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ABSTRACT A change in plantar temperature distribution can be an indicator of tissue damage, inflam-
mation or peripheral vascular abnormalities associated with diabetic foot. Despite the efforts to detect these
abnormalities through infrared thermography, there are still several problems to be addressed, especially
to detect abnormalities on each foot separately. In this work, a characterization of the plantar temperature
distribution based on a probabilistic approach is proposed. The objective is to detect temperature variations
on each foot eluding contralateral comparison. A beta mixture model with 4 components approximates the
plantar temperature distributions of diabetic and non-diabetic subjects. Each component represents an area
of the plantar region: toes, metatarsal heads, arch and heel. The approximation was applied to 60 temperature
distributions of non-diabetic subjects and 220 of diabetic subjects. The results suggest that it is possible to
characterize distribution in terms of the mean of its beta components.

INDEX TERMS Beta mixture model, diabetes mellitus, diabetic foot, infrared thermography.

I. INTRODUCTION

Diabetes mellitus (DM) is a chronic and complex disease
that requires early and continuous medical care to prevent
complications [1]. In 2015, it was estimated that diabetes
was the direct cause of 1.6 million deaths and according to
projections of the World Health Organization (WHO), dia-
betes will be the seventh cause of mortality in 2030 [2]. The
global prevalence of DM in adults (over 18 years of age) has
increased from 4.7% in 1980 to 8.5% in 2014, representing a
growing health problem worldwide [2]. The diabetic foot is a
common complication experienced by diabetic patients, and
it can be defined as an infection, ulceration and/or destruction
of deep tissues associated with neurological abnormalities
and various degree of peripheral vascular disease (PVD) in
the lower limb [3]. Diabetic foot ulcer, mainly related to
peripheral neuropathy and peripheral arterial disease (PAD),
is the most common presign of the lower limb amputation.

People with neuropathy often have a loss of feeling, foot
deformation and limited joint mobility producing an abnor-
mal biomechanical foot load [4]. A study conducted by [5]
confirmed that elevated plantar pressures are strongly pre-
dictive of subsequent ulceration, especially in the presence
of neuropathy. The excessive pressures in the plantar region

can cause tissue damage or inflammation, leading to an
increase in skin temperature. The skin temperature can also
be affected by changes in the blood flow [6]. PAD rarely leads
to foot ulceration. However, it is an important risk factor for
wound healing because, once ulceration develops, it prolongs
the healing time, thereby increasing the risk of amputation
[7].

Infrared thermography (IRT) is a widely used technique
for temperature monitoring, and it has been used in several
medical applications [8]–[11]. IRT is a non-contact, non-
intrusive and non-invasive technique, with an advantage of
no direct alteration in the surface temperature and its ability
to display real time surface temperature distribution [12].
There is a wide investigation about automatic identification
of complications derived from diabetic foot using IRT [13]–
[19]. Nagase et al. [15] proposed a classification system with
20 categories of thermal patterns in the plantar region based
on the angiosome concept. Mori et al. [16] proposed a new
classification system for plantar thermographic patterns by
a segmentation algorithm based on a mode-seeking method.
In [19], it is reported a methodology to obtain quantitative
information about the temperature difference in the plantar
area to detect ulceration risk. They proposed two estimators:
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an estimated difference (ETD) to determine if exist any
abnormal temperature difference, and a Hot Spot Estimator
(HSE) to detect small abnormal areas with high temperature.
The results were that the HSE detected abnormal regions
in initial phase that the ETD was incapable to detect. More
recently, Hernandez-Contreras et al. [13] presented a clas-
sification system to identify temperature patterns associated
to healthy and diabetic subjects. They obtain a classification
rate of 94.33 %. For further details about studies related to
temperature analysis with IRT, the reader is invited to read
these reviews [20], [21].

