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Abstract: Estimating air pollution exposure has long been a challenge for environmental health
researchers. Technological advances and novel machine learning methods have allowed us to increase
the geographic range and accuracy of exposure models, making them a valuable tool in conducting
health studies and identifying hotspots of pollution. Here, we have created a prediction model for
daily PM2.5 levels in the Greater London area from 1st January 2005 to 31st December 2013 using an
ensemble machine learning approach incorporating satellite aerosol optical depth (AOD), land use,
and meteorological data. The predictions were made on a 1 km × 1 km scale over 3960 grid cells.
The ensemble included predictions from three different machine learners: a random forest (RF),
a gradient boosting machine (GBM), and a k-nearest neighbor (KNN) approach. Our ensemble model
performed very well, with a ten-fold cross-validated R2 of 0.828. Of the three machine learners,
the random forest outperformed the GBM and KNN. Our model was particularly adept at predicting
day-to-day changes in PM2.5 levels with an out-of-sample temporal R2 of 0.882. However, its ability
to predict spatial variability was weaker, with a R2 of 0.396. We believe this to be due to the smaller
spatial variation in pollutant levels in this area.

Keywords: air pollution; particulate matter; machine learning; exposure modeling

1. Introduction

Environmental research has long dealt with issues in exposure assessment, particularly in studies
involving air pollutants. Direct individual measurements using personal monitors are costly, difficult to
implement, and inconvenient for participants—effectively limiting the number of individuals that
may be recruited and the length of time that exposures are measured. Moreover, some monitors have
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large exposure measurement bias [1]. On the other hand, data from centrally placed monitors are
limited, both spatially and temporally. Using these would restrict the populations and areas that we
could study epidemiologically, increase uncertainty, and potentially introduce bias into health impact
assessments. Modeling exposures offers a solution that addresses these deficiencies.

The most widely studied component of air pollution is fine particulate matter, or PM2.5, which refers
to particles suspended in the air with an aerodynamic diameter of less than 2.5 micrometers.
These particles are of particular concern, as they are small enough to penetrate deep into the respiratory
system, cross biological membranes, and cause systemic damage [2]. Exposure to PM2.5 has been
linked with mortality [3–9], cardiovascular outcomes [8,10–12], cerebrovascular outcomes [8,10,12,13],
respiratory outcomes [8,10,12], neurological outcomes [14,15], etc. These associations have been
observed even at levels below current regulatory standards, suggesting that no amount of particulate
matter in ambient air is safe [6,7,10,16]. Furthermore, it affects at least 95% of individuals [17],
making PM2.5 an essential component of current and future environmental research.

In recent years, the modeling of PM2.5 has centered around the use of aerosol optical depth
(AOD) obtained from satellite data as a key predictor of fine particulate matter levels [18–22].
Traditional modeling has usually relied on land-use regression (LUR) models and chemical transport
models (CTMs), to describe the relationship between predictors of PM2.5 and measured PM2.5 levels,
with later models incorporating both into generating predictions [23–30]. However, LURs are limited
in their ability to capture temporal variation and CTMs often do not correspond well with surface
pollution levels on their own.

Novel machine learning techniques allow us to create models with greater accuracy and flexibility
that can combine remote sensing, land use, meteorological, and CTM inputs. They are also better
at incorporating temporal variation than standard LURs. Machine learning algorithms allow us to
non-parametrically examine the relationship between the predictors of pollutant concentrations
and measured pollutant concentrations [28,31–36]. By allowing the learner to designate the
predictor-outcome relationship, this burden is removed from the researcher and automated, saving time
and making the most of both the data and the computational infrastructure now available. Overfitting is
avoided by tuning models, based on performance on held out measurements. These methods also
provide us with measures of variable importance, so that key consistent predictors may be identified.
These predictors can then be used in other models, as well as to inform mitigation policies.

The primary utility of these exposure models is their use in epidemiological studies. They ease
exposure assignment to the unit of study, and with greater accuracy, reduce the amount of measurement
error of exposure, and thus are preferable for use in statistical analyses [5,6,10,37–39]. The output may
also be used to identify areas with high exposures, as a predictor in other prediction models, and in
risk assessments.

