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Abstract
We propose a manifestly covariant framework for causal set dynamics. The 
framework is based on a structure, dubbed covtree, which is a partial order on 
certain sets of finite, unlabeled causal sets. We show that every infinite path 
in covtree corresponds to at least one infinite, unlabeled causal set. We show 
that transition probabilities for a classical random walk on covtree induce a 
classical measure on the σ-algebra generated by the stem sets.

Keywords: causal sets, quantum gravity, general covariance

1.  Introduction

General relativity (GR) has the property of general covariance. As discussed in section 7 of [1], 
this gauge invariance of GR has two facets. The first is that physical statements—or, equiva-
lently, properties or predicates or events—in GR must be diffeomorphism invariant. The second 
is that the equations of motion of GR are diffeomorphism invariant so that metrics in a diffeo-
morphism equivalence class must either all satisfy or all not satisfy the equations of motion. As 
stated in [1], ‘(In GR) the second facet of covariance flows directly from the first as a consistency 
condition, because it would be senseless to identify two metrics one of which was allowed by 
the equations of motion and the other of which was forbidden; and conversely, the kinematical 
identification must be made if one wishes the dynamics to be deterministic. Thus, the first or 
‘ontological’ facet of general covariance tends to coalesce with its second or ‘dynamical’ facet.’ 
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There is a widespread expectation that GR will turn out to be an approximation, at large 
scales and in certain circumstances, to a deeper theory of quantum gravity. A. Einstein’s strug-
gles over the understanding of general covariance were central to the development of GR and 
one might expect that grappling with the corresponding issues within quantum gravity will 
be important to its development too [2]. The requirement that the diffeomorphism invariance 
of GR must emerge from quantum gravity in the large scale approximation is indeed used to 
formulate guiding precepts for each approach to quantum gravity, though the form that these 
precepts take varies from approach to approach.

In the case of the causal set approach to the problem of quantum gravity, any deeper precept 
of general covariance cannot be literally diffeomorphism invariance because diffeomorphism 
is a continuum concept and causal set theory is discrete. Causal set theory postulates that the 
fundamental structure of spacetime is atomic at the Planck scale and takes the form of a causal 
set or locally finite partial order4. The elements of the causal set are the atoms of spacetime and 
continuum spacetime is an approximation to the causal set at large scales. The order relation of 
the underlying causal set reveals itself as the causal structure of the approximating continuum 
spacetime and the number of causal set elements manifests itself as the spacetime volume of the 
approximating continuum spacetime. For a recent review of causal set theory see [3].

The structure of continuum spacetime, then, emerges from Order and Number and this 
central conjecture of causal set theory has an immediate consequence: the physical content of 
a causal set is independent of what mathematical objects the causal set elements are and is also 
independent of any additional labels those causal set elements might carry: only the order rela-
tion of the elements and the number of elements has physical meaning. This ‘mathematical-
identity-and-label independence’ is a good candidate for a condition of general covariance in 
causal set theory, at least as far as the first facet, mentioned above, goes5.

This form of general covariance is a consequence of a more general guiding heuristic, 
Occam’s Razor, applied in the particular case of causal set quantum gravity and grounded in 
earlier seminal work, theorems in Lorentzian geometry by Penrose, Kronheimer, Hawking and 
Malament [4–6]. These theorems show that the spacetime causal order plus spacetime volume 
are sufficient, in the continuum, to provide the full geometry of a Lorentzian spacetime for 
a very large class including all globally hyperbolic spacetimes. This is strong evidence that 
order and number in the discrete substructure are together sufficient to encode approximate 
Lorentzian geometrical information at large scales. From this then arises the principle that the 
mathematical identity of the spacetime atoms is not physical.

The second facet of general covariance in GR mentioned above, in which all diffeomorphic 
manifold-metric pairs either do or do not satisfy the Einstein equations, does not have such a 
direct analogue in causal set theory as it currently stands. The dynamical models developed 
thus far are stochastic and there is no analogue of ‘equations of motion’ that a given causal 
set can either satisfy or not in a binary distinction. Nevertheless, a specific proposal for a 
condition of ‘discrete general covariance’ was made in the context of a particular paradigm 
for causal set dynamics, namely classical random models of causal set growth, and this condi-
tion was used to construct an interesting family of classical stochastic dynamical models for 
causal sets, the classical sequential growth (CSG) models [7]. Each CSG model is a stochastic 
process of growth of the causal set spacetime in which new elements are born in sequence, 
forming relations with the previous elements in the sequence at random with a probability 
distribution given by the particular model. The sequence of the births is a total order on the 

4 At least, this is the kinematics of the theory. In the full quantum theory this statement will be revised to take  
account of quantum interference between causal sets in the sum over histories.
5 Whether this condition alone is enough to give rise to diffeomorphism invariance is subsumed in the question  
of whether causal sets can give rise to a continuum approximation at all.
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spacetime atoms and contains unphysical, gauge information. As described further in sec-
tion 2.3, the definition of a CSG model is given in terms of this sequence, as is the discrete 
general covariance condition6. This condition is well-justified within the context of the frame-
work of sequential growth but the framework depends on and refers to the unphysical sequen-
tial label of ‘stage’. The question arises: is it possible to define physically interesting causal 
set growth dynamics that only ever refer to the physical degrees of freedom, to the physical 
partial order with no reference to any other labels? This paper describes work motivated by 
this question and provides a positive first step in that direction.

2.  Review

2.1.  Preliminaries

In this subsection we list some of the terminology and assumptions used in this paper. A more 
complete glossary of causal set terminology is given in [8]. All the infinite causal sets we 
consider in this paper are countable and past-finite (see below).
Let (C,≺) be a causal set. We use the irreflexive convention in which x �≺ x . The word causet 
is short for causal set.

		  If x ≺ y  we say x is below y , y  is above x, x is an ancestor of y  or y  is a descendant of x.
		  The past of x ∈ C is the subcauset past(x) := {y ∈ C|y ≺ x}. This is the non-inclusive 

past: x �∈ past(x). The future of x is defined similarly.
		  C is past-finite if |past(x)| < ∞, ∀ x ∈ C.
		  A stem in C is a finite subcauset S of C such that if x ∈ S and y ≺ x  then y ∈ S. An 

n-stem is a stem with cardinality n.
		  A relation x ≺ y is called a link if there is no element in the order between x and y . In that 

case we say x is directly below y , y  is directly above x, x is a direct ancestor of y  or y  is a direct 
descendant of x. A link is also called a covering relation and we can also say y  covers x.

