Then we conclude.

Now we can give the estimate of
∑n−1
k=2 pn,k

(k−1)l
(n)l

(nk )r using (15), Lemma 2.5 and Proposition 5.1.

Proposition 2.1. Consider a Beta(2−α, α) n-coalescent. Let l ∈ {1, 2, · · · , n− 2} and r ∈ [0, α+ l)
fixed. We have

n−1∑
k=2

pn,k
(k − 1)l

(n)l
(
n

k
)r

=1 +
(r − lα)

n(α− 1)
+ Γ(α+ 1)

∫ 1

0

((1− x)−r − 1− rx)ν(l)(dx) +

l∑
j=2

(
l

j

)
(−1)j

∫ 1

0

xjν(dx) + rC(l) − lC(0)

n−α

+ o(n−α).

2.3. Proof of Theorem 4.

Recall the transformation (8) and the associated recurrence (9). The aim is to prove that lim
n→+∞

an =

0 for an in (9). Using Proposition 2.1, we get

1−
n−1∑
k=2

pn,k
k − 1

n
(
n

k
)α−1 =

1

n(α− 1)
− Γ(α+ 1)

(
A+ (α− 1)C(1) − C(0)

)
n−α + o(n−α),

and

1−
n−1∑
k=2

pn,k
k − 1

n
(
n

k
)2(α−1) =

2− α
n(α− 1)

+O(n−α).

Hence we deduce that bn = o(n−1).

Let ε > 0 such that 2(α − 1) + ε < α. We have 1 −
∑n−1
k=2 pn,k

k−1
n (nk )2(α−1)+ε = O(n−1) > 0.

The recurrence (9) satisfies the assumptions of Lemma 5.1 which leads to lim
n→+∞

an = 0. Then we can

conclude.



Total external branch length 9

3. Estimate of E[T (n)
1 T

(n)
2 ] and proof of Theorem 2

Using Theorem 1.1 in [14], we have

E[T
(n)
1 T

(n)
2 ] =

2E[T
(n)
1 ]

gn
+

n−1∑
k=2

pn,k
(k − 1)2

(n)2
E[T

(k)
1 T

(k)
2 ]. (16)

As a consequence of (13) and Theorem 4, we have

2E[T
(n)
1 ]

gn
= 2(Γ(α+ 1))2n1−2α

(
α− 1 +

(α− 1)2Γ(α+ 1)

2− α
(A+ (α− 1)C(1) − C(0))n1−α

)
+ o(n2−3α).

Using the recurrence method described in the previous section, a direct calculation gives that

E[T
(n)
1 T

(n)
2 ]

= ((α− 1)Γ(α+ 1))2n2(1−α)

+
α− 1

3− α
((α− 1)Γ(α+ 1))3

(
B + 2(α− 1)C(2) + 1− 2C(0) +

2

2− α
(A+ (α− 1)C(1) − C(0))

)
n3(1−α)

+ o(n3(1−α)).

Now together with Theorem 4, we can get the estimate of Cov(T
(n)
1 , T

(n)
2 ).

Cov(T
(n)
1 , T

(n)
2 ) =

((α− 1)Γ(α+ 1))3

3− α

(
B − 2A+ 2(α− 1)(C(2) − C(1)) + 1

)
n3(1−α) + o(n3(1−α)).

Then

∆(α) =
((α− 1)Γ(α+ 1))3

3− α

(
B − 2A+ 2(α− 1)(C(2) − C(1)) + 1

)
. (17)

It is straightforward to see that ∆(α) = ((α−1)Γ(α+1))2Γ(4−α)
(3−α)Γ(4−2α) by recalling the values of A,B,C(1)

and C(2). We prove then that ∆(α) =
∫ 1
0

((1−x)2−α−1)2ν(dx)

3−α ((α− 1)Γ(α+ 1))3. Notice that

B − 2A =

∫ 1

0

(
(1− x)2(2−α) − 2(1− x)2−α + 1− x2 + 2(α− 1)x2(1− x)

)
ν(dx).