Here, we incorporate AOD, land-use data, and meteorological data to predict PM2.5 levels on
a 1 km × 1 km scale, from 1st January 2005 to 31st December 2013 in the Greater London area, using an
ensemble model and four machine learning algorithms, which were calibrated using data derived from
a wide network of monitors.

2. Materials and Methods

We created a prediction model for daily PM2.5 in the Greater London area from 1st January 2005
to 31st December 2013. The predictions were made on a 1 km × 1 km scale. The total map consisted
of 3960 grid cells. In order to optimize the predictions, we utilized four different machine learning
methods: a gradient boosting machine (GBM), a random forest (RF), a deep neural network (NN),
and a k-nearest neighbor (KNN) learner. The predictions from each model were put into a final
generalized additive model (GAM) with a smoothed spatial term, to obtain the final average daily
PM2.5 levels in each grid cell. We expected that the use of an ensemble approach would result in better
predictions than those from a single model [40].
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2.1. Machine Learning Algorithms

The detailed specifics of how these machine learning algorithms work have been described
elsewhere [41–44]. The GBM and RF are both decision tree machine learning algorithms. The GBM
is a boosting decision tree method. This means that weak learners are created and the residuals
from these models are used to create stronger learners, with previous models essentially “boosting”
subsequent models and improving the predictions [41]. In a random forest, a large number of decision
trees are constructed and predictions from these individual trees are averaged to obtain the output [42].
The neural network, on the other hand, takes the input variables, much like a neuron responds to
stimuli, processes them through various combinations and weights, and generates predictions [43].
The k-nearest neighbor algorithm relies on the assumption that there is a proximal relationship between
values. It calculates a weighted average from the closest designated “k” neighbors, in order to generate
predictions [44]. Each machine learner was run separately on the data.

The individual machine learners were ensemble-averaged using a GAM, which included
a smoothed function of the predictions from each individual learner, plus a smoothed function
of latitude and longitude. The predictions from this GAM are the ensemble-averaged predictions.
The smoothing terms allow the weights given to each learner to vary with the pollution level, in case
one learner performs better in a specific range of PM2.5.

2.2. Input Variables

The covariates used in training the models were population density (persons/km2),
cloudiness (okta), barometric pressure (mBar/hPa), wind direction (◦N), wind speed (m/s), dew point
temperature (◦C), temperature (◦C), aerosol optical depth (AOD), land use type, distance to water
(km), distance to Heathrow airport (m), inverse of the height of the planetary boundary layer (m−1),
normalized difference vegetation index (NDVI), traffic counts, sine of day of the year, cosine of day
of the year, day of week, number of days from time of origin (1st January 2005), average daily PM2.5

across the greater London area (µg/m3), year, light at night, elevation (m), distance to nearest major
road (km), length of major road (km) in grid cell, number of bus stops in grid cell, distance to nearest
bus stop (km), average building height (m), and number of buildings in the grid cell. We selected these
variables, primarily based on expert knowledge and data availability. Meteorological variables are
known to affect the dispersion and transport of fine particulate matter. Land-use variables represent
potential sources of PM2.5 and areas of higher concern. The time variables account for the seasonal
variation in PM2.5 levels and the trend over several years. As previously mentioned, AOD is a key
predictor of PM2.5, with higher levels of AOD indicating higher PM2.5 levels [18–22]. We also used
cross-validated R2 values in the GBM algorithm to determine whether additional variables would
improve model performance in deciding whether to include them or not.

2.3. Data Sources

The meteorological variables were obtained from the UK Meteorological Office. Traffic counts
were obtained from the Department of Transport in the United Kingdom. The land use type was
derived from the Land Cover Map of Great Britain from 2007. The average building height, number of
buildings, distance to nearest major road from grid cell centroid, and length of major road in grid cell
were calculated using data provided by the Ordnance Survey. Elevation data was obtained from the
CGIAR Consortium for Spatial Information, who used Shuttle Radar Topography Mission (SRTM)
data from the United States Geological Survey (USGS) and NASA. Data on bus stops was obtained
from Transport for London on the London Datastore website.

