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Abstract 

The purpose of this paper is to solve dynamic fracture problems of plates under both tension and 

bending using the boundary element method (BEM). The dynamic problems were solved in the 

Laplace-transform domain, which avoided the calculation of the domain integrals resulting from the 

inertial terms. The dual boundary element method, in which both displacement and traction boundary 

integral equations are utilized, was applied to the modelling of cracks. The dynamic fracture analysis 

of a plate under combined tension and bending loads was conducted using the BEM formulations for 

the generalized plane stress theory and Mindlin plate bending theory. Dynamic stress intensity factors 

were estimated based on the crack opening displacements. 

1. Introduction 

One of the most common damage types in structures is a crack. The growth of a crack can lead to 

structural failure. In the discipline of fracture mechanics, crack growth behaviour and its effect on 

residual strength are studied. The prime parameter used for characterisation and prediction of crack 

behaviour is the stress intensity factor [1]. Such factor is able to be determined experimentally [2], or 

obtained using analytical [3] and numerical methods [4]. The numerical simulations have 

gained increasing attention because it is not only suitable for complex structures and loading 

sequences, but also can reduce the costs of laboratory experiments. 

At the beginning of the development of the computational fracture mechanics, some simple 

methods, such as superposition [5] and compounding techniques [6], were used. Nowadays, more 

advanced numeral methods are preferred, such as the finite element, boundary element and mesh-free 

methods. The boundary element method (BEM) has been favoured by many researchers because it 

can achieve more efficient and accurate modelling of high stress concentration [7]. 

If two co-planar crack surfaces are modelled directly using the displacement boundary integral 

equation, mathematical degeneration is caused [8]. In order to solve this problem, multi-domain 

formulations [9] were first used. However, artificial boundaries are required to be introduced in these 

formulations, which results in a large number of extra boundary elements. The so-called dual 

boundary element method (DBEM) [10] was proposed later to avoid introducing extra boundaries 

and to increase the computational efficiency. Since then, the DBEM has gained more and more 

popularity. The problem of the mathematical degeneration can be resolved using the DBEM because 

the upper crack surface is modelled using the displacement boundary integral equation, while the 

lower surface is modelled with the traction boundary integral equation.  

 Plate structures are commonly used in engineering, and thus solving the crack problems in plates 

using the BEM is of great interest. Although the three-dimensional DBEM [11] is general and 

applicable to a variety of engineering structures, it is not suitable for plates due to the inaccuracy in 

numerical integrations. This issue can be resolved using the DBEM formulated based on approximate 

theories.  

Tension and bending are two basic types of loadings on plates. In the framework of linear elastic 

fracture mechanics, when a flat plate with a through-thickness crack is loaded in both tension and 

bending, the stress intensity factors can be obtained by superposition of the stress resultant intensity 
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factors from plate bending and 2D generalized plane stress theories [12]. The DBEM formulation for 

the generalized plane stress theory [10] is well known and was proposed nearly three decades ago. 

When it comes to cracked plates under bending load, shear deformable theories (Reissner and 

Mindlin), rather than the classical theory (Kirchhoff), should be used because the latter theory is not 

accurate in representing stress concentration and not sufficient to satisfy three independent boundary 

conditions [12]. Based on the DBEM formulations for the generalized plane stress and Reissner plate 

bending theories, the static stress intensity factors for plates subjected to combined tension and 

bending loads have been estimated in Refs. [13, 14]. 

In this paper, the study in Ref. [13] is extended to dynamic crack problems. The elastodynamic 

equations are solved in the Laplace-transform domain, and hence inner discretization is not required 

to deal with the domain integrals from the inertial terms. Durbin’s method [15] is used to carry out 

inverse Laplace transforms. The DBEM formulations and dynamic fundamental solutions for the 2D 

plane stress problems [16] and Mindlin bending problems [17, 18] are revisited. A mixed mode crack 

problem in a finite plate is solved using the proposed dual boundary element method. 

2. The dual boundary integral equations in the Laplace transform domain 

Throughout this paper, Greek subscripts ( ), ,    vary from 1 to 2 and Roman subscripts ( ), ,i j k  

run from 1 to 3. The displacement boundary integral equation for the generalized plane stress is given 

by: 
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and for the Mindlin bending is as follows: 
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in which the variables designated by bar represent their Laplace transforms and s denotes the Laplace 

transform parameter; CPV
 denotes Cauchy principal value integral; x  and X  represent the field 

points on the boundary   and in the plate domain  , respectively; ijc  are the jump terms determined 

by the geometry at the source point x  on the boundary; u  and t  are in-plane displacement and 

tractions, respectively; w  are rotations and 3w  is the out-of-plane displacement; p  denote bending 

moments and 3p  represents shear traction; b  and 3q  are in-plane body forces and pressure load on 

the plate, respectively; U , T , ijW  and ijP  are Laplace transform fundamental solutions, which 

have been given in Refs. [16, 17]. 

