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Fading Channels
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Abstract—We study federated machine learning at the wireless
network edge, where limited power wireless devices, each with
its own dataset, build a joint model with the help of a remote
parameter server (PS). We consider a bandwidth-limited fading
multiple access channel (MAC) from the wireless devices to the
PS, and propose various techniques to implement distributed
stochastic gradient descent (DSGD) over this shared noisy
wireless channel. We first propose a digital DSGD (D-DSGD)
scheme, in which one device is selected opportunistically for
transmission at each iteration based on the channel conditions;
the scheduled device quantizes its gradient estimate to a finite
number of bits imposed by the channel condition, and transmits
these bits to the PS in a reliable manner. Next, motivated by
the additive nature of the wireless MAC, we propose a novel
analog communication scheme, referred to as the compressed
analog DSGD (CA-DSGD), where the devices first sparsify
their gradient estimates while accumulating error from previous
iterations, and project the resultant sparse vector into a low-
dimensional vector for bandwidth reduction. We also design a
power allocation scheme to align the received gradient vectors
at the PS in an efficient manner. Numerical results show that
D-DSGD outperforms other digital approaches in the literature;
however, in general the proposed CA-DSGD algorithm converges
faster than the D-DSGD scheme, and reaches a higher level of
accuracy. We have observed that the gap between the analog
and digital schemes increases when the datasets of devices are
not independent and identically distributed (i.i.d.). Furthermore,
the performance of the CA-DSGD scheme is shown to be robust
against imperfect channel state information (CSI) at the devices.
Overall these results show clear advantages for the proposed
analog over-the-air DSGD scheme, which suggests that learning
and communication algorithms should be designed jointly to
achieve the best end-to-end performance in machine learning
applications at the wireless edge.

I. INTRODUCTION

As the dataset sizes and model complexities grow, dis-
tributed machine learning (ML) is becoming the only viable
alternative to centralized ML. In particular, with the increas-
ing amount of information collected through wireless edge
devices, such centralized solutions are becoming increasingly
costly, due to the limited power and bandwidth available,
and less desirable due to privacy concerns. Federated learning
(FL) has been proposed as an alternative privacy-preserving
distributed ML scheme, where each device participates in
training using only locally available data with the help of
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a parameter server (PS) [1]. In FL, devices exchange model
parameters and their local updates with the PS, but the data
never leaves the devices. In addition to privacy benefits, this is
an attractive approach for wireless edge devices when dataset
sizes are very large.

ML problems often involve the minimization of the empir-
ical loss function

F (θ) =
1

|B|
∑
u∈B

f (θ,u) , (1)

where θ ∈ Rd denotes the model parameters to be optimized,
B is the training dataset of size |B| consisting of data samples
and their labels, and f(·) is the loss function defined by
the learning task. The minimization of F (θ) is typically
carried out through iterative stochastic gradient descent (SGD)
algorithm, in which the model parameter vector at iteration t,
θt, is updated with a stochastic gradient

θt+1 = θt − ηtg (θt) , (2)

which satisfies E [g (θt)] = ∇F (θt), where ηt is the learning
rate. SGD can easily be implemented across multiple devices,
each of which has access to only a small fraction of the
dataset. In distributed SGD (DSGD), at each iteration, device
m computes a gradient vector based on the global parameter
vector with respect to its local dataset, denoted by Bm, and
sends the result to the PS, which updates the global parameter
vector according to

θt+1 = θt − ηt
1

M

M∑
m=1

gm (θt) , (3)

where M denotes the number of devices, and gm (θt) ,
1
|Bm|

∑
u∈Bm ∇f (θt,u), m ∈ [M ]. In FL, each device

can carry out multiple local updates, and share the overall
difference with respect to the previous global model with the
PS [1].

What distinguishes FL from conventional ML is the large
number of devices that participate in the training, and the
low-capacity and unreliable links that connect these devices to
the PS. Therefore, there have been significant research efforts
to reduce the communication requirements in FL [1]–[24].
However, these and follow-up studies ignore the physical layer
aspects of wireless connections and consider interference-and-
error-free links from the participating devices to the PS, even
though FL has been mainly motivated for mobile devices.

In this paper, we consider DSGD over-the-air; that is,
we assume that learning takes place over a shared wireless
medium over which the devices send their gradient estimates to
the PS. To emphasize the limitations of the wireless medium,
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we note that the dimension of some of the recent ML models,
which also determines the size of the gradient estimates or
model updates that must be transmitted to the PS at each
iteration, can be extremely large, e.g., the 50-layer ResNet net-
work has ∼26 million weight parameters, while the VGGNet
architecture has approximately 138 million parameters. On
the other hand, available channel bandwidth is typically small
due to the bandwidth and latency limitations; for example 1
LTE frame of 5MHz bandwidth and 10ms duration can carry
only 6000 complex symbols. In principle, we can treat each
iteration of the DSGD algorithm as a distributed over-the-air
lossy computation problem. FL over a static Gaussian MAC is
studied in [25], where both a digital scheme, which separates
computation and communication, and an analog over-the-
air computation scheme are introduced. While the digital
scheme exploits gradient quantization followed by independent
channel coding at the participating wireless devices, the analog
scheme exploits the additive nature of the wireless channel and
gradient sparsification, and employs random linear projection
for dimensionality reduction. In [26] the authors consider
a fading MAC, and also apply analog transmission, where
each entry of a gradient vector at each of the devices is
scheduled for transmission depending on the corresponding
channel condition. A multi-antenna PS is considered in [27],
where receive beamforming is used to maximize the number
of devices scheduled for transmission at each iteration.

