
Integration of alarm design in fault detection and
diagnosis through alarm-range normalization ?

Matthieu Luckea,b,∗, Moncef Chiouaa, Chriss Grimholtc, Martin Hollendera,
Nina F. Thornhillb

aABB Corporate Research Germany, Wallstadter Strasse 59, 68526 Ladenburg, Germany
bCentre for Process Systems Engineering, Department of Chemical Engineering, Imperial

College London, London SW7 2AZ, UK
cABB Energy Industries, Ole Deviks Vei 10, 0666 Oslo, Norway

Abstract

Alarm systems designed according to engineering and safety considerations

provide the primary source of information for operators when it comes to ab-

normal situations. Still, alarm systems have rarely been exploited for fault

detection and diagnosis. Recent work has demonstrated the benefits of alarm

logs for fault detection and diagnosis. However, alarm settings conceived during

the alarm design stage can also be integrated into fault detection and diagnosis

methods. This paper suggests the use of those alarm settings in the preprocess-

ing of the process measurements, proposing a normalization based on the alarm

thresholds of each process variable. Normalization is needed to render process

measurements dimensionless for multivariate analysis. While common normal-

ization approaches such as standardization depend on the historical process

measurements available, the proposed alarm-range normalization is based on

acceptable variations of the process measurements. An industrial case study of

an offshore oil gas separation plant is used to demonstrate that the alarm-range

normalization improves the robustness of popular methods for fault detection,

fault isolation, and fault identification.
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1. Introduction

Alarm management and Fault Detection and Diagnosis (FDD) are two dis-

ciplines that are closely related but still separated in the industry. Alarm man-

agement corresponds to a collection of processes and practices for determining,

documenting, designing, operating, monitoring, and maintaining alarm systems5

(IEC, 2014). It belongs to the sphere of process safety with established practices

(Hollifield and Habibi, 2011) and standards (IEC, 2014). The alarm lifecycle

can be divided into three stages (Wang et al., 2016): alarm configuration, alarm

design, and alarm removal. Alarm configuration deals with the selection of

process variables to be configured with alarms and the determination of alarm10

priorities. Alarm design corresponds to the design (or redesign) of the alarm

generation mechanism that transforms process variables into alarms. Alarm

removal aims at limiting of consequential alarms due to the propagation of ab-

normal situations. In the following, an alarm log refers to the record of alarms

generated during the operation of the plant, and the alarm settings indicate the15

meta-information available for each type of alarm such as the associated process

measurement and the parameters of the alarm generation mechanism.

In contrast to alarm management, FDD has emerged from the process con-

trol community as a support tool for abnormal situation management. Fault

detection consists in determining whether a fault happened and fault diagnosis20

consists in determining which fault happened through fault isolation (i.e. find-

ing the process process variables affected by the fault) or fault identification

(i.e. identifying the type of fault that occurred) (Ge et al., 2013). This paper

examines data-driven FDD methods, which are traditionally based on process

measurements that correspond to the measurements of the physical quantities25

(i.e. the process variables) from the industrial process.

Process measurements are key elements in alarm management, in particular

for applications such as alarm design (Wang et al., 2016), but FDD applications

taking alarm logs into account are limited. Alarm logs were used for purposes
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related to FDD such as online alarm flood classification for operator support,30

but independently from the process measurements (Lucke et al., 2019a). Several

works (Rodrigo et al., 2016; Hu et al., 2017a) demonstrated the benefits of a

preliminary analysis of alarm logs before carrying the root cause analysis on the

process measurements. Bayesian fusion (Stief et al., 2018) was used to improve

online fault detection and identification by combining process measurements35

and alarm logs.

Availability and quality of process measurements are major obstacles to

successful implementation of data-driven FDD methods in the industry. Pre-

processing is a prerequisite for applying those methods on industrial process

measurements, and normalization is a key element of preprocessing (Ge et al.,40

2017). Normalization is usually based on statistical indicators inferred from the

process measurements used for training the FDD methods, but limited availabil-

ity of process measurements also impact the normalization. The significance of

the variations of the process measurements may be difficult to infer from histori-

cal data alone. Conversely, finding historical datasets with significant variations45

of all process measurements is a difficult and time-consuming task for FDD en-

gineers.

This paper investigates an alternative normalization based on the prelimi-

nary work in Lucke et al. (2018a) that relies on the alarm settings defined during

the alarm design stage. The proposed Alarm-Range (AR) normalization uses50

the difference between the low and the high alarm thresholds for each process

variable to place the variations of the related process measurement in the con-

text of the safe operational range. AR-normalization does not depend on the

choice of the training data, which has two benefits: it facilitates the work of

FDD engineers by removing constraints on the variability of the measurements55

in the choice of the training data, and it limits spurious FDD results due to the

use of miscalibrated statistical indicators in the normalization.

While the preliminary work by Lucke et al. (2018a) focused on demonstrating

the advantage of AR-normalization on a simple case for fault identification, this

paper provides a more advanced study of the effect of AR-normalization on fault60
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detection, fault isolation, and fault identification on reference methods in the

industry, namely Principal Component Analysis (PCA) for fault detection and

fault isolation, and nearest neighbour classification for fault identification. The

analysis is carried on an industrial case study of an offshore oil gas separation

plant.65

Section 2 gives additional information about alarm design and the integration

of alarm systems in FDD and also reviews normalization practices. Section 3

discusses the motivation for a new normalization approach that does not rely on

statistical indicators. Section 4 details the normalization, the fault detection,

isolation, and identification methods used for the analysis. Section 5 introduces70

the oil gas separation plant as a representative industrial case study that can be

used to demonstrate the benefits of AR-normalization. The results of the study

are presented and discussed in Section 6.