Asymmetric temperature analysis is the most common
approach due to its simplicity. It consists in comparing the
temperature of one foot with its contralateral. By this com-
parison and by defining a threshold, it is possible to detect
risk areas. Liu et al. [17] presented a methodology to evaluate
the effectiveness of IRT to detect diabetic foot complications
through asymmetric analysis. The detection of foot complica-
tions was calculated by the subtraction of temperature values,
corresponding to pixels in the right and left foot and the
risk spots were identified using a hard threshold of 2.2 ◦C
in each pixel. With this threshold, they were able to identify
35 of 37 diabetic patients. Kaabouch et al. [14] presented a
technique that allows reliable comparison even if the shapes
and sizes of the two foot projections are different. Although
this method is the most used, it has important limitations. For
example, if the patient has similar complications in both feet,
asymmetrical analysis cannot detect most risk areas; if the
patient has a partial or total amputation in one foot, there will
not be an area with which to compare. For these reasons, it is
important to develop techniques to complement this type of
analysis to overcome these limitations.

Based on this information, we hypothesized that a charac-
terization of the distribution can be useful to detect variations
in the plantar temperature distribution without the need of
a contralateral comparison, and in this way to be able to
analyze each foot separately. To prove this hypothesis, a beta
mixture model (BMM) is used to model the plantar tem-
perature distributions of diabetic and non-diabetic subjects.
The distributions are approximated by 4 components, each
representing an area of the plantar region: toes, metatarsal
heads, arch and heel. The four areas were chosen based on
the high pressure areas and the symmetric butterfly pattern
reported by Chan et al. [22]. Finite mixture models have
been widely used in several applications of classification
and clustering for several years [23]. In contrast with other
distributions such as Gaussian, the Beta distribution has the
advantage of a defined interval in addition to being able to
take a variety of symmetric and asymmetric forms, since it
can be skewed to the right, skewed to the left or be symmetric
[24]. The BMM was applied to 280 plantar distributions (60
of non-diabetic subjects and 220 of diabetic subjects). The
performance of the of the BMM approach was compared with
other models: Gaussian mixture model and Gamma mixture
model.

This paper is organized as follows. In Section II, details of

the methodology, as well as an introduction to some concepts
relevant for the modeling are presented. In Sections III and
IV, the experimental results and discussion of the results are
described. Finally, the conclusion of this work is presented in
Section V.

II. METHODOLOGY

The proposed methodology starts with the acquisition and
segmentation of the plantar region. After that, the foot po-
sition is corrected in order to obtain the temperature distri-
bution. A histogram is obtained based on this distribution.
Finally, the observations are modeled by a BMM with 4
components.

A. THERMOGRAM ACQUISITION

The study involved 141 volunteers split into 2 groups: 30
non-diabetic subject forming the control group, and 111 sub-
jects diagnosed with DM type 2 who form the DM group. The
subjects were recruited from the Hospital General del Norte,
Hospital General del Sur and from the Instituto Nacional
de Astrofisica, Optica y Electronica. All of these places are
located in Puebla city, Mexico. The subjects were informed
about the test and voluntarily agreed to participate. In the
DM group, all feet with infection, ulcer or partial amputation
were excluded from the tests, and only the remaining foot of
the subject was used. Two feet were excluded based on this
criterion.

For thermogram acquisition, an infrared camera FLIR E60
with a thermogram resolution of 320× 240 pixels and a ther-
mal sensitivity less than 0.05 ◦C was used. The recommen-
dations of the International Academy of Clinical Thermology
were followed [25]. Thermograms were captured in a room at
controlled temperature of 20 ± 1 ◦C. The proper preparation
of the subjects consists of asking them to remove their shoes
and socks and clean their feet with a damp towel. After that,
the subjects were invited to maintain a supine position for
15 minutes. An obstructive IR device was placed to isolate
the plantar temperature from the rest of the body, and finally,
the thermogram was captured. During the acquisition of ther-
mograms, patients were in complete rest and sometimes they
were unable to keep their feet in vertical position. Although
this inclination can affect subsequent analysis, if any device
is placed to maintain this position, the blood pressure can be
affected and therefore, the temperature will also be affected.
Hence, we corrected the foot posture digitally (see section
II-C).

For better visualization, the thermograms in this study are
presented with a color palette and a scale ranging from 20
to 36 ◦C. However, a raw temperature file was used for the
tests. This file is generated by the infrared camera, and it has
the temperature of each pixel in the image with a precision of
three decimals.
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B. SEGMENTATION OF THE PLANTAR REGION
To isolate the plantar region in the thermogram, a binary
mask obtained by a thresholding method is used. The thresh-
old is automatically optimized from the histogram, as de-
tailed in [13]. With a bimodal distribution of the histogram
representing the plantar region and the background of the
thermogram, the threshold is obtained based on the minimum
value between the two maximums [13]. Once the plantar
region is isolated, the thermograms are split into two images,
one for each foot. These single foot images are used in the
subsequent analysis.