By definition,

C(2) − C(1) = lim
t→+∞

∫ 1

t

(ρ(2)(x)− ρ(1)(x))dx = lim
t→0

∫ 1

t

x(ν(2)(dx)− ν(1)(dx)) =

∫ 1

0

−x2(1− x)ν(dx),

and
∫ 1

0
x2ν(dx) = 1. Then it allows to conclude.

4. Proof of Theorem 3

Notice that nα−1T
(n)
1

(d)→ T and if β ≥ α
α−1 , one gets E[T β ] = +∞, hence E[(nα−1T

(n)
1 )β ] converges

to +∞ (see Lemma 4.11 of [28]). If 0 ≤ β1 < β2 <
α
α−1 and (E[(nα−1T

(n)
1 )β2 ], n ≥ 2) is bounded.

Then ((nα−1T
(n)
1 )β1 , n ≥ 2) is uniformly integrable (see Lemma 4.11 of [28] and Problem 14 in section

8.3 [11]). Then we need only to prove that for β ∈ [2, α
α−1 ), (E[(nα−1T

(n)
1 )β ], n ≥ 2) is bounded.

We will prove by induction on n that there exists a constant C > 0 such that for all n ≥ 2,

(E[nα−1T
(n)
1 ])β ≤ C. We first assume that, for all 2 ≤ k ≤ n − 1, (E[kα−1T

(k)
1 ])β ≤ C and then will

prove that (if C is large enough) (E[nα−1T
(n)
1 ])β ≤ C.
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Writing the decomposition of T
(n)
1 at the first coalescence, we have

T
(n)
1 =

e0

gn
+

n−1∑
k=2

1{Hn,k}T̄
(k)
1 ,

where:

• Hn,k is the event: {From n individuals, we have k individuals after the first coalescence, and
individual 1 is not involved in this collision}, 2 ≤ k ≤ n− 1;

• e0 is a unit exponential random variable, T̄
(k)
1

(d)
= T

(k)
1 , and all these random variables e0, T̄

(k)
1 ,

1{Hn,k} are independent. One notices that P(Hn,k) = pn,k
k−1
n (see (7)).

Using Lemma 5.6 in Appendix D, we have the following inequality.

E[(T
(n)
1 )β ] = E[((

e0

gn
+

n−1∑
k=2

1{Hn,k}T̄
(k)
1 ))β ] ≤ In,1 + In,2 + In,3 + In,4 (18)

where

In,1 = E[(
e0

gn
)β ], In,2 = E[(

n−1∑
k=2

1{Hn,k}T̄
(k)
1 )β ],

In,3 = E[β2β−1 e0

gn
(

n−1∑
k=2

1{Hn,k}T̄
(k)
1 )β−1] and In,4 = E[β2β−1(

e0

gn
)β−1

n−1∑
k=2

1{Hn,k}T̄
(k)
1 ].

We first bound In,1. Recall that gn ∼
nα

Γ(α+ 1)
. Hence there exists a constant K1 > 0 (which

depends on β) such that for any n ≥ 2,

n(α−1)βIn,1 ≤
K1

n
. (19)

We now consider In,2. Notice that (α− 1)β < α+ 1. Hence, using Proposition 2.1, we have

n(α−1)βIn,2 = n−(α−1)β
n−1∑
k=2

pn,k
k − 1

n
(
n

k
)(α−1)βE[(kα−1T

(k)
1 )β ] (20)

≤ C
n−1∑
k=2

pn,k
k − 1

n
(
n

k
)(α−1)β (21)

= C(1− α− (α− 1)β

n(α− 1)
+ o(n−1)) ≤ C(1− α− (α− 1)β

2n(α− 1)
), (22)

for n ≥ N, where N is a fixed positive integer.
We now proceed to In,3. Notice that for 2 ≤ k ≤ n− 1,

E[(kα−1T
(k)
1 )β−1] ≤ (E[(kα−1T

(k)
1 )β ])