2. Background

2.1. Alarm design75

An alarm is an audible or visible means of indicating to the operator an

equipment malfunction, process deviation, or abnormal condition requiring a

timely response (IEC, 2014). Various types of alarms can be defined during the

alarm design stage corresponding to various alarm generation mechanisms (IEC,

2014). Absolute alarms for example are generated when an alarm threshold is80

exceeded.

The choice of the alarm generation mechanism and the corresponding pa-

rameters are examples of alarm settings. Alarm settings are conceived during

the engineering stage of the plant based on safety and technical considerations.

Figure 1 illustrates the alarm design procedure for absolute alarms and their85

alarm thresholds. The consequence threshold is first defined as the limit after

which a consequence begins to occur (e.g. for the level of a tank, it could be the

maximum level the tank can admit before overflow). The alarm threshold is de-

fined from the consequence threshold taking into account the process deadtime,
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Figure 1: Alarm response timeline adapted from IEC (2014).

the operator response delay and the acknowledgement delay for the correspond-90

ing process measurement. A high and a low alarm threshold are usually defined

for each process variable.

This paper focuses on absolute alarms and their alarm thresholds for use in

preprocessing measurements for FDD.

2.2. Integrating alarm systems in fault detection and diagnosis95

Alarms are the foremost indicators for operators when it comes to detect-

ing and identifying ongoing abnormal situations on the plant. Improving alarm

management based on analysis of the process measurements is a common re-

search direction (Wang et al., 2016). Several methods have been proposed to

design the best alarm thresholds based on process measurements using a uni-100

variate approach (Xu et al., 2012) or a multivariate approach (Yang and Guo,

2017). Alarm configuration and alarms triggered by abnormality propagation
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are other problems for which solutions based on the analysis of process mea-

surements have been proposed (Wang et al., 2016).

Methods for analysis of alarm logs can help investigating abnormal situations105

(Lucke et al., 2019a) such as alarm floods, conditions during which the alarm

rate is greater than the operator can effectively manage (IEC, 2014). Online

alarm flood classification methods (Charbonnier et al., 2015, 2016; Lai et al.,

2017; Lucke et al., 2018b; Dorgo et al., 2018) rely on approaches that are close

to traditional fault detection and identification approaches (Lucke et al., 2019a),110

but only consider alarm logs.

Preliminary analysis of alarm logs can be applied to speed up root cause

analysis based on process measurements. Rodrigo et al. (2016) clustered simi-

lar abnormal situations based on their alarms before proceeding to root cause

analysis on process measurements. Hu et al. (2017a) conducted a preliminary115

root cause analysis on alarm logs to identify process variables that could be

root cause candidates and reduce the scope of root cause analysis on process

measurements .

Statistical alarms are a particular case since they are generated using statis-

tical indicators of the process measurements such as the standard deviation in120

fault-free operation. Statistical alarms can be substituted for process measure-

ments to reduce the computational load, in particular for root cause analysis

with transfer entropy (Yu and Yang, 2015; Su et al., 2017; Hu et al., 2017b).

Statistical alarms can also be substituted for process measurements when doing

variable selection for fault detection and identification to limit the impact of125

noisy variations of the process measurements (Lucke et al., 2019b).

Direct integration of process measurements and alarm logs for fault detection

and identification has been addressed in Stief et al. (2018) where a two-stage

Bayesian classifier is used. Stief et al. (2019) have released a dataset from a

multiphase flow rig to underpin future research into the integration of hetero-130

geneous data for fault detection and identification, in particular alarm logs and

process measurements.
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2.3. Normalization of process measurements

2.3.1. Common practices in fault detection and diagnosis

FDD on a process plant is traditionally based on the process measurements135

corresponding to process variables Xm measured at each sampling time tn,

where m = 1, . . . ,M and M is the total number of process variables considered.

xm(tn) indicates the value of Xm measured at tn. The plant vector X is defined

as theM -dimensional variable taking values x(tn) = [x1(tn), x2(tn), . . . , xM (tn)]T

at time tn. This paper investigates the effect of normalization on sample-wise140

FDD methods that rely on the values of the plant vector at each sampling time

tn. The effect of normalization on FDD methods using sliding windows (Shang

et al., 2017a) or taking into account autocorrelation in the process measure-

ments would require a separate analysis, since autocorrelation of process mea-

surements is an important factor for monitoring of industrial processes under145

feedback control.

Process measurements associated with the variables Xm have various en-

gineering units and scales and may need to be preprocessed so that they are

dimensionless, to match the requirements of online FDD methods (Ge et al.,

2017). Normalization is generally based on the statistical properties of the pro-150

cess measurements used for training the method. The training set can contain

process measurements from normal operation (in this case it is named Ω̌N0) or

process measurements from faulty operation (i.e. Ω̌F ). The process measure-

ments in the test set ΩN0
are normalized using the statistics of the training set

Ω̌N0 and the process measurements in the test set ΩF are normalized using the155

statistics of the training set Ω̌F .