C. FEET POSITION CORRECTION
The foot posture was corrected by the process described in
the previous work [26]. In brief, the correction was based
on three reference points: the tip of the innermost toe (A),
the center of the calcaneal base (B), and the third one (C) is
placed in the same vertical position as point B (Fig. 1). After
several tests, it was determined that an angle of 85 ◦ on the
inside of the foot, between the BA and BC axes, indicated a
vertical feet position.

FIGURE 1. Reference points to correct feet posture.

D. TEMPERATURE DISTRIBUTION
With the position of the foot corrected, the temperature pro-
file distribution is obtained calculating the average tempera-
ture for each column of the plantar thermogram, as shown in
Fig. 2. Values equal to zero are excluded from the average
temperature because these are not part of the plantar region.

E. HISTOGRAM CREATION BASED ON PLANTAR
TEMPERATURE DISTRIBUTION
The histograms of the temperature distributions were offset
corrected, closed by extrapolation and normalized. The offset
of each distribution is removed by subtracting the minimum
temperature value, which is at the beginning or end of the

FIGURE 2. An example of the plantar temperature distribution from the control
group, and its associated marginalization of temperatures across the y-axis..

temperature distribution (Fig. 3b). Then the other side is
extrapolated to the intersection with zero by a Lagrange
polynomial (Fig. 3c). The histogram is formed where the
frequency is represented by the average temperature of each
column of the thermogram. An accuracy of three decimals
is chosen to detect changes in temperature from one pixel to
another (Fig. 3d). The X-axis of the histogram is bounded to
the same interval of the beta distribution [0,1] (see Section
II-F).

(a) (b)

(c) (d)

FIGURE 3. Processing of the histogram of the temperature distribution. (a)
Raw temperature distribution; (b) offset correction; (c) extrapolation; and (d)
normalization.

F. BETA MIXTURE MODEL (BMM)

Once the final processed histogram is obtained, an approx-
imation is estimated from a Beta mixture model. The beta
distribution is a continuous probability distribution with two
real positive parameters (α and β) [27], [28] and defined on
the interval [0,1].
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Beta(x | α, β) =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (1)

where Γ(·) is the gamma function. Given a d-dimensional
data vector X = (x1, x2, ..., xd), a density of a BMM is
defined by:

f(X | ϑ) =
C∑
c=1

πcBeta(X | αc, βc) (2)

where C is the number of components of the mixture
model, πc is the cth mixing proportion such that πc > 0
and

∑C
c=1 πc = 1, and ϑ = (π1, ..., πc, αc, ..., αc, β1, ..., βc)

is the vector of parameters. The parameter vector ϑ for
maximum likelihood estimation was done through the
Expectation-Maximization (EM) algorithm.

1) Maximum Likelihood Estimation (MLE)
Given a set of data X = {x1, x2, ..., xN}, where x is a scalar
value, the MLE approach can be used to find the parameters
that fit the observed data. The aim is to find the parameter
vector ϑ that maximizes the log-likelihood function: [23],
[29], [30].

L(ϑ | X) = log
N∏
n

C∏
c

[πnBeta(xn | ac, bc)]znc (3)

L(ϑ | X) =
N∑
n

C∑
c

znc[logπc + logBeta(xn | ac, bc)] (4)

where znc indicates if xn belongs or does not belong to the
component c.

2) Expectation-Maximization algorithm
The EM algorithm is an iterative method with two steps,
expectation (E) and maximization (M), for ML parameter
estimation with incomplete data. In the E-step, the expected
values (znc) are calculated as the posterior probability of xn,
being generated from the c component (5) [27].

znc =
πcBeta(xn | αc, βc)∑C
k=1 πkBeta(xn | αk, βk)

(5)

In the M-step, the mixing proportion (πc), and the param-
eters are updated given the expected value. The equation to
update the mixing proportion is given by:

πi+1
c =

1

N

N∑
n=1

znc (6)

The pair of parameters [αc,βc] are independent of any
other pair for any value of c. These parameters should be
updated simultaneously for each value of c = 1, 2, ..., C.

