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Abstract.—Evolutionary inferences require reliable phylogenies. Morphological data have traditionally been analyzed using
maximum parsimony, but recent simulation studies have suggested that Bayesian analyses yield more accurate trees. This
debate is ongoing, in part, because of ambiguity over modes of morphological evolution and a lack of appropriate models.
Here, we investigate phylogenetic methods using two novel simulation models—one in which morphological characters
evolve stochastically along lineages and another in which individuals undergo selection. Both models generate character data
and lineage splitting simultaneously: the resulting trees are an emergent property, rather than a fixed parameter. Standard
consensus methods for Bayesian searches (Mki) yield fewer incorrect nodes and quartets than the standard consensus trees
recovered using equal weighting and implied weighting parsimony searches. Distances between the pool of derived trees
(most parsimonious or posterior distribution) and the true trees—measured using Robinson-Foulds (RF), subtree prune
and regraft (SPR), and tree bisection reconnection (TBR) metrics—demonstrate that this is related to the search strategy and
consensus method of each technique. The amount and structure of homoplasy in character data differ between models.
Morphological coherence, which has previously not been considered in this context, proves to be a more important factor for
phylogenetic accuracy than homoplasy. Selection-based models exhibit relatively lower homoplasy, lower morphological
coherence, and higher inaccuracy in inferred trees. Selection is a dominant driver of morphological evolution, but we
demonstrate that it has a confounding effect on numerous character properties which are fundamental to phylogenetic
inference. We suggest that the current debate should move beyond considerations of parsimony versus Bayesian, toward
identifying modes of morphological evolution and using these to build models for probabilistic search methods. [Bayesian;
evolution; morphology; parsimony; phylogenetics; selection; simulation.]

Phylogenetic trees provide a vital framework for
evolutionary inferences. Consequently, the accuracy of
phylogenetic estimates built using empirical characters
underpins our understanding of evolutionary history.
Morphology was fundamental to the conception and
development of phylogenetic methods (Hennig 1950,
1965). However, in the genomic age, sequence data
have replaced morphology as both the dominant
source of phylogenetic information for estimating tree
topology and the basis of numerical phylogenetic
method development (Lee and Palci 2015; Lartillot et
al. 2016). Molecular characters are more numerous
than morphological ones and their evolution can be
modeled based on empirical observations (Kimura 1980;
Felsenstein 1981; Hasegawa et al. 1985). Nevertheless,
morphology still plays a fundamental role. It is the
only form of data by which we can incorporate fossils,
and thus a deep-time perspective, in phylogenies.
Fossil taxa allow the calibration of molecular clocks
(Donoghue and Yang 2016); offer an independent
test of evolutionary developmental hypotheses (Raff
2007); break long branches, and thus clarify otherwise
intractable relationships (Donoghue et al. 1989; Wiens
and Soltis 2005; Legg et al. 2013); and provide the
only means of understanding diversity and evolution in
deep time (Raup and Sepkoski 1982). For these reasons,
integrating fossils in phylogenies is necessary in order

to derive accurate phylogenies and reconstructions of
character and clade evolution.

Morphological data have conventionally been
analyzed using maximum parsimony (Kitching et al.
1998) in which trees that necessitate the fewest character
changes are considered optimal. Characters are either
treated as weighted equally or rescaled in relation to
their homoplasy, for example, using implied weighting
(IW; Goloboff 2013). Likelihood-based models have also
been used to analyze morphological data, primarily
through Bayesian analysis using the Mk model of
character evolution (Lewis 2001). The Mk model is a
k-parameter model, where k is the number of possible
unordered states for a discrete morphological character
(e.g., in an M2 model, characters could have k = 2
states). The model assumes that character state changes
follow a Markov process, and thus the likelihood of
changing from one state to another is determined only
by the current state. The basic Mk model assumes that
all state changes are equally likely and occur at the
same rate, although these assumptions are not always
true (Lewis 2001). Some characters might be gained
or lost much faster or slower than others; as such
numerous refinements have been proposed to account
for asymmetrical evolutionary rates. For instance,
the symmetrical (SYM) and all-rates-different (ARD)
models (Paradis et al. 2004) are two extensions of the
Mk model that can relax this assumption.

897

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/69/5/897/5740591 by Im

perial C
ollege London Library user on 02 Septem

ber 2020

http://creativecommons.org/licenses/by/4.0/


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[13:06 13/8/2020 Sysbio-OP-SYSB200014.tex] Page: 898 897–912

898 SYSTEMATIC BIOLOGY VOL. 69

Recently, a suite of simulation studies have assessed
the relative performance of Bayesian and parsimony
phylogenetic inference built on categorical data (Wright
and Hillis 2014; O’Reilly et al. 2016; Congreve and
Lamsdell 2016; Puttick et al. 2017b, 2019; O’Reilly et
al. 2018a; Smith 2019a). These simulation studies have
followed one of two general approaches: they have
utilized either a random model of character evolution
(Goloboff et al. 2018; Puttick et al. 2019) or likelihood-
based Markov models of character evolution (Wright
and Hillis 2014; O’Reilly et al. 2016; Brown et al. 2017;
Puttick et al. 2017b). Both approaches simulate stochastic
state changes upon a fixed tree, but they differ in their
genesis of characters. Markov models of character
evolution use branch lengths; for each character, the
probability of a state change occurring on a given branch
is proportional to the length of that branch. In contrast,
simulations employing random character evolution do
not require branch lengths and consequently, there is no
underlying probability of state change per branch shared
between characters (Puttick et al. 2019). Comparison of
results between previous simulation studies is made
more challenging by the variety of metrics that have
been used to estimate accuracy (e.g., by measuring
tree distances using different consensus methods). The
results, and subsequent recommendation, vary between
studies (see Table 1).

Here, we present two custom-built evolutionary
models that simulate lineage splitting and character
evolution simultaneously. In contrast to previous
studies, the tree is, therefore, an emergent property of
the simulation, rather than a predefined parameter. The
models vary with respect to both the level at which
evolution occurs (one is lineage-based and one operates
at the level of the individual), and the underlying
mode of evolution (stochastic in one model, and via
selection in the other). We characterize these models
using a wide variety of tree and data metrics, then
use data simulated by each to evaluate the relative
performance of topology estimation with different
phylogenetic reconstruction techniques (parsimony
methods and Bayesian implementation of the Mk
model). Previous studies have quantified accuracy
using Robinson-Foulds (RF) distance between the
simulated tree and a single form of consensus tree.
In this study, we employ measures of phylogenetic
distance to the consensus type typically employed for
each inference method. Distance metrics include not
just RF, but also subtree prune and regraft (SPR), tree
bisection reconnection (TBR), and quartets distances.
We also consider the larger pool of trees from which
the consensus trees are derived. Finally, we assess the
relationship between different tree/data attributes, and
the accuracy of phylogenetic estimation. By doing so,
we (i) assess the accuracy of phylogenetic reconstruction
techniques using evolutionary simulations; (ii)
broaden the range of models available to simulate
discrete morphological character data; (iii) assess the
performance of phylogenetics methods in light of
different modes of discrete character evolution and data

set properties; and (iv) characterize the relationship
between modes of morphological evolution and
resulting data properties.