		  An antichain is a causet whose elements are unrelated to each other.
		  A chain is a causet whose elements are all related.
		  A path in C is a subcauset of C which is a chain all of whose links are also links of C.
		  The element x of C is in level n if the longest chain of which x is the maximal element has 

cardinality n. Level 1 of C comprises the minimal elements of C, level 2 comprises the 
minimal elements of what remains of C after the elements in level 1 are deleted, etc.

		  It is useful to represent a causet as a graph in a Hasse diagram in which elements are 
represented by nodes, and there is an upward-going edge from x to y  if and only if x ≺ y  
is a link. The other relations are implied by transitivity. All the pictures of causal sets in 
this paper are Hasse diagrams.

		  An isomorphism, f , between two causets, C, D, is a bijection f : C → D such that 
f (x) ≺D f (y) ⇐⇒ x ≺C y, ∀ x, y ∈ C. If C and D are isomorphic, we write C ∼= D.

2.2.  Labeled causets and n-orders

For concreteness, we fix a collection of ground sets for the causal sets we will work with in 
this paper, following notation and terminology adapted from [9, 10]. Consider, for each n  >  0, 

6 The discrete general covariance (DGC) condition could be considered as the ‘dynamical’ facet within causal 
set theory. The DGC condition imposes that, given a pair of order-isomorphic causal sets with cardinality n, the 
probabilities of growing each by stage n are equal. This is somewhat akin to the ‘dynamical’ facet in GR where all 
diffeomorphic manifold-metric pairs have the same action and therefore the same weight in the path integral.
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the interval of natural numbers, [n − 1] := {0, 1, ..., n − 1} of cardinality n. Let Ω̃(n) denote 
the set of partial orders, ≺, on the ground set [n  −  1] satisfying i ≺ j =⇒ i < j. We call an 
element of Ω̃(n) a finite labeled causet7.

We define Ω̃(N) :=
⋃

n∈N+

Ω̃(n), the set of all finite labeled causets.

We define Ω̃ to be the set of partial orders on the ground set N satisfying i ≺ j =⇒ i < j. 
We call an element of Ω̃ an infinite labeled causet. By this definition, every infinite labeled 
causet is past finite since element j  can be above at most j  other elements. The converse is 
also true: any infinite, past finite causet admits a natural labeling by the natural numbers [11].

We denote labeled causets (finite or infinite) and their stems with a tilde. Figure 1 gives 
some examples of stems of a labeled causets. By our definitions, not all stems of a labeled 
causet are themselves labeled causets because the ground set of the stem may not itself be an 
interval, as shown in figure 1.

As described in the introduction, it is a tenet of causal set theory that the atoms of space-
time have no structure. It is of no physical relevance what mathematical objects the elements 
of a causal set are. One way to express this is to say we are ultimately interested only in iso-
morphism equivalence classes of causal sets.

Isomorphism is an equivalence relation on each Ω̃(n), and on Ω̃. We define unlabeled causets, 
or orders for short, to be isomorphism classes of labeled causets. An unlabeled causet of cardi-
nality n, or n-order for short, is an isomorphism class, C = [C̃] = {D̃ ∈ Ω̃(n) | D̃ ∼= C̃}, where 
C̃ ∈ Ω̃(n) is some representative of C.

An infinite unlabeled causet, or infinite order for short, is an isomorphism class, 
C = [C̃] = {D̃ ∈ Ω̃ | D̃ ∼= C̃}, where C̃ ∈ Ω̃ is some representative of C. We define Ω(n) to 

be the set of n-orders, and Ω(N) :=
⋃

n∈N+

Ω(n) is the set of finite orders. Ω is defined to be the 

set of infinite orders.
We generalise the concept of stem to orders. We say a finite order, S, is a stem in order C if 

there exists a representative of S which is a stem in a representative of C and in this case we 
say, variously, S is a stem in C, or S occurs as a stem in C or C contains S as a stem. We say 
a finite order, S, is a stem in labeled causet C̃ if the order S is a stem in the order [C̃]. So, the 
meaning of stem depends on the context.

Figure 1.  C̃, D̃ and F̃  are labeled causets. D̃ and Ẽ  are stems in C̃. F̃  is not a stem in C̃ 
because it is not a subcauset of C̃. Ẽ  is not a labeled causet by our definition because its 
ground set is not an interval of integers.

7 More generally, for a causal set C of cardinality n we call a bijection f : [n − 1] → C a natural labeling if 
f (i) ≺ f ( j) =⇒ i < j. Using the interval [n  −  1] itself as the ground set for C, together with the condition that 
i ≺ j =⇒ i < j, makes the identity map into a natural labeling.
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Examples are shown in figure 2. Note that if order S is a stem in order T and T is a stem in 
order U then S is a stem in U: ‘a stem in a stem is a stem’ . So there is an ‘order-by-inclusion-
as-stem’ on the set of all finite orders.

Finally, we introduce a concept that will be important later. An infinite order C ∈ Ω is a 
rogue [9] if there exists an infinite order D such that D �= C  and the two orders have the same 
stems. If infinite orders C and D have the same stems we write C ∼R D. If C ∼R D and C �= D, 
we say that C and D are equivalent rogues. An example of a pair of equivalent rogues is given 
in figure 3.

2.3.  Dynamics

Guided by the insight that path integral quantum theory is a form of generalised measure 
theory [12], and by the heuristic of becoming [1, 13], a major breakthough in the develop-
ment of a dynamics for causal sets was the construction of the classical sequential growth 
(CSG) models by Rideout and Sorkin [7]. A CSG model is a stochastic process consisting 
of the sequential coming into being, or birth, of new causet elements and the formation of 
relations between each newly born element and a randomly chosen subset of the elements 
born previously in the sequence. The process can be represented as an upward-going ran-
dom walk on a partially ordered tree called labeled poscau (short for the poset of labeled 
causal sets):

Definition.  Labeled poscau is the partial order (Ω̃(N),≺), where S̃ ≺ R̃ if and only if S̃  is 
a stem in R̃8.