Here, we extend our previous works [25], [28], and study
DSGD over a wireless fading MAC. While we focus on DSGD
(also known as federated SGD), where each device sends
its local gradient estimate at each iteration, the results can
easily be extended by letting the devices send their model
updates after several local SGD iterations. We first consider
the separate computation and communication approach, and
propose a digital DSGD (D-DSGD) scheme, in which only a
single device is opportunistically scheduled for transmission
at each iteration of DSGD based on the channel conditions
from the devices to the PS. The scheduled device quantizes
its gradient estimate to a finite number of bits using the
gradient compression scheme in [18] while accumulating the
error from previous iterations (this will be clarified later), and
employs a channel code to transmit the bits over the available
bandwidth-limited channel to the PS. For the MNIST classifi-
cation task, it is shown that the proposed digital approach D-
DSGD outperforms digital schemes that employ QSGD [8] or
SignSGD [12] for gradient compression. We also observe that
the proposed opportunistic scheduling scheme outperforms the
scheme when all the devices participate in the transmission,
with each device allocated orthogonal channel resources to
communicate with the PS.

We then study analog transmission from the devices mo-
tivated by the signal-superposition property of the wireless
MAC. At first, we extend the scheme in [26] by introducing er-
ror accumulation, which is shown to improve the performance.
We then propose a novel scheme, inspired by the random
projection used in [25] for dimensionality reduction, which we
will refer to as the compressed analog DSGD (CA-DSGD).
With CA-DSGD, we exploit the similarity in the sparsity
patterns of the gradient estimates at different devices to speed

up the computations, where each device projects its gradient
estimate to a low-dimensional vector and transmits only the
important gradient entries while accumulating the error. CA-
DSGD provides the flexibility of adjusting the dimension of
the gradient estimate sent by each device, which is particularly
important for bandwidth-limited wireless channels, where the
bandwidth may not be sufficient to send the entire gradient
vector. A power allocation scheme is also designed, which
aligns the vectors sent by different devices at the PS while
satisfying the average power constraint. Numerical results
show that the proposed CA-DSGD scheme improves upon the
other analog and digital schemes under consideration with the
same average power constraint and bandwidth resources, and
the improvement is more significant when the datasets across
devices are non-independent and identically distributed (i.i.d.).
Its performance is also shown to be robust against imperfect
channel state information (CSI) at the devices, whereas digital
schemes are sensitive to accurate CSI, particularly if close to
capacity operation is desired.

In addition to these benefits, we make the following obser-
vations:

1) The improvement of analog over-the-air computation
compared to the D-DSGD scheme is particularly strik-
ing in the low power regime. This is mainly due to
the “beamforming” effect of simultaneously transmitting
highly correlated gradient estimates.

2) While both the convergence speed and the accuracy of the
D-DSGD scheme increase significantly with the available
average power, the performance of the analog schemes
improve marginally. This highlights the energy efficiency
of over-the-air computation, and makes it particularly
attractive for FL across low-power IoT sensors.

3) Increasing the number of devices improves the accuracy
for all the schemes even if the total dataset size and
total power consumption remain the same. This “diversity
gain” is much more limited for the analog scheme, and
diminishes further as the training duration increases.

4) We observe that the performance of the CA-DSGD
scheme improves if we reduce the bandwidth used at each
iteration, and increase the number of iterations instead.

Notations: R and C represent the sets of real and complex
values, respectively. For vectors x and y with the same dimen-
sion, x ◦ y returns their Hadamard/entry-wise product. For a
vector z ∈ Ci, Re{z} ∈ Ri and Im{z} ∈ Ri return the entry-
wise real and imaginary components of z, respectively. Also,
[v,w] represents the concatenation of two row vectors v and
w. We denote a zero-mean normal distribution with variance
σ2 by N

(
0, σ2

)
, and CN

(
0, σ2

)
represents a complex normal

distribution with independent real and imaginary terms each
distributed according to N

(
0, σ2/2

)
. For positive integer i,

we let [i] , {1, . . . , i}. We denote the cardinality of set A by
|A|, and l2 norm of vector x by ‖x‖2. The imaginary unit is
represented by j.

II. SYSTEM MODEL

We consider FL across M wireless devices, each with its
own local dataset, which employ DSGD with the help of a
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Fig. 1: Illustration of the wireless FL architecture.

remote PS. We model the channel from the devices to the
PS as a wireless fading MAC, and OFDM is employed for
transmission. The system model is illustrated in Fig. 1. The
parameter vector at iteration t is denoted by θt, and we assume
that it is delivered from the PS to the devices over an error-
free shared link. We denote the set of data samples available
at device m by Bm, with |Bm| = B, ∀m ∈ [M ], and the
stochastic gradient computed by device m with respect to
local data samples by gm (θt) ∈ Rd, m ∈ [M ]. At the t-
th iteration of the DSGD algorithm in (3), the local gradient
estimates of the devices are sent to the PS over a wireless
fading MAC using s subchannels for a total of N time slots,
where s ≤ d (in practice, we typically have s � d). We
denote the length-s channel input vector transmitted by device
m at the n-th time slot of the t-th iteration of the DSGD by
xnm(t) = [xnm,1(t) · · ·xnm,s(t)]T ∈ Cs. The channel output
yn(t) ∈ Cs received by the PS at the n-th time slot of the
t-th iteration, n ∈ [N ], is given by