Methods for fault detection and fault isolation are usually trained on Ω̌N0

in order to assess how abnormal a new measurement is. In this case, centering

and scaling of the variance of the process measurements using the mean and

standard deviation of Ω̌N0 is a common approach.160

Methods for fault identification are usually trained on Ω̌F to recognize the

selected types of faults, but normalization practices vary. Mean-centering of the
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process measurements is a pre-requisite for many methods but scaling might

not be necessary since not all methods require dimensionless measurements. In

particular, fault identification methods using features learnt from the training165

data (such as methods based on deep learning (Zhang and Zhao, 2017; Wu and

Zhao, 2018)) have been used without scaling the process measurements. When

dimensionless measurements should be used, standardization can be based on

the statistics of Ω̌F but can also be based on the statistics of Ω̌N0, in particular if

the fault identification method is directly based on the output of fault detection170

method. In this case, the normalization statistics are the same as the ones used

for fault detection, e.g. the mean and the standard deviation of Ω̌N0 (Tong and

Palazoglu, 2016; Zhu and Song, 2010; Gajjar and Palazoglu, 2016).

Other approaches exist but remain rare. Shu and Zhao (2016) used feature

scaling where the extrema of the process measurements in Ω̌N0 are used to scale175

the process measurements between zero and one. Vargas et al. (2017) divided the

mean-centered process measurement by the mean of the process measurements

in Ω̌N0, and Shang et al. (2017b) divided the process measurements by the

range (i.e. the difference between the maximum and minimum) of the process

measurements in Ω̌N0.180

2.3.2. Selected normalization for fault detection and isolation

The most common normalization approach for fault detection and isolation

is standardization using Ω̌N0 statistics from normal operation, which is referred

to as N-standardization in the rest of the paper. The N-standardized plant

vector at time tn is defined as x̃(tn) = [x̃1(tn), . . . , x̃M (tn)]T where:

x̃m(tn) =
xm(tn)− µm(Ω̌N0)

σm(Ω̌N0)
(1)

where µm(Ω̌N0) and σm(Ω̌N0) are respectively the mean and standard deviation

of process variable Xm in Ω̌N0.

2.3.3. Selected normalization for fault identification

For fault identification, the most common normalization approach is F-

standardization, which corresponds to a standardization using the standard
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deviation in faulty operation. The F-standardized plant vector at time tn is

defined as x̃(tn) = [x̃1(tn), . . . , x̃M (tn)]T where:

x̃m(tn) =
xm(tn)− µm(Ω̌N0)

σm(Ω̌F )
(2)

where µm(Ω̌N0) is the mean of process variable Xm in Ω̌N0 and σm(Ω̌F ) is the185

standard deviation of process variable Xm in Ω̌F .

3. Motivation for the method

Normalization can have a high impact on the performance of FDD meth-

ods. Existing normalization approaches such as standardization are dependent

on the availability of historical process measurements to estimate appropriate190

statistical indicators (e.g. standard deviation) for each process measurement.

In practice, finding normal operation data Ω̌N0 or faulty data Ω̌F that can be

used for training the FDD model is a difficult and time-consuming task.

For Ω̌N0, it is challenging to find a time interval where all process measure-

ments are fault-free and where all process measurements present representative195

variations. Variations during the fault-free interval do not necessarily give a

good indication of the acceptable range of variations of the process measure-

ments. For example, variations of process measurements under feedback control

are usually small and may not provide robust statistical indicators for the nor-

malization, e.g. for N-standardization. Sub-section 5.1 gives an example of200

industrial case study where the process measurements present a low variability

during normal operation. The case study considers the water reinjection section

of an offshore oil gas separation plant where the water flows are controlled to

ensure the safe operation of the plant. Sub-sections 6.2 and 6.3 show how tradi-

tional N-standardization combined with the low variability of the measurements205

in Ω̌N0 can lead to spurious results in fault detection and fault isolation.

F-standardization also depends on the faulty process measurements avail-

able for training in Ω̌F . The patterns of the process measurements during fault

occurrences in the training set might not be exactly the same as the patterns
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of the process measurements in new occurrences, and a change in amplitude of210

variation of a measurement from the training set to the test set can be ampli-

fied by the standardization. Sub-section 6.4 illustrates how F-standardization

combined with changing fault characteristics can lead to spurious fault identifi-

cation.

The proposed AR-normalization is intended as a normalization approach215

that should facilitate and speed up the work of the engineers in charge of im-

plementing FDD methods in industrial environments. AR-normalization scales

process measurements using the alarm range (the difference between the upper

and lower alarm thresholds). Such scaling is independent of the statistics of the

training data and can be used both for fault detection and isolation and for fault220

identification. Therefore, the engineers do not need to consider the variability of

the measurements in the choice of the training data and can focus on isolating

the intervals of normal operation and the fault intervals for Ω̌N0 and Ω̌F .

4. Proposed method

4.1. Alarm-range normalization225

AR-normalization, as proposed in the preliminary work by Lucke et al.