Labeled poscau is a tree formed of countably many levels, the first three of which are shown 
in figure 4. A growth model based on labeled poscau is a random walk formed of a sequence of 
stages. At stage n, a labeled causet, C̃n, of cardinality n transitions to a labeled causet, C̃n+1, of 
cardinality n  +  1 such that C̃n is a stem in C̃n+1. The transition can be thought of as the birth 
of the new element n, of C̃n+1, which comes into being above a randomly chosen subset of C̃n, 

Figure 2.  Labeled causets C̃, S̃ and L̃ are representatives of orders C, S and L, 
respectively. S̃  is a 3-stem in C̃. L̃ is not a subcauset of C̃ so it is not a stem in C̃. S and 
L are 3-stems in C̃ and in C.

Figure 3.  C is a countable union of 2-chains and D is the union of C with a single 
unrelated element. C and D have the same stems—any union of finitely many 2-chains 
and a finite, unrelated antichain—so C and D are equivalent rogues.

8 We use the symbol ≺ to denote the relation for several different partial orders in this work. The meaning of ≺ in 
each case is to be inferred from the context.

F Dowker et alClass. Quantum Grav. 37 (2020) 085003
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the ancestor set of the newborn. The labeled causet C̃n+1 is one of the ‘child’ causets that are 
directly above the ‘parent’ C̃n in labeled poscau. Any assignment of transition probabilities, 
satisfying the Markov sum rule, to all the links in labeled poscau gives a well-defined stochas-

tic process. Each infinite path, C̃1 ≺ C̃2 ≺ ... ≺ C̃k ≺ . . ., in labeled poscau beginning at the 

root is identified with the infinite labeled causet 
⋃

i∈N+

C̃i . This is a one-to-one correspondence 

and so the histories in the model can be though of, equivalently, as elements of Ω̃ or as infinite 
paths in labeled poscau.

An event in such a stochastic process is a measureable subset of Ω̃. For example, corre
sponding to each node, C̃n of cardinality n, in labeled poscau is the cylinder set [9],

cyl(C̃n) := {D̃ ∈ Ω̃ | D̃|[n−1] = C̃n}.� (1)

The measure of each cylinder set is given by µ̃(cyl(C̃n)) = P(C̃n), where P(C̃n) is the prob-
ability that the random walk reaches C̃n. This measure can be uniquely extended to a measure 
on the σ-algebra R̃ generated by the collection of cylinder sets, by standard results in stochas-
tic processes and measure theory [14].

Now, not all events in R̃ are physical because they are not all covariant. For example, the 
cylinder set cyl(C̃n) is the event ‘the causet at the end of stage n  −  1 of the process is C̃n’  
which refers to the unphysical, gauge information of the stage. An event, E, is covariant if 
whenever a labeled causet, C̃, is in E then all labeled causets isomorphic to C̃ are also in E. E 
can then be identified, in an obvious way, with a set of orders. We define the sub-σ-algebra, 
R ⊂ R̃ , as the algebra of all covariant measureable events [9, 15].

Figure 4.  The first three levels of labeled poscau. The random walk starts at the root 
and proceeds upwards.

F Dowker et alClass. Quantum Grav. 37 (2020) 085003
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2.4.  Classical sequential growth models

The collection of random walks up labeled poscau is vast, so Rideout and Sorkin (RS) imposed 
physically motivated conditions to restrict the models to a more interesting class, the classical 
sequential growth (CSG) models. The transition probabilities for CSG models were derived 
by RS by imposing on the random walk two conditions: Bell causality (BC) and discrete gen-
eral covariance (DGC) [7]. DGC is the condition that the probability of arriving at any node 
of labeled poscau depends only on the isomorphism class of the node. For example, the prob-
abilities to arrive at the three nodes in figure 4 which are in the isomorphism class of the ‘L’ 
3-order ( ) are equal in a CSG model. BC is analogous to the local causality condition that 
enters in the derivation of the Bell inequalities in Bell’s no-local-hidden-variables theorem. At 
stage n, consider two possible transitions from a parent causet C̃ either to child Ã or to child B̃. 
Suppose there is an element, k, of C̃, which is not in the ancestor set of the newborn element n, 
neither in Ã nor in B̃. Such an element k is called a spectator of both transitions. Now consider 
transitions at stage n  −  1, C̃′ → Ã′ and C̃′ → B̃′, which are formed from the previous ones by 
deleting the spectator k from C̃, Ã and B̃ and consistently relabeling the remaining causal sets 
so their base sets are integer intervals. Bell causality is the condition

P(C̃ → Ã)
P(C̃ → B̃)

=
P(C̃′ → Ã′)

P(C̃′ → B̃′)
.� (2)

RS showed that these two conditions of BC and DGC imply that a CSG model is specified 
by a sequence of non-negative real numbers, {t0, t1, t2, . . . }, which determine the transition 
probability for each possible transition C̃n → C̃n+1 in the following way. The newly born ele-
ment n chooses a subset Y from amongst all the subsets of C̃n with relative probability t|Y| and 
n is put above all elements of Y and the transitive closure taken. For completeness, we give 
the explicit form of the transition amplitude in a CSG model for the transition C̃n → C̃n+1:

P(C̃n → C̃n+1) =
λ(�, m)

λ(n, 0)
,� (3)

where � is the cardinality of the ancestor set of the newborn element n, m is the number of 
maximal elements of the ancestor set of n and

λ(k, p) :=
k−p∑
i=0

(
k − p

i

)
tp+i.� (4)

The covariant events in CSG models were fully characterised and given a physical inter-
pretation in [9, 15]. Here we give a brief summary of those results which were based on the 
concept of stem set. Given an n-order Cn, the stem set stem(Cn) is the event ‘Cn is a stem in the 
growing order’ and is given mathematically by

stem(Cn) := {D̃ ∈ Ω̃ | Cn is a stem in D̃}.� (5)

Let S  denote the collection of all stems sets, and let R(S) denote the stem algebra, the 
σ-algebra generated by S . We call an element of R(S) a stem event. Stem events are covari-
ant, and R(S) is a sub-σ-algebra of R. This inclusion is strict, mathematically, but in a well-
defined, physical sense the stem algebra exhausts all the covariant events. Indeed, for every 
covariant event, E, one can find a stem event F  such that the symmetric difference between 
E and F  is a set of rogue causets which is of measure zero in any CSG model because the set 

F Dowker et alClass. Quantum Grav. 37 (2020) 085003
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of all rogues is of measure zero. In other words, in CSG models covariant events are, for all 
practical purposes, stem events. This is important. It means that every physical statement in a 
CSG model for which the dynamics provides a probability is a (countable) logical combina-
tion of statements about which finite orders are stems in the causet universe.