β−1
β ≤ C

β−1
β .
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Hence we have

n(α−1)βIn,3 = n(α−1)βE[β2β−1 e0

gn

n−1∑
k=2

1{Hn,k}(T̄
(k)
1 )β−1]

≤ C
β−1
β β2β−1nα−1g−1

n

n−1∑
k=2

pn,k
k − 1

n

(n
k

)(α−1)(β−1)

= C
β−1
β nα−1β2β−1g−1

n (1− α− (α− 1)(β − 1)

n(α− 1)
+ o(n−1))

≤ C
β−1
β K2

n
, (23)

where K2 is a positive constant. In the second equality, we have used Proposition 2.1.
While for any n ≥ 2,

n(α−1)βIn,4 = n(α−1)βE[β2β−1(
e0

gn
)β−1

n−1∑
k=2

1{Hn,k}T̄
(k)
1 ]

≤ β2β−1E[eβ−1
0 ](gn)1−βn(α−1)(β−1)E[nα−1T

(n)
1 ]

≤ K3

nβ−1
≤ K3

n
, (24)

where K3 is a positive constant. We have used Lemma 4 to bound E[nα−1T
(n)
1 ].

Using (18),(19),(20),(23),(24), we have proved that for any n, n ≥ N , if there exists C > 0 such

that for all 2 ≤ k ≤ n− 1, E[
(
kα−1T

(k)
1

)β
] ≤ C, then

E[(nα−1T
(n)
1 )β ] ≤

C +
(
K1 − C α−(α−1)β

2(α−1) + C
β−1
β K2 +K3

)
n

. (25)

Let C large enough such that

K1 − C
α− (α− 1)β

2(α− 1)
+ C

β−1
β K2 +K3 < 0, (26)

Then E[(nα−1T
(n)
1 )β ] ≤ C, which allows to conclude.

5. Appendix

A) The main recurrence tool

Lemma 5.1. We consider the recurrence an = bn +
∑n−1
k=1 qn,kak. We assume that bn = o(n−1) and

that there exist ε > 0 and C > 0 such that 1 −
∑n−1
k=1 qn,k(nk )ε ≥ Cn−1 for n large enough. Then

lim
n→+∞

an = 0.

Proof. Let (c̄n)n≥1 be an increasing sequence such that

lim
n→+∞

c̄n = +∞; lim
n→+∞

nbnc̄n = 0.

Define another sequence (cn)n≥1 by: c1 = c̄1. For n ≥ 1,

cn+1 = min{cn(
n+ 1

n
)ε, c̄n+1},
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Then we have lim
n→+∞

cn = +∞, cnbn = o(n−1) and for any 1 ≤ k ≤ n − 1, cn
ck
≤ (nk )ε. In

consequence, 1−
∑n−1
k=1 qn,k

cn
ck
≥ Cn−1 for n large enough. Let n1 > 0 such that for n > n1, we have

1−
∑n−1
k=1 qn,k

cn
ck
> C

n and cnbn <
C
2n and pick a number C ′ such that C ′ > max{1, ckak; 1 ≤ k ≤ n1}.

We transform the original recurrence to

cnan = cnbn +

n−1∑
k=1

(
qn,k

cn
ck

)
ckak.

Then cn1+1an1+1 ≤ C
2(n1+1) + (1− C

n1+1 )C ′ ≤ C ′. By induction, we prove that the sequence (cnan)n≥1

is bounded by C ′. Since cn tends to the infinity, we get lim
n→+∞

an = 0.

Remark 5.1. We refer to [35] for a rather detailed survey on this kind of recurrence relationships.