yn(t) =

M∑
m=1

hnm(t) ◦ µnm(t) ◦ xnm(t) + zn(t), (4)

where µnm(t) ∈ {0, 1}s is the entry-wise scheduling vector
with the i-th entry µnm,i(t) = 1, if m ∈ Mn

i (t), and
µnm,i(t) = 0, otherwise1, hnm(t) ∈ Cs is the channel gains
vector from device m to the PS with the i-th entry hnm,i(t) i.i.d.
according to CN (0, σ2), e.g., Rayleigh fading, and zn(t) ∈ Cs
is complex Gaussian noise vector with the i-th entry zni (t) i.i.d.
according to CN (0, 1). The channel input vector of device m
at the n-th time slot of iteration t, n ∈ [N ], is a function of the
channel gain vector hnm(t), current parameter vector θt, the
local dataset Bm, and the current gradient estimate at device
m, gm (θt), m ∈ [M ]. We assume that, at each time slot, the
CSI is known by the devices and the PS. For a total of T
iterations of the DSGD algorithm, the following total average
transmit power constraint is imposed at device m:

1

NT

T∑
t=1

N∑
n=1

E
[
||xnm(t)||22

]
≤ P̄ , ∀m ∈ [M ], (5)

1Mn
i (t) is a subset of the devices that will be specified for each of the

schemes.

where the expectation is taken over the randomness of the
channel gains.

The goal is to recover 1
M

∑M
m=1 gm (θt) at the PS, which

then updates the model parameter as in (3) after N time slots.
However, due to the pre-processing performed at each device
and the distortion caused by the wireless channel, the PS uses a
noisy estimate to update the model parameter. Having defined
y(t) , [y1(t)

T · · ·yN (t)
T

]T , we have θt+1 = φ(θt,y(t)) for
some update function φ : Rd×CNs → Rd. The updated model
parameter is then multicast to the devices by the PS through
an error-free shared link, so the devices receive a consistent
parameter vector for their computations in the next iteration.

Note that the goal is to recover the average of the local
gradient estimates at the PS, which is a distributed lossy
computation problem over a noisy MAC. We will consider
both a digital approach based on separating computations and
communication, and an analog approach, where the gradients
are transmitted in an analog fashion, without being converted
into bits first. Analog transmission has been well studied for
image/ video multicasting over wireless channels in recent
years [29]–[31], and here we employ the random projection
technique proposed in [31] for image transmission over a
bandwidth limited wireless channel.

III. DIGITAL DSGD
We first consider DSGD with digital transmission of the

gradient estimates by the devices over the wireless fading
MAC, referred to as the digital DSGD (D-DSGS) scheme.
For D-DSGD, we consider N = 1, i.e., the parameter vector
is updated after each time slot, and drop the dependency on
time slot parameter n.

The goal here is to schedule devices and employ power
allocation across time slots such that devices can transmit to
the PS their local gradient estimates as accurately as possible.
A possible approach is to schedule all the devices at all the
iterations; however, due to the interference among the devices
this will result in each device sending a very coarse description
of its local gradient estimate. Instead here we will schedule
the devices opportunistically according to their channel states.

In particular, with the knowledge of channel state informa-
tion (CSI), at each iteration t, we select the device with the
largest value of

∑s
i=1 |hm,i(t)|

2, m ∈ [M ]. Accordingly, the
index of the transmitting device at iteration t is given by:

m∗(t) = arg max
m∈[M ]

{∑s

i=1
|hm,i(t)|2

}
. (6)

We note that, due to the symmetry in the model, the probability
of selecting a device at any time is the same, 1/M . The power
allocated to device m at the t-th iteration is given by P̄m(t),
where P̄m(t) = 0, if m 6= m∗(t), and it should satisfy

1

MT

T∑
t=1

P̄m(t) ≤ P̄ , for m ∈ [M ]. (7)

For the rate of transmission, we will use a capacity upper
bound. The i-th entry of the channel output at the t-th iteration
is given by

yi(t) = hm∗(t),i (t)xm∗(t),i(t) + zi(t), i ∈ [s], (8)
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which is equivalent to a wireless fast fading channel with a
limited number of s channel uses, with CSI known at both
the transmitter and receiver. In the following, we provide an
upper bound on the capacity of this channel by treating it as s
parallel Gaussian channels. This is equivalent to coding across
infinitely many realizations of this s-dimensional channel.
For a transmit power Pm∗(t)(t), the capacity of this parallel
Gaussian channel is obtained as the solution of the following
optimization problem [32, Section 5.4.6]:

max
P1,...,Ps

∑s

i=1
log2

(
1 + Pi

∣∣hm∗(t),i (t)
∣∣2) ,

subject to
∑s
i=1 Pi = P̄m∗(t)(t). (9)

The optimization problem in (9) is solved through waterfilling,
and the optimal power allocation is given by

P ∗i = max

{
1

ζ
− 1∣∣hm∗(t),i (t)

∣∣2 , 0
}
, (10)

where ζ is determined such that
∑s
i=1 P

∗
i = P̄m∗(t)(t).

Having calculated P ∗1 , . . . , P
∗
s , the capacity of the wireless

channel in (8) is given by

R(t) =
∑s

i=1
log2

(
1 + P ∗i

∣∣hm∗(t),i (t)
∣∣2) , (11)

which provides an upper bound on the capacity of the commu-
nication channel between device m∗(t) and the PS. We would
like to emphasize that this capacity upper bound can be quite
loose especially for small s values.

