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Abstract

This paper proposes new nonnegative (shallow and multi-layer) autoencoders by
combining the spiking Random Neural Network (RNN) model, the network archi-
tecture typical used in deep-learning area and the training technique inspired from
nonnegative matrix factorization (NMF). The shallow autoencoder is a simplified
RNN model, which is then stacked into a multi-layer architecture. The learning
algorithm is based on the weight update rules in NMF, subject to the nonnegative
probability constraints of the RNN. The autoencoders equipped with this learning
algorithm are tested on typical image datasets including the MNIST, Yale face and
CIFAR-10 datasets, and also using 16 real-world datasets from different areas. The
results obtained through these tests yield the desired high learning and recogni-
tion accuracy. Also, numerical simulations of the stochastic spiking behavior of
this RNN auto encoder, show that it can be implemented in a highly-distributed
manner.

1 Introduction

A mathematical tool that has existed since 1989 [1–3], but is less well known in the machine-learning
community, is the Random Neural Network (RNN), which is a stochastic integer-state “integrate
and fire” system and developed to mimic the behaviour of biological neurons in the brain. In an
RNN, an arbitrarily large set of neurons interact with each other via excitatory and inhibitory spikes
which modify each neuron’s action potential in continuous time. The power of the RNN lays on the
fact that, in steady state, the stochastic spiking behaviors of the network have a remarkable property
called “product form” and that the state probability distribution is given by an easily solvable system
of non-linear equations. The RNN has been used for numerous applications [4–15] that exploit its
recurrent structure.

Deep learning has achieved great success in machine learning [16,17]. Many computational models in
deep learning exploit a feed-forward neural-network architecture that is composed of multi-processing
layers, which allows the model to extract high-level representations from raw data. The feed-forward
fully-connected multi-layer neural network could be difficult to train [18]. Pre-training the network
layer by layer is a great advance [16, 19] and useful due to its wide adaptability, though recent
literature shows that utilizing the rectified linear unit (ReLU) could train a deep neural network
without pre-training [20]. The typical training procedure called stochastic gradient descent (SGD)
provides a practical choice for handling large datasets [21].

Nonnegative matrix factorization (NMF) is also a popular topic in machine learning [22–26], which
learns part-based representations of raw data. Lee [22] suggested that the perception of the whole in
the brain may be based on these part-based representations (based on the physiological evidence [27])
and proposed simple yet effective update rules. Hoyer [24] combined sparse coding and NMF that
allows control over sparseness. Ding investigated the equivalence between the NMF and K-means
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clustering in [26, 28] and presented simple update rules for orthogonal NMF. Wang [25] provided a
comprehensive review on recent processes in the NMF area.

This paper first exploits the structure of the RNN equations as a quasi-linear structure. Using it in
the feed-forward case, an RNN-based shallow nonnegative autoencoder is constructed. Then, this
shallow autoencoder is stacked into a multi-layer feed-forward autoencoder following the network
architecture in the deep learning area [16, 17, 19]. Since connecting weights in the RNN are products
of firing rates and transition probabilities, they are subject to the constraints of nonnegativity and
that the sum of probabilities is no larger than 1, which are called the RNN constraints in this paper.
In view of that, the conventional gradient descent is not applicable for training such an autoencoder.
By adapting the update rules from nonnegative graph embedding that can be seemed as a variant of
NMF, applicable update rules are developed for the autoencoder that satisfy the first RNN constraint
of nonnegativity. For the second RNN constraint, we impose a check-and-adjust procedure into
the iterative learning process of the learning algorithms. The training procedure of SGD is also
adapted into the algorithms. The efficacy of the nonnegative autoencoders equipped with the learning
algorithms is well verified via numerical experiments on both typical image datasets including the
MNIST [29], Yale face [30] and CIFAR-10 [31] datesets and 16 real-world datasets in different areas
from the UCI machine learning repository [32]. Then, we simulate the spiking behaviors of the RNN-
based autoencoder, where simulation results conform well with the corresponding numerical results,
therefore demonstrating that this nonnegative autoencoder can be implemented in a highly-distributed
and parallel manner.