B) Asymptotic behaviours of X
(n)
1

Lemma 5.2. Consider the coalescent process with related measure ν(s) where s > −α. Then

Eν
(s)

[X
(n)
1 ] =

1

α− 1
+ Γ(α+ 1)C(s)n1−α + o(n1−α),

Proof. We have (see [13]):

Eν
(s)

[X
(n)
1 ] =

∫ 1

0
(1− t)n−2(

∫ 1

t
ρ(s)(r)dr)dt∫ 1

0
(1− t)n−2tρ(s)(t)dt

Lemma 2.1 gives the developments of ρ(s)(t) and
∫ 1

t
ρ(s)(r)dr. Using (10), we get∫ 1

0

(1− t)n−2(

∫ 1

t

ρ(s)(r)dr)dt =
nα−2

(α− 1)Γ(α+ 1)
+ C(s)n−1 + o(n−1),

and
∫ 1

0
(1− t)n−2tρ(s)(t)dt = nα−2

Γ(α+1) +O(nα−3). Then we can conclude.

Lemma 5.3. If s > −α and k ≥ 2,

Eν
(s)

[(
X

(n)
1

n
)k] = Γ(α+ 1)

∫ 1

0

xkν(s)(dx)n−α +O(n−min{1+α,k}).

Proof. Let Bn,x denote a binomial random variable with parameter (n, x), n ≥ 2, 0 ≤ x ≤ 1. Recall

that for 2 ≤ i ≤ n, Pν(s)

(X
(n)
1 = i−1) =

∫ 1

0

(
n
i

)
xi(1−x)n−iν(s)(dx)/g

(s)
n =

∫ 1

0
P(Bn,x = i)ν(s)(dx)/g

(s)
n .

Here Pν(s)

means that X
(n)
1 is related to the coalescent process with measure ν(s).

Eν
(s)

[(
X

(n)
1

n
)k] =

∫ 1

0

E[(
Bn,x − 1

n
)k1Bn,x≥1])ν(s)(dx)/g(s)

n

=

∫ 1

0

n−kE[(Bkn,x −Bn,x)

+

k−1∑
i=1

(
k

i

)
(−1)i(Bk−in,x −Bn,x) + (−1)k(1−Bn,x)1Bn,x≥1)]ν(s)(dx)/g(s)

n .

Using Lemma 5.4 in Appendix C, we get E[(Bkn,x −Bn,x)] = (nx)k +O(nk−1)x2. Then

Eν
(s)

[(
X

(n)
1

n
)k] =

∫ 1

0

n−k
(
(nx)k +O(nk−1)x2

)
ν(s)(dx)/g(s)

n + n−k
∫ 1

0

(−1)k(1− nx− (1− x)n)ν(s)(dx)/g(s)
n

= Γ(α+ 1)

∫ 1

0

xkν(s)(dx)n−α +O(n−min{1+α,k}).
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In the second equality, we have used g
(s)
n ∼ nα

Γ(α+1) and also the fact that
∫ 1

0
(1−nx−(1−x)n)ν(s)(dx) ≤

g
(s)
n =

∫ 1

0
(1− nx(1− x)n−1 − (1− x)n)ν(s)(dx). This achieves the proof.

Proposition 5.1. For s ∈ N
⋃
{0} and 0 ≤ r < α+ s, we have

Eν
(s)

[

(
n

n−X(n−s)
1

)r
] = 1+

r

n(α− 1)
+Γ(α+1)

(∫ 1

0

((1− x)−r − 1− rx)ν(s)(dx) + rC(s)

)
n−α+o(n−α).

Proof. By Taylor expansion formula, for m ≥ 2 and n ≥ s+ 2, we have,

Eν
(s)

[

(
n

n−X(n−s)
1

)r
] = Eν

(s)

[

 1

1− X
(n−s)
1

n

r

]

= Eν
(s)

[1 + r
X

(n−s)
1

n
+

m∑
k=2

Γ(k + r)

Γ(r)k!
(
X

(n−s)
1

n
)k +

Γ(m+ 1 + r)

Γ(r)m!

∫ X
(n−s)
1
n

0

(1− t)−r−m−1(
X

(n−s)
1

n
− t)mdt].