MATERIALS AND METHODS

Phylogenetic data are derived from two evolutionary
simulations designed for this study. One is a stochastic,
lineage-based model (MBL2017); the other includes
selection and operates at the level of the individual
(TREvoSim). The models thus encompass significant
diversity in evolutionary simulations: the presence
or absence of natural selection (Huneman 2014) and
the level (individuals vs. taxa) at which evolution
is simulated to occur. Both generate character data
concurrently with trees in which branch lengths
represent time. In both packages, apomorphies are
accrued within lineages via random mutation, but in
MBL2017 both these, and speciation, are stochastic: it
is a neutral birth–death model. In contrast, TREvoSim
simulates natural selection: mutations which increase
fitness are selected for and drive evolution. We
created three data sets of 1000 replicates (128, 512, and
1024 parsimony-informative characters) using each
software package. All trees comprise 32 terminals.
All analysis scripts, software code, exemplar outputs
for both models, and redistributables are available
in the Supplementary material, available on Dryad
at https://doi.org/10.5061/dryad.4b8gtht8h, hosted
in the SI Zenodo repository associated with this
article (DOI:10.5281/zenodo.3609738). TREvoSim and
MBL2017 are also available—both code and distributable
binaries—in GitHub repositories (https://github.
com/palaeoware), which will be updated with future
versions. The versions employed herein are TREvoSim
v1.0.0 (https://github.com/palaeoware/trevosim/;
doi:10.5281/zenodo.3619356) and MBL2017 v2.0.0
(https://github.com/palaeoware/MBL2017; doi:10.
5281/zenodo.3614075). All code is published under
a GNU General Public License v3.0. Supplementary
Figures, available on Dryad.

Stochastic Data Simulation—MBL2017
The MBL model has a rich history, having been

developed and first applied in the 1970s (Raup et al.
1973; Raup and Gould 1974; Gould et al. 1977), and
used in a number of studies since (Sepkoski 1978; Uhen
1996; Foote 1999; Sigwart et al. 2018). MBL provides
a stochastic null-hypothesis for evolutionary modeling
within paleobiology (Raup et al. 1973), and has resulted
in further discussion regarding scale and the impact of
chance factors in macroevolution (e.g. Stanley et al. 1981).
Overviews and history are provided by Huss (2009) and
Sepkoski (2012).

To generate binary morphological character data
using species-level lineages, we modified the MBL2017
program described by (Sigwart et al., 2018). MBL2017
generates birth-death trees: the simulation starts with a
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TABLE 1. An overview of recent studies that have assessed the relative performance of different phylogenetic inference methods using
simulated data

Study
Data

simulation Data type
Phylogenetic

methods Trees compared

Recom-
mended
method

Wright et al. (2014) Mk Binary Bayesian Mk EW Bayesian Mk (50%
MRC) EW (mean
distance from all
MPTs)

Bayesian
Mk

(Congreve and Lamsdell, Mk Binary EW IW (k = 1, 3, 5, 10) EW (SC) IW (SC) EW
2016)
O’Reilly et al. (2016) HKY(Characters

fit a
predefined
homoplasy
distribution)

Binary Bayesian Mk EW IW
(k = 2, 3, 5, 20, 200)

Bayesian Mk (50%
MRC) EW (50%
MRC) IW (50% MRC)

Bayesian
Mk

Brown et al. (2017) HKY
(Characters fit
a predefined
homoplasy
distribution)

Binary Bayesian Mk ML Mk Bayesian Mk (50%
MRC) ML Mk (MLT,
50% bootstrap NST)

Bayesian
Mk/ML
bootstrap

Puttick et al. (2017a) HKY
(Characters fit
a predefined
homoplasy
distribution)

Binary
+
multistate

Bayesian Mk EW IW
(k = 2)

Bayesian Mk (50%
MRC) EW (50%
MRC) IW (50% MRC)

Bayesian
Mk

Goloboff et al. (2018) Random
(Characters fit
a predefined
homoplasy
distribution)

multistate Bayesian Mk EW IW
(k = 2:200) ML Mk

Bayesian Mk (50%
MRC) EW (SC) IW
(SC)

IW

O’Reilly et al. (2018a) HKY
(Characters fit
a predefined
homoplasy
distribution)

Binary
+
multistate

Bayesian Mk EW ML
Mk

Bayesian Mk (50%
MRC) EW (50% MRC,
50% bootstrap SS) ML
Mk (50% MRC, 50%
bootstrap NST)

Bayesian
Mk/ML
bootstrap

Puttick et al. (2019) Random
(Characters fit
a predefined
homoplasy
distribution)

Binary,
Binary
+
multistate

Bayesian Mk EW IW
(k = 2, 10, 20)

Bayesian Mk (50, 95%
MRC) EW (50, 95%
bootstrap SS)

Bayesian
Mk

Smith (2019a) Mk, HKY
(Characters fit
a predefined
homoplasy
distribution)

Binary Bayesian Mk EW IW
(k = 1, 2, 3, 5, 10, 20,
200)

Bayesian (50, 55, 60...
95 MRC) IW & EW (0,
2, 4... 100 bootstrap /
jackknife NST, -100,
-95...95, 100 Bremer
NST)

Bayesian
Mk/IW
bootstrap

Key: Mk. Lewis Model 2001; HKY. Hasegawa et al. 1985 model; EW. equal weighting parsimony; IW. implied weighting parsimony; ML.
Maximum likelihood; MLT. Maximum likelihood tree; MRC. majority-rule consensus; SC. strict consensus; k. concavity constant; NST. node
support tree.

single lineage, which iterates through a fixed number
of discrete time intervals. At each time interval, a
lineage has a fixed chance to speciate (terminate and be
replaced by two daughter lineages), and a separate fixed
chance to go extinct (terminate without replacement).
Speciation and extinction in the same interval are not
allowed. The code has been modified for the current
article to add phylogenetic information to lineages in
the form of a user-specified number of binary characters
(constrained to a multiple of 32; here 128, 512, or 1024).
Each character of the initial lineage has a random
state (either 0 or 1). At each time interval, each binary
character of each lineage has a fixed probability of
mutating (i.e. flipping 0 to 1, or 1 to 0). Daughter lineages
inherit the characters of their parent lineage. Mutations
occur before extinction or speciation in each time

interval. Apomorphies hence accrue within lineages via
random mutation and represent pure “drift”; there is no
selection as characters do not influence the extinction
and speciation mechanism.