We adopt the D-DSGD scheme proposed in [25, Section
III], in which the gradient estimate gm (θt), computed at
device m, is added to the error accumulated from previous
iterations, denoted by ∆m(t− 1), where we set ∆m(0) = 0,
m ∈ [M ]. For the compression of the error compensated
gradient vector gm (θt)+∆m(t−1), we employ the scheme in
[18], where it is first sparsified by setting all but the highest
q(t) positive and the smallest q(t) negative entries to zero,
where q(t) ≤ d/2 (in practice, the goal is to have q(t) � d,
∀t). Then, device m computes the mean value of the positive
and negative entries of the resultant sparse vector, denoted by
q+
m(t) and q−m(t), respectively, m ∈ [M ]. If q+

m(t) ≥ q−m(t),
device m sets all the negative entries of the sparse vector to
zero and all the positive entries to q+

m(t), and vice versa, if
q+
m(t) < q−m(t), m ∈ [M ]. Let ĝm (θt) denote the resultant

sparse vector at device m, m ∈ [M ]. After computing ĝm (θt)
at device m, m ∈ [M ], the error accumulation vector, which
maintains those entries of vector gm (θt) + ∆m(t− 1) that
are not transmitted, is updated as follows:

∆m(t) =

{
gm (θt) + ∆m(t− 1)− ĝm (θt) , if m = m∗(t),

gm (θt) + ∆m(t− 1), otherwise.

We note that, if user m is scheduled, the accumulated error at
device m is the difference between gm (θt) +∆m(t− 1) and
its sparsified version ĝm (θt), m ∈ [M ]; on the other hand,
if device m is not scheduled, we maintain vector gm (θt) +
∆m(t− 1) entirely as the accumulated error. For a sparsity
level q(t), the D-DSGD scheme requires transmission of a

total of [25, Equation (10)]

r(t) = log2

(
d

q(t)

)
+ 33 bits. (12)

We assume that device m∗(t) employs a capacity achieving
channel code using the optimal value of the capacity upper
bound in (11), and we set the sparsity level q(t) as the highest
integer satisfying r(t) ≤ R(t).

We highlight here that with the proposed D-DSGD al-
gorithm, only a single device is scheduled for transmission
according to (6). The PS updates the parameter vector after
receiving the gradient estimate from the scheduled device and
shares it with all the devices to continue their computations.

Remark 1. Alternatively, we can select the device with the
highest capacity upperbound; however this would introduce an
overhead as the PS will need to solve the waterfilling power
allocation for all M devices. This will be prohibitive for large
s and M values.

Remark 2. We can also schedule all or a subset of the devices,
and allocate distinct subchannels to scheduled devices. In
Section V we consider the so-called orthogonal digital DSGD
(OD-DSGD) scheme, which schedules all the devices at each
iteration, where each device is allocated bs/Mc distinct
subchannels. We have observed that OD-DSGD performs
much worse than D-DSGD. It is worth noting that scheduling
multiple devices reduces the number of subchannels allocated
to each device, and forces the devices to transmit their
information at shorter blocklengths. In practice, this would
result in a higher error probability or reduced transmission
rate [33]. An alternative approach is to code across time
slots by allocating multiple time slots to a scheduled user.
This requires the information about the future channel gains,
which is not possible in our model since the channel gains are
assumed i.i.d. across time slots and users.

We will evaluate the performance of D-DSGD in Section V,
and study in detail the impact of various system parameters,
such as the power constraint and the number of devices on
the performance. We will also compare D-DSGD with other
compression schemes in the literature, as well as the analog
transmission of local gradients, which we present next.

IV. ANALOG DSGD
Analog DSGD is motivated by the fact that the PS is only

interested in the average of the gradient vectors, and the
underlying wireless MAC can provide the sum of the gradients
if they are sent in an uncoded fashion. We first present
a generalization of the over-the-air computation approach
introduced in [26], referred to as entry-wise scheduled analog
DSGD (ESA-DSGD), and then extend it by introducing error
accumulation, referred to as error compensated ESA-DSGD
(ECESA-DSGD). Finally, we propose a novel analog scheme,
built upon our previous work [25], referred to as compressed
analog DSGD (CA-DSGD).

A. ESA-DSGD
With the ESA-DSGD scheme studied in [26], each device

sends its gradient estimate entirely after applying power allo-
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cation, which is to satisfy the average power constraint. At the
t-th iteration of the DSGD, device m, m ∈ [M ], transmits its
local gradient estimate gm (θt) ∈ Rd over N = dd/2se time
slots by utilizing both the real and imaginary components of
the available s subchannels. We define, for n ∈ [N ], m ∈ [M ],

gnm,re (θt) , [gm,2(n−1)s+1 (θt) , · · · , gm,(2n−1)s (θt)]
T ,
(13a)

gnm,im (θt) , [gm,(2n−1)s+1 (θt) , · · · , gm,2ns (θt)]
T , (13b)

gnm (θt) , g
n
m,re (θt) + jgnm,im (θt) , (13c)

where gm,i (θt) is the i-th entry of gm (θt), and we zero-pad
gm (θt) to dimension 2sN . We note that, according to (13),

gm (θt) =
[
g1
m,re (θt) , g

1
m,im (θt) , · · · ,

gNm,re (θt) , g
N
m,im (θt)

]T
, (14)

where N = dd/2se. At the n-th time slot of the t-th iteration,
device m, m ∈ [M ], sends xnm (t) = αe,n

m (t)◦gnm (θt), where
αe,n
m (t) ∈ Cs is the power allocation vector, which is set to

satisfy the average transmit power constraint. Thus, after N
time slots, each device sends its gradient estimate of dimension
d entirely. The i-th entry of the power allocation vector αe,n

m (t)
is set as follows:

αe,n
m,i(t) =

{
γe,n
m (t)
hnm,i(t)

, if
∣∣hnm,i(t)∣∣2 ≥ λe(t),

0, otherwise,
(15)

for some γe,n
m (t), λe(t) ∈ R, set to satisfy the average transmit

power constraint. According to (15), each entry of a gradient
vector is transmitted if its corresponding channel gain is over
a threshold. The set of devices selected to transmit the i-th
entry of the channel input vector at the n-th time slot is given
by, i ∈ [s], n ∈ [N ],

Mn
i (t) =

{
m ∈ [M ] :

∣∣hnm,i(t)∣∣2 ≥ λe(t)
}
. (16)

In the following, we analyze the average transmit power of
the ESA-DSGD scheme based on the power allocation design
given in (15). We set the parameters γe,n

m (t) and λe(t) to obtain
the same average transmit power P̄n(t) at device m, m ∈ [M ],
in time slot n, n ∈ [N ], of iteration t, which satisfies

1

NT

T∑
t=1

N∑
n=1

P̄n(t) ≤ P̄ . (17)

According to (15), ∀m ∈ [M ], we have, for n ∈ [N ], t ∈ [T ],

P̄n(t) = E
[
||xnm(t)||22

]
=

s∑
i=1

E
[∣∣αe,n

m,i(t)
∣∣2 ∣∣gm,(n−1)s+i(θt)

∣∣2] . (18)

We highlight that the entries of the gradient vector gnm(θt)
are independent of the channel gains hnm,i(t), ∀i, n,m. Since
the power allocation vector αe,n

m (t) is a function of gnm(θt),
it follows that, for n ∈ [dd/2se], m ∈ [M ],

P̄n(t) =

s∑
i=1

∣∣gm,(n−1)s+i(θt)
∣∣2 E [∣∣αe,n

m,i(t)
∣∣2] . (19)

Note that
∣∣hnm,i(t)∣∣2 follows an exponential distribution with

mean σ2, ∀i, n,m. Thus, we have

E
[∣∣αe,n

m,i(t)
∣∣2] =

(
γe,n
m (t)

σ

)2

E1(λe(t)), (20)

where E1(x) ,
´∞
x

e−τ

τ dτ . It follows that, m ∈ [M ], n ∈ [N ],

P̄n(t) =

(
γe,n
m (t)

σ

)2

E1(λe(t))P e,n
m (t), (21)

where we define P e,n
m (t) , ‖gnm (θt)‖22. Given the threshold

value λe(t), we set, for m ∈ [M ], n ∈ [N ], t ∈ [T ],

γe,n
m (t) = σ

(
P̄n(t)

E1(λe(t))P e,n
m (t)

)1/2

, (22)

which we note that it does not differ significantly across
devices, since values of P e,n

m (t), ∀m, are not too different. We
assume that, before transmitting xnm (t) = αe,n

m (t) ◦ gnm (θt),
device m, m ∈ [M ], sends γe,n

m (t) to the PS in an error-free
fashion using an error correcting code, and the PS computes

γ̄e,n(t) ,
1

M

M∑
m=1

γe,n
m (t), n ∈ [N ], t ∈ [T ]. (23)

This factor is used by the PS to scale down the received signal.
Here we analyze the received signal at the PS. By substitut-

ing xnm (θt) and αe,n
m (t) into (4), it follows that, for i ∈ [s],

n ∈ [N ],

yni (t) =
∑

m∈Mn
i (t)

γe,n
m (t)

(
gm,2(n−1)s+i(θt)

+jgm,(2n−1)s+i(θt)
)

+ zni (t). (24)

The PS has perfect CSI, and hence, knows set Mn
i (t). Its

goal is to recover 1

|Mn
i (t)|

∑
m∈Mn

i (t) gm,2(n−1)s+i (θt)

and 1

|Mn
i (t)|

∑
m∈Mn

i (t) gm,(2n−1)s+i (θt), which

provide estimates for 1
M

∑M
m=1 gm,2(n−1)s+i (θt) and

1
M

∑M
m=1 gm,(2n−1)s+i (θt), respectively. The PS estimates

1

|Mn
i (t)|

∑
m∈Mn

i (t) gm,2(n−1)s+i (θt), for i ∈ [s], n ∈ [N ],

using its noisy observation yni (t), given in (24), as

ĝe
2(n−1)s+i (θt) =

{ Re{yni (t)}
γ̄e,n(t)|Mn

i (t)| , if |Mn
i (t)| 6= 0,

0, otherwise,
(25)

and estimates 1

|Mn
i (t)|

∑
m∈Mn

i (t) gm,(2n−1)s+i (θt) through

ĝe
(2n−1)s+i (θt) =

{ Im{yni (t)}
γ̄e,n|Mn

i (t)| , if |Mn
i (t)| 6= 0,

0, otherwise.
(26)

Estimated vector ĝe (θt) , [ĝe
1 (θt) · · · ĝe

d (θt)]
T is then used

to update the parameter vector as θt+1 = θt − ηtĝe (θt).

Remark 3. We remark here that the scheme in [26] imposes a
stricter average power constraint P̄ per iteration of the DSGD,
i.e., at device m we should have

1

N

N∑
n=1

E
[
||xnm(t)||22

]
≤ P̄ , ∀m ∈ [M ],∀t. (27)
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For fairness in our comparisons we relax this power con-
straint, and impose the one in (5), which constrains the
average power over all the iterations.