Using Lemma 5.2 and Lemma 5.3, we have for m ≥ 2,

lim
n→+∞

nαEν
(s)

[

m∑
k=2

Γ(k + r)

Γ(r)k!
(
X

(n−s)
1

n
)k] = Γ(α+ 1)

m∑
k=2

Γ(k + r)

Γ(r)k!

∫ 1

0

xkν(s)(x).

In consequence,

lim
m→+∞

lim
n→+∞

nαEν
(s)

[

m∑
k=2

Γ(k + r)

Γ(r)k!
(
X

(n−s)
1

n
)k] = Γ(α+ 1)

∫ 1

0

((1− x)−r − 1− rx)ν(s)(dx).

It remains to estimate Γ(m+1+r)
Γ(r)m! Eν(s)

[
∫ X

(n−s)
1
n

0
(1 − t)−r−m−1(

X
(n−s)
1

n − t)mdt], which is the sum of

two terms P1(m,n, s, y) and P2(m,n, s, y), with 0 < y < 1, defined by

P1(m,n, s, y) =
Γ(m+ 1 + r)

Γ(r)m!
Eν

(s)

[

∫ X
(n−s)
1
n

0

(1− t)−r−m−1(
X

(n−s)
1

n
− t)mdt1

X
(n−s)
1 ≥ny],

P2(m,n, s, y) =
Γ(m+ 1 + r)

Γ(r)m!
Eν

(s)

[

∫ X
(n−s)
1
n

0

(1− t)−r−m−1(
X

(n−s)
1

n
− t)mdt1

X
(n−s)
1 <ny

].

We first focus on P1(m,n, s, y). By Proposition 5.2 in Appendix C, we have

P1(m,n, s, y) ≤Eν
(s)

[

(
n

n−X(n−s)
1

)r
1
X

(n−s)
1 ≥ny]

≤Eν
(s)

[

(
n− s

n− s−X(n−s)
1

)r
1
X

(n−s)
1 ≥(n−s)y]

≤n−αK4y
−α(1− y)r̄−r, (27)

where r̄ ∈ (r, α+ s) and K4 is a number depending only on r̄ and ν(s) (it is important that it does
not depend on y).
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We now give an upper bound for P2(m,n, s, y). We have

nαP2(m,n, s, y) = nα
Γ(m+ 1 + r)

Γ(r)m!
Eν

(s)

[

∫ X
(n−s)
1
n

0

(1− t)−r−1(
X

(n−s)
1 /n− t

1− t
)mdt1

X
(n−s)
1 <ny

].

For t ∈ [0, x) with 0 < x ≤ 1, we have x−t
1−t ≤ x. Then

∫ X
(n−s)
1
n

0
(
X

(n−s)
1 /n−t

1−t )mdt ≤ (
X

(n−s)
1

n )m+1.
Hence, using Lemma 5.3, for m > 2,

nαP2(m,n, s, y) ≤ nαΓ(m+ 1 + r)

Γ(r)m!
(1− y)−r−1E[(X

(n−s)
1 /n)m+1]

= (1− y)−r−1 Γ(m+ 1 + r)

Γ(r)m!

(
Γ(α+ 1)

∫ 1

0

xm+1ν(s)(dx) +O(n−1)

)
.

Using Lemme 5.5 in Appendix C, we have

∫ 1

0

xm+1ν(s)(dx) =

∫ 1

0

xm+1(1− x)r̄ν(−r̄+s)(dx) ≤ K5m
−r̄,

where K5 is a positive real number depending only on r̄ and ν(s).

Notice that Γ(m+r+1)
Γ(r)m! ∼ mr

Γ(r) . Hence

P2(m,n, s, y) ≤ n−α(1− s)−r−1mr(O(m−r̄) + o(n−1)). (28)

Combining (27) and (28), we deduce that

lim
m→+∞

lim sup
n→+∞

nα(P1(m,n, s, y) + P2(m,n, s, y)) = 0.

This convergence together with Lemma 5.2 and 5.3 yield this proposition.