To simulate data for this study, we used the following
parameters: speciation probability 0.055 (�); extinction
probability 0.045 (�); mutation probability per character
per time interval 0.02; and time intervals per simulation
400. These settings follow those of Sigwart et al.
(2018) and employ the median speciation/extinction
value pair of that study; mutation probability was
assessed experimentally and a value was selected that
balanced the need to avoid identical taxa, but minimized
saturation. For each resulting tree, extinct taxa were
removed as in Sigwart et al. (2018), data sets with one
or more uninformative characters were removed, and

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/69/5/897/5740591 by Im

perial C
ollege London Library user on 02 Septem

ber 2020



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[13:06 13/8/2020 Sysbio-OP-SYSB200014.tex] Page: 900 897–912

900 SYSTEMATIC BIOLOGY VOL. 69

taxa with identical character scores recorded (mean
3.5, representing the last speciations in sister lineages).
Constraint to 32 taxa was achieved by selecting a clade
from each simulation run with precisely 32 terminals;
trees in which no such clade existed were discarded.

Data Simulation under Selection—TREvoSim
We also generated binary morphological character

data using an individual- or agent-based evolutionary
simulation, called TREvoSim. This model represents
nonstochastic evolution as it incorporates natural
selection. It derives some concepts from the package
REvoSim (Garwood et al. 2019)—for example, the fitness
algorithm—but has a focus on the simulation of trees
and associated character data. It does not incorporate
concepts of space or sexual reproduction. TREvoSim
employs digital organisms comprising binary strings,
which provide characters for both phylogenetic inference
and for selection within the simulation. Organisms
compete, replicate, and mutate, and the simulation
incorporates a species concept. Speciation is emergent
in the simulation, allowing the software to output a
phylogenetic tree showing the species relationships,
with associated character data.

The principles of the model are as follows: a user-
defined number of organisms are alive at any given
point during a simulation (we use 128). These are
held in a list, the playing field (pf ); this population
can include members of different species, as well as
multiple organisms from the same species. The binary
string of an organism is ultimately the character data
within this study, and the number of characters present
(n) is user defined (here 128, 512, or 1024 characters).
The fitness of the organisms alive at any given time
is calculated by comparison with the environment (all
organisms in the playing field are competing, and thus
this might represent a niche). The environment is formed
of five random numbers (masks) of size n, where n
equals the length of the character binary string of each
organism. The fitness of every organism in the playing
field is calculated following the approach described by
Garwood et al. (2019). In brief, this employs an exclusive
OR (⊕) operation to sum the Hamming distance (hd)
of the organism to each of the five masks. Where the
input bits are the same the exclusive OR returns a zero,
otherwise it returns a one. Thus by comparing every bit
of the binary string to the equivalent bit in each mask and
summing the results, this provides a value between 0 and
5n. The fitness (f ) is an integer calculated as the distance
from a target value; for this release, that is defined as
halfway between zero and 5n, that is:

f =|
hd∑

[m1..m5]− 5n
2

|
Those organisms best-suited to their environment
(the fittest) thus have a distance of zero, and the
worst 2.5n. The advantages of this approach are (i)
it is relatively computationally efficient; (ii) small
environment changes result in small changes to an

organism’s fitness; and (iii) mutations within organisms
will also result in relatively small fitness changes.
Multiple character strings that allow an organism to
be optimally fit for any environment exist (i.e. there
are numerous fitness peaks; Supplementary Fig. 1,
available on Dryad). The algorithm used for each
TREvoSim iteration is described in full below. Key points
are: members of the playing field compete, and their
fitness is linked to reproductive success; and species
within TREvoSim are defined based on Hamming
distance (character distance) to past organisms within an
evolving lineage (user defined; species difference, sd). A
simulation is initiated by filling the masks with random
binary numbers and the playing field with multiple
identical organisms (species zero). Initializing with a
single organism is a necessary simplification to allow
all organisms in the simulation to belong to the same
phylogeny. The chosen organism is within the top 10% of
possible fitnesses for the starting masks (thus preventing
the simulation being a single lineage adapting to one
fitness peak). A simulation then runs until the desired
number of species is achieved by repeating the following
steps (this is also summarized in Fig. 1):

1) Organisms within the playing field are sorted by
fitness, with the fittest organisms at the top of the list.
If a number of organisms have the same fitness (e.g., at
initialization), these are randomly ordered.

2) An organism is picked to be duplicated via a
sequential coin toss (with a 50% chance of selecting the
first in the list, then if that is not chosen, a 50% chance of
selecting the second, and so on). If the simulation reaches
the end of the playing field without selecting one, it starts
from the beginning again.

3) The organism selected for duplication has a user-
defined chance of mutation (defined as mutations per
hundred characters per iteration; 1.5 for these data sets).
The user can select whether deleterious mutations are
accepted (they were discarded here).

4) If the duplicated organism, after mutation, is
sufficiently different (sd, species difference) to its
character string at origination it is defined as a new
species (if this is not the first speciation in the lineage,
sd bits from the last species to diverge is used as
benchmark). Comparison to last speciation (if one has
occurred) rather than the original genome prevents
bursts of speciation from closely related organisms
sharing a common parent, but still allows cladogenesis
within a species.

5) The duplicated, mutated organism is then returned
to the playing field, overwriting the least fit organism in
the playing field (or randomly selecting one of the least
fit if multiple least fit organisms exist).

6) Organisms in the playing field typically represent
multiple species once a simulation is running. Thus
the playing field is checked each iteration, and any
species that have become extinct are identified. On
extinction, the characters of the last surviving organism
are appended to the character matrix (this is optional,
but on by default, and ensures that if a single lineage has
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Algorithm
To start:

Fill playing field with multiple individuals of single, random genome (species zero).
Assign random numbers to masks.

Then, while number of species < Sn:

Pick individual i from playing field using a sequential  coin toss.

Duplicate i, apply mutation (probability pi ).

If hamming distance between i and parent/last species 
> species difference; new species. 