2 A quasi-linear simplified random neural network

An arbitrary neuron in the RNN can receive excitatory or inhibitory spikes from external sources, in
which case they arrive according to independent Poisson processes. Excitatory or inhibitory spikes
can also arrive from other neurons to a given neuron, in which case they arrive when the sending
neuron fires, which happens only if that neuron’s input state is positive (i.e. the neuron is excited)
and inter-firing intervals from the same neuron v are exponentially distributed random variables with
rate rv ≥ 0. Since the firing times depend on the internal state of the sensing neuron, the arrival
process of neurons from other cells is not in general Poisson. From the preceding assumptions it was
proved in [3] that for an arbitrary N neuron RNN, which may or may not be recurrent (i.e. containing
feedback loops), the probability in steady-state that any cell h, located anywhere in the network, is
excited is given by the expression:

qh = min(
λ+h +

∑N
v=1 qvrvp

+
vh

rh + λ−h +
∑N

v=1 qvrvp
−
vh

, 1), (1)

for h = 1, ... , N , where p+vh, p
−
vh are the probabilities that cell v may send excitatory or inhibitory

spikes to cell h, and λ+h , λ
−
h are the external arrival rates of excitatory and inhibitory spikes to neuron

h. Note that min(a, b) is a element-wise operation whose output is the smaller one between a and b.
In [3], it was shown that the system of N non-linear equations (1) have a solution which is unique.

Before adapting the RNN as a non-negative autoencoder (Section 3), we will simplify the recurrent
RNN model into the feed-forward structure shown in Figure 1. The simplified RNN has an input
layer and a hidden layer. The V input neurons receive excitatory spikes from the outside world, and
they fire excitatory spikes to the H hidden neurons.

Let us denote by q̂v the probability that the vth input neuron (v = 1, · · · , V ) is excited and qh the
probability that the hth hidden neuron (h = 1, · · · , H) is excited. According to [1] and (1), they are
given by q̂v = min(Λ̂+

v /r̂v, 1), and qh = min(Λ+
h /rh, 1), where the quantities Λ̂+

v and Λ+
h represent

the total average arrival rates of excitatory spikes, r̂v and rh represent the firing rates of the neurons.
Neurons in this model interact with each other in the following manner, where h = 1, · · · , H and
v = 1, · · · , V . When the vth input neuron fires, it sends excitatory spikes to the hth hidden neuron
with probability p+v,h ≥ 0. Clearly,

∑H
h=1 p

+
v,h ≤ 1.

• The vth input neuron receives excitatory spikes from the outside world with rate xv ≥ 0.
•When the hth hidden neuron fires, it sends excitatory spikes outside the network.

Let us denote wv,h = p+v,hr̂v. For simplicity, let us set the firing rates of all neurons to r̂v = rh = 1

or that
∑H

h=1 wv,h ≤ 1. Then, Λ̂+
v = xv , r̂v = 1, Λ+

h =
∑V

v=1 wv,hq̂v , and using the fact that qh, qv
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Figure 1: Brief model structure of the quasi-linear RNN.

are probabilities, we can write:

q̂v = min(xv, 1), qh = min(

V∑
v=1

wv,hq̂v, 1), (2)

subject to
∑H

h=1 wv,h ≤ 1. We can see from (2) that this simplified RNN is quasi linear. For the
network shown in Figure 1, we call it a quasi-linear RNN (LRNN).

3 Shallow non-negative LRNN autoencoder

We add an output layer with O neurons on top of the hidden layer of the LRNN shown in Figure 1
to construct a shallow non-negative LRNN autoencoder. Let qo denote the probability that the oth
output neuron is excited, and the oth output neurons interact with the LRNN in the following manner,
where o = 1, · · · , O.
•When the hth hidden neuron fires, it sends excitatory spikes to the oth output neuron with probability
p+h,o ≥ 0. Also,

∑O
o=1 p

+
h,o ≤ 1.

• The firing rate of the oth output neuron ro = 1.
Let wh,o = p+h,orh = p+h,o. Then,

∑O
o=1 wh,o ≤ 1. The shallow LRNN autoencoder is described by

q̂v = min(xv, 1), qh = min(

V∑
v=1

wv,hq̂v, 1), qo = min(

H∑
h=1

wh,oqh, 1), (3)

where O = V and the input, hidden and output layers are the visual, encoding and decoding layers.

Suppose there is a dataset represented by a nonnegative D × V matrix X = [xd,v], where D is the
number of instances, each instance has V attributes and xd,v is the vth attribute of the dth instance.
We import X into the input layer of the LRNN autoencoder. Let q̂d,v, qd,h and qd,o respectively
denote the values of q̂v , qd and qo for the dth instance.