C) Some necessary results for Appendix B

Lemma 5.4. Let Bn,x be a binomial random variable with parameter (n, x), n ≥ 2, 0 ≤ x ≤ 1. Let k
be an integer such that 2 ≤ k ≤ n. Then

nx+ n(n− 1) · · · (n− k + 1)xk ≤ E[Bkn,x] ≤ (nx)k +

(
k

2

)
nk−1x2,

Proof. Write Bn,x = Y1 + · · ·+ Yn, where Y1, · · · , Yn are independent Bernoulli random variables.
Let S := {{i1, · · · , ik}; 1 ≤ i1, · · · , ik ≤ n}. Then

E[
∑

{i1,··· ,ik}∈S1

Yi1 · · ·Yik ] + E[
∑

{i1,··· ,ik}∈S3

Yi1 · · ·Yik ] ≤ E[(Bn,x)k]

≤ E[
∑

{i1,··· ,ik}∈S2

Yi1 · · ·Yik ] + E[
∑

{i1,··· ,ik}∈S3

Yi1 · · ·Yik ],

where

1. S1 := {{i1, · · · , in} ∈ A; i1 = · · · = ik}. Then E[
∑
{i1,··· ,ik}∈S1

Yi1 · · ·Yik ] = nx.

2. S2 := {{i1, · · · , in} ∈ A;∃1 ≤ p < q ≤ k, ip = iq}. Then E[
∑
{i1,··· ,ik}∈S2

Yi1 · · ·Yik ] ≤(
k
2

)
nk−1x2.

3. S3 := {{i1, · · · , in} ∈ A;∀1 ≤ p < q ≤ k, ip 6= iq}. Then E[
∑
{i1,··· ,ik}∈S3

Yi1 · · ·Yik ] = n(n −
1) · · · (n− k + 1)xk.



Total external branch length 15

Then we can conclude.

Lemma 5.5. Consider any Λ-coalescent such that ρ(t) = Ct−α + o(t−α). Then for every s ≥ 0,

n ≥ 2,
∫ 1

0
xn(1− x)sν(dx) ≤ K6n

−s, where K6 is a positive constant which depends only on s and ν.

Proof. It is clear that there exists K7 > 0 such that ρ(t) ≤ K7t
−α, for all 0 < t ≤ 1. Then

∫ 1

0

xn(1− x)sν(dx) =

∫ 1

0

ρ(t)(n− (n+ s)t)tn−1(1− t)s−1dt

≤
∫ 1

0

ρ(t)(n− nt)tn−1(1− t)s−1dt

≤ nK7

∫ 1

0

tn−1−α(1− t)sdt = nK7
Γ(n− α)Γ(s+ 1)

Γ(n− α+ s+ 1)
≤ K6n

−s,

for some K6 which only depends on K7 and s. This achieves the proof of the lemma.

Proposition 5.2. Let s > −α and 0 ≤ r < α + s, r̄ ∈ (r, α + s). Then there exists a constant K11

depending only on r̄ and s such that for all y ∈ (0, 1), n ≥ 2,

Eν
(s)

[

(
n

n−X(n)
1

)r
1
X

(n)
1 ≥ny] ≤ n−αK11y

−α(1− y)r̄−r.

Proof. Define dxe = min{m ∈ Z;m ≥ x}. We have

Eν
(s)

[

(
n

n−X(n)
1

)r
1
X

(n)
1 ≥ny] =

n−1∑
k=dnye

∫ 1

0

(
n

k + 1

)
xk+1(1− x)n−k−1(

n

n− k
)rν(s)(dx)/g(s)

n .

Using (10), there exist two positive constants K8,K9 such that for all k ∈ {1, 2, . . . , n− 1},

K8
Γ(n+ 1 + r)

Γ(k + 2)Γ(n− k + r)
≤
(

n

k + 1

)
(

n

n− k
)r ≤ K9

Γ(n+ 1 + r)

Γ(k + 2)Γ(n− k + r)
.