Return i to playing field, overwriting least fit organism

Recalculate fitnesses; sort playing field by fitness; check for 
extinction of species, when present record final species genome 
for characters; mutate masks (probability pm ).

green italics = user defined. 

mask 1 0 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0

mask 2 1 1 1 0 1 0 0 1 1 1 0 1 1 1 0 0

mask 3 1 0 0 0 1 1 0 1 0 1 0 1 1 1 0 1

mask 4 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1

Environment

mask 5 1 0 1 1 1 1 0 0 0 1 1 1 1 0 0 1

Five random numbers of character size 

Data structure - simulation playing field

0110010100011100010100011001101011001

0101010111011000101101001010101111100

1100110111010000010111010011111011010

0100000110010000000101000011111000001

0110010100011100010100011001101011001

0101010111011000101101001010101111100

1100110111010000010111010011111011010

0100000110010000000101000011111000001

D
ec

re
as

in
g 

fit
ne

ss

1100110111010000010111010011111011010

0100000110010000000101000011111000001

0100000110010000000101000011111000001

n digital organisms of character size

Fitness based on sum of hamming distance 
of genome from each mask Sp = Speciation Iterations

S=0

S=1

S=2

E
xt

in
ct

io
n 

- 
ge

no
m

e 
0

E
xt

in
ct

io
n 

- 
ge

no
m

e 
1

Sp(0,1)

Sp((0,2)1)

FIGURE 1. A summary flowchart showing the algorithm of the TREvoSim model/software used to simulate data under selection for this
study.

given birth to multiple species, the recorded character
set is closest to the most recently branching terminal).

7) Masks are then mutated at the end of each iteration
(there is a user-defined chance of mutation per hundred
bits per iteration, here 1.0), providing environmental
change throughout the simulation.

Once the requested number of species has been
achieved, the simulation finishes, the character data of
all extant taxa are appended to the character matrix (the
fittest organism, or one of these, is selected if multiple
organisms within a species are surviving). The final
character matrix contains all extinct and extant species.
If stripping of uninformative characters is requested,
the number of characters, and species difference, are
increased at the start of a run (using an empirically
calculated factor based on the requested settings), and
then informative characters are randomly subsampled at
this stage to achieve the requested number of characters.
A check for identical taxa is then conducted (the data
are discarded and simulation repeated if the number
of identical terminals is above a user-defined cutoff).
The tree and character matrix are output through a
customized logging system, which allows, e.g. standard
(nexus/TNT) formats. See Supplementary Material,
available on Zenodo, for examples of the output strings
used in the current study.

To simulate data for this study, the simulation ran
until it reached 32 species, the cutoff above which
runs were discarded was five identical terminals, and
uninformative characters were stripped. For creating
data sets of 128 characters, the species difference was
set to 12, for 512 it was set to 50, and for 1024 it was 100.

Estimating of Properties of Simulated Data
We have characterized the properties of data

generated under the two different models using eight
tree and data attributes. To capture the distribution

of homoplastic characters within each data set, we
measured ensemble Consistency Index (CI; Kluge and
Farris 1969), ensemble Retention Index (RI; Farris 1989)
and the mean number of excess steps of the character
data mapped onto the true tree using the R package
phangorn (Schliep 2011). To estimate the phylogenetic
signal of the simulated characters, we calculated the
character dispersion (D) metric of Fritz and Purvis
(2010) D estimates the phylogenetic signal of binary
characters using sum of sister-clade differences in a
given phylogeny, and as such, it is a measure of how
“clumped” characters are, independent of tree size,
shape, and character prevalence (given a minimum of
25 taxa). We estimated mean D for each data set using
the phylo.d function in the R package caper (Orme
et al. 2012). We recorded the Colless Index of treeshape
(1982) for each simulated tree using the R package
apTreeshape (Bortolussi et al. 2006). In order to further
describe tree shape, we also calculated the “stemminess”
metric outlined in Fiala and Sokal (1985). This is defined
as the proportion of the sum of branch lengths of a
clade, including the branch subtending the clade, that
is accounted for by the branch subtending the clade.
The stemminess of a tree we report herein is the mean
stemminess value for each clade of the tree. Finally, we
characterized the relationship between morphological
similarity and recency of common ancestry, termed
“morphological coherence” by Raup and Gould (1974).
For each taxon pair within each data set, we measured
the phylogenetic distance (i.e. the branch length from
Taxon A to the common ancestor of Taxon A and B
+ the branch length from Taxon B to the common
ancestor of Taxon A and B) and the character difference
(i.e. the number of different characters—or hamming
distance—between Taxon A and Taxon B) using the
R packages phytools (Revell 2012) and phylobase
(Hackathon et al. 2011). Plotting phylogenetic distance
against character difference allows visualization of
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morphological coherence for each simulated data set. We
quantified morphological coherence using two methods.
Firstly, we measured the Spearman’s Rank correlation of
all taxon pairs (termed “raw morphological coherence”
henceforth). This metric can potentially be biased
by long-branch artifacts, thus we also measured the
Spearman Rank correlation for just taxon pairs where
phylogenetic distance was less than or equal to half
the maximum possible phylogenetic distance (termed
“adjusted morphological coherence” henceforth).

Phylogenetic Analyses
For Bayesian estimation, we analyzed batch nexus files

created by the simulation software in MrBayes version
3.2 (Ronquist et al. 2012) using the Mk + informative
model (which accounts for only parsimony-informative
characters having been scored, and ascertainment bias)
with gamma-shaped rate variation (Mki + �). Extracts
from the batch files are provided in the Supplementary
Material, available on Zenodo. We chose to explicitly
exclude uninformative characters from simulations to
better reflect the attributes of the vast majority of
empirical cladistic data sets (Brazeau 2011). We used
2 runs of 4 chains and sampled 10,000 trees each run,
of which 30% were discarded as burn-in. To confirm
that independent runs had reached convergence, we
examined the “.pstat” output files. Convergence was
accepted for data sets that had average ESS values
>200 and PSRF values between 0.9 and 1.1 for all
parameters. We ensured that at least 50% of each batch
(>500 replicates) had achieved convergence, and 500
of those converged analyses were randomly selected
for subsequent analysis. The number of generations
required to achieve 50% convergence varied with respect
to both the number of characters and the model used to
simulate the data (see Supplementary Table S1, available
on Dryad).

For parsimony, we analyzed batch files in TNT version
1.5 (Goloboff and Catalano 2016 made available with
the sponsorship of the Willi Hennig Society). We used
“new technology” with tree-drifting, tree-fusing, and
sectorial searches (xmult: level 10) and subsequent branch
breaking (bbreak) retaining a maximum of 100,000 MPTs
for each matrix. We used equal weighting (EW) and IW
searches. IW (Goloboff 2013) is an extension of maximum
parsimony in which homoplastic characters (i.e. those
with additional steps) are down-weighted according to
a concavity constant, k. We used k = 3, which enforces
strong down-weighting of homoplastic characters, is
widely used, and is the default in TNT.