Let a D × V -matrix Q̂ = [q̂d,v], a D × H-matrix Q = [qd,h], a D × O-matrix Q = [qd,o], a
V × U -matrix W = [wv,h] and a H × O-matrix W = [wh,o]. Then, (3) can be rewritten as the
following matrix manner:

Q̂ = min(X, 1), Q = min(Q̂W, 1), Q = min(QW, 1), (4)

subject to the RNN constraints W ≥ 0, W ≥ 0,
∑H

h=1 wv,h ≤ 1 and
∑O

o=1 wh,o ≤ 1. The problem
for the autoecoder to learn the dataset X can be described as

arg min
W,W
||X −Q||2, s.t. W ≥ 0,W ≥ 0,

H∑
h=1

wv,h ≤ 1,

O∑
o=1

wh,o ≤ 1. (5)

We use the following update rules to solve this problem, which are simplified from Liu’s work [33]:

wv,h ← wv,h
(XTXW

T
)v,h

(XTXWWW
T
)v,h

, (6)

wh,o ← wh,o
(W TXTX)h,o

(W TXTXWW )h,o
, (7)
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where the symbol (·)v,h denotes the element in the vth row and hth column of a matrix. Note that, to
avoid the division-by-zero problem, zero elements in the denominators of (6) and (7) are replaced with
tiny positive values, (e.g., “eps” in MATLAB). After each update, adjustments need to be made such
that W and W satisfy the RNN constraints. The procedure to train the shallow LRNN autoencoder
(4) is given in Algorithm 1, where the operation max(W ) produces the maximal element in W , the
operations of wv,h ← wv,h/

∑H
h=1 wv,h and wh,o ← wh,o/

∑O
o=1 wh,o guarantee that the weights

satisfy the RNN constraints, and the operations W ← W/max(X̄W ) and W ← W/max(HW )
normalize the weights to reduce the number of neurons that are saturated.

Algorithm 1 Procedure for training a shallow nonnegatvie LRNN autoencder (4)

Randomly initialize W and W that satisfy RNN constraints
while terminal condition is not satisfied do

for each minibatch X̄ do
update W with (6)
for v = 1, · · · , V do

if
∑H

h=1 wv,h > 1

wv,h ← wv,h/
∑H

h=1 wv,h, for h = 1, · · · , H
W ←W/max(X̄W )
update W with (7)
for h = 1, · · · , H do

if
∑O

o=1 wh,o > 1

wh,o ← wh,o/
∑O

o=1 wh,o, for o = 1, · · · , O
H = min(X̄W, 1)
W ←W/max(HW )

4 Multi-layer non-negative LRNN autoencoder

We stack multi LRNNs to build a multi-layer non-negative LRNN autoencoder. Suppose the multi-
layer autoencoder has a visual layer, M encoding layers and M decoding layer (M ≥ 2), and they
are connected in series with excitatory weights Wm and W with m = 1, · · · ,M . We import a dataset
X into the visual layer of the autoencoder. Let Hm and Om denote the numbers of neurons in the
mth encoding layer and decoding layer, respectively. For the autoencoder, V = OM , Hm = OM−m

with m = 1, · · · ,M − 1.

Let Q̂ denote the state of the visual layer, Qm denote the state of the mth encoding layer and Qm
denote the state of the mth decoding layer. Then, the multi-layer LRNN autoencoder is described by{

Q̂ = min(X, 1), Q1 = min(Q̂W1, 1), Qm = min(Qm−1Wm, 1),

Q1 = min(QMW 1, 1), Qm = min(Qm−1Wm, 1),
(8)

with m = 2, · · · ,M . The RNN constraints for (8) are Wm ≥ 0, Wm ≥ 0 and the summation of each
row in Wm and Wm is not larger than 1, where m = 1, · · · ,M . The problem for the multi-layer
LRNN autoencoder (8) to learn dataset X can be described as

arg min
Wm,Wm

||X −QM ||2, (9)

subject to the RNN constraints, where m = 1, · · · ,M . The procedure to train the multi-layer
non-negative LRNN autoencder (8) is given in Algorithm 2.

To avoid loading the whole dataset into the computer memory, we could also use Algorithm 3 to train
the autoencoder, where the update rules could be

W1 ←W1 �
Q̂TQ̂W

T
M

Q̂TQ̂W1WMW
T
M

, Wm ←Wm �
QT

m−1Qm−1W
T
M−m+1

QT
m−1Qm−1WmWM−m+1W

T
M−m+1

, (10)

WM ←WM �
W T

1 Q̂
TQ̂

W T
1 Q̂

TQ̂W1WM

, WM−m+1 ←WM−m+1 �
W T

mQ
T
m−1Qm−1

W T
mQ

T
m−1Qm−1WmWM−m+1

,

(11)
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with m = 2, · · · ,M and the operation � denoting element-wise product of two matrices. To avoid
the division-by-zero problem, zero elements in denominators of (10) and (11) are replaced with
tiny positive values. The operations of adjusting the weights to satisfy the RNN constraints and
normalizing the weights are the same as those in Algorithm 1.