We used AOD from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on
the Aqua and Terra satellites, as provided by the MAIAC algorithm at 1 km2 resolution [45]. There were
missing AOD values due to cloud cover and snow reflectance. We imputed these missing values using
a random forest approach and land use and meteorological predictors. The random forest approach
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had an internal cross-validation R2 score of 0.913 with a root mean square error (RMSE) of 0.037 for
AOD-terra and an R2 of 0.914 and RMSE of 0.036 for AOD-aqua, indicating very good predictive
ability for both these variables. NDVI was also obtained from MODIS satellite measurements. It was
measured every 16 days. Daily values were imputed spatially and temporally.

Mean annual light at night from 2015 was obtained from the Visible Infrared Imaging Radiometer
Suite (VIIRS) satellite, at a horizontal resolution of 750 m.

Population density was obtained on a 1 km × 1 km scale from Columbia University’s Center for
International Earth Science Information Network (CIESIN) [46].

2.4. PM2.5 Data

Predicted PM2.5 was compared to measured PM2.5 to train the models and assess the accuracy
of the various methods used. Measured PM2.5 was obtained from 24 monitoring sites for 2005–2008
and 33 sites for 2009–2013 across the Greater London area. Measured PM10 information was obtained
at 108 monitoring sites for 2005–2008 and 115 monitoring sites from 2009–2010. These values were
taken from the London Air Quality Network (londonair.org.uk) [47] and the UK Automatic Urban
and Rural Network (uk-air.defra.gov.uk) [48]. In order to predict PM2.5 at fixed sites with no PM2.5

measurements, but which measured PM10 and NOx, we used two methods: (1) a regression model
and (2) a random forest approach. The predictions from the two methods were used as independent
variables in a generalized additive model (GAM), in order to improve the fit of the model and therefore
provide a greatly enhanced database of PM2.5 estimated concentrations. These values were then treated
as our measured PM2.5, which we used for training and cross-validation. All PM measurements were
gravimetric equivalent [49]. Overall, measurements from 124 sites were used. The location of these
monitors can be seen in Figure 1.
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2.5. Hyper-Parameter Tuning

Although machine learning methods are non-parametric and do not require distributional
assumptions, they do require the specification of hyper-parameters, parameters that control the
learning process. In order to optimize the hyper-parameters for the algorithms, we used a grid
search and looked at the mean square error (MSE) and cross-validated R2 values. For the gradient
boosting machine, we looked at the following hyper-parameters: number of trees, maximum tree
depth, column sample rate, and learning rate. For the random forest, we also tuned the number of
trees and maximum tree depth. For the neural network we used two hidden layers and tuned the
number of neurons, the number of times the data is run through the network, the adaptive learning
rate, and two shrinkage parameters. For the k-nearest neighbor, we found the optimal value of “k”
using cross-validation.

uk-air.defra.gov.uk
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2.6. Predictions

After hyper-parameter tuning, we estimated average daily PM2.5 for 3960 grid cells, which covered
the greater London area, from 2005 to 2013, using each of the four methods. We then used predictions
from the four models in a generalized additive model (GAM), in different combinations, with a spline
term for longitude and latitude to allow the predictions to vary spatially. If any of the final predictions
were negative, we set the value of PM2.5 to zero. This represented less than 0.00014% of predictions.

We used ten-fold cross-validation to check the robustness of our model. We divided the monitoring
stations into ten groups. Each model was trained on data from ninety percent of the monitors and
predicted in the held-out ten percent. This process was repeated ten times to fully recreate the measured
dataset from the portion of the data in which training did not occur. We then looked at the correlation
of the predicted PM2.5 with the measured PM2.5. In order to look at the model’s ability to capture
spatial variation, we compared annual average predicted PM2.5 to the measured annual average PM2.5

at monitoring sites, as seen in the equation below:

Annual Measured PM2.5i j = β0 + β1Annual Predicted PM2.5i j (1)

where i is the monitoring site and j is the year. In order to look at the temporal accuracy, we looked at
the difference between predicted and measured PM2.5 levels and their annual averages, as seen in the
equation below:

Daily Measured PM2.5i j −Annual Measured PM2.5i j

= β0 + β1
(
Daily Predicted PM2.5i j −Annual Predicted PM2.5i j

) (2)

We chose our final prediction model based on the overall, spatial, and temporal adjusted R2 values.
To assess the linearity of the relationship between predicted and measured PM2.5, we regressed

the final predictions against the measurements for both the spatial and temporal component,
using a penalized spline, which chooses the degree of nonlinearity based on the restricted maximum
likelihood. The spatial component was modeled using the following equation:

Annual Measured PM2.5i j = s
(
Annual Predicted PM2.5i j

)
+ εi j (3)

In this equation, i is the monitoring site and j is the year, and s is a smoothing function. We modeled
the temporal component using the equation below:

Daily Measured PM2.5i j −Annual Measured PM2.5i j

= s
(
Daily Predicted PM2.5i j −Annual Predicted PM2.5i j

)
+ εi j

(4)

In this equation, i is the monitoring site and j is the day/year of the day, and s is a smoothing function.
All data cleaning and processing operations were done in R Statistical Software Version 3.6.1.

The machine learning algorithms and predictions, in particular, were run using the “H2O” and “caret”
packages [50,51].

3. Results

The results of the ten-fold cross-validation can be seen in Table 1.

Table 1. Ten-Fold Cross-Validation Results.

Model Overall
R2 RMSE Intercept Slope Spatial

R2 RMSE Intercept Slope Temporal
R2 RMSE Intercept Slope

RF 0.830 4.278 −0.120 0.989 0.386 2.660 −0.827 1.032 0.886 3.297 0.000 0.988
GBM 0.826 4.331 0.081 0.978 0.393 2.644 −0.328 1.003 0.880 3.381 0.000 0.978
NN 0.793 4.728 0.179 0.956 0.266 3.033 4.92 0.671 0.861 3.642 0.000 0.976

KNN 0.791 4.721 0.107 0.965 0.237 2.985 2.356 0.826 0.863 3.623 0.000 0.972
Final Ensemble Model 0.828 4.231 0.058 0.979 0.396 2.637 −0.216 0.996 0.882 3.556 0.000 0.979
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Taking all the results into consideration, the final model chosen was the GAM with the RF, GBM,
and KNN. The equation for this model can be seen below:

PMi j = s(longitudei, latitudei) + s
(
r f _predictioni j

)
+ s
(
gbm_predictioni j

)
+s
(
knn_predictioni j

)
+ εi j

(5)

In this equation, i refers to the grid cell and j refers to the day, and s is a smoothing function.
The NN showed fairly weak results and was subsequently dropped. The RF performed better than
the other machine learning methods, overall and temporally. However, the GBM had the strongest
spatial predictability. As such, incorporating both benefited the overall model in terms of its predictive
abilities across attributes.

The slope and intercept were obtained from regressing the predicted against the measured in
the ten held-out cross-validation samples, which recreated the full measured dataset. This both tests
for bias in the estimates and represents a form of regression calibration. The final ensemble model
had virtually no additive bias (intercept of 0.058), and little multiplicative bias (slope of 0.979 vs 1.0).
a biased slope could induce measurement error bias in epidemiological studies.

This model performed well during different seasons. The cross-validated R2 values were 0.851 for
winter, 0.809 for spring, 0.743 for summer, and 0.837 for fall.

The spatial R2 was not strong for any of the individual or ensemble averaged models. We modeled
the spatial residuals from various years (Figure 2) to see whether a pattern existed which our learners
had failed to capture.
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The residuals showed no discernible pattern for us to address. We further tested this idea by
calculating Moran’s I and seeing whether there was any spatial autocorrelation between the residuals.
The results in Table 2 suggest that the dispersion of the residuals is random and not guided by
a spatial trend.

Table 2. Moran’s I and Statistical Test.