3.  A covariant framework

There exist several successful gauge theories, including GR, that are defined mathematically 
in terms of their gauge dependent degrees of freedom but in which physical statements can 
be made, purged of any unphysical gauge dependence introduced along the way. CSG models 
make sense physically in this way. Although the definition of a CSG model is given in terms 
of an unphysical sequence of birth events, the model provides an exhaustive set of physi-
cally comprehensible, covariant measureable events from which we make physical predic-
tions. Were we only seeking a class of interesting classical growth models to explore, we 
might be content with CSG models as we have them. But for quantum gravity in the causal set 
approach, the task in hand is to find a quantum dynamics for causal sets, from which GR must 
then emerge as a large scale approximation. We seek quantum growth models.

One possible route to a Quantum Causet Dynamics would be to try to generalise what 
was done for CSG to the quantum case, finding appropriate analogues of the DGC and BC 
conditions on a decoherence functional or double path integral for a growing causal set [16]. 
In this paper, we take a slightly different path by asking whether there is an explicitly label-
independent framework for classical causet growth, an alternative to labeled poscau, which 
might suggest novel possibilities for quantal generalisations. We frame the question as: is it 
possible to construct a physically well-motivated measure on the stem algebra R(S) directly, 
in a manifestly label-independent way that does not rely on any gauge dependent notion and 
which respects the heuristic of growth and becoming? 

There already exists a structure in the literature, poscau [7], which at first sight might 
seem to furnish such a framework. Poscau is a partial order on finite orders, (Ω(N),≺), where 

Figure 5.  The first three levels of poscau.

F Dowker et alClass. Quantum Grav. 37 (2020) 085003
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A ≺ B if and only if A is a stem in B. Figure 5 shows a Hasse diagram of the first three levels 
of poscau9. If one identifies each node A in poscau with its stem set, stem(A), one might be 
tempted to try to define a dynamics as a random walk up poscau such that arriving at the node 
A corresponds to the occurrence of the covariant event stem(A). This does not work because in 
such a dynamics only one stem set at each level can occur and the growing order would only 
have a single stem of each finite cardinality.

Thinking in this way, however, suggests the solution: the walk should be on a tree formed 
of countably many levels in which the nodes in level n are not single n-orders but sets of 
n-orders. Each set of n-orders in level n will correspond to the covariant event ‘the n-stems 
of the growing order are the elements of this set.’ We will call this tree covtree (short for 
covariant tree) and in the classical case, the dynamics will take the form of a stochastic process 
consisting of a sequence of stages, each of which is a transition from a node in one level of 
covtree to a node in the level above, just as the CSG models are defined on labeled poscau. We 
will make this precise in the rest of this section.

3.1.  Certificates

Let Γn be a (non-empty) set of n-orders, i.e. a subset of Ω(n).

Definition.  An order C is a certificate of Γn if Γn is the set of all n-stems in C.

Note that a given Γn ⊆ Ω(n) may have no certificate: see the example Γ′
3 in figure 6. We use 

Λ to denote the collection of sets of n-orders, for all n, which have certificates:

Λ :=
⋃

n∈N+

{Γn ⊆ Ω(n)|∃ a certificate for Γn}.

� (6)
Note also that if Γn has a certificate then it has infinitely many certificates and that if Γn has a 
certificate then it has a finite certificate.

Definition.  Given some Γn ∈ Λ, we order its finite certificates as follows: let C1, C2 be 
finite certificates of Γn, then C1 � C2 if C1 is a stem in C2. A minimal certificate of Γn is 
minimal in this order.

If Γn ∈ Λ has more than one minimal certificate, these minimal certificates need not have 
the same cardinality10 as each other. Also, an n-order in Γn may be embedded in a minimal 
certificate of Γn in more than one way11. Examples are shown in figure 7.

Lemma 3.1.  Let Γn = {A1, A2, ..., Ak} be a set of n-orders. If C is a minimal certificate of Γn 
then n � |C| � kn. |C| = n if and only if Γn is a singleton set (k  =  1).

Proof.  Consider a labeled representative C̃ of C. For each Ai, i = 1, 2, . . . k , take a subset of 
C̃ that is a stem in C̃, isomorphic to Ai. Take the union Ũ  of all those subsets. Ũ  is a stem in C̃. 
Ũ  is isomorphic to a labeled representative of a finite order, U, which is a stem in C and has 
cardinality |U| � kn. U is also a certificate of Γn and since C is a minimal certificate, C  =  U 
and so |C| � kn.

9 Rideout and Sorkin originally used poscau to introduce CSG models.
10 Recall that we define the cardinality, |C|, of an n-order C as |C| := n.
11 This is shorthand for a more precise statement. Let the certificate of Γn be C and let the n-order be X ∈ Γn. We 
say that X can be embedded in C in k ways if, for any labeled representative C̃ of C, there are k different subcausets 
of C̃ which are stems and which are isomorphic to a representative of X.

F Dowker et alClass. Quantum Grav. 37 (2020) 085003



10

If Γn is a singleton set then its single element is the unique minimal certificate of Γn and 
|C| = n. If Γn is not a singleton then any minimal certificate must have cardinality greater than 
n.� □ 

We will also need the concept of a labeled certificate.

Definition.  A labeled causet C̃ is a labeled certificate of Γn ∈ Λ if C̃ is a representative of 
a certificate of Γn. A labeled causet C̃ is a labeled minimal certificate of Γn ∈ Λ if C̃ is a rep-
resentative of a minimal certificate of Γn.