Algorithm 2 Proceduce for training a multi-layer LRNN-based non-negatvie autoencder (8)
X1 = X
for m = 1, · · · ,M do

Train Wm and WM−m+1 with Algorithm 1 that takes Xm as input dataset
if m 6= M do
Xm+1 = min(XmWm, 1)

Algorithm 3 Proceduce for training a multi-layer LRNN-based non-negatvie autoencder (8) (mini-
batch manner)

Randomly initialize Wm and Wm that satisfy RNN constraints (with m = 1, · · · ,M )
while terminal condition is not satisfied do

for each minibatch X̄ do
for m = 1, · · · ,M do

update Wm with (10)
adjust Wm to satisfy RNN constraints
normalize Wm subject to X̄
update Wm with (11)
adjust Wm to satisfy RNN constraints
normalize Wm subject to X̄

5 Numerical Experiments

5.1 Datasets

MNIST: The MNIST dataset of handwritten digits [29] contains 60,000 and 10,000 images in the
training and test dataset. The number of input attributes is 784 (28× 28 images), which are in [0, 1].

Yale face: This database (http://vision.ucsd.edu/content/yale-face-database) con-
tains 165 gray scale images of 15 individuals. Here we use the pre-processed dataset from [30],
where each image is resized as 32× 32 (1024 pixels).

CIFAR-10: The CIFAR-10 dataset consists of 60,000 32× 32 colour images [31]. Each image has
3072 attributes. It contains 50,000 and 10,000 images in the training and test dataset.

UCI real-world datasets: In addition to image datasets, we also conduct numerical experiments on
different real-world datasets in different areas from the UCI machine learning repository [32]. The
names, attribute numbers and instance numbers of these datasets are listed in Table 1.

5.2 Convergence and reconstruction performance

Results of MNIST: Let us first test the convergence and reconstruction performance of the shallow
non-negative LRNN autoencoder. We use structures of 784 → 100 (for simplicity, we use the
encoding part to represent an autoencoder) and 784→ 50 and the MNIST dataset for experiments.
The whole training dataset of 60,000 images is used for training. Figure 2(a) shows the curves
of training error (mean square error) versus the number of iterations, where, in each iteration, a
minibatch of size 100 is handled. Then, we use a multi-layer non-negative LRNN autoencoder
with structure 784 → 1000 → 500 → 250 → 50, and the corresponding curve of training error
versus iterations is also given in Figure 2(a). It can be seen from Figure 2(a) that reconstruction
errors using the LRNN autoencoders equipped with the developed algorithms converge well for
different structures. In addition, the lowest errors using the shallow and multi–layer autoencoders
are respectively 0.0204 and 0.0190. The results show that, for the same encoding dimension, the
performances of the shallow and multi-layer structures are similar for this dataset.
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Table 1: Features of different UCI real-world datasets from different areas
Dataset Attr. No. Inst. No.
Iris 4 150
Teaching Assistant Evaluation (TAE) 5 151
Liver Disorders (LD) 5 345
Seeds 7 210
Pima Indians Diabetes (PID) 8 768
Breast Cancer Wisconsin (BC) [34–36] 9 699
Glass 9 214
Wine 13 178
Zoo 16 100
Parkinsons [37] 22 195
Wall-Following Robot Navigation (WFRN) [38] 24 5456
Ionosphere [39] 34 351
Soybean Large (SL) 35 186
First-Order Theorem Proving (FOTP) [40] 51 6118
Sonar [41] 60 208
Cardiac Arrhythmia (CA) [42] 279 452

(a) MNIST (b) Yale face (c) CIFAR-10

Figure 2: Reconstruction error (Y-axis) versus iteration number (X-axis) of shallow and multi-layer
LRNN autoencoders for the MNIST, Yale face and CIFAR-10 datasets.

Results of Yale face: Attribute values are normalized into [0, 1] (by dividing by 255). The structures
for the shallow and multi-layer LRNN autoencoders are respectively 1024→ 50 and 1024→ 500→
100→ 50. The size of a minibatch is 5. Curves of reconstruction errors versus iterations are given in
Figure 2(b). For this dataset, the shallow autoencoder seems more stable than the multi-layer one.