(2018a), uses absolute alarm thresholds of a process variable as a reference for

the normalization of the corresponding process measurement. The difference be-

tween the high absolute alarm threshold hm and the low absolute alarm thresh-

old lm of a process variable Xm can be used to give an indication of the accept-

able amplitude of variation of the corresponding process measurement. The AR-

normalized plant vector at time tn is defined as x̃(tn) = [x̃1(tn), . . . , x̃M (tn)]T

where:

x̃m(tn) =
xm(tn)− µm(Ω̌N0)

hm − lm
(3)

4.2. Fault detection and isolation

4.2.1. PCA modeling

The fault detection and isolation in this chapter is based on PCA (MacGregor

and Kourti, 1995). PCA is a linear dimensionality reduction technique that
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determines the set of orthogonal vectors (called loading vectors) ordered by

the amount of variance explained in the loading vectors direction. The PCA

model is trained with the training set Ω̌N0 of process measurements from normal

operation. The Ň normalized plant vectors x̃(tň) in Ω̌N0 are stacked into a

matrix X̃Ň ∈ RŇ×M , and the loading vectors are computed via the singular

value decomposition (Braatz, L H Chiang and D, 2001):

X̃Ň = UΣVT (4)

where U ∈ RŇ×Ň and V ∈ RM×M are orthogonal matrices, and the matrix

Σ ∈ RŇ×M contains the non-negative real singular values λm of decreasing

magnitude on the diagonal and zero off-diagonal elements.230

4.2.2. Fault detection

Each new normalized plant vector x̃(tn) at time tn is tested with the PCA

model to determine if it should be considered as normal or faulty. Hotelling’s T 2

statistic and the Q statistic can be used to detect faulty plant vectors (Braatz,

L H Chiang and D, 2001). The value of T 2 at time tn can be computed as:

T 2(tn) = x̃(tn)TPΣMa

−2PT x̃(tn) = x̃(tn)TDx̃(tn) (5)

where D = PΣMa

−2PT , ΣMa contains the first Ma rows and columns of Σ

and P ∈ RM×Ma is the matrix of the loading vectors associated with the Ma

largest singular values.

The portion of the observation space corresponding to the M −Ma smallest

singular values can be monitored by the Q statistic:

Q(tn) = r(tn)T r(tn) = x̃(tn)TCx̃(tn) (6)

where r(tn) = (IM − PPT )x̃(tn) is the residual vector at time tn, IM is the235

identity matrix of size M , and C = (IM −PPT ).

x̃(tn) is considered as faulty if T 2(tn) ≥ T 2
α or if Q(tn) ≥ Qα, where T 2

α

is the T 2 statistic threshold and Qα the Q statistic threshold, and α indicates

the significance level of the thresholds. T 2
α and Qα are computed based on
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percentiles of the values of T 2 and Q for the process measurements in Ω̌N0. In240

the following, T 2
1% and Q1% correspond to the thresholds for α = 1%, and T 2

0.1%

and Q0.1% correspond to the thresholds for α = 0.1%.

4.2.3. Fault isolation

If x̃(tn) is detected as faulty, the contribution of each process variable Xm

to T 2(tn) and Q(tn) is investigated through reconstruction-based contribution

analysis Alcala and Qin (2009).The reconstruction-based contribution fT 2,m(tn)

of Xm to T 2(tn) is:

fT 2,m(tn) =
(ξm

T D x̃(tn))2

dmm
(7)

where ξm is the mth column of the m by m identity matrix and dmm is the mth

diagonal element of the matrix D defined in sub-section 4.2.2.245

The reconstruction-based contribution fQ,m(tn) of Xm to Q(tn) is:

fQ,m(tn) =
r2
m

cmm
(8)

where rm is the mth row of the residual vector r(tn) and cmm is the mth diagonal

element of the matrix C defined in sub-section 4.2.2.

4.3. Fault identification

If x̃(tn) is detected as faulty, x̃(tn) is compared to normalized plant vectors

x̃(tň) of the training set of process measurements from faulty operation Ω̌F to

determine if x̃(tn) belongs to one of the fault classes c covered by the classi-

fier. The estimated fault class ĉ(tn) corresponding to x̃(tn) is identified using

a popular classifier for fault identification in the industry Vargas et al. (2017),

the 1-Nearest Neighbour (1NN) classification algorithm. 1NN associates x̃(tn)

with the class c(tň1
) of the nearest neighbour x̃(tň1

) of x̃(tn) in Ω̌F :

x̃(tň1
) = arg min

x̃(tň)∈Ω̌F

√√√√ M∑
m=1

(x̃m(tn)− x̃m(tň))2 (9)
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Figure 2: Process overview of the separation plant.

5. Application to industrial case study

5.1. Description of the industrial case study250

The industrial case study is an offshore gas oil separation plant, designed

to separate crude oil, gas and condensates next to the well before export. An

overview of the process is given in Figure 2. The mixture from the well is going

through a separation process with two stages of separators. The gas lift and

export blocks at the output of the compression block in Figure 2 correspond255

to natural gas. The output of the condensate train block corresponds to gas

condensate, which is a by-product, also exported. The produced water is going

through hydrocyclones and then through a degassing drum. A part of the

cleaned water is reinjected into the platform through two injection tanks, the

Water Injection Tank 1 (WIT1) and the Water Injection Tank 2 (WIT2). The260

other part of the cleaned water is reversed to the sea. The oil obtained at the

output of the hydrocyclones can be reinjected into the second stage of separators,

or sent directly to storage facilities after going through the degassing drum.

The study focuses on the Produced Water Reinjection (PWRI) section where

the produced water and the produced oil from the hydrocyclones are going265
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through the degassing drum before being redirected respectively to the injection

tanks (or to the sea) and to the oil storage. A detailed diagram of the PWRI

section is given in Figure 3. Four pumps ensure the flow of water to the injection

tanks. P11 and P12 feed the WIT1, and P21 and P22 feed the WIT2. Another

pump ensures the flow of oil from the output of the degassing drum to the oil270

storage. The level of water in the degassing drum is controlled using several

valves. The valve to the WIT1 and the valve to the WIT2 can be closed to

ensure a minimum flow going into the degassing drum through the recycle. The

valves to the sea can also be opened or closed to regulated the water output.