An example is shown in figure 8.

3.2.  Construction of covtree

Given any Γn ∈ Λ, we will be interested in the set of all k-stems of elements of Γn for k  <  n. 
The following definition will be useful.

Definition.  For any n and any set, Γn, of n-orders, the map O− takes Γn to the set of 
(n − 1)-stems of elements of Γn:

Figure 6.  Ω(3) and two of its subsets, Γ3 and Γ′
3, are shown. C, D and E are certificates 

of Γ3. F is not a certificate of Γ3 because F contains the 3-antichain (circled in the figure) 
as a 3-stem. Γ′

3 has no certificates because every order which contains the 3-chain and 
the 3-antichain also contains the ‘L’ 3-order as illustrated by G.
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O−(Γn) := {B ∈ Ω(n − 1) | ∃ A ∈ Γn s.t. B is a stem in A}.� (7)

One way to think about the operation of O− on Γn is to take an n-order in Γn, choose a 
maximal element of (a representative of) that n-order, and delete that maximal element to form 
(a representative of) an (n − 1)-order. The set O−(Γn) is the set of all (n − 1)-orders which 
can be formed in this way.

Lemma 3.2.  Let C be an n-order and 0 < k � n. The set of k-stems of C is O−
n−k({C }).

Proof.  Consider, X, a k-stem in C. There exist labeled representatives X̃  of X and C̃ of C 
such that X̃  is a stem in C̃. The ground set of C̃ is the interval [n  −  1]. The (n − k)-step process 
of deleting the elements n  −  1, n − 2, . . . k in turn from C̃ results in X̃ . This shows that X is in 

Figure 7.  All orders shown in the figure  are certificates of Ω(3). C1, D1 and E1 are 
minimal certificates of Ω(3). C1 is a stem in C2, C2 is a stem in C3, and similarly for D 
and E. |C1| = |D1| = 7 and |E1|  =  8. The dotted outlines on E1 show that the ‘L’ order 
is embedded in E1 in more than one way.

Figure 8.  Two labeled minimal certificates of Ω(3).
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O−
n−k({C }). And conversely, deleting a maximal element from a representative of C n  −  k 

times results in a representative of a k-stem of C.� □ 

Corollary 3.3.  Let Γn be a set of n-orders. If C is a certificate of Γn, then C is also a certifi-
cate of O−

k(Γn) for any k, 0 � k < n.

The converse is not true: if C is a certificate of O−(Γn), then C may or may not be a certifi-
cate of Γn. In fact, Γn may have no certificates at all. Examples are shown in figure 9.

We are now ready to define covtree. Recall that Λ is the collection of sets of n-orders, for 
all n, which have certificates.

(a)

(b)

Figure 9.  Illustration of the O− operation. (a) Γ4 has no certificates. C is a certificate 
of O−(Γ4). (b) D is a certificate of Γ′

4, and therefore a certificate of O−(Γ
′
4). E is a 

certificate of O−(Γ
′
4) and is not a certificate of Γ′

4.
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Definition.  Covtree is the partial order (Λ,≺), where Γn ≺ Γm if and only if n  <  m and 
O−

m−n(Γm) = Γn.

Covtree is a tree formed of levels labeled by {1, 2, 3, . . . }. The nodes in level n are sets of 
n-orders. A set of n-orders, Γn, is a node in level n of covtree if and only if Γn has a certificate. 
(This is the motivation for the term certificate: a certificate of Γn certifies that Γn is a node in 
covtree.) The partial order on covtree is defined by putting Γn directly above O−(Γn), for every 
node Γn, and taking the transitive closure.

The singleton set containing the one-element order is the root of covtree. The first three 
levels of covtree are shown in figure 10. There are 22 nodes in level 3 of covtree out of a pos-
sible 25  −  1  =  31 non-empty subsets of the set Ω(3) of 3-orders. A certificate for each node 
in level 3 is shown in figure B1 in appendix B.1. The 9 ‘non-nodes’ in level 3 are given in 
figure B2 in appendix B.1.

Given a node in covtree, the unique path downwards from it to the root is generated by 
applying the operator O− sequentially to the node. In particular, every singleton set {C} where 
C is an n-order is a node in covtree because C is its certificate and the path in covtree down 
from {C} to the root is formed of the nodes O−

k({C}), k = 0, 1, 2, . . . , n − 1. In the upward 
direction, generating the nodes directly above a given Γn in covtree is a difficult problem.

4.  Causal set dynamics on covtree

Covtree allows us to realise the idea described previously of defining a dynamics on a tree 
in which the nodes in level n are sets of n-orders and each node corresponds to the covariant 
event ‘the n-stems of the growing order is this set of n-orders.’ Consider a classical dynami-
cal model for a growing causal set as an upward-going random walk on covtree, starting at 
the root. In preparation for exploring the relationship between paths in covtree and infinite 
orders—the histories in a causal set cosmological model—we generalise the notion of a cer-
tificate of a node to the certificate of a path:

Definition.  An infinite order is a certificate of a path P  in covtree if it is a certificate of 
every node in P . A labeled certificate of a path P  is a representative of a certificate of P .

One relationship between infinite orders—elements of Ω—and paths in covtree is straight-
forward to state and understand:

Lemma 4.1.  Let C be an infinite order. The nodes of covtree of which C is a certificate form 
a path in covtree starting at the root.

Proof.  Let Γn be the set of n-stems of C, for each n  >  0. C is a certificate of each Γn. Each 
Γn is a node in covtree and corollary 3.3 shows that these nodes form a path in covtree down 
to the root.� □ 

The map from infinite orders to paths in covtree implied in the lemma above is not one-to-
one because a rogue order is not specified by its stems: if C and C′ are equivalent rogues then 
they are both certificates of the same path in covtree. This means that our stochastic process 
cannot, in principle, distinguish between equivalent rogues.

It is not immediately apparent whether or not every infinite path in covtree has an infinite 
order as a certificate but in fact it is true and we have:
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Theorem 4.2.  Let P  be an infinite path in covtree starting at the root. There exists an infi-
nite order C which is a certificate of P .