The traction boundary integral equation for the generalized plane stress problems is: 
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and for the Mindlin bending is as follows: 
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where HPV
 denotes Hadamard principal value integral; n  represent the components of a unit 

outward normal vector to the plate boundary; U , T , k jD   and k jS  , fundamental solutions, can 

be found in Refs. [16, 17]. 

In this study, the displacement boundary integral equations (1) and (2) were used for the modelling 

of plate edges and the upper crack surface, while the lower crack surface was modelled with the 

traction boundary integral equations (3) - (5). The corresponding singular integrals in these boundary 

integral equations were calculated using the techniques introduced in Refs. [16, 17, 19]. 

In the discretization process, quadratic continuous elements and discontinuous element were 

adopted for plate edges and crack surfaces, respectively. The detailed information of these elements 

can be found in Ref. [10].  

The inverse Laplace transforms were carried out using the formula given by Durbin [15]: 
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where s, a, T and K are the Laplace transform parameter, the real part of the Laplace transform 

parameter, the length of time and the maximum number of Laplace terms, respectively.  

3. Stress intensity factors 

Based on the generalized plane stress theory and Mindlin plate bending theory, two membrane crack 

modes and three bending crack modes can be described, respectively. Figure 1 illustrates these five 

crack modes. In these modes, stress resultant intensity factors ( 1mK , 2mK , 1bK , 2bK  and 3bK ) are 

defined first, and the stress intensity factor ( IK , IIK  and IIIK  ) are able be obtained later using the 

relationship [13]: 
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where h  denotes plate thickness; 3x  is out-of-plane coordinate and 3 0x =  represents the mid-plane 

of the plate. 

 

 
Figure 1. Crack modes in plates under membrane loading and Mindlin plates 

 

In this paper, the method in Ref. [17] was adopted to estimate the stress resultant intensity factors. In 

order to represent the singular behaviour in the vicinity of the crack tip correctly, the crack-tip element 

was modified to be a discontinuous quarter-point element. After obtaining the crack opening 

displacements ( tu  and t

iw  ) at the pair of nodes which are closest to the crack tip, the stress 

resultant intensity factors can be evaluated using the following expressions: 
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where E and   denote Young’s modulus and Poisson’s ratio, respectively; 
el  is the length of the 

crack-tip element. 

4. Numerical examples  

 
Figure 2. A rectangular plate with a central slant crack under tension and bending loads  

A rectangular plate with a central slant crack, which is shown in Figure 2, is considered here. The 

plate has a length of l = 200 mm, a width of b = 100 mm and a thickness of h = 10 mm. The crack 

with a length of a = 20 mm makes an angle of / 4 =  with the x2 axis. The material properties of 
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the plate are: 69 GpaE = , 0.33 =  and 32700kg/m = . The tension force ( )0F H t  and bending 

moment ( )0M H t  are applied at the shorter edges of the plate, where 
0F  and 

0M  are the load 

amplitudes and ( )H t  is the Heaviside function. 

In the boundary element simulations, the crack surface, shorter edge and longer edge were 

discretized using 10, 20 and 40 elements, respectively. The inversion of Laplace transforms was 

conducted with 80 Laplace terms.  

The normalized DSIFs 1m 0m/K K , 2m 0m/K K , 1b 0b/K K , 2b 0b/K K  and 3b 03/K K  are presented in 

Figure 3, where 0m 0 / 2K F a= , 0b 0 / 2K M a=  and ( )03 0 5 1K M a h= +   . The time t is 

normalized with respect to 2/a c , where ( )2 2 1c E  = +    is the shear wave velocity. 

  
Figure 3. The normalized DSIFs for the rectangular plate with a central slant crack: (a) 

membrane modes, (b) bending modes 

5. Conclusions 

In this paper, the dual boundary element method has been applied to the dynamic fracture analysis of 

a cracked plate loaded by combined tension and bending. The dynamic problem was solved using a 

Laplace-transform method, which leaded to boundary-only BEM formulations without the domain 

discretization for the inertial terms. Crack opening displacements were used to compute the stress 

intensity factors. A mixed mode crack problem in a finite plate was solved using the proposed dual 

boundary element formulations. Finally, it is worth mentioning that in order to consider the plate 

thickness effect and a coupled out-of-plane fracture mode for plates under in-plane loads, the DBEM 

for a first-order plate theory (Kane-Mindlin theory) [20] is able to be used. 