B. ECESA-DSGD

With the ESA-DSGD scheme, entries of the gradient vec-
tors that are not sent due to poor channel conditions are
completely forgotten. The proposed ECESA-DSGD scheme
modifies ESA-DSGD by incorporating error accumulation
technique to retain the accuracy of local gradients.

We denote the error accumulation vector of device m at
the n-th time slot of the t-iteration by ∆v,n

m (t) ∈ Cs, and
set ∆v,n

m (t) = 0, ∀n, t,m. Similarly to the ESA-DSGD
scheme, with ECESA-DSGD, each device sends its entire
gradient estimate of dimension d through N = dd/2se time
slots, where the gradient estimates at the devices are zero-
padded to dimension 2sN . After computing gm (θt) and
obtaining gnm (θt) according to (13), device m, m ∈ [M ],
updates its gradient estimate with the accumulated error as
gv,n
m (θt) , gnm (θt)+∆v,n

m (t− 1), for n ∈ [N ], and transmits
vector xnm (t) = αv,n

m (t) ◦ gv,n
m (θt), where αv,n

m (t) ∈ Cs is
the power allocation vector, whose i-th entry is given by:

αv,n
m,i(t) =

{
γv,n
m (t)
hnm,i(t)

, if
∣∣hnm,i(t)∣∣2 ≥ λv(t),

0, otherwise,
(28)

for some γv,n
m (t), λv(t) ∈ R. Device m, m ∈ [M ], then

updates the i-th entry of vector ∆v,n
m (t) as follows:

∆v,n
m,i(t) =

(
1− 1

(
αv,n
m,i(t) 6= 0

))
gnm,i (θt)

=
(
1− 1

(
αv,n
m,i(t) 6= 0

)) (
gm,2(n−1)s+i (θt)

+jgm,(2n−1)s+i (θt)
)
, (29)

where 1(·) is the indicator function, and gnm,i (θt) denotes the
i-th entry of gnm (θt), for i ∈ [s], n ∈ [N ]. Thus, the i-th entry
of vector gv,n

m (θt) is given by, for i ∈ [s], n ∈ [N ],

gv,n
m,i (θt) = gm,2(n−1)s+i (θt) + jgm,(2n−1)s+i (θt)

+
(
1− 1

(
αv,n
m,i(t− 1) 6= 0

)) (
gm,2(n−1)s+i (θt−1)

+jgm,(2n−1)s+i (θt−1)
)
. (30)

According to (29), each entry of the gradient vector gv,n
m (θt)

that is not transmitted due to the power allocation given in
(28), is retained in the error accumulation vector ∆v,n

m (t) for
possible transmission in the next iteration.

Here we provide the power analysis of the ECESA-DSGD
scheme. For fairness, we set the parameters γv,n

m (t) and
λv(t) yielding an average transmit power P̄n(t) at device
m, m ∈ [M ], in time slot n, n ∈ [N ], of iteration t,
satisfying the constraint in (17). Since the power allocation
vector of ECESA-DSGD, given in (28), is similar to that of
the ESA-DSGD, by following a similar procedure we obtain
the following average power at device m for ECESA-DSGD:

P̄n(t) =

(
γv,n
m (t)

σ

)2

E1(λv(t))P v,n
m (t), n ∈ [N ], (31)

where we define P v,n
m (t) , ‖gv,n

m (θt)‖22, t ∈ [T ]. For a fixed
λv(t), we set, for m ∈ [M ], n ∈ [N ], t ∈ [T ],

γv,n
m (t) = σ

(
P̄n(t)

E1(λe(t))P v,n
m (t)

)1/2

, (32)

shared with the PS in an error-free manner, through which the
PS computes

γ̄v,n(t) ,
1

M

M∑
m=1

γv,n
m (t), n ∈ [N ], t ∈ [T ]. (33)

From the power allocation in (28), it follows that, for i ∈ [s],
n ∈ [N ],

yni (t) =
∑

m∈Mn
i (t)

γv,n
m (t)gv,n

m,i(θt) + zni (t), (34)

where we have

Mn
i (t) =

{
m ∈ [M ] :

∣∣hnm,i(t)∣∣2 ≥ λv(t)
}
. (35)

Having perfect CSI, the PS’s goal is to recover
1

|Mn
i (t)|

∑
m∈Mn

i (t) g
v,n
m,i (θt), the real and imaginary terms

of which provide estimates for 1
M

∑M
m=1 g

n
m,2(n−1)s+i (θt)

and 1
M

∑M
m=1 g

n
m,(2n−1)s+i (θt), respectively, for i ∈ [s],

n ∈ [N ]. The PS estimates 1
M

∑M
m=1 g

n
m,2(n−1)s+i (θt) as

ĝv
2(n−1)s+i (θt) =


Re{yni (t)}

γ̄v,n(t)|Mn
i (t)| , if |Mn

i (t)| 6= 0,

ĝv
2(n−1)s+i (θt−1) , otherwise,

(36)

and estimates 1
M

∑M
m=1 g

n
m,(2n−1)s+i (θt) through

ĝv
(2n−1)s+i (θt) =


Im{yni (t)}

γ̄v,n(t)|Mn
i (t)| , if |Mn

i (t)| 6= 0,

ĝv
(2n−1)s+i (θt−1) , otherwise,

(37)

for i ∈ [s], n ∈ [N ]. After N = dd/2se time slots, estimated
vector ĝv (θt) , [ĝv

1 , · · · , ĝv
d ]T is then used to update the

parameter vector as θt+1 = θt − ηtĝv (θt).

C. CA-DSGD
As opposed to ESA-DSGD and ECESA-DSGD, which

aim to transmit all the gradient entries to the PS at each
DSGD iteration, i.e., N = dd/2se, the CA-DSGD scheme
in Algorithm 1 reduces the transmission bandwidth by a
linear projection. Each device projects its gradient estimate to
dimension s̃ = 2sN , which can then be transmitted through
N time slots, for some N ∈ [dd/2se].

We describe the CA-DSGD scheme for an arbitrary number
of time slots N ∈ [dd/2se] per iteration of DSGD, which is
determined later. At each iteration the devices sparsify their
gradient estimates as described below. They employ error
accumulation [7], where the accumulated error vector at device
m until iteration t is denoted by ∆c

m(t− 1) ∈ Rd, where
we set ∆c

m(0) = 0, ∀m ∈ [M ]. After computing gm (θt),
device m updates its estimate with the accumulated error
as gecm (θt) , gm (θt) + ∆c

m(t− 1), m ∈ [M ]. Next, the
devices apply gradient sparsification, where device m sets
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Algorithm 1 CA-DSGD

1: Initialize θ1 = 0 and ∆c
1(0) = · · · = ∆c

M (0) = 0
2: for t = 1, . . . , T do
• devices do:

3: for m = 1, . . . ,M in parallel do
4: Compute gm (θt) with respect to local dataset Bm
5: gecm (θt) = gm (θt) + ∆c

m(t− 1)
6: gspm (θt) = sparsek (gecm (θt))
7: ∆c

m(t) = gecm (θt)− gspm (θt)
8: g̃m (θt) = Agspm (θt)
9: for n = 1, . . . , N do

10: xnm (t) = αc,n
m (t) ◦ g̃nm (θt)

11: end for
12: end for

• PS does:
13: if ŷ(t) 6= 0 then
14: ĝc (θt) = AMPA (ŷ(t))
15: θt+1 = θt − ηtĝc (θt)
16: else
17: θt+1 = θt
18: end if
19: end for

all but k elements with the highest magnitudes of gecm (θt)
to zero, where k ≤ s̃ is a design parameter, and obtains
a sparse vector gspm (θt), m ∈ [M ]. This k-level sparsifica-
tion is represented by function sparsek in Algorithm 1, i.e.,
gspm (θt) = sparsek (gecm (θt)). Device m, m ∈ [M ], then
updates ∆c

m(t) as ∆c
m(t) = gecm (θt) − gspm (θt). To transmit

the sparse vectors over the limited-bandwidth channel, devices
employ a random projection matrix.

A pseudo-random matrix A ∈ Rs̃×d, with each entry i.i.d.
according to N (0, 1/s̃), is generated and shared between the
PS and the devices, where s̃ = 2sN , for an arbitrary N ∈
[dd/2se]. At each iteration t, device m computes g̃m (θt) ,
Agspm (θt) ∈ Rs̃, and aims to transmit it to the PS over N =
s̃/2s time slots. We define, for n ∈ [N ], m ∈ [M ],

g̃nm,re (θt) , [g̃m,2(n−1)s+1 (θt) , · · · , g̃m,(2n−1)s (θt)]
T ,
(38a)

g̃nm,im (θt) , [g̃m,(2n−1)s+1 (θt) , · · · , g̃m,2ns (θt)]
T , (38b)

g̃nm (θt) , g̃
n
m,re (θt) + jg̃nm,im (θt) , (38c)

where g̃m,i (θt) is the i-th entry of g̃m (θt), i ∈ [s̃]. At the n-
th time slot of the t-th iteration of DSGD, device m, m ∈ [M ],
sends xnm (t) = αc,n

m (t) ◦ g̃nm (θt), where αc,n
m (t) ∈ Cs is the

power allocation vector. The i-th entry of the power allocation
vector αc,n

m (t) is set as follows:

αc,n
m,i(t) =

{
γc,n
m (t)
hnm,i(t)

, if
∣∣hnm,i(t)∣∣2 ≥ λc(t),

0, otherwise,
(39)

for some γc,n
m (t), λc(t) ∈ R. The set of devices scheduled to

transmit the i-th entry of the channel input vector at the n-th

time slot is given by, i ∈ [s], n ∈ [N ],

Mn
i (t) =

{
m ∈ [M ] :

∣∣hnm,i(t)∣∣2 ≥ λc,n
m (t)

}
. (40)

Similarly to ESA-DSGD and ECESA-DSGD, we set the
average transmit power at device m, m ∈ [M ], in time slot n,
n ∈ [N ], of iteration t for CA-DSGD to P̄n(t),

P̄n(t) =

(
γc,n
m (t)

σ

)2

E1(λc(t))P c,n
m (t), t ∈ [T ], (41)

where we define P c,n
m (t) , ‖g̃nm (θt)‖22. Given λc(t), we set,

for m ∈ [M ], n ∈ [N ], t ∈ [T ],

γc,n
m (t) = σ

(
P̄n(t)

E1(λe(t))P c,n
m (t)

)1/2

, (42)

and the PS computes

γ̄c,n(t) ,
1

M

∑M

m=1
γc,n
m (t), n ∈ [N ], t ∈ [T ], (43)

after receiving γc,n
m (t).

By substituting xnm (θt) and αc(t) into (4), it follows that,
for i ∈ [s], n ∈ [N ]

yni (t) =
∑

m∈Mn
i (t)

γc,n
m (t)

(
g̃m,2(n−1)s+i(θt)

+jg̃m,(2n−1)s+i(θt)
)

+ zni (t)

= aT2(n−1)s+i

∑
m∈Mn

i (t)

γc,n
m (t)gspm (θt)

+ jaT(2n−1)s+i

∑
m∈Mn

i (t)

γc,n
m (t)gspm (θt) + zni (t), (44)

where aTi denotes the i-th row of measurement matrix A, and
we note that g̃m,i(θt) = aTi g

sp
m (θt), i ∈ [s̃]. The PS wants

to recover 1
M

∑M
m=1 g

sp
m (θt) from its noisy observations in

(44). For this, using its knowledge of matrix A and the
CSI, PS employs the approximate message passing (AMP)
algorithm [34]. The AMP algorithm is represented by AMPA

in Algorithm 1. The PS first obtains, for i ∈ [s], n ∈ [N ],

ŷ2(n−1)s+i(t) =

{ Re{yni (t)}
γ̄c,n
m (t)|Mn

i (t)| , if |Mn
i (t)| 6= 0,

0, otherwise,
(45a)

ŷ(2n−1)s+i(t) =

{ Im{yni (t)}
γ̄c,n
m (t)|Mn

i (t)| , if |Mn
i (t)| 6= 0,

0, otherwise,
(45b)

and then estimates

ĝc (θt) = AMPA (ŷ(t)) , (46)

where we define ŷ(t) , [ŷ1(t), · · · , ŷs̃(t)]T . If ŷ(t) 6= 0,
ĝc (θt) is used to update the parameter vector as θt+1 =
θt−ηtĝc (θt). On the other hand, if ŷ(t) = 0, the previous pa-
rameter vector is simply used as the new one, i.e., θt+1 = θt.

Remark 4. For N = dd/2se, in which the entire gradient
vectors are transmitted to the PS at each iteration, the CA-
DSGD scheme reduces to the ECESA-DSGD scheme.

Remark 5. We remark that k is a design parameter which
can take different values limited to k < s̃. For relatively
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small k values, 1
M

∑M
m=1 g

sp
m (θt) can be recovered from

1
M

∑M
m=1 g̃m (θt) in a more reliable manner as we have

more noisy measurements of the sparsified gradient esti-
mate than the number of its non-zero elements; however,
1
M

∑M
m=1 g

sp
m (θt) provides a less accurate estimate of the ac-

tual average gradient 1
M

∑M
m=1 gm (θt) as we have removed

more componenets from the gradient estimates. On the other
hand, for a relatively high k value, 1

M

∑M
m=1 g

sp
m (θt) provides

a better estimate for 1
M

∑M
m=1 gm (θt); however, it becomes

harder to recover 1
M

∑M
m=1 g

sp
m (θt) from 1

M

∑M
m=1 g̃m (θt)

in a reliable manner.

Remark 6. We note that, even though each device transmits
a sparse vector gspm (θt), their sum received over the channel
does not need to be sparse. However, when the datasets are
i.i.d. across devices and B is large, we expect the gradient esti-
mates across devices to be statistically uniform, and thus, have
similar sparsity patterns. Note, however, that the proposed CA-
DSGD scheme does not require data to be independent across
devices. As it will be shown in Fig. 2, the CA-DSGD scheme
converges even when the local datasets are biased, in which
case the sparsity patterns are expected to be more diverse. We
observe that the transmissions from multiple devices still align
on a small number of coordinates thanks to the superposition
property of analog transmission. Thus, AMP still manages to
recover the average gradient with reasonable accuracy, and
the DSGD process converges, albeit more slowly compared
to the IID scenario. We will see in Fig. 2 that CA-DSGD
outperforms alternative analog and digital schemes with even
a higher performance gap in the non-IID scenario.

Remark 7. With ESA-DSGD, each device transmits only the
entries of its estimated gradient whose corresponding channel
conditions are sufficiently good. Thus, the gradient vector is
inherently sparsified, but only based on the channel gains,
regardless of the importance of the gradient entries. Then
the entire gradient vector is sent over the bandwidth-limited
wireless MAC over orthogonal time periods. On the other
hand, with CA-DSGD, each device sends only k ≤ s̃ important
gradient entries, where the magnitude of each entry is regarded
as the importance metric, by projecting the sparse gradient
vector to a low-dimensional vector of length s̃ ≤ d. We further
highlight the error accumulation technique incorporated into
ECESA-DSGD and CA-DSGD, whereas with ESA-DSGD,
entries of the gradient vectors that are not sent are forgotten.

Remark 8. We highlight that, thanks to the wireless MAC
providing a noisy version of the average of the gradient
estimates, the analog schemes can potentially help preserve
the privacy as well. This is particularly compelling for the
proposed CA-DSGD scheme, where the gradient estimates are
compressed through linear projection before transmission.

V. NUMERICAL EXPERIMENTS

Here we compare the performances of the presented wire-
less edge learning schemes for the task of image classification.
We run experiments on the MNIST dataset [35] with 60000
training and 10000 test samples, and train a single layer neural

network with d = 7850 parameters utilizing ADAM optimizer
[36]. Throughout the experiments, we consider σ2 = 1, and
s = dd/20e parallel subchannels, which results in N = 10 for
ESA-DSGD and ECESA-DSGD; and for any s̃ of the CA-
DSGD scheme, we set the sparsity level to k = bs̃/2.5c. For
a fair comparison between the analog DSGD schemes