Recurrent faults have been observed by experts in the PWRI section over a275

period of four months. Four different types of faults have been labelled and are

listed in Table 1:

• Fault 1: the fault starts with a pressure drop in the water coming into

the PWRI section, observable through the drop in the suction pressures

of P11 and P21. The situation goes back to normal after a few samples.280

• Fault 2: the fault is similar to Fault 1 except that the low suction pressure

triggers a trip of P21, which means that the situation does not go back to

normal as in Fault 1.

• Fault 3: the fault starts with a change in the type of fuel used for the

pumps of the PWRI section (from diesel to gas, or vice versa). The fuel285

change triggers a drop of pressure and flow in the whole water system that

can lead to a trip of P11 or P21 (or both).

• Fault 4: the fault starts with a trip of P21 due to high vibrations in the

motor of the pump.

Table 2 lists the 16 process variables measured in the PWRI section with a290

sampling time of one second. For each process variable, the table indicates the

high and low alarm thresholds defined in the alarm system, as well as the alarm

range. The table also indicates the standard deviation of each process variable

in fault-free operation and during the selected faults.
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Table 1: Selected faults in the PWRI section.

Fault Description Number of occurrences

1 Low suction pressure without pump trip 2

2 Low suction pressure with P21 trip 3

3 Fuel change 8

4 P21 trip due to vibrations 2

5.2. Design of experiment295

AR-normalization is compared to N-standardization for fault detection and

isolation, and AR-normalization is compared to F-standardization for fault iden-

tification. N-standardization uses the standard deviation σm(Ω̌N0) computed on

the training set of process measurements from normal operation Ω̌N0, while F-

standardization uses the standard deviation σm(Ω̌F ) computed on the training300

set of process measurements from faulty operation Ω̌F . AR-normalization uses

the difference between the high alarm threshold hm and the low alarm threshold

lm. All three normalizations use the mean µm(Ω̌N0) computed during normal

operation.

5.2.1. Fault detection and isolation305

Figure 4 represents the N-standardized process measurements and the AR-

normalized process measurements during normal operation in the training set

Ω̌N0. The values of σm(Ω̌N0) for each process variable are indicated in Table 2.

A PCA model is built on the N-standardized measurements and another

PCA model is built for the AR-normalized measurements. APZT141 is not310

included in the PCA model since it does not move during normal operation.

The number of loading vectors is set to 10 (i.e. Ma = 10).
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Figure 4: Process measurements in the training set Ω̌N0 normalized with N-standardization

and AR-normalization. The scale is [−20, 20] for each N-standardized measurement and

[−0.1, 0.1] for each AR-normalized measurement.

The fault detection is done on a test set of measurements from normal oper-

ation ΩN0. The training set Ω̌F used for training the fault identification model

is also used for testing the detection and isolation on one occurrence of each315

type of fault. The reconstruction-based contribution plots for T 2 and Q are

analysed for each of those faults.

5.2.2. Fault identification

The training set Ω̌F containing one occurrence of each type of fault listed

in Table 1 is used for training the classifier for the fault identification. Figure320

5 represents the normalized process measurements during each type of fault in

Ω̌F . The blue dotted lines correspond to the F-standardized measurements,

and the red lines correspond to the AR-normalized measurements. The values

of σm(Ω̌F ) for each process variable are indicated in Table 2.

The classifier is tested on a test set of data from the remaining fault occur-325

rences, ΩF . The new fault occurrences are detected using the PCA model with
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Figure 5: Process measurements in the training set Ω̌F normalized with F-standardization

(blue) and AR-normalization (red). The scale is [−4, 4] for each F-standardized measurement

and [−2, 2] for each AR-normalized measurement.

AR-normalization, and a classification is proposed for each sample as soon as

the fault is detected. The fault identification focuses on the four types of faults

of Table 1 and does not consider unknown types of faults.

6. Results330

6.1. PCA modeling

Figure 6 indicates the cumulative variance explained by the loading vectors of

the PCA with N-standardization (in blue) and with AR-normalization (in red).

The slope is steeper for AR-normalization than for N-standardization. This

shows that the variance explained by the loading vectors associated to the largest335

singular values is larger for AR-normalization than for N-standardization, and

that the variance explained by the loading vectors associated to the smallest

singular values is negligible for AR-normalization.
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Figure 6: Cumulative variance explained by the loading vectors on Ω̌N0 with N-

standardization and AR-normalization.

The PCA model with AR-normalization emphasizes the variations that are

the most representative compared to the safe operation range defined by the340

alarm thresholds. This has two benefits. The first benefit is to build a model

capturing the representative variations and limiting the impact of small varia-

tions (compared to the alarm thresholds) that may not give a good indication

of the variability of the measurements in the normal operation data available

for training. The second benefit is to give more weight to process measurements345

with larger variations compared to their alarm threshold, since those process

measurements are the most likely to reach their alarm thresholds. Therefore,

each variation of those variations should have a high impact on the detection

statistic T 2.