Tree Distance Calculations
Consensus trees.—Bayesian and parsimony searches

take very different approaches to tree sampling which
can confound direct comparison of precision (the
number of nodes resolved) and accuracy (how many
of these are correct). Parsimony analyses typically

record the optimal (most parsimonious) trees, which
are summarized using a strict consensus approach. In
contrast, Bayesian inference generates a posterior sample
of thousands of trees, sampled relative to their posterior
probability. This posterior distribution is typically
summarized using a 50% majority-rule consensus (MRC)
tree, which contains all bipartitions recovered in greater
than 50% of the posterior trees. Alternatively, the
posterior distribution may be summarized using a
maximum clade credibility (MCC) tree, which is a single
tree within the posterior distribution containing the
maximum sum or product of posterior probabilities
across each clade. The MCC tree is analogous to
a most parsimonious tree in that it represents an
optimal point estimate. Previous studies assessing the
relative performance of these methods have done so
by comparing consensus trees and collapsing poorly
supported nodes at different thresholds (Brown et al.
2017; O’Reilly et al. 2018a; Puttick et al. 2019; Smith
2019a). Collapsing branches under a certain threshold of
support is not currently standard practice for parsimony
studies (Puttick et al. 2017a). Here, we compare the most
commonly used outputs for the respective methods:
namely strict consensus (SC) trees for parsimony
analyses, and the 50% MRC tree for Bayesian inference.
We also compare the mean distance from the larger
pool of binary trees from which the consensuses are
drawn. Mean distances for parsimony estimation were
calculated using all MPTs. For computational efficiency,
mean distance for Bayesian estimation was calculated
using one of the two post-burnin runs of 7000 trees,
reflecting the stationary distribution of the MCMC
analysis. We also used the Bayesian MCC tree.

Distance measures, accuracy and precision.—Tree distances
between the simulated trees and the derived parsimony
and Bayesian phylogenies were conducted on unrooted
trees. We used the package phangorn (Schliep 2011) to
calculate RF’s distances, but in view of this metric’s
sensitivity to wildcard taxa (Kuhner and Yamato 2015),
we also report SPR distances. SPR within phangorn
employs a heuristic search, and is thus an approximation.
As such, we additionally provide true TBR distances
which have been calculated using the software USPR
(Whidden and Matsen 2018) modified to automate batch
comparisons (code is included in the SI). We also
computed quartets distance using the R package quartet
(Smith 2019b).

All tree distance metrics, and in particular RF distance,
risk conflating precision and accuracy. Consequently,
the distance between the estimated and true tree is not
always proportional to the accuracy of the estimated
tree. A fully unresolved estimated tree with a single
node must be 100% accurate (all nodes that occur in
the estimated tree also occur in the true tree). However,
the estimated tree contains no bipartitions and thus
will be 50% of maximum possible RF distance from
the true tree. Here, we have explicitly distinguished
between measures of tree distance (e.g. RF, SPR,
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TBR) and measures of accuracy and inaccuracy: here
absolute accuracy (i.e. the number of nodes or quartets
shared between the true and estimated tree), absolute
inaccuracy (i.e. the number of nodes or quartets in the
estimated tree that are not present in the true tree) and
percentage accuracy (i.e. the number of correct nodes
or quartets as a percentage of the number of resolved
nodes or quartets). We achieved these using custom
R functions (see Supplementary Material, available on
Zenodo). Results were plotted using the R-package
“ggplot2” (Wickham 2016).

RESULTS

Simulated Data Properties
The models differ in the proportion of homoplastic

characters found in their data sets. TREvoSim produces
trees and associated data matrices with higher CI and
RI values (i.e. less homoplasy) than those simulated
under MBL2017 (Fig. 2A,B). Similarly, TREvoSim
characters have fewer excess steps on the true tree than
those characters simulated under MBL2017 (Fig. 2C,
Supplementary Figs. 2 and 3, available on Dryad). The
excess steps of individual TREvoSim characters for each
data set show a distribution resembling that derived
by Goloboff et al. (2018) from mapping excess steps for
empirical data sets against a most parsimonious tree
(Supplementary Fig. 3, available on Dryad). In contrast,
the distribution of extra steps for MBL2017 data is
normally distributed with a mode of approximately 6
(Supplementary Fig. 2, available on Dryad): characters
simulated in MBL2017 are highly homoplastic.

MBL2017 and TREvoSim also show very different
patterns of character dispersion. Values of D are
standardized from 0 (clumping consistent with
Brownian motion) to 1 (no clumping, random character
distribution) whilst negative values indicate extreme
clumping. The mean D values observed for MBL2017
data sets are positive, between 0 and 0.6, whilst for
TREvoSim the distribution is broader and more negative
with mean D values of between −2.5 and −2 (Fig. 2D).
This fits with patterns expected given the stochastic
and selective nature of the models, respectively (see
Discussion section). MBL2017 and TREvoSim produce
very different tree shapes (Fig. 2E). MBL2017 trees tend
to be highly symmetrical (Colless Indices of between
0 and 150) whereas TREvoSim trees have a broader
distribution of tree shapes ranging from moderately
symmetrical to very asymmetrical (Colless Indices of
between 50 and 400). The trees from each model also
differ in their stemminess (Fig. 2F). MBL2017 trees have
stemminess values of between 0.2 and 0.5, indicating
that the component clades tend to consist of relatively
short branches, and are subtended by relatively long
branches. In contrast, TREvoSim simulated trees have
stemminess values of between 0 and 0.2, indicating that
clades tend to consist of long branches subtended by
proportionally shorter branches.