To prove theorem 4.2 we will demonstrate an algorithm to generate a labeled certificate 
of any path P . The isomorphism class of this labeled certificate is then the desired order. We 
begin with some lemmas.

Lemma 4.3.  Let P = {Γ1,Γ2,Γ3 . . . } be a path in covtree and let Γn ∈ P not be a single-
ton. Then there exists a node in P  above Γn that contains a certificate of Γn as an element. 
In other words, there exists an m  >  n and an m-order C such that C is a certificate of Γn and 
C ∈ Γm ∈ P .

(a)

(b)

Figure 10.  The first three levels of covtree. (a) The structure of the first three levels of 
covtree. (b) Nodes in level three which are directly above the node .
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Proof.  By lemma 3.1, the cardinality of any minimal certificate, C, of Γn satisfies 
n < |C| � N  where N := n|Γn|. Consider ΓN ∈ P  and let D be a finite certificate of ΓN . By 
corollary 3.3, D is a certificate of every node below ΓN  so D is a certificate of Γn. Now, at least 
one minimal certificate of Γn occurs as a stem in D. Choose one, call it C, let m := |C| and 
consider Γm ∈ P . C is an m-stem in D. Γm is the set of all m-stems of D and so C is an element 
of Γm.� □ 

Note the choices made in the proof above: a choice of a particular certificate of ΓN  and a 
choice of a stem in it which is a minimal certificate of Γn.

Lemma 4.4.  Let P = {Γ1,Γ2, ...} be a path in covtree and let Γn ∈ P. There is a node in 
P  above Γn which has a certificate of Γn as an element.

Proof.  In the case that Γn is not a singleton, a node with the required property is Γm as de-
fined in the proof of lemma 4.3. In the case that Γn is a singleton, then a node with the required 
property is Γn+1 because every element of Γn+1 is a certificate of Γn.� □ 

Lemma 4.5.  Let P = {Γ1,Γ2, ...} be an infinite path in covtree. There exists an infinite 
subsequence m1 < m2 < m3 < . . . of the natural numbers, and a set of labeled causal sets 
{C̃m1 , C̃m2 , C̃m3 . . . } such that, for all k,

	 (i)	�|C̃mk | = mk; 
	(ii)	�Cmk is a subcauset, a stem, in C̃mk+1; 
	(iii)	�Cmk+1 is a labeled certificate of Γmk and also therefore a labeled certificate of all nodes 

below Γmk; 

	(iv)	�Cmk+1, the isomorphism class of C̃mk+1, is an element of Γmk+1.

Proof.  Consider an infinite path P = {Γ1,Γ2, ...} in covtree. The required sequence of 
causal sets {C̃m1 , C̃m2 , C̃m3 . . . } is constructed by the following inductive algorithm.

Step 1:

(1.0) Pick some nonzero natural number m0 to start and consider Γm0 ∈ P .

(1.1) �By lemma 4.4 there exists an m1 such that m1 > m0  and such that Γm1 contains a 
certificate of Γm0 as an element. Call that certificate Cm1. Its cardinality is |Cm1 | = m1.

(1.2) Pick C̃m1, a labeled causet which is a representative of Cm1.

(1.3) Go to step 2.

Step k  >  1:

(k.1) By lemma 4.4 there exists an mk such that mk > mk−1 and such that Γmk contains a certifi-
cate of Γmk−1

 as an element. Call that certificate Cmk. Its cardinality is |Cmk | = mk .

(k.2) Consider Cmk−1
 and its labeled representative C̃mk−1

 from the previous step. Cmk−1
 is an 

element of Γmk−1
. Because Cmk is a certificate of Γmk−1

, Cmk−1
 is an mk−1-stem of Cmk. Pick a 

representative C̃mk of Cmk such that C̃mk−1
 from the previous step is a sub-causet of C̃mk.

(k.3) Go to step k  +  1.
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The subsequence m1 < m2 < m3 < . . . of the natural numbers, and the set of labeled caus-
al sets {C̃m1 , C̃m2 , C̃m3 . . . } have the required properties by construction.� □ 

Lemma 4.6.  An infinite path in covtree has a labeled certificate.

Proof.  The union of the nested sequence of labeled causets {C̃m1 , C̃m2 , C̃m3 . . . } of the  
previous lemma is a labeled certificate of the path.� □ 

Corollary 4.7.  An infinite path in covtree has a certificate.

This corollary is theorem 4.2.

4.1.  Measures on R(S)

We propose random walks upwards on covtree as dynamical models in which an order grows 
and in which arriving at a node Γn corresponds to the occurrence of the event ‘the set of 
n-stems of the order is Γn.’ A question that arises is: what is the relationship between dynami-
cal models on covtree and dynamical models on labeled poscau? Do the kinematical struc-
tures of covtree and labeled poscau give rise to different classes of causet growth models? We 
will show that the set of measures induced on R(S) by walks on labeled poscau and the set of 
measures induced on R(S) by walks on covtree are equal, and equal to the set of all measures 
on R(S).

First we introduce the covtree measure space. The certificate set, cert(Γn), of a node, Γn, 
in covtree is the subset

cert(Γn) := {C ∈ Ω | C is a certificate of Γn}.� (8)

The node certificate sets are the covtree ‘cylinder sets’. Let Σ denote the set of node cer-
tificate sets cert(Γn) for all nodes in covtree, together with the empty set. A random walk on 
covtree, defined by the transition probabilities for each link in covtree satisfying the Markov 
sum rule, gives a measure µ on Σ, where µ(cert(Γn)) is the product of the transition probabili-
ties on the links of the path from the root to Γn. The tree structure of covtree means that Σ is a 
semi-ring and that a measure µ on Σ generated by a set of Markovian transition probabilities 
on covtree is countably-additive12. Hence we can apply the fundamental theorem of measure 
theory [14] which says that the measure µ extends to R(Σ), the σ-algebra generated by Σ.

We are now in a position to prove that:

Lemma 4.8.  R(S) = R(Σ).

Proof.  First we note that as defined, these two σ-algebras are defined over different sample 
spaces: an element of Σ is a set of infinite orders and an element of S  is a set of infinite labeled 
causets. However, both the covariant algebra R and the stem algebra R(S) can be thought of, 
in an obvious way, as σ-algebras on the sample space Ω of infinite orders, since their elements 
are covariant. This is the sense in which the claim is to be interpreted.