First, the complete data log-likelihood function (3) is par-
tially derived by αc and βc:

∂L(ϑ | X,Z)

∂αc
=

N∑
n

znc[logxn+ψ(αc+βc)−ψ(αc)] (7)

∂L(ϑ | X,Z)

∂βc
=

N∑
n

znc[log(1−xn)+ψ(αc+βc)−ψ(βc)]

(8)
where ψ(·) is the digamma function defined by:

ψ(w) =
∂logΓ(w)

∂w
(9)

To find a local maximum, both equations are equated to
zero to form equation system.


∂L(ϑ|X,Z)

∂αc

∂L(ϑ|X,Z)
∂βc

 = 0 (10)

ψ(αc)− ψ(αc + βc) =

∑N
n znclogxn∑N

n znc

ψ(βc)− ψ(αc + βc) =

∑N
n znclog(1− xn)∑N

n znc

(11)

Since there is no closed solution to this equation system
[27], the Newton-Raphson algorithm was used [31].

Parameter initialization
The EM algorithm is an iterative method which requires a
parameter initialization to start. The result of this algorithm
depends on this initialization. To obtain the initial values, a
reference distribution was obtained [26]. This distribution is
obtained by averaging 40 samples from the control group.
The reference distribution is approximated by a BMM with
four components. A fixed number of four components was
chosen for the model based on the high pressure areas and the
symmetric butterfly pattern (Fig. 4). The parameters obtained
served as initial values to approximate the sample distribu-
tions of the control and DM group (Fig. 4 and Table 1). Chi-
square goodness-of-fit was obtained to numerically measure
how the BMM fits the distribution, resulting in 1.45× 10−3.

TABLE 1. Final parameters of the beta mixture model (BMM) approach for the
reference distribution

Component 1
(Toes)

Component 2
(Metatarsal heads)

Component 3
(Arch)

Component 4
(Heel)

α 1.89 8.35 5.24 5.59
β 7.86 24.05 3.66 1.59
π 0.17 0.05 0.33 0.45
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TABLE 2. Parameter values of the Beta mixture model (BMM) components presented in Fig. 5

Component 1
(Toes)

Component 2
(Metatarsal Heads)

Component 3
(Arch)

Component 4
(Heel)

α β π α β π α β π α β π
Fig. 5a 1.42 3.60 0.13 11.20 8.30 0.170 3.61 8.25 0.18 2.91 1.54 0.52
Fig. 5b 1.62 3.35 0.09 15.44 11.19 0.18 5.44 11.68 0.15 3.19 1.54 0.57
Fig. 5c 1.77 5.96 0.16 13.03 11.74 0.16 2.67 5.40 0.17 3.94 2.00 0.52
Fig. 5d 2.01 10.88 0.22 7.16 6.561 0.11 3.38 7.05 0.20 3.30 1.43 0.47
Fig. 5e 1.80 8.13 0.21 10.23 10.26 0.12 3.73 7.25 0.20 3.96 1.54 0.47
Fig. 5f 2.27 9.13 0.23 3.41 11.68 0.33 3.41 3.33 0.06 4.09 1.47 0.38

FIGURE 4. Approximation of the reference distribution by a Beta mixture
model (BMM) with four components, each representing an area of the plantar
region: toes, metatarsal heads, arch and heel.

3) Convergence
In this work, the convergence of the algorithm is determined
by verifying the value between the log-likelihood function
(3) in each iteration. The relative change is used as the con-
vergence parameter instead of the absolute value of change
in the log-likelihood function since it depends on the sample
size. The threshold to detect the convergence in this work
was E = 0.0001. and the maximum number of iterations
was established in I = 1000.

III. EXPERIMENTAL RESULTS
For the tests, 111 thermograms of the DM group and 30
thermograms of the control group were used. The left and
right foot were automatically segmented, and each was taken
as a separate sample. In the DM group, two feet were ex-
cluded from the tests by infection or amputation, obtaining a
database of 280 samples. Each sample was modeled using
a BMM with four components representing four different
areas in the plantar region. The EM algorithm was initialized
with the parameters obtained from the reference distribution
(Table 1) and ends when the relative change of the the log-

likelihood function (3) in two consecutive iterations is below
the established value (E = 0.0001).