The models also differ in their morphological
coherence i.e. the relationship between the phylogenetic
distance between taxon pairs and the accumulated
character difference between those pairs (Fig. 2G,H).
MBL2017 data sets show a positive nonlinear
relationship between taxon distances and taxon
character differences (Supplementary Fig. 4, available
on Dryad), which suggests that the rate of character
state changes is initially high, but decreases with
increasing phylogenetic distance between taxon pairs.
The relationship is heteroscedastic, indicating variance
increases with phylogenetic distance and character
difference. Both these observations are compatible
with saturation, i.e. multiple state changes to the
same characters result in the apparent character
difference being less than would be expected based
on the actual phylogenetic distance. In contrast,
TREvoSim data sets show no evidence of saturation;
however, the relationship between taxon phylogenetic
distances and taxon character differences is less
constrained (Supplementary Fig. 5, available on Dryad).
Importantly, TREvoSim data sets show taxon pairs
with very high phylogenetic distance and very low
character difference; something that is not seen in
MBL2017 data sets. This is compatible with convergence
or parallel evolution. Spearman’s Rank correlations
of all taxon pairs (raw morphological coherence, Fig.
2G) suggest that both MBL2017 and TREvoSim data
sets show similar morphological coherence, with
TREvoSim data showing marginally more. However,
if we remove the most distantly related taxon pairs to
account for long-branch artifacts such as saturation
(adjusted morphological coherence, Fig. 2H), we find
that MBL2017 has much stronger correlation between
phylogenetic distance and character difference for the
most recently diverged taxon pairs.

Phylogenetic Analyses
Bayesian estimation yields the most accurate standard

consensus trees for both morphological simulations:
Bayesian majority-rule consensus (50% MRC) trees are,
on average, closer to the true tree in RF distance (Fig. 3).
Parsimony trees have higher absolute accuracy (i.e. they
contain more correct nodes and quartets, Supplementary
Fig. 6, available on Dryad); however, they also have
higher absolute inaccuracy (i.e. they contain more
incorrect nodes/quartets; Fig. 4, Supplementary Fig. 7,
available on Dryad) and consequently, they have lower
percentage accuracy (Supplementary Fig. 8, available
on Dryad). The EW parsimony SC tree is marginally
closer to the true tree than the IW parsimony SC in
terms of RF distance (Fig. 3); however, both trees are
largely equivalent in terms of absolute accuracy, absolute
inaccuracy, and percentage accuracy (Supplementary
Figs. 6–8, available on Dryad). Bayesian MRC trees
contain, on average, the fewest resolved nodes;
Bayesian estimation yields the least precise standard
consensus tree. IW SC trees contain the most resolved
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FIGURE 2. Tree and data properties for simulations under MBL2017 (stochastic) and TREvoSim (selection) models. Data comprise 1000
replicates of 128, 512, and 1024 character runs. a–c) Homoplasy measurements; (d) the level of clumping of characters across terminals; (e, f) tree
shape properties; and (g, h) the relationship between branch length and character difference across all taxon pairs (see Estimating of Properties
of Simulated Data section under Materials and methods section for full description).

nodes (Fig. 4; Supplementary Fig. 15, available on
Dryad).

The performance of all methods varies with respect
to the model under which the data were simulated,
as well as the metric used to assess accuracy. All
methods recover a higher percentage of correct nodes
in standard consensus trees for data simulated using
the stochastic (MBL2017) model (Supplementary Fig.
8, available on Dryad). Tree estimates from TREvoSim
data have a low (mean <50%) percentage of correct
nodes. In contrast, there is little difference in the
percentage of correct quartets between models: all
methods attain a high percentage (mean >75%) of
correct quartets irrespective of how the data were
generated. The impact of increasing character number
varies with respect to the model. As characters are
added in MBL2017, the performance of all methods
improves. The absolute inaccuracy of Bayesian inference
remains consistent with the addition of more characters;
however, its precision increases (Fig. 4, Supplementary
Fig. 15, available on Dryad). EW parsimony exhibits
a decrease in absolute inaccuracy and an increase in
precision with additional characters. IW parsimony is
consistently precise, but absolute inaccuracy decreases
with additional characters. Phylogenetic analyses of
TREvoSim data sets, in contrast, show a slight increase
in precision together with a slight increase in absolute

inaccuracy with higher character numbers (Fig. 4,
Supplementary Fig. 15, available on Dryad).

When using the pool of all derived trees rather than
consensus trees (i.e. posterior distribution trees and
all most parsimonious trees), parsimony searches and
Bayesian searches are equivalent for TREvoSim data (Fig.
5, Supplementary Figs. 9 and 10, available on Dryad).
All methods produce pools of trees that are distant
from the true tree. However, for data created with our
stochastic model (MBL2017), we find that posterior trees
are, on average (when considered separately for all
trees), further from the true tree than most parsimonious
trees. This reflects the fact that the posterior distribution
includes trees that are suboptimal under a likelihood
framework, whereas most parsimonious trees are, by
definition, optimal under a parsimony framework. A
fairer comparison can be made using the MCC tree
drawn from the posterior distribution of each search.
If we compare the MCC tree, rather than all posterior
trees, we find there is little difference between Bayesian
and Parsimony estimation (Fig. 5, Supplementary Figs.
9 and 10, available on Dryad).

Data Attributes and Phylogenetic Accuracy
We also compare attributes of the data (tree shape,

homoplasy, etc.) with the RF distances between
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FIGURE 3. Box plot of RF distances between the simulated tree and the standard consensus trees for Bayesian inference (Bayesian), EW
parsimony, and IW parsimony (500 replicates; 128, 512, and 1024 characters). Bayesian MRC trees are, on average, closer to the true tree than SC
trees of EW or IW parsimony.

derived and true trees (Figs. 6 and 7, Supplementary
Figs. 11–14, available on Dryad). Homoplasy measures
(ensemble CI/RI, mean excess steps) are correlated
with phylogenetic accuracy: within each model, more
homoplastic characters yield less accurate trees. Between
models, the opposite pattern is apparent (more
homoplastic characters yields more accurate trees).
This results from differences between the models
(see Characterizing Models of Morphological Evolution
section); the data exhibit Simpson’s paradox (Simpson
1951). Focusing on within model patterns, tree shape
is unrelated to phylogenetic accuracy. This contrasts
with some previous studies which have found that
asymmetric tree tends to be recovered with less accuracy
(Rohlf et al. 1990; Puttick et al. 2017b). Mean character
dispersion (D) is positively correlated with RF distance
for both models. Thus, under both stochastic and
selection-based data, as characters are more randomly
distributed relative to the tree tips (D of 1), phylogenetic
inference becomes more inaccurate.

The degree of stemminess has no correlation with
the accuracy of equal or IW parsimony estimation
(Supplementary Figs. 11–14, available on Dryad).
However, Bayesian estimation of MBL2017 data shows a
weak correlation, suggesting that the stemminess of the
true tree is related to the distance of the Bayesian estimate
from the true tree. Morphological coherence shows
different patterns for MBL2017 and TREvoSim. For
MBL2017 data there is a negative relationship between

both raw and adjusted morphological coherence and
RF distance, whereas for TREvoSim data there is no
correlation.

