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ABSTRACT

We investigate symmetry-protected topological water waves within a strategically engineered square lattice system. Thus far, symmetry-
protected topological modes in hexagonal systems have primarily been studied in electromagnetism and acoustics, i.e., dispersionless media.
Herein, we show experimentally how crucial geometrical properties of square structures allow for topological transport that is ordinarily for-
bidden within conventional hexagonal structures. We perform numerical simulations that take into account the inherent dispersion within
water waves and devise a topological insulator that supports symmetry-protected transport along the domain walls. Our measurements,
viewed using a high-speed camera under stroboscopic illumination, unambiguously demonstrate the valley-locked transport of water waves
within a non-hexagonal structure. Due to the tunability of the energy’s directionality by geometry, our results could be used for developing
highly efficient energy harvesters, filters, and beam-splitters within dispersive media.
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Considerable recent activity in wave phenomena is motivated
through topological effects and focused on identifying situations where
topological protection occurs that can enhance, or create, robust wave
guidance along edges or interfaces. Remarkably, the core concepts that
gave rise to topological insulators, originating within quantum
mechanics,2 are carried across, in part, to classical wave systems.3,4

Topological insulators can be divided into two broad categories: those
that preserve time-reversal symmetry (TRS) and those which break it.
We concentrate upon the former due to the simplicity of their con-
struction that solely requires passive elements. By leveraging the dis-
crete valley degrees of freedom, arising from degenerate extrema in
Fourier space, we are able to create robust symmetry-protected wave-
guides. These valley states are connected to the quantum valley-Hall
effect, and hence, this research area has been named valleytronics.5,6

Hexagonal structures are the prime candidates for valleytronic
devices as they exhibit symmetry induced Dirac cones at the high-
symmetry points of the Brillouin zone (BZ); when perturbed, these

Dirac points can be gapped, leading to well-defined KK 0 valleys distin-
guished, from each other, by their opposite chirality or pseudospin.

This pseudospin has been used in a wide variety of dispersionless
wave settings to design valleytronic devices.7,8 Here, we extend the ear-
lier research by examining a highly dispersive physical system, i.e.,
water waves, and move away from hexagonal structures. The topologi-
cal protection afforded by these valley states is attributed to, both, the
orthogonality of the pseudospins and the Fourier separation between
the two valleys.9 The vast majority of valleytronics literature, inspired
by graphene, opts to use hexagonal structures.10–19 However, a nega-
tive that emerges with these, especially when dealing with complex
topological domains,9 is that certain propagation directions are
restricted due to mismatches in chirality between incoming and outgo-
ing modes. Notably, this has led to hexagonal structures being prohib-
ited from partitioning energy in more than two directions.13,14,16

In this Letter, we demonstrate experimentally how a strategically
designed square structure also allows for the emergence of valley-Hall
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edge states and for the excitation of modes that are not ordinarily
ignited within hexagonal valley-Hall structures. Additionally, the sys-
tem chosen differs from the vast majority of earlier literature10–19 that
has focused on an idealized situation in which the dispersion of the
host medium has been avoided. This assumption restricts the applica-
bility of the earlier studies to a small subset of, potentially useful, physi-
cal platforms that could host topological effects. Most notably, this
assumption does not hold for water wave systems, which generally
supports highly dispersive surface waves.20 The combination of topo-
logical physics applied to water waves is a relatively unexplored
area,21,22 those who have conducted experiments have focused on
either 1D systems21 or the hexagonal valley-Hall structure.22 Potential
applications of this budding area include controlling ocean wave
energy,23 in a non-intrusive manner, for energy harvesting or erosion
mitigation.24

The fluid within our domain has a constant depth of h¼ 4 cm
and contains a periodic array of rigid, vertical, and bottom mounted,
square objects (2 cm of side length in a 4 cm square array) that perfo-
rate the free surface of the liquid (see the experimental setup in Fig. 1).
The planar coordinates are denoted by x ¼ ðx1; x2Þ, while the vertical
upward direction has the coordinate x3; the origin is prescribed to be
at the mean free surface. Under the usual assumptions of linear water
wave theory,20 where the fluid is assumed to be inviscid and incom-
pressible with irrotational flow, there exists a velocity potential U25

such that

Uðx; tÞ ¼ <e /ðxÞ coshðkðx3 þ hÞÞ
coshðkhÞ

exp ð%ixtÞ
! "