Fig. 5 and Table 2 show examples of the approach by
BMM with their respective values of α, β and π. Also, Chi-
square goodness-of-fit was used to measure the accuracy of
the model to fit the temperature distributions. For the control
group, an average of (3.49 × 10−3) ± (1.94 × 10−3) was
obtained, and for the DM group, the average was (6.18 ×
10−3)± (2.23× 10−3).

The mean and the variance of each component of the
BMM was calculated, and the results are presented in Table
3. The greatest variations were found in components 1 and
4 (toes and heel). Figure 6 shows the data set plotted by
the mean of the component 1 and 4, respectively. The K-
means algorithm was applied to automatically split the data
set into different clusters (see Fig. 6). Some examples of the
temperature distributions of each cluster are shown in Fig. 7.
Based on these distributions, red points (cluster 1) represent
the distributions without variation. Cluster 2 (blue points)
contains the distributions with upper area variation, while
cluster 3 (green points) includes distributions with variation
in the whole foot.

TABLE 3. Average of the mean and variance of each component of the Beta
mixture model (BMM) (average ± standard deviation)

Control Group DM Group
Mean Variance Mean Variance

1 0.32± 0.10 0.04± 0.018 0.21± 0.10 0.02± 0.018
2 0.56± 0.03 0.01± 0.003 0.55± 0.06 0.01± 0.010
3 0.32± 0.02 0.02± 0.005 0.33± 0.04 0.01± 0.005
4 0.65± 0.03 0.04± 0.007 0.70± 0.07 0.03± 0.015

IV. DISCUSSION
Due to the variation in the α and β parameters, it was
not possible to categorize the temperature distributions with
these parameters. However, when the mean and variance
were calculated, it was possible to properly separate the
distributions. The greatest variation between groups is found
in the mean of component 1 (toes), with an average of
0.32 ± 0.10 for the control group and 0.21 ± 0.10 for DM
group (Table 3). This variation allows for the identification
of the temperature distribution with variation in the upper
area of the foot. The variation in component 4 (heel) also
allows to identify distributions with variation in the lower
part, with an average of 0.65 ± 0.03 for the control group
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(a) (b) (c)

(d) (e) (f)

FIGURE 5. Examples of the approach by Beta mixture model (BMM) of the temperature distribution in (a-c), control group and (d-f) DM group. The Chi-square
goodness-of-fit was calculated in each distribution: a) 1.70× 10−3, b) 4.64× 10−3, c) 8.74× 10−3, d) 6.40× 10−3, e) 6.30× 10−3, f) 4.10× 10−3.

FIGURE 6. Data set plotted by the mean of the Beta components 1 and 4.
K-means clustering is applied to split the data in 3 clusters.

in contrast to 0.70 ± 0.07 for DM group (Table 3). By
using both characteristics, it was possible to identify the
three previously mentioned groups. In cluster 1, temperature
distributions with temperature changes only in the lower
area (heel) were found (Fig. 8). These distributions (points
enclosed in the purple oval in Fig. 6) have a mean value of
component 1 in the range of cluster 1 (< 0.35), but these
have the highest mean values of component 4 (> 0.75) in
this cluster. However, these distributions were uncommon in
our database, so the k-means algorithm included them in the
closest cluster

To compare the performance of the BMM approach, the
temperature distributions were fitted with different models.
Figure 9 shows the comparison among BMMs with different
number of components and initialized with the method of
moments (MM). For MM initialization, first, the data is
divided into k groups using the k-means algorithm, and after
that, the moment estimators of the corresponding distribution

(a)

(b)

(c)

FIGURE 7. Examples of the temperature distributions of each cluster in Fig. 6.
(a) Distributions without variations (Cluster 1); (b) distributions with upper area
variations (Cluster 2) and (c) distributions with variations in the whole foot
(Cluster 3).

are calculated.
The performance of the different approaches are compared

with the chi-square goodness-of-fit (GoF) and the total of
iterations, presented in Fig. 10 and Fig. 11 respectively. A
smaller value in the GoF indicates a better fit. Of the distri-
butions presented in the Fig. 10, the BMM proposed in this
work presents a lower value than the other approximations
in 7 of the 8 distributions. Also the number of iterations
necessary for convergence is lower in 7 of the 8 distributions.
Another aspect to consider is that with 4 components the
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FIGURE 8. Temperature distributions with lower area variation found in cluster
1. Points enclosed in the purple oval in Fig. 6

.