Results of CIFAR-10: Attribute values of the dataset are also divided by 255 for normalization
in range [0, 1]. The structures used are 3072 → 150 and 3072 → 1000 → 500 → 150. Both the
training and testing dataset (total 60,000 images) are used for training the autoencoders. The size
of minibatch is chosen as 100. The results are given in Figure 2(c). We can see that reconstruction
errors for both structures converge as the number of iterations increases. In addition, the lowest
reconstruction errors in using the shallow and multi-layer autoencoders are the same (0.0082). These
results together with those with the MNIST and Yale face datasets (Figures 2(a) to 2(c)) verify
the good convergence and reconstruction performance of both the shallow and multi-layer LRNN
autoencoders for handling image datsets.

Results of UCI real-world datasets: Let N denote the attribute number in a dataset. The structures
of the LRNN autoencoders used are N → round(N/2), where the operation round(·) produces
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Figure 3: Reconstruction error (Y-axis) versus iteration number (X-axis) of nonnegative LRNN
autoencoders for UCI real-world datasets.

the nearest integer number of the element. The attribute values are linear normalized in range
[0, 1]. The size of mini-batches is set as 50 for all datasets. Curves of reconstruction errors versus
iterations are given in Figure 3. We see that the reconstruction errors generally decrease as the
number of iterations increases. These results also demonstrate the efficacy of the nonnegative LRNN
autoencoders equipped with the training algorithms.

6 Simulating the spiking random neural network

The advantage of a spiking model, such as the LRNN autoencoder, lays on its highly-distributed
nature. In this section, rather than numerical calculation, we simulate the stochastic spiking behaviors
of the LRNN autoencoder. The simulation in this section is based on the numerical experiment
of Subsection 5.2. Specifically, in Subsection 5.2, we construct a LRNN autoencoder of structure
784→ 100 (with appropriate weights found), which has three layers: the visual layer (784 neurons),
hidden layer (100 neurons) and output layer (784 neurons). First, an image with 28 × 28 = 784
attributes is taken from the MNIST dataset. Each visual neuron receives excitatory spikes from
outside the network in a Poisson stream with the rate being the corresponding attribute value in the
image. When activated, the visual neurons fire excitatory spikes to the hidden neurons according
to the Poisson process with rate 1 (meaning wv,h = p+v,h). When the vth visual neuron fires to the
hidden layer, the spike goes to the hth hidden neuron with probability p+v,h or it goes outside the

network with probability 1 −
∑H

h=1 p
+
v,h. The hidden neurons fire excitatory spikes to the output
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Figure 4: Comparisons between numerical and spiking–behavior simulation results of difference
layers in a LRNN autoencoder.

layer in a similar manner subjecting to wh,o. The firing rate of output neurons is 1 and the spikes go
outside the network with probability 1.

In the simulation, we call it an event whenever a spike gets in from outside the network or a neuron
fires. During the simulation, we observe the potential (the level of activation) of each neuron once
every 1,000 events. Let ki,b represent the bth observation of the ith neuron. We estimate the average
potential of the ith neuron, denoted by k̄i, simply by averaging observations, i.e., k̄i ≈ (

∑B
b=1 ki,b)/B.

Let qi denote the probability that the ith neuron is activated. The relation between qi and k̄i is known
as k̄i = qi/(1− qi). Then, the value of qi can be estimated during the simulation as:

qi =
k̄i

1 + k̄i
≈

(
∑B

b=1 ki,b)/B

1 + (
∑B

b=1 ki,b)/B
. (12)

In Figure 4, we visualize the estimated values of qi for all neurons in different layers after 10,000,
100,000 and 1,000,000 events during the simulation. For comparison, numerical results from
Subsection 5.2 are also given in Figure 4. At the beginning, simulation results of only the visual
layer are close to its numerical results. As time evolves, the simulation results of the hidden and
output layers and their corresponding numerical results become more and more similar. These results
demonstrate that the LRNN autoencoders have the potential to be implemented in a highly distributed
and parallel manner.

7 Conclusions

New nonnegative autoencoders (the shallow and multi-layer LRNN autoencoders) have been proposed
based on the spiking RNN model, which adopt the feed-forword multi-layer network architecture
in the deep-learning area. To comply the RNN constraints of nonnegativity and that the sum of
probabilities is no larger than 1, learning algorithms have been developed by adapting weight update
rules from the NMF area. Numerical results based on typical image datasets including the MNIST,
Yale face and CIFAR-10 datesets and 16 real-world datasets from different areas have well verified
the robust convergence and reconstruction performance of the LRNN autoencoder. In addition to
numerical experiments, we have conducted simulations of the autoencoder where the stochastic
spiking behaviors are simulated. Simulation results conform well with the corresponding numerical
results. This demonstrates that the LRNN autoencoder can be implemented in a highly distributed
and parallel manner.
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