Capturing small variations in the model can have a negative impact. N-350

standardization gives the same weight to all process measurements in Ω̌N0 since

they are all scaled to unit-variance. Process measurements with small variations

in Ω̌N0 have the same weight as the other ones, even though the variations

20



0 250 500 750 1000 1250 1500 1750

Time (s)

APZT142

APZT140

APZT117

APZT143

APZT154

APZT141

APT146

APT123

ALT148

AFZT115

AFZT139

AFZT114

AFT121

CPZT112

CPZT151

CLY128A

N-standardization

0 250 500 750 1000 1250 1500 1750

Time (s)

AR-normalization

Figure 7: Process measurements in the test set ΩN0 normalized with N-standardization and

AR-normalization. The scale is [−20, 20] for each N-standardized measurement and [−0.1, 0.1]

for each AR-normalized measurement.

may only represent minor fluctuations. Therefore, any move of one of those

process measurements has a major impact on the detection statistic T 2. This355

can trigger false detections and can introduce a bias in the contribution plots

when it comes to fault isolation. Not monitoring the process measurements with

small variations can lead to missed detections, but those process measurements

do not need to be included in the PCA model and can be monitored by the Q

statistic.360

6.2. Fault detection

The fault detection is tested on a test set of data from normal process opera-

tion ΩN0, plotted in Figure 7. The values of the T 2 statistic are plotted in Figure

8 for N-standardization and AR-normalization, and the values of the Q statistic

are plotted in Figure 9 for N-standardization and AR-normalization. For each365

plot, two detection thresholds are represented, for α = 1% and for α = 0.1%.

Table 3 shows the false detection rates for each normalization approach with
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Table 3: False detection rates on the test set ΩN0 with N-standardization and AR-

normalization.

T 2 Q T 2 OR Q

α 1% 0.1% 1% 0.1% 1% 0.1%

N-standardization 0.058 0.007 0.111 0.012 0.118 0.019

AR-normalization 0.003 0.000 0.067 0.012 0.070 0.012

T 2, with Q, and with T 2 OR Q where a plant vector is detected as faulty if it

is faulty with T 2 or with Q. The false detection rate is expressed as the ratio

of plant vectors in the test set ΩN0 detected as faulty compared to the total370

number of plant vectors in ΩN0. The false detection rates are given for the de-

tection thresholds with α = 1% and for the detection thresholds with α = 0.1%.

T 2
0.1% and Q0.1% are retained for the rest of the chapter as they provide a bet-

ter robustness with regard to fault detection for both N-standardization and

AR-normalization.375

The false detection rates for T 2 with AR-normalization are much lower than

the false detection rates for T 2 with N-standardization. For exampled, the T 2

statistic with N-standardization in Figure 8 presents a series of spikes that lead

to false detections. Those spikes corresponds to small variations in APZT154

and APZT142 that had a small variability in the training set Ω̌N0. The T 2
380

statistic with AR-normalization is more robust as it does not depend as much

on those process measurements.

Some of the variations in APZT154 and APZT142 are captured by the

Q statistic with AR-normalization, but the impact is not as high as with N-

standardization since the false detection rates for Q are still smaller with AR-385

normalization than with N-standardization (Table 3). Generally speaking, the

false detection rates with T 2 OR Q indicate that the fault detection is more

robust with AR-normalization than with N-standardization.
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Figure 8: T 2 statistic for the test set ΩN0 with N-standardization (top) and AR-normalization
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Figure 10: T 2 and Q statistics with N-standardization (blue) and with AR-normalization

(red) for one occurrence of each type of fault in Ω̌F .

Figure 10 shows the T 2 and Q statistics for one occurrence of each fault

with the corresponding detection thresholds T 2
0.1% and Q0.1%. The blue lines390

correspond to the scores with N-standardization, the red lines correspond to the

scores with AR-normalization. All four faults are well detected with T 2 and Q

for both N-standardization and AR-normalization, although AR-normalization

offers a better detection performance than N-standardization, in particular for

Fault 1. The deviation in the discharge pressure of P21 (APZT117) that occurs395

in Fault 1 is given more abnormal compared to the alarm range than compared

to the standard deviation in in training set, and T 2 with AR-normalization

detects the fault before T 2 with N-standardization.

6.3. Fault isolation

Figure 11 shows the T 2 reconstruction-based contributions with N-standardization400

(in blue) and with AR-normalization (in red) for one occurrence of each type

of fault, and Figure 12 shows the Q reconstruction-based contributions with N-
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standardization (in blue) and with AR-normalization (in red). The reconstruction-

based contributions are plotted in the early stage of the fault, as soon as it is

detected, to identify the first variables affected.405

For the first three faults, the T 2 reconstruction-based contribution plots with

N-standardization and with AR-normalization are comparable. APZT117 (dis-

charge pressure of P21) and APZT140 (suction pressure of P22) are identified

as the most contributing variables in Fault 1 since the pressure drop in the in-

coming water has more effect on P21 than on P11. The pressure drop in the410

incoming water also affects APZT117 and APZT140 in Fault 2 but the trip

of P21 has an immediate effect on the discharge pressures of P22 (APZT142)

and P12 (APZT143), whose T 2 contributions exceed the ones of APZT117 and

APZT140. For Fault 3, N-standardization and AR-normalization both high-

light the T 2 contribution of AFZT139, the water flow to the water injection415

tank WIT2. While the whole water system is affected by the drop in pressure

and flow caused by the fuel change, the effect on AFZT139 has more importance

because the water flow to WIT2 is the key controlled variable of the system.