DISCUSSION

Bayesian Versus Parsimony
Bayesian Inference is more accurate than parsimony

methods at estimating phylogeny from discrete
morphological data when using standard consensus
methods. Our results suggest that this is true irrespective
of the data attributes or means by which they were
generated. Bayesian MRC trees are on average, closer to
the true tree (RF distance, Fig. 3), contain fewer incorrect
nodes/quartets (Supplementary Fig. 7, available
on Dryad), and have a higher percentage accuracy
(Supplementary Fig. 8, available on Dryad) than SC
trees of both equal weight and implied weight parsimony
searches. We note, however, that Bayesian MRC trees
do not contain more correct nodes/quartets than
parsimony SC trees (Supplementary Fig. 6, available
on Dryad). For data generated under the selection
(TREvoSim) model, parsimony and Bayesian Inference
resolve a similar number of correct nodes/quartets,
whereas for data generated under the stochastic
(MBL2017) model, parsimony SC trees contain more
correct nodes/quartets than Bayesian MRC trees.

If we consider the pool of trees from which standard
consensus trees are drawn, Bayesian posterior trees tend
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FIGURE 4. Heatmap of the number of resolved nodes against the number of incorrect nodes for each standard consensus tree for 128, 512 and
1024 character datasets (500 replicates). Bayesian estimates are, on average, less inaccurate and less precise than EW or IW parsimony estimates.
All methods provide less inaccurate estimates for data generated using the stochastic model (MBL2017).

to be further from the true tree than most parsimonious
trees (Fig. 5, Supplementary Figs. 9 and 10, available
on Dryad). Despite this, Bayesian inference outperforms
parsimony because incorrect nodes in posterior trees
tend to have low posterior probability, and are typically
collapsed in the Bayesian MRC tree, whereas these nodes
are frequently retained within the parsimony SC tree.
As a result, Bayesian MRC trees have higher percentage
accuracy, but lower resolution than SC parsimony trees.
We concur with O’Reilly et al. (2016) that this is preferable
to precision without accuracy, present in parsimony
searches on these data (most notably with IW).

As such, it is important to consider resolution
in addition to percentage accuracy. In cases where
percentage accuracy of two methods is equivalent, we
should favor methods that also provide resolution,
because these methods provide more phylogenetic
information. Smith (2019a) demonstrates that if poorly
supported nodes are collapsed using bootstrapping,
IW parsimony estimates are comparable with Bayesian
estimates in both accuracy and precision. We suggest
it is thus premature to reject all parsimony estimates.
Our results, and those of Smith (2019a), suggest the SC

method provides a suboptimal summary of parsimony
searches.

Characterizing Models of Morphological Evolution
The character dispersion (D) of data generated under

each model aligns with the expectations given their
differing modes of evolution. TREvoSim characters
are generally extremely clumped (negative average
D), concording with modes of natural selection
and constraint, whilst MBL2017 characters exhibit
less clumped distributions, consistent with stochastic
evolution (Brownian motion and drift) through to more
random character distributions that potentially indicate
saturation.

Our results demonstrate that parsimony and Bayesian
phylogenetic analyses estimate a higher percentage of
correct nodes when applied to data generated under
a stochastic evolutionary model (MBL2017) than under
a selection-based one (TREvoSim). This is unexpected
given the relatively elevated levels of homoplasy in
data generated in our stochastic model (Fig. 2A–C).
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FIGURE 5. Box plot of mean RF distance between the true tree generated using TREvoSim and MBL2017 simulated data, and every tree derived
for each inference method: Bayesian stationary distribution (B); Bayesian maximum clade credibility tree (B_MCC); EW most parsimonious trees;
and IW most parsimonious trees (500 replicates for 128, 512, and 1024 characters).

This result is dependent on distance metric: both
stochastic- and selection-generated data are estimated
with a high percentage of correct quartets. This probably
reflects the sensitivity of the correct nodes metric to
wildcard taxa. For data from our stochastic-based model,
quartet and node differences are broadly equivalent,
indicating that wildcard taxa are either absent or rare,
thus having limited impact. In the selection model,
a smaller percentage of correct nodes than quartets
likely results from wildcard taxa, which will impact
a higher proportion of bipartitions than quartets. For
example, a single taxon being recovered outside the
correct clade will have a large impact on the number
of correct nodes, but will compromise fewer quartets.
Hence, selection results in more wildcards, and these
taxa are routinely reconstructed incorrectly by both
Bayesian and parsimony estimation. The cause of this
is likely to be convergent or parallel evolution within
the model: we explore this further when considering the
impact of character number.

The effect of adding characters also varies between
models. When estimating trees from data generated
stochastically, increasing the number of characters
improves performance of all phylogenetic methods
via decreasing absolute inaccuracy and/or increasing
precision. In contrast, additional characters generated
under selection slightly increase both precision and
absolute inaccuracy (Fig. 4, Supplementary Fig. 15,
available on Dryad). This probably relates to differing

levels of morphological coherence in characters
generated under stochastic and selection models. Under
a stochastic evolutionary model with no among-lineage
rate heterogeneity, state changes are random. The graphs
of between-taxon branch length distance and between-
taxon character difference for MBL2017 (morphological
coherence, Supplementary Fig. 4, available on Dryad)
show that lineages rapidly accumulate character
differences following initial divergence as each lineage
accrues independent random mutations. As diverging
lineages become more distant, the rate at which
character differences accumulate slows, and eventually
stops, as character state changes become increasingly
homoplasious (i.e. saturation occurs). Consequently, the
most recently diverged lineages will always show strong
morphological coherence, even if the rate of character
change is high (Fig. 2H). By increasing the character
number, but maintaining relative character rates, the
point at which two lineages stop accumulating character
differences due to saturation is delayed. Additional
characters thus improve morphological coherence.

In contrast, under selection (e.g. TREvoSim), state
changes may be highly nonrandom. Homoplastic
state changes can be concerted amongst particular
lineages due to convergence or parallel evolution. As
a result, distantly related taxa can show few character
differences (Supplementary Fig. 5, available on Dryad),
violating the assumption of morphological coherence, an
important precept of phylogenetic analysis. Under such
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FIGURE 6. Scatter plots of correlation of eight measured tree and data attributes against RF distance between the true tree and the Bayesian
MRC tree for MBL2017 datasets of 128, 512, and 1024 simulated characters (500 replicates). � = Spearman’s Rank correlation.

circumstances, these taxa will likely behave as wildcards
in phylogenetic estimation under Bayesian or parsimony.
Additional characters will not alleviate this problem:
they have evolved under the same selection pressures
and thus contain the same concerted false signals. A
similar bias will affect models of stochastic evolution
with among-lineage rate heterogeneity. Here, lineage
specific rates may result in concerted homoplasy on
particular branches. This bias will affect all characters
equally, and additional characters will not necessarily
improve phylogenetic estimation.