Moreover using integration by parts, for 1 ≤ l ≤ n− 1 and 0 ≤ x ≤ 1, we have:

n−1∑
k=l

Γ(n+ 1 + r)

Γ(k + 2)Γ(n− k + r)
xk+1(1− x)n−k−1+r

=
Γ(n+ 1 + r)

Γ(l + 1)Γ(n− l + r)

∫ x

0

tl(1− t)n−l+r−1dt+
Γ(n+ 1 + r)

Γ(n+ 1)Γ(1 + r)
xn(1− x)r − Γ(n+ 1 + r)

Γ(n)Γ(1 + r)

∫ x

0

tn−1(1− t)rdt.

(29)

Lemma 2.1 says ρ(−r̄+s)(t) = t−α

Γ(2−α)Γ(α+1) +o(t−α). Then there exists K10 > 0, such that ρ(−r̄+s)(t) ≤
K10t

−α for all t ∈ (0, 1].
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Eν
(s)

[

(
n

n−X(n)
1

)r̄
1
X

(n)
1 ≥ny]

=

n−1∑
k=dnye

∫ 1

0

(
n
k+1

)
( n
n−k )r̄xk+1(1− x)n−k−1ν(s)(dx)

g
(s)
n

=

n−1∑
k=dnye

∫ 1

0

(
n
k+1

)
( n
n−k )r̄xk+1(1− x)n−k−1+r̄ν(−r̄+s)(dx)

g
(s)
n

≤ K9

∫ 1

0
Γ(n+1+r̄)

Γ(dnye+1)Γ(n−dnye+r̄)
∫ x

0
tdnye(1− t)n−dnye+r̄−1dtν(−r̄+s)(dx)

g
(s)
n

+K9

∫ 1

0
Γ(n+1+r̄)

Γ(n+1)Γ(1+r̄)x
n(1− x)r̄ν(−r̄+s)(dx)

g
(s)
n

≤ K9

∫ 1

0
Γ(n+1+r̄)

Γ(dnye+1)Γ(n−dnye+r̄)ρ
(−r̄+s)(t)tdnye(1− t)n−dnye+r̄−1dt

g
(s)
n

+K9

∫ 1

0
Γ(n+1+r̄)

Γ(n+1)Γ(1+r̄)x
n(1− x)r̄ν(−r̄+s)(dx)

g
(s)
n

≤ K9K10

Γ(n+1+r̄)Γ(dnye+1−α)
Γ(dnye+1)Γ(n+1+r̄−α)

g
(s)
n

+K6K9

Γ(n+1+r̄)
Γ(n+1)Γ(1+r̄)n

−r̄

g
(s)
n

≤ K11s
−αn−α,

where for the first inequality, we use (29) with l = dnye, in the second inequality, we have used an
argument of integration by parts and for the third inequality, we bound ρ(−r̄+s)(x) by K10x

−α and
we also use Lemma 5.5. For the last inequality, we use (10). Here K11 is a constant which depends
only on r̄ and ν(s). Then we get

Eν
(s)

[

(
n

n−X(n)
1

)r
1
X

(n)
1 ≥ny] ≤ (1− y)r̄−rEν

(s)

[

(
n

n−X(n)
1

)r̄
1
X

(n)
1 ≥ny] ≤ K11y

−α(1− y)r̄−rn−α,

which achieves the proof of the lemma.

Remark 5.2. If r ≥ α+s, this lemma is false. Assume that s = 0, r ≥ α and for any fixed 0 < y < 1,
n ≥ 1

1−y , we have ny ≤ n− 1 and it follows that

P1(m,n, s, y)

≥ E[

((
n

n−X(n)
1

)r
− 1− rX

(n)
1

n
−

m∑
k=2

∏k−1
i=0 (r + i)

k!
(
X

(n)
1

n
)k

)
1
X

(n)
1 =n−1

]

= P(X
(n)
1 = n− 1)

(
nr − 1− rn− 1

n
−

m∑
k=2

∏k−1
i=0 (r + i)

k!
(
n− 1

n
)k

)

=

∫ 1

0
xnν(dx)

gn

(
nr − 1− rn− 1

n
−

m∑
k=2

∏k−1
i=0 (r + i)

k!
(
n− 1

n
)k

)

∼ Cn−2α

(
nr − 1− rn− 1

n
−

m∑
k=2

∏k−1
i=0 (r + i)

k!
(
n− 1

n
)k

)

where C is a positive number. Then

lim inf
n→+∞

nαP1(m,n, s, y) ≥ C, ∀0 < y < 1.