(a)

(b)

FIGURE 9. Comparison among Beta mixture models (BMMs), varying the
number of components and initializing with the method of moments (MM)

analysis is simplified since each component is assigned to
one of the areas (toes, metatarsal heads, arch and heel).
For the database, the GoF average was 0.0064 ± 0.0013
for the proposed model while for the BMM with an MM
initialization and a C value of 3, 4 and 5 the GoF was
0.0074 ± 0.0014, 0.0076 ± 0.0013 and 0.0081 ± 0.0021,
respectively. This confirms a better performance of the BMM
with C = 4 and initialized with the parameters of Table 1.

The model was also compared with a Gaussian mixture
model (GMM) and Gamma mixture model (GmMM), both
with different numbers of components (Fig. 12). Compar-
isons of the GoF and convergence iterations of the mixture
models are presented in Figs. 13-16. In the GMM, the GoF
presents a higher value in each of the distributions (Fig.
13), especially in the distributions of the DM group. As
the number of components in the GMM increases, the GoF
improves, however, the number of iterations also increases
(Fig. 14). Therefore, to obtain a performance similar to the
BMM, the number of components of the Gaussian model
must be above 7. With a higher number of components, it
is not possible to assign the components to a specific area,
making the analysis more difficult.

FIGURE 10. Comparison of the Chi-Square Goodness-of-fit for the
distributions presented in Fig. 5 and Fig. 9. The yellow bar represents the
proposed Beta mixture model (BMM), and this is compared with other BMM,
varying the number of components and initialized with the method of moments
(MM)

FIGURE 11. Comparison of the total iterations required for the convergence in
the different Beta mixture models (BMMs)

(a)

(b)

FIGURE 12. Comparison among Beta mixture models (BMM) with (a)
Gaussian mixture model (GMM) and (c) Gamma mixture model (GmMM).
Both approaches are tested with a different number of components and
initializing with the method of moments (MM)

The GmMM presents better performance in several distri-
butions than the GMM (Fig. 15), because it can be skewed
to the left. For the GmMM, the lowest GoF average for
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FIGURE 13. Comparison of the Chi-Square Goodness-of-fit for the
distributions presented in Fig. 5 and Fig. 9. The yellow bar represents the
proposed Beta mixture models (BMM), and this is compared with Gaussian
mixture models (GMM), varying the number of components and initialized with
the method of moments (MM)

FIGURE 14. Comparison of the total iterations required for the convergence in
the different Gaussian mixture model (GMM) and Beta mixture models (BMM)

all database was obtained with five components (0.0179 ±
0.0157), and this was lower than that obtained by the GMM
(0.0264 ± 0.0351). Although the GmMM has a lower GoF
average value than that presented by the GMM, the proposed
BMM has a better performance (0.0064±0.0013). The main
problem occurs in those distributions where the asymmetry
is to the right (Fig. 5c) resulting in high values in the GoF.
Another problem is the high number of iterations required for
convergence with an average of 879 ± 172 iterations and in
several distributions the maximum number of iterations was
not enough. (Fig. 16).

FIGURE 15. Comparison of the Chi-Square Goodness-of-fit for the
distributions presented in Fig. 5 and Fig. 9. The yellow bar represents the
proposed Beta mixture models (BMM), and this is compared with Gamma
mixture models (GmMM), varying the number of components and initialized
with the method of moments (MM)

FIGURE 16. Comparison of the total iterations required for the convergence in
the different Gamma mixture models (GmMM) and Beta mixture models
(BMM)

V. CONCLUSION
A characterization of the plantar temperature distribution
based on a BMM has been presented. The Beta components
allow one to identify changes in the lower and upper area
of the plantar region. The results showed that components 1
and 4, which represent the toes and the heel, show a greater
variation between the control and the DM group. With these
two components, it was possible to characterize changes
in the plantar temperature distribution. The contributions
of this approach is that it allows one to analyze thermal
changes in different areas of the plantar region separately,
and it is possible to detect temperature variations related to
the diabetic foot, overcoming the limitations of asymmetric
analysis. Each foot is analyzed separately, so the temperature
variations can be detected even if the patients has a similar
variation on both feet since it does not depend on a contralat-
eral comparison.
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