Realism of Simulation Models
Previous studies that make inferences about the

performance of different methods of morphological
phylogenetic inference have all advocated the need
for morphological evolutionary simulations to have
empirical realism (O’Reilly et al. 2016, 2018b; Puttick
et al. 2017b; Goloboff et al. 2018). These studies have
used the minimum amount of homoplasy present in
empirical parsimony-based estimates of tree topology
as a benchmark for realism. As such, these measures
of homoplasy are inherently linked to the derived
tree topology. To what extent the minimum amount
of homoplasy expected within empirical data relates
to the real amount of homoplasy is open to debate.
Furthermore, the focus for such considerations has been

on the amount of homoplasy present, but it is clear from
our results that this has much less impact on the accuracy
of phylogenetic methods than might be expected. Rather,
we find that the distribution of homoplasy among
lineages has a significant impact on the accuracy of
phylogenetic estimation.

Two important evolutionary mechanisms can
introduce nonrandom homoplasy among lineages:
natural selection and among-lineage rate heterogeneity.
Consequently, to simulate “realistic” morphological
data, we must consider the extent to which these
mechanisms drive morphological evolution in the real
world. Empirical studies have been equivocal on the
relative importance of selection within morphological
evolution (Lande 1976; Lynch 1990; Ho et al. 2017), and
it seems likely that the extent to which this process
drives evolution varies at differing taxonomic levels
and timescales. On microevolutionary scales, stochastic
evolution of morphology via genetic drift may be
expected (Ackermann and Cheverud 2004; Marroig
and Cheverud 2004). On a deeper scale, including
cladogenesis from the origin and diversification
of phyla through to genera, we expect selection to
dominate (Rieseberg et al. 2002; Ho et al. 2017).

Among-lineage rate heterogeneity has been detected
in morphological data for a wide variety of different
clades over different evolutionary scales. It seems likely
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FIGURE 7. Scatter plots of correlation of eight measured tree and data attributes against RF distance between the true tree and the Bayesian
MRC tree for TREvoSim datasets of 128, 512, and 1024 simulated characters (500 replicates). � = Spearman’s Rank correlation.

that this is a general feature of morphological evolution
(Lovette et al. 2002; Lloyd et al. 2012; Lee et al. 2013;
Rabosky et al. 2013; Beck and Lee 2014; Puttick et
al. 2014; Close et al. 2015; Wang and Lloyd 2016;
Castiglione et al. 2018). It is also clear that among-lineage
rate heterogeneity is not independent of selection.
Elevated evolutionary rates have been frequently linked
to adaptive radiations (e.g. Lee et al. 2013; Beck and
Lee 2014; Close et al. 2015). Furthermore, traits that
are probably subject to strong selection, such as body
size, correlate with inferred evolutionary rate (Rabosky
et al. 2013). As such, we would expect nonrandom
distributions of homoplasy among lineages in real
morphological data, particularly for data spanning
macroevolutionary scales and/or adaptive radiations.
These are exactly the scenarios for which morphology,
especially fossil data, is a key source of information
and is most frequently applied. Unfortunately, it is also
under these circumstances that phylogenetic analyses—
parsimony and Bayesian alike—struggle to recover
accurate phylogenetic estimates.

Fortunately, more sophisticated Bayesian models offer
potential solutions to this problem. For example, in
contrast to standard Bayesian Mk analyses, those which
employ relaxed morphological clocks do not assume
constant evolutionary rate per lineage. Such models
can better accommodate data containing nonrandom

distributions of homoplasy. Clock models can have a
profound effect on topology estimates for morphological
data (King et al. 2017), but further simulation studies
using models that include rate heterogeneity are
required to determine if phylogenetic inference using
a relaxed morphological clock is more accurate than
a standard Mk analysis. Alternatives to the Mk model
that incorporate directional character evolution may
be more appropriate for data that have evolved
under selection. For continuous morphological data,
there are numerous well-established Gaussian models,
including the Ornstein–Uhlenbeck model (Beaulieu et
al. 2012) and the Lévy process (Landis et al. 2013).
A recent simulation study by Parins-Fukuchi (2018)
suggests that continuous characters perform at least as
well as discrete characters in phylogenetic estimation.
As such, directional continuous character models
provide an intriguing alternative to standard discrete
morphological models. Alternatively, Klopfstein et al.
(2015) provide a nonstationary Markov model for
directional evolution of discrete characters, although
this has yet to be used to estimate tree topology.
Assessing the efficacy of these different approaches will
require comparison of their performance with simulated
data containing nonrandom distributions of homoplasy
among lineages, coupled with careful consideration of
the prevalence of nonrandom homoplasy distributions
among lineages within empirical data.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/69/5/897/5740591 by Im

perial C
ollege London Library user on 02 Septem

ber 2020



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[13:06 13/8/2020 Sysbio-OP-SYSB200014.tex] Page: 910 897–912

910 SYSTEMATIC BIOLOGY VOL. 69

CONCLUSIONS

Here, we provide two new evolutionary models
that derive trees and phylogenetic character data
simultaneously: one in which lineages evolve
stochastically, and the other at the level of individuals
undergoing natural selection. We demonstrate that
Bayesian searches are more accurate than parsimony
searches using their respective standard consensus
methods: Bayesian MRC trees have a higher percentage
of correct nodes/quartets than parsimony SC
trees under both equal and IW. Through in-depth
characterization of the properties of the data using a
variety of metrics, we find that homoplasy and character
dispersion are related to phylogenetic accuracy. Tree
estimation using selection-generated data is generally
less accurate than stochastically generated data, despite
having less homoplasy. We interpret this as resulting
from the lower morphological coherencey of selection
data: There is a weaker relationship between the
phylogenetic and character distance between taxon
pairs, which lead to a prevalence of wildcard taxa.
Our results indicate that the inclusion of selection
into models of character evolution potentially violates
some important tenets of phylogenetic estimation
and impacts our ability to resolve the correct tree.
This could be problematic given the important role
that selection plays in morphological evolution,
despite having not previously been accounted for in
phylogenetic simulations of this type. As such, rather
than focusing on the relative merits of Bayesian or
parsimony analyses of morphological data, future
analyses might be better directed at identifying modes
and patterns of morphological evolution that can
ultimately be incorporated into more nuanced models
for phylogenetic inference.

SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
https://doi.org/10.5061/dryad.4b8gtht8h Data
analysis Zenodo repository associated with this
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