Hence this remark justifies the constraint 0 ≤ r < α+ s.

D) Results that are used to prove Theorem 3.

Lemma 5.6. Let a > 0, b > 0, β ≥ 1. Then 0 < (a+ b)β ≤ aβ + bβ + β2β−1abβ−1 + β2β−1baβ−1.
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Proof. If 0 ≤ m ≤ 1, then

(1 +m)β ≤ 1 + β2β−1m ≤ 1 +mβ + β2β−1m+ β2β−1mβ−1.

We use that the function m 7→ (1 + m)β is convex and that β2β−1 is the derivative of (1 + m)β at
m = 1.

If 1 < m, then

(1 +m)β = mβ(1 +
1

m
)β ≤ (m)β(1 + β2β−1 1

m
) ≤ 1 +mβ + β2β−1m+ β2β−1mβ−1.

Hence for all m ≥ 0,
(1 +m)β ≤ 1 +mβ + β2β−1m+ β2β−1mβ−1.

Then for all a > 0, b > 0,

(a+ b)β = aβ(1 +
b

a
)β ≤ aβ(1 + (

b

a
)β + β2β−1 b

a
+ β2β−1(

b

a
)β−1) = aβ + bβ + β2β−1abβ−1 + β2β−1baβ−1.
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[23] A. Gnedin, A. Iksanov, and M. Möhle. On asymptotics of exchangeable coalescents with multiple
collisions. J. Appl. Probab., 45(4):1186–1195, 2008.

[24] A. Gnedin and Y. Yakubovich. On the number of collisions in Λ-coalescents. Electron. J. Probab.,
12:no. 56, 1547–1567 (electronic), 2007.

[25] C. Goldschmidt and J. B. Martin. Random recursive trees and the Bolthausen-Sznitman
coalescent. Electron. J. Probab., 10:no. 21, 718–745 (electronic), 2005.

[26] D. Hedgecock. 2.5 does variance in reproductive success limit effective population sizes of marine
organisms? Genetics and evolution of aquatic organisms, page 122, 1994.

[27] S. Janson and G. Kersting. On the total external length of the kingman coalescent. Electronic
Journal of Probability, 16:2203–2218, 2011.

[28] O. Kallenberg. Foundations of modern probability. Probability and its Applications (New York).
Springer-Verlag, New York, second edition, 2002.

[29] G. Kersting. The asymptotic distribution of the length of beta-coalescent trees. The Annals of
Applied Probability, 22(5):2086–2107, 2012.

[30] G. Kersting, J. C. Pardo, and A. Siri-Jégousse. Total internal and external lengths of the
bolthausen-sznitman coalescent. arXiv preprint arXiv:1302.1463, 2013.

[31] G. Kersting, I. Stanciu, and A. Wakolbinger. The total external branch length of beta-coalescents.
arXiv preprint arXiv:1212.6070, 2012.

[32] M. Kimura. The number of heterozygous nucleotide sites maintained in a finite population due
to steady flux of mutations. Genetics, 61(4):893–903, 1969.

[33] J. Kingman. The coalescent. Stochastic Process. Appl., 13(3):235–248, 1982.

[34] J. Kingman. Origins of the Coalescent 1974-1982. Genetics, 156(4):1461–1463, 2000.

[35] O. Marynych. Stochastic recurrences and their applications to the analysis of partition-valued
processes. 2011.



Total external branch length 19
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