Year Moran’s I p-Value

2005 −0.0132 0.446
2006 −0.0123 0.603
2007 −0.0125 0.953
2008 −0.0118 0.848
2009 −0.0114 0.552
2010 −0.0119 0.380
2011 −0.0116 0.167
2012 −0.0118 0.338
2013 −0.0122 0.500
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We also attempted to model the spatial variability separately from the temporal variability using
the GBM machine and found very poor spatial model performance (R2 = 0.09–0.12), indicating that our
ensemble approach would indeed be preferable.

We further modeled the population-weighted standard deviation of the annual predicted PM2.5

across the Greater London area to see whether annual PM2.5 changes in different parts of London were
the same across the years or not. Figure 3 shows that while there is not an obvious pattern across the
years, annual PM2.5 concentrations were slightly more homogeneous at the end of the study period in
2013 than at the beginning in 2005. This implies that daily changes in PM2.5 in a year are less dramatic
for later years than earlier years, after adjustment for population density.
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The final model was used to generate daily predictions for 3960 1-km by 1-km grid-cells which
cover the Greater London Area from 1st January 2005 to 31st December 2013. The mean daily measured
PM2.5 at monitoring stations was 16.1 µg/m3 with a standard deviation of 9.2 µg/m3. Across all
3960 grid-cells, the mean daily predicted PM2.5 level was 14.9 µg/m3, with a standard deviation
of 9.0 µg/m3, indicating that the monitors were located, on average, in more polluted locations.
Annually, the measured PM2.5 was 16.1 µg/m3 with a standard deviation of 0.6 µg/m3, as compared
to a predicted level (across all grid-cells) of 14.9 µg/m3, with a standard deviation of 0.6 µg/m3.
The measured and predicted values at monitoring sites closely resembled one another (Table 3).

Table 3. Distribution of Daily and Annual PM2.5 (µg/m3).

Minimum 25th
Percentile Median Mean 75th

Percentile Maximum Standard
Deviation

Daily Measured PM2.5 2.9 10.0 13.1 16.0 19.0 77.5 9.2
Daily Predicted PM2.5

(Monitoring Sites) 2.9 10.0 13.2 16.0 19.0 77.4 9.2

Daily Predicted PM2.5
(Grid-cells) 2.8 9.0 12.2 14.9 17.9 74.4 9.0

Annual Measured PM2.5 15.3 15.6 16.1 16.1 16.2 17.1 0.6
Annual Predicted PM2.5

(Monitoring Sites) 15.3 15.6 16.1 16.1 16.2 17.0 0.6

Annual Predicted PM2.5
(Grid-cells) 14.1 14.5 14.7 14.9 15.2 15.9 0.6

Annual predictions for the Greater London area can be seen in Figure 4. The center of London
is consistently the location with highest levels of fine particulate matter. The southern and western
regions of the area seem to have the lowest levels of pollution. Over the years, a general decrease can
be seen in the levels of PM2.5. By 2013, the average concentration in London had fallen to 16.1 µg/m3,
from a peak of 17.1 µg/m3 in 2011 and an initial concentration of 16.9 µg/m3 in 2005. This is most likely
attributable to regulatory policies and technological improvements.
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Of the variables used as predictors, six of the ten most important were the same for the RF
and the GBM (the KNN did not provide measures of variable importance). These six were average
daily city-wide PM2.5, height of the planetary boundary layer, average wind speed, wind direction,
distance to Heathrow airport, and light at night (Table 4). Of these, the average daily city-wide
PM2.5 level was by far the most informative predictor. We also looked at SHAP (shapely additive
explanations) values. The SHAP values measure the contribution of each predictor to the prediction
for each observation. They can be aggregated to obtain a global value of variable importance, as seen
in Figure 5 [52]. Of the variables we considered, the average daily city-wide PM2.5 level was by far the
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most informative predictor. This would be expected given the correlation values seen in Figure 6 with
average daily city-wide particulate levels having a correlation coefficient of 0.9 with measured PM2.5.

Table 4. Variable Importance for Machine Learning Algorithms.