Acknowledgments 

This research was supported by a grant provided by the China Scholarship Council (CSC). 

 
 

References 
 

[1] Morse L, Khodaei ZS, Aliabadi M. A multi-fidelity modelling approach to the statistical 

inference of the equivalent initial flaw size distribution for multiple-site damage. International Journal 

of Fatigue. 2019;120:329-41. 

[2] Schindler H-J, Cheng W, Finnie I. Experimental determination of stress intensity factors due 

to residual stresses. Experimental mechanics. 1997;37:272-7. 

(a) (b) 



 

 

[3] Sih GC, Paris PC, Erdogan F. Crack-Tip, Stress-Intensity Factors for Plane Extension and Plate 

Bending Problems. Journal of applied mechanics. 1962;29:306-12. 

[4] Aliabadi MH, Rooke DP. Numerical fracture mechanics: Springer Science & Business Media; 

1991. 

[5] Rooke D, Baratta F, Cartwright D. Simple methods of determining stress intensity factors. 

Engineering fracture mechanics. 1981;14:397-426. 

[6] Rooke DP. An improved compounding method for calculating stress-intensity factors. 

Engineering fracture mechanics. 1986;23:783-92. 

[7] Aliabadi M. Boundary element formulations in fracture mechanics. Applied Mechanics 

Reviews. 1997;50:83-96. 

[8] Aliabadi MH. The Boundary Element Method: Applications in Solids and Structures, Vol. 2. 

Chicester: Wiley. 2002. 

[9] Blandford GE, Ingraffea AR, Liggett JA. Two‐ dimensional stress intensity factor 

computations using the boundary element method. International journal for numerical methods in 

engineering. 1981;17:387-404. 

[10] Portela A, Aliabadi MH, Rooke D. The dual boundary element method: effective 

implementation for crack problems. International journal for numerical methods in engineering. 

1992;33:1269-87. 

[11] Mi Y, Aliabadi MH. Dual boundary element method for three-dimensional fracture mechanics 

analysis. Engineering Analysis with Boundary Elements. 1992;10:161-71. 

[12] Dirgantara T. Boundary Element Analysis of Cracks in Shear Deformable Plates and Shells: 

Queen Mary University of London; 2000. 

[13] Dirgantara T, Aliabadi M. Stress intensity factors for cracks in thin plates. Engineering 

fracture mechanics. 2002;69:1465-86. 

[14] Morse L, Khodaei ZS, Aliabadi M. A Dual Boundary Element based Implicit Differentiation 

Method for Determining Stress Intensity Factor Sensitivities for Plate Bending Problems. 

Engineering Analysis with Boundary Elements. 

2019;http://dx.doi.org/10.1016/j.enganabound.2019.05.021. 

[15] Durbin F. Numerical inversion of Laplace transforms: an efficient improvement to Dubner 

and Abate's method. The Computer Journal. 1974;17:371-6. 

[16] Fedelinski P, Aliabadi MH, Rooke D. The Laplace transform DBEM for mixed-mode 

dynamic crack analysis. Computers & structures. 1996;59:1021-31. 

[17] Li J, Khodaei ZS, Aliabadi MH. Dynamic dual boundary element analyses for cracked 

Mindlin plates. International journal of solids and structures. 2018;152-153:248-60. 

[18] Wen P, Aliabadi MH. Boundary element frequency domain formulation for dynamic analysis 

of Mindlin plates. International journal for numerical methods in engineering. 2006;67:1617-40. 

[19] Li J, Khodaei ZS, Aliabadi MH. Modelling of the high-frequency fundamental symmetric 

Lamb wave using a new boundary element formulation. International Journal of Mechanical 

Sciences. 2019;155:235-47. 

[20] Li J, Khodaei ZS, Aliabadi MH. Dynamic fracture analysis of Kane-Mindlin plates using the 

dual boundary element method. Engineering Analysis with Boundary Elements. 

2019;https://doi.org/10.1016/j.enganabound.2019.05.005. 

 

http://dx.doi.org/10.1016/j.enganabound.2019.05.021
https://doi.org/10.1016/j.enganabound.2019.05.005