; (1)

where x denotes the angular frequency. The wavenumber, k, the real
positive solution of the dispersion relation,

gkþ r
q
k3

# $
tanhðkhÞ ¼ x2; (2)

is used as a proxy for the frequency;22 in Eq. (2), g¼ 9.81 m s%2 is the
gravitational acceleration, r ¼ 0:07 N m%1 is the surface tension
between air and water, and q ¼ 103 kg m3 is the water density. Then
/, the reduced potential, satisfies the Helmholtz equation,

r2
x þ k2

% &
/ðxÞ ¼ 0; (3)

where this equation holds at the mean free surface and the subscript x
indicates differentiation with respect to x and no-flow boundary con-
ditions on the vertical rigid cylinders: taking n ¼ ðn1; n2Þ as the unit
outward normal to the square tubes’ surface, @/=@n ¼ 0 on each of
them.

When the problem is posed in terms of the reduced potential, /,
as the Helmholtz equation, with periodically arranged inclusions (the
tubes), this directly maps across to the phononic crystal literature.
Recognizing the periodicity guides us to /ðx1; x2Þ ¼ /jðx1; x2Þ
expðij & xÞ, with j being the Bloch wavenumber and /j being the
periodic piece of the Bloch solution.22 A key ingredient, which guides
the experiments, is an understanding of the dispersion relation, relat-
ing k to the Bloch wavenumber, j spanning the BZ j 2 ½0; p=L(
)½0; p=L([see Fig. 2(a)] for an infinite perfectly periodic square lattice
system; we determine this relationship numerically. The geometry and
band structures are shown in Fig. 2; for a square array, lattice con-
stant L, the irreducible Brillouin zone (IBZ) is an eighth of the BZ.
Despite this, we opt to plot around a quadrant of the BZ as this will
incorporate the two distinct Dirac cones that are essential for our
valley-Hall states. The desired quadrant has the following vertices:
X ¼ ðp=L; p=LÞ; N ¼ ðp=L; 0Þ; C ¼ ð0; 0Þ; M ¼ ð0; p=LÞ.

The chosen unrotated cellular structure, Fig. 2(a), contains, both,
horizontal and vertical mirror symmetries along with fourfold rota-
tional symmetry. Hence, in its entirety, the structure has C4v point
group symmetries. Notably, it is the presence of these mirror symme-
tries that yields Dirac cones along the outer edges of the BZ, Figs. 2(b)
and 2(c).26–30 Note that rectangular structures (wallpaper group
P2mm) that possess these mirror symmetries will also yield these non-
symmetry repelled Dirac cones.27,28 In contrast to hexagonal struc-
tures, the position of these degeneracies can be tuned by varying the
geometrical or material parameters of the system.29 By rotating the
internal square inclusion, both mirror symmetries are broken, thereby
yielding the bandgap shown for the dispersion curves in Fig. 2(d). The
residual valleys, which demarcate the bandgap, are locally imbued
with a nonzero valley-Chern number,31

Cv ¼
i
2p

ð

S
rj ) /*jðxÞ &rx/jðxÞdj ¼

i
2p

þ

c
/*jðxÞrx/jðxÞ & dl;

(4)

where the path integrated around (c) encircles a particular valley and
the superscript * denotes the complex conjugate. Despite the calcula-
tion (and name) of Cv, resembling that of its TRS breaking counter-
part, namely, the Chern number, there is an important difference: the
former is not a quantized quantity, while the latter is. The surface asso-
ciated with c is not on a closed manifold, and hence, the
Gauss–Bonnet theorem32 does not hold. Despite this, the opposite
pseudospin modes have a bijective relationship with sgnðCvÞ ¼ 61,

FIG. 1. Experimental setup: A crystal is assembled using square shaped aluminum
tubes with a height of 7 cm arranged in a square array with different orientations
using a plastic positioning frame at the bottom of the tank (80) 80 cm2 with 60+

oblique edges made of soft polystyrene to mimic PMLs). A mechanical straight pad-
dle holding a small plastic cylinder is used to generate water waves. The tank is
continuously illuminated, and images of water waves are recorded using a high
speed camera placed on the top. A black and white random pattern is placed under
the tank to provide the water elevation measurement using an image cross correla-
tion algorithm. The experimental setup was inspired by the work of Moisy et al.1
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which itself can be classed as a topological integer.33 From this, we can
apply the bulk-boundary correspondence for certain edge termina-
tions, thereby guaranteeing the existence of valley-Hall edge states.