Any variation in this flow is considered as highly abnormal, both compared to

statistical variations in the training set Ω̌N0 and compared to the alarm thresh-420

olds.

However, the T 2 contributions with N-standardization and with AR-normalization

differ for Fault 4. APZT154 (suction pressure of P12) is identified as the most

contributing variable to Fault 4 with N-standardization but has a minor T 2

contribution with AR-normalization. This is because APZT154 presents small425

variations in the training set Ω̌N0. The high contribution of this variable hides

the real root cause of the fault. Fault 4 starts with a trip of P21 (due to high

vibrations in the motor of the pump), so the process variables affiliated to this

pump should be highlighted as root causes. The highest contribution to the T 2

statistic with AR-normalization for this fault is APZT117 which is the discharge430

pressure of P21. Therefore, Fault 4 is an example of how AR-normalization im-

proves the fault isolation by highlighting in priority the process measurements

with large variations compared to their alarm thresholds.
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Figure 11: T 2 reconstruction-based contribution plots with N-standardization (blue) and with

AR-normalization (red) for one occurrence of each type of fault in Ω̌F .
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Figure 12: Q reconstruction-based contribution plots with N-standardization (blue) and with

AR-normalization (red) for one occurrence of each type of fault in Ω̌F .
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The Q contributions of Figure 12 confirm some of the variables isolated using

the T 2 contributions (e.g. APZT117 and APZT140 for Fault 1 and Fault 4 and435

APZT142 for Fault 2) and highlight some variables that are not captured in T 2

such as the discharge flow of P21 (AFZT115) in Fault 1.

6.4. Fault identification

The fault identification is tested on a test set ΩF of data containing new

occurrences of faults 1 to 4. Figure 13 and Figure 14 show the classification440

results respectively with F-standardization and AR-normalization. The classi-

fication results are displayed for each fault occurrence, and Fault 2-1 and Fault

2-2 correspond for example to the first and second occurrences of Fault 2 in ΩF .

For each figure, the detection is done using the T 2 statistic of the PCA with

AR-normalization. The classification outcome is displayed as soon as the fault445

is detected. Each point indicates a new sample appearing every second. Black

points indicate samples that are not detected as faulty, and the other colours

indicate the classification outcome.

Classification with AR-normalization outperforms classification with F-standardization

in both early stage classification and steady-state classification. For early stage450

classification, the classifier with AR-normalization correctly identifies faults 2-

1, 2-2, 3-1, 3-2, 3-4, 3-6 and 4-1 before the classifier with F-standardization.

For steady-state classification, the classifier with AR-normalization identifies all

faults correctly in their steady-state while the classifier with F-standardization

classifies Fault 2-1 as Fault 3 and Fault 3-7 as Fault 2.455

Fault 3-7 illustrates the advantages of AR-normalizations over F-standardization.

This occurrence of Fault 3 is classified as Fault 2 in steady-state with F-standardization,

but is correctly classified with AR-normalization. Figure 15 gives more details

about the classification for this fault. The figure shows the values taken by

each process variable during the training occurrence of Fault 2 (in yellow) and460

during the training occurrence of Fault 3 (in green), as well as the values taken

during Fault 3-7 (in red). The values are displayed for F-standardization and

AR-normalization. The mean-centered values are also displayed for comparison.
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Figure 13: Classification outcomes with 1NN and F-standardization.
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Figure 14: Classification outcomes with 1NN and AR-normalization.
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Figure 15: Normalized plant vectors x̃(tn) for the training occurrence of Fault 2 (yellow) and

Fault 3 (green), and for Fault 3-7 (red). Each point corresponds to the value of each process

variable in x̃(tn) at a certain time tn during the development of the fault.

The main discriminating process variable between Fault 2 and Fault 3 is

APZT141, which is the discharge pressure of P11. In the case of Fault 2,465

APZT141 increases significantly since the trip of P21 causes P11 to pump more

water. In Fault 3, all the pumps of the PWRI section are affected by the fuel

change and the flow and pressure in the water system go down. In this case,

the discharge pressure of P11 stays constant or decreases.

With mean-centering or F-standardization, the variations of APZT141 are470

small compared to the variations of other process variables. AR-normalization

shows that the variations of APZT141 are actually significant (in Fault 2) com-

pared to its alarm thresholds, and the weight of the variations of other process

variables is reduced. As a result, the behaviour of APZT141 has a major impact

on the classification outcome with AR-normalization, and Fault 3-7 is correctly475

classified. With the other normalizations, Fault 3-7 is misclassified as Fault 2

since the amplitudes of the drop in the flows (AFT121, AFZT114, AFZT139,

29



and AFZT115) are closer to the amplitude of the drops in Fault 2 than in Fault

3.

7. Conclusion480

Recent work has demonstrated the benefits of integrating alarm logs in fault

detection and diagnosis. This paper affirms that alarm settings defined during

the alarm design stage based on engineering and safety considerations can also

be exploited to improve fault detection, fault isolation and fault identification.

A normalization of the process measurements based on their alarm thresholds485

is proposed. Fault detection and diagnosis methods are dependent on the avail-

ability of process measurements, and the current normalization methods such

as standardization are also impacted by the choice of the training set. AR-

normalization is independent of the statistics of the training data and takes

into account the acceptable range of variation of each process measurement.490

The oil gas separation plant case study showed how traditional standardization

approaches could lead to spurious results when some process measurements in

the training data do not present representative variations. In this case, AR-

normalization improved the robustness of the fault detection, isolation, and

identification.495

8. Conflict of interest

The authors declare that there is no conflict of interest in this paper.