We will show that any stem set—thought of as a set of infinite orders—can be constructed 
by finite set operations on the certificate sets and vice versa, and the result follows.

12 This is standard measure theory for stochastic processes. For completeness, we present proofs in appendix B.3.
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Consider an n-order B. Let Γi
n be the nodes in covtree such that B ∈ Γi

n, where i labels the 
nodes. Suppose C ∈ cert(Γi

n) for some i. Then B is a stem in C and hence C ∈ stem(B). Sup-
pose C /∈ cert(Γi

n) for all i. Then B is not a stem in C and hence C /∈ stem(B). It follows that 
stem(B) =

⋃
i cert(Γi

n).
Consider some node Γn = {A1, ..., Ak} in covtree. Let Ω(n) \ Γn = {B1, ..., Bl}. Sup-

pose C ∈ cert(Γn). Then A1, ..., Ak  are stems in C, and B1, ..., Bl are not stems in C. Hence 

C ∈
k⋂

i=1
stem(Ai) \

l⋃
j=1

stem(B j). Suppose C /∈ cert(Γn). Then either (i) there exists some Ai ∈ Γn 

which is not a stem in C =⇒ C /∈
k⋂

i=1
stem(Ai), or (ii) there exists some B j ∈ Ω(n) \ Γn which 

is a stem in C =⇒ C ∈
l⋃

j=1
stem(B j). It follows that, cert(Γn) =

k⋂
i=1

stem(Ai) \
l⋃

j=1
stem(B j).□ 

Hence every walk on covtree induces a unique measure on R(S), and every measure on 
R(S) induces a unique walk on covtree: the transition probability in the covtree walk from 
node Γn to node Γn+1 directly above it is the measure of cert(Γn+1) divided by the measure of 
cert(Γn). Therefore, let us call a measure on R(S) a covtree measure.

By a similar argument to the above, there is is a 1-1 correspondence between walks on 
labeled poscau and measures on R̃ so we will call a measure on R(S) a poscau measure if it is 
a restriction to R(S) of some measure µ̃ on R̃. A CSG measure on R(S) is a poscau measure 
such that µ̃ is induced by a CSG walk.

It follows from lemma 4.8 that every poscau measure on R(S) is a covtree measure on 
R(S). In fact, it is also true that every covtree measure is a poscau measure:

Lemma 4.9.  For every measure µ on R(S) there exists an extension µ̃ to R̃.

Proof.  First note that there is a metric on Ω̃ with respect to which (Ω̃, R̃) is a Polish space 
[9]. Since every Polish space is a Lusin space [17], (Ω̃, R̃) is a Lusin space. Note also that 
R(S) is a separable sub-σ-algebra of R̃ since there exists a countable collection of subsets 
of Ω̃ which generates R(S), namely S  (or Σ). The result follows from the theorem that if 
(Y ,B) is a Lusin space, then every measure defined on a separable sub-σ-algebra of B can be 
extended to B [18].� □ 

5.  Discussion

At the beginning of section 3 we posed the question: ‘is it possible to construct a physically 
well-motivated measure on the stem algebra R(S) directly, in a manifestly label-independent 
way that does not rely on any gauge dependent notion?’ The key phrase here is physically 
well-motivated. We have shown that we can generate a mathematically well-defined measure 
on the stem events R(S) via a growth process conceived as a random walk up covtree. There 
is no reason to expect, however, that a generic such walk will be physically interesting: the 
class of walks is too vast to be interesting. We need physically motivated conditions to restrict 
the models to a sub-class worth studying. This is what was done by Rideout and Sorkin in the 
context of walks up labeled poscau by imposing the conditions of discrete general covariance 
(DGC) and Bell causality (BC) [7]. These conditions restrict the class of walks on labeled 
poscau to the CSG models.
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The relationship between the ‘labeled’ conditions of DGC and BC and any conditions on 
covtree walks is not understood. Note that lemma 4.9 means that although every covtree walk 
is apparently completely covariant in its setup, for every walk on labeled poscau—whether 
it satisfies Discrete General Covariance or not—there exists a covtree walk that produces the 
same measure on R(S). So, there is no easy relationship between the DGC condition on a 
labeled poscau walk and the manifest ‘covariance’ of a covtree walk. We can frame the sort of 
progress we’d like to make from here as a set of interrelated questions.

	 (i)	�Is there a condition on the transition amplitudes of a walk up covtree such that the covtree 
measure is a poscau measure from a walk on labeled poscau that satisfies DGC only, 
measures which Brightwell and Luczak call ‘order-invariant’? [11, 19, 20].

	(ii)	�Is there a condition on the transition amplitudes of a walk up covtree such that the covtree 
measure equals a CSG measure? 

	(iii)	�Is there a condition on a random walk up covtree which expresses the physical condition 
of relativistic causality? How is this related to the condition of Bell causality satisfied by 
CSG models as walks on labeled poscau? Is this new condition enough to reduce the class 
to a physically interesting one or are other conditions needed and what are they? 

	(iv)	�What is the role of the rogues, if any, in understanding the physics of covtree walks? 
Could the condition that the set of rogues has measure zero—as it does for any CSG 
model—be considered as a physical condition in itself and what conditions on the trans
ition amplitudes for the walk would imply this condition? 

	(v)	�What form might a quantum random walk on covtree take and might it be possible to 
formulate a quantum relativistic causality condition for it, even while the labeled BC 
condition has thus far resisted a quantal generalisation? 