Motivated by this, we place a perturbed cellular structure, which
contains a positively or negatively rotated inclusion, above its reflec-
tional twin. This results in a pair of gapless edge modes that almost
span the entirety of the bandgap, see Fig. 3. Here, we use “gapless” to
refer to the crossing of the concave and convex (opposite parity)
modes. This distinguishes valley-Hall systems, which are topological,
from those that are not and have coupled edge states; for example, the
armchair termination within hexagonal structures produces gapped
edge states that are, in turn, less robust.34

The gapless nature of the states, and in turn the applicability of
the Gauss–Bonnet theorem, is contingent upon the termination
chosen that contains projections of valleys with identical sgnðCvÞ.
Unique to this specific square structure, the different parity eigenmo-
des belong to the same interface (see Fig. 3), rather than different inter-
faces. Despite this, both, concave and convex states, have opposite
parity and hence remain orthogonal. The relationship between the
interfaces arises due to the mirror-symmetry relationship between the

media on either side of the interface in Fig. 3. This also implies that a
right-propagating mode along one of the interfaces is a left-
propagating mode on the other. A numerical illustration of this phe-
nomenon is found in Ref. 28, where decaying Hermite polynomials
were used to oust a specific parity edge state, along both interfaces,
non-simultaneously. This phenomenon does not occur for hexagonal
structures where the different parity eigenmodes belong to different
interfaces. This relationship between the two interfaces allows for
propagation, within our square structure, which is ordinarily forbid-
den within graphene-like structures. Coupling between modes,
which are hosted along different interfaces, is crucial for energy navi-
gation around sharp corners17 and within complex topological
domains.9,13,14,16 Further explanation for this phenomenon can be
found in Refs. 27 and 28.

The propagation of water waves is imaged at the surface of the
water tank shown in Fig. 1. A mechanical paddle holding a circular
cylinder is shaken at a controllable frequency. Cylindrical waves origi-
nating from the monopolar source are observed numerically and
experimentally in Figs. 4(a) and 4(e). The experimental setups for a
topologically nontrivial interface, with two different lengths, are shown
in Figs. 4(b) and 4(f); the upper/lower halves have square inclusions
rotated clockwise/anti-clockwise in order to break the mirror symme-
tries and generate the valley-edge states required. Images were
acquired using a high speed camera and post processed using a cross
correlation algorithm1 each image was discretized into 360 areas each
composed of 16 pixels.

Full-wave numerical simulations, performed using COMSOL
Multiphysics (a commercial finite element scheme), for tightly con-
fined valley-Hall edge states, Figs. 4(c) and 4(d), show excellent agree-
ment with the experiments, Figs. 4(g) and 4(h), despite our model not
taking into account contact-line effects that occur between the water
and the solid pillars, viscosity or nonlinearity. These square structure
valley-Hall edge states have longer-wavelengths than their hexagonal
counterparts, and hence, the distance between the pillars is subwave-
length. A frequency modulated monopolar source is generated, which
ignites the even-parity valley-Hall edge state. The observed patterns

FIG. 2. Geometry, band structure, and topological features: (a) periodic cell (physi-
cal space) of the square lattice with sidelength L showing a square inclusion of
sidelength ls inside it. Mirror-symmetry breaking rotation (arrows) and lines
(dashed) are also shown. (b) In reciprocal space, the points CNX denote the
extrema of the IBZ that we extend to CNXM to show the two topologically inequi-
valent regions; the two distinct sgnðCvÞ values are indicated by 6 signs around the
perimeter of the BZ, and these are associated with the þ perturbation in panel (a)
(the—perturbation would result in opposite sgnðCvÞ’s, see Ref. 29) The sgnðCvÞ
positions resemble those in Refs. 27 and 28. (c) Band diagram for the configuration
in (a), with two circles marking the position of the strategically engineered Dirac
cones, (d) Band diagram when the inclusion is rotated through an angle of 20+. A
bandgap highlighted in green emerges from the symmetry breaking perturbation at
Dirac points.