Random Forest Gradient Boosting Machine

Variable Relative Contribution (%) Variable Relative Contribution (%)

Average city-wide daily PM2.5 58.31 Average city-wide daily PM2.5 66.75
Height of the planetary boundary

layer (inverse) 10.28 Average wind speed 6.36

Average wind speed 6.90 Wind direction (categorical) 5.00

Wind direction (categorical) 4.65 Height of the planetary boundary
layer (inverse) 2.69

AOD (from aqua satellite) 1.17 Time (days from January 1, 2005) 1.26
Average barometric pressure 1.10 Distance to Heathrow airport 1.22
Distance to Heathrow airport 0.99 Population density 1.10

Longitude 0.96 Light at night 1.05

Light at night 0.94 Average building height in
grid cell 1.00

Average temperature 0.93 Number of buildings in grid cell 0.98
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4. Discussion

Our final model incorporated the GBM, RF, and KNN in a GAM, with a smoothing term for
longitude and latitude. This model had a very strong performance in terms of the cross-validated
overall R2 and the cross-validated temporal R2. The spatial R2 was not as robust. However, the linear
regression looking at measured PM2.5 versus predicted PM2.5 showed very little bias in the spatial model
(i.e., the intercept was approximately zero and the slope was approximately one). The distribution of
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the spatial residuals did not demonstrate any particular pattern (Figure 2)—a conclusion supported by
Moran’s I values (Table 2)—nor did modeling the spatial variability separately improve the spatial R2.
We hypothesize that the reason behind the lackluster spatial R2 was that the Greater London area did
not have very much spatial variation on this scale to begin with; that is to say that most of the change
in PM2.5 levels was due to temporal factors. This can be seen by looking at the standard deviation
of the measured PM2.5. The standard deviation of the daily measured PM2.5 is 9.2 µg/m3, while the
standard deviation of the annual averages across the monitoring sites is 0.6 µg/m3, showing that most
of the variation in the area can be attributed to day-to-day variation in pollution levels rather than
spatial differences. If the predictions were done on a finer scale, the R2 for the spatial variation would
likely be higher due to greater variability on a smaller scale.

In order to check for bias across the range of particulate matter levels, we modeled the spatial
component and temporal component of the measured PM against the predicted one using a smoothing
parameter. This would have allowed us to see any non-linearity that might have existed between the
predicted and measured at any point. As can be seen in Figure 7, there is a virtually perfect linear
relationship between the predicted and measured PM2.5 levels at the monitoring sites for both the
spatial and temporal component of our predictions. It demonstrates that our model performs well
across the range of pollution levels.

Our model joins a number of other PM2.5 models that have been created for London, though it
covers a more comprehensive time frame of nine years. a 2016 study by researchers at King’s College
London modeled hourly PM2.5 on a 20 m × 20 m scale in 2011. This model was called the Community
Multiscale Air Quality (CMAQ)-urban model and it was generated using a combination of dispersion
and chemistry models, and meteorological models with a very fine emissions inventory. It had an R2

coefficient of 0.59 [26]. a newer hybrid daily model, which incorporated CMAQ-urban, a LUR model,
as well as machine learning methods for 2009–2013 at the lower layer output super area (LSOA) level,
had a spatial R2 0.22 and a temporal R2 of 0.93 for background monitors and a spatial R2 of 0.29 and
a temporal R2 of 0.95 at roadside monitors [53]. a 2014 study by Singh et al., which modeled hourly
PM2.5 for the year 2008 on an adjustable 10 m to 100 m scale using a dispersion model, had an overall R2

of 0.64 when comparing the predicted time-series to the measured time-series. Furthermore, this model
had a spatial R2 of 0.27, indicating limited spatial predictability [54]. a 2012 land use regression
model created for the European Study of Cohorts of Air Pollution Effects (ESCAPE) using measured
pollution data, collected three time over 14 days in three seasons and averaged for an annual estimate,
found a spatial leave-one-out cross-validated R2 of 0.77 in the London/Oxford area [55].