Here we start to grapple with the kinds of knotty questions that crop up when considering 
what a condition of relativistic causality might look like in a theory in which the spacetime 
causal order itself is dynamical and stochastic/quantal and in which labels/coordinates are 
banned, even as a prop to kick away at the end. Here, in covtree, at least we now have a con-
crete arena in which to investigate these questions.
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Appendix A. Table of sets defined in the text

Ω̃(n) The set of labeled causets of cardinality n

Ω̃(N) The set of finite labeled causets

Ω̃ The set of infinite labeled causets

Ω(n) The set of n-orders

Ω(N) The set of finite orders

Ω The set of infinite orders

cyl(Ã) cyl(Ã) = {C̃ ∈ Ω̃ | Ã is a stem in C̃}
R̃ The σ-algebra generated by the cylinder sets

R The covariant sub-σ-algebra of R̃
stem(A) stem(A) = {C̃ ∈ Ω̃ | A isastemin C̃}
S The set of stem sets

R(S) The sub-σ-algebra of R̃ generated by S
Γn A subset of Ω(n)
cert(Γn) cert(Γn) = {C ∈ Ω | C is a certificate of Γn}
Λ Λ =

⋃
n∈N+

{Γn ⊆ Ω(n)|∃ a certificate for Γn}

P An infinite path from the root in covtree

Σ The set of certificate sets together with the empty set

R(Σ) The sub-σ-algebra of R̃ generated by Σ

F Dowker et alClass. Quantum Grav. 37 (2020) 085003



20

Appendix B.  Proofs

B.1.  Appendix to section 3.2

Figure B1.  The level 3 nodes which are directly above the level 2 doublet are shown 
together with their respective certificates.

Figure B2.  The sets shown in the figure have no certificates and therefore are not nodes. 
For every set shown, if an order contains all the elements of that set as stems then it also 
contains the L as a stem.
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B.2.  Appendix to section 4

Let [cert(Γn)]R ⊂ Ω/ ∼R denote the image of the certificate set cert(Γn) ⊂ Ω under the quo-
tient map p . Then one can show that [cert(Γn)]R is both open13 and closed in (Ω/ ∼R, d).

The diameter of [cert(Γn)]R, d([cert(Γn)]R), is defined to be the maximum distance between 
any two elements in [cert(Γn)]R and is equal to 1

2n . Hence d([cert(Γn)]R) → 0 as n → ∞.
Given a path in covtree, P = {Γ1,Γ2, ...}, then the following is a nested sequence: 

[cert(Γ1)]R ⊃ [cert(Γ2)]R ⊃ . . ..
Now, Cantor’s lemma states that a metric space (X, d) is complete if and only if, for every 

nested sequence {Fn}n�1 of nonempty closed subsets of X, that is, (a) F1 ⊇ F2 ⊇ . . . and (b) 
d(Fn) → 0 as n → ∞, the intersection 

⋂∞
n=1 Fn contains one and only one point [21].� □ 

Alternative proof to theorem 4.2.  Recall that ∼R denotes the rogue equivalence rela-
tion, and let p : Ω → Ω/ ∼R be the associated canonical quotient map. Let [A]R denote an 
element of Ω/ ∼R, where A ∈ Ω is a representative of [A]R.

Define the following metric on Ω/ ∼R: d([A]R, [B]R) = 1
2n, where n is the highest integer 

such that the set of n-stems of A is the set of n-stems of B. One can show that (Ω/ ∼R, d) is a 
complete metric space.

B.3.  Appendix to section 4.1

Recall that Σ is the collection of certificate sets with the empty set.

Lemma B.1.  Σ is a semi-ring.

Proof.  A family F  of subsets of a set M is a semi-ring if (i) ∅ ∈ F , (ii) A ∩ B ∈ F  for all 
A, B ∈ F , and (iii) for every pair of sets A, B ∈ F  with A ⊂ B, the set B \ A is the union of 
finitely many disjoint sets in F  [14].

Let Γm and Γn be nodes in covtree, m  >  n. Suppose Γn ≺ Γm. Then cert(Γm) ⊂ cert(Γn) =⇒ 
cert(cert(Γm) ∩ cert(Γn) = cert(Γm) ∈ Σ. Suppose Γn �≺ Γm. Then cert(Γm) ∩ cert(Γn) = ∅ ∈ Σ.

Let cert(Γm) ⊂ cert(Γn). Then cert(Γn) \ cert(Γm) is the set of all certificates of Γn which 
are not certificates of Γm. Let Γi

m, i = 1, 2, . . . k , denote the nodes in level m such that Γi
m � Γn 

and Γi
m �= Γm. Then cert(Γn) \ cert(Γm) =

⊔
i cert(Γi

m).� □ 

Recall that a random walk on covtree, defined by the transition probabilities for each link 
in covtree satisfying the Markov sum rule, gives a measure µ on Σ: µ(cert(Γn)) = the product 
of the transition probabilities on the links of the path from the root to Γn (and µ(∅) = 0).

Lemma B.2.  The measure µ on Σ is countably-additive.

Proof.  We defined µ : Σ → [0, 1] by µ(cert(Γm)) = P(Γm) where P(Γm) is the probability 
of a random walk to pass through Γm. Also µ(∅) = 0.

Suppose cert(Γn) =
⊔k

i=1 cert(Γi
ni
), where i labels the individual nodes. Then 

µ(
⊔k

i=1 cert(Γi
ni
)) = µ(cert(Γn)) = P(Γn) =

∑
i P(Γi

ni
). Hence, finite additivity is satisfied.

Next we will show that countable additivity of µ is trivially satisfied as no certificate set 
is a countable disjoint union of certificate sets14. Consider some Γm in covtree and suppose 

14 This is a special case of the countable additivity property of cylinder sets associated with a Markov process on a 
directed finite-valency tree. Another example in the context of the measure space of coin-tosses is given in [22].

13 [cert(Γn)]R are exactly the open balls under the metric topology.
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for contradiction that cert(Γm) =
⊔

i∈N cert(Γi
ni
). Consider the following suborder in covtree, 

{Γn ∈ Λ|Γn � Γm and Γn �� Γi
ni
∀ i}, and let Tm be the transitive reduction of it.

We note that (i) Tm is infinite, (ii) every node in Tm has finite valency, and (iii) Tm is a con-
nected tree.

Then by König’s lemma, Tm contains an infinite upward-going path starting at Γm [23]. It 
follows that there is an infinite path P  in covtree such that Γm ∈ P  and Γi

ni
/∈ P  for all i ∈ N. 

Therefore there exists a certificate C of P  and hence of Γm such that C /∈ cert(Γi
ni
) for all 

i ∈ N, which is a contradiction.� □ 
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