FIG. 3. Valley-Hall edge states: band diagram for a ribbon with the upper/lower
inclusions rotated clockwise/anti-clockwise. The real parts of the even and odd
eigenmodes within the bandgap are shown (in red) as are several close-by ribbon
modes (also in red); the values of the latter range between their max and min, and
a.u stands for arbitrary units (g is the vertical displacement of the surface). The
blue curves are from Fig. 2(d), i.e., bulk modes along CM. Numerically, using finite
elements, we take a long ribbon of N inclusions, apply Dirichlet boundary conditions
to top and bottom, and extract the modes decaying away from the interface.
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are associated with the surface curvature where the colored regions are
indicative of the vertical elevation of the water level. The localization
of the topological edge state is clearly evident when comparing two
interfaces of different lengths, i.e., four or eight squares in Figs. 4(c)
and 4(f). Notably, the valley-Hall state that propagates across four
columns, Fig. 4(c), radiates almost isotropically upon exit. In the
absence of any rods, the energy would radiate isotropically away from
the source. The broadbandedness of this effect is demonstrated via the
experimental results shown in the supplementary material. The tight-
confinement of these dispersive water waves, within a strategically
designed square structure, is a highly nontrivial and unique observation.

We now strategically extend our earlier design, Figs. 4(b) and 4(f),
to engineer four structured quadrants, which results in a three-way
topological energy-splitter, Fig. 5. We rotate the bottom-right and top-
right inclusion sets anti-clockwise and clockwise, respectively, thereby
creating four distinct domain walls upon which the valley-Hall states
reside. The monopolar source triggers a wave, from the leftmost
interface, into upward and downward modes along with continuous
rightward propagation. Incidentally, the most pronounced displace-
ment pattern is along the two geometrically distinct horizontal interfa-
ces. This continuous rightward propagation is forbidden for hexagonal
systems.9,13,14,16 For coupling between the incident mode and the right-
sided mode, the chiralities must match and this does not happen for
hexagonal structures. Contrastingly, this mismatch in chirality is over-
come for the square structure as the right-sided interface is the reflec-
tional partner of the left-sided interface. Hence, the incident mode
needs only to couple to itself in order to continue its rightward propa-
gation. This subtle relationship between the mirror-symmetry gener-
ated Dirac cones and the subsequent mirror-symmetry related
interfaces allows for propagative behavior that is not readily found
within the valleytronics literature, Fig. 5.

In the experiments, there are multiple loss mechanisms on the
lengthscales that we are operating at, which are viscous attenuation,36

contact line losses associated with the frictional drag of the meniscus
moving up and down the rigid pillars, i.e., contact angle hysteresis,35

Marangoni effects due to surface tension variations37 and their effect
on capillary-gravity waves, and then the nonlinear inertial effects that
are ignored through linearization of the Navier–Stokes equations20

Inspecting Fig. 5, which is a simulation, we note that the amplitude of
the interface modes propagating up and down is about 1/10 of that
propagating left to right. In Fig. 5(b), we insert losses, by lumping
them into a complex wave velocity, of just 2% (we choose this to be
simply illustrative and to demonstrate that losses can, in an experi-
ment, obscure the subtle effects often sought in topological systems),
and this reduces the signal quite dramatically in the up and down
interfaces; in experiments, the amplitudes were too small to be accu-
rately measured, and we attribute this to the loss mechanisms that we
describe above.

We have experimentally shown the existence of topological
valley-Hall transport for gravity-capillary water waves within a non-
hexagonal structure. We have also simulated a three-way topological
multiplexer for the same highly dispersive system and cautioned that

FIG. 4. Valley-Hall edge states: experiments and simulations. (a) and (d)
Experimental setup showing the top view of the water surface perforated by 4) 8
and 8) 8 square rigid inclusions, respectively. (b) and (e) Corresponding numerical
calculations; (c) and (f) experimentally observed wavepatterns. These valley-Hall
states are generated by a monopolar source operating at a frequency of 7.3 Hz and
placed 6 cm from the domain wall edge and propagate between inclusions rotated
by 620+.

FIG. 5. Numerical illustration for a three-way splitter at 7.3 Hz: four quadrants of
alternate squares rotated clockwise and counterclockwise. The valley-Hall phases,
associated with the propagating modes, are shown within the yellow inset. (a) has
no losses, while (b) incorporates attenuation introduced by considering a complex
wave velocity with 2% imaginary part relative to the real part.
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losses may lead to low amplitudes. These demonstrations open up a
useful way for design in energy transport: the conventional symmetry
constraints associated with hexagonal structures can be relaxed,
leading to richer designs of waveguides and multiplexers within highly
dispersive systems.

See the supplementary material for additional experimental
images for valley-Hall edge states in crystals of different sizes. Also
shown are images and simulations in the absence of the crystal. It
also contains basic information about the finite element models used.
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