References

Alcala, C.F., Qin, S.J., 2009. Reconstruction-based contribution for process

monitoring. Automatica 45, 1593–1600. doi:10.1016/j.automatica.2009.500

02.027.

Braatz, L H Chiang, E.L.R., D, R., 2001. Fault Detection and Diagnosis in

Industrial Systems. Advanced Textbooks in Control and Signal Processing,

Springer London, London. doi:10.1088/0957-0233/12/10/706.

30

http://dx.doi.org/10.1016/j.automatica.2009.02.027
http://dx.doi.org/10.1016/j.automatica.2009.02.027
http://dx.doi.org/10.1016/j.automatica.2009.02.027
http://dx.doi.org/10.1088/0957-0233/12/10/706


Charbonnier, S., Bouchair, N., Gayet, P., 2015. A weighted dissimilarity index505

to isolate faults during alarm floods. Control Engineering Practice 45, 110–

122. doi:10.1016/j.conengprac.2015.09.004.

Charbonnier, S., Bouchair, N., Gayet, P., 2016. Fault template extraction to

assist operators during industrial alarm floods. Engineering Applications of

Artificial Intelligence 50, 32–44. doi:10.1016/j.engappai.2015.12.007.510

Dorgo, G., Pigler, P., Abonyi, J., 2018. Understanding the importance of process

alarms based on the analysis of deep recurrent neural networks trained for

fault isolation. Journal of Chemometrics , 1–18doi:10.1002/cem.3006.

Gajjar, S., Palazoglu, A., 2016. A data-driven multidimensional visualization

technique for process fault detection and diagnosis. Chemometrics and In-515

telligent Laboratory Systems 154, 122–136. doi:10.1016/j.chemolab.2016.

03.027.

Ge, Z., Song, Z., Ding, S.X., Huang, B., 2017. Data mining and analytics in the

process industry: The role of machine learning. IEEE Access 5, 20590–20616.

doi:10.1109/ACCESS.2017.2756872.520

Ge, Z., Song, Z., Gao, F., 2013. Review of recent research on data-based process

monitoring. Industrial and Engineering Chemistry Research 52, 3543–3562.

doi:10.1021/ie302069q.

Hollifield, B.R., Habibi, E., 2011. Alarm Management: A Comprehensive Guide:

Practical and Proven Methods to Optimize the Performance of Alarm Man-525

agement Systems. ISA.

Hu, W., Chen, T., Shah, S.L., Hollender, M., 2017a. Cause and effect analysis

for decision support in alarm floods. IFAC-PapersOnLine 50, 13940–13945.

doi:10.1016/j.ifacol.2017.08.2215.

Hu, W., Wang, J., Chen, T., Shah, S.L., 2017b. Cause-effect analysis of indus-530

trial alarm variables using transfer entropies. Control Engineering Practice

64, 205–214. doi:10.1016/j.conengprac.2017.04.012.

31

http://dx.doi.org/10.1016/j.conengprac.2015.09.004
http://dx.doi.org/10.1016/j.engappai.2015.12.007
http://dx.doi.org/10.1002/cem.3006
http://dx.doi.org/10.1016/j.chemolab.2016.03.027
http://dx.doi.org/10.1016/j.chemolab.2016.03.027
http://dx.doi.org/10.1016/j.chemolab.2016.03.027
http://dx.doi.org/10.1109/ACCESS.2017.2756872
http://dx.doi.org/10.1021/ie302069q
http://dx.doi.org/10.1016/j.ifacol.2017.08.2215
http://dx.doi.org/10.1016/j.conengprac.2017.04.012


IEC (International Electrotechnical Commission), 2014. Management of Alarm

Systems for the Process Industries. IEC 62682. IEC.

Lai, S., Yang, F., Chen, T., 2017. Online pattern matching and prediction of535

incoming alarm floods. Journal of Process Control 56, 69–78. doi:10.1016/

j.jprocont.2017.01.003.

Lucke, M., Chioua, M., Grimholt, C., Hollender, M., Thornhill, N.F., 2018a. On

improving fault detection and diagnosis using alarm-range normalisation, in:

Proceedings of 10th SAFEPROCESS Symposium, Warsaw, Poland, August540

29-31, IFAC-PapersOnLine, pp. 1227–1232. doi:10.1016/j.ifacol.2018.

09.695.

Lucke, M., Chioua, M., Grimholt, C., Hollender, M., Thornhill, N.F., 2018b.

Online alarm flood classification using alarm coactivations, in: Proceed-

ings of 10th ADCHEM Symposium, Shenyang, China, July 25-27, IFAC-545

PapersOnLine, pp. 345–350. doi:10.1016/j.ifacol.2018.09.324.

Lucke, M., Chioua, M., Grimholt, C., Hollender, M., Thornhill, N.F., 2019a.

Advances in alarm data analysis with a practical application to online alarm

flood classification. Journal of Process Control 79, 56–71. doi:10.1016/j.

jprocont.2019.04.010.550

Lucke, M., Mei, X., Stief, A., Chioua, M., Thornhill, N.F., 2019b. Variable

selection for fault detection and identification based on mutual information

of alarm series, in: Proceedings of 12th DYCOPS Symposium, Florianópolis,
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