The ensemble model we created compares well to other prediction models for PM2.5 using machine
learning methods. An ensemble model set to predict daily PM2.5 in China from 2013 to 2016 using
clustering and an ensemble approach of a an extreme gradient boosting machine, RF, and GAM,
found an overall R2 of 0.79 [56]. Also in China, a geographically-weighted GBM daily prediction
approach across the country for the year 2014 had a cross-validated R2 of 0.76 [57]. Another study
in China modeling daily PM2.5 from 2005 to 2016 and utilizing a random forest approach found
a cross-validated R2 of 0.83. This machine learning approach outperformed two other non-linear
distributed lag models [58]. a study predicting monthly PM2.5 in British Columbia based on remote
sensing data, and in particular AOD, using eight different approaches found that the random forest was
the strongest machine learner as compared to other algorithms, such as extreme gradient boosting and
Bayesian regularized neural networks. All machine learners in this study outperformed the multiple
linear regression [59].

There are other studies which did not find the same patterns as we did. a study looking specifically
at modeling hourly PM2.5 in Beijing and Shanghai using multiple machine learning methods found
a variant of the artificial neural network to have the highest R2, with a value of 0.92, which outperformed
the random forest with a value of 0.88 [60], while our study found the neural network to be one of
the weakest learners and the random forest to be the strongest. a study predicting average daily
PM2.5 in the contiguous United States on a 1 km2 scale using an ensemble approach and machine
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learning methods also showed the neural network to be the strongest learner [31]. This might be due
to differences in the input variables, as well as the structure of the algorithm and how it processes the
input parameters from different regions. The substantial difference in spatial scale (US vs. London)
may also favor different algorithms.

Our study had several limitations. Firstly, we had a limited number of observations and fixed PM2.5

station monitors. We expanded this number using a model to predict PM2.5 from PM10 measurements
and correcting tapered element oscillating microbalance (TEOM) monitor measurements to gravimetric
equivalents for consistency. We then used this dataset to calibrate our predictions. These monitors were
located in a range of site types: curbside, roadside and urban background. As our spatial predictions
were at 1-km2 resolution, validation against monitors with strong local sources would produce an
under-prediction. Secondly, as with any machine learning method, our predictions may be subject
to overfitting. We accounted for this using out-of-bag ten-fold cross-validation at monitoring sites.
Thirdly, we were limited in the number of input variables by data availability. It is possible that
the inclusion of an overlooked variable may have improved the spatial and overall predictability.
Finally, as with all analyses, our results rely on the quality of our predictors. This is particularly
true of measurements made using remote sensing technology such as AOD. Many PM2.5 prediction
models rely on AOD as the main predictor of PM2.5 concentrations. Yet, there is error associated with
satellite measurements of AOD as well [61,62]. However, given that we are predicting a continuous
outcome, this measurement error should not cause bias and it is accounted for in the residuals of the
prediction model.

Despite these limitations, our prediction model also possessed several advantages. It relied on the
power of three different machine learning algorithms to generate predictions. As such, it is likely that
one method may have captured some of the variation in daily PM2.5 that the other two had missed.
Moreover, the overall out-of-bag ten-fold cross-validated R2 of 0.828 suggests a strong ability to predict
fine particulate matter and the temporal R2 suggests that we are capturing the day-to-day trends very
well. Furthermore, even though the spatial R2 is not very strong, the model comparing predicted and
measured PM2.5 had an intercept close to zero and an intercept close to one. This suggests minimal
bias in capturing the spatial variation. Finally, our model predicted particulate matter in 1-km2 grid
cells which allows for exposure assignment on a fine scale in other studies that may utilize the model.

5. Conclusions

Our PM2.5 model, which incorporated several different machine learning algorithms, has shown
to be a robust and accurate measure of pollution levels in the Greater London area. It had very strong
performance metrics, overall and temporally. The spatial R2 was fairly weak, however, the model
showed very little bias. Future models of Greater London may need to be done on a smaller spatial scale
or with additional predictor values in order to capture greater variability. These exposure measurement
models can be used study the effect of PM2.5 on health outcomes in epidemiological studies, to identify
locations with peak concentrations, and to conduct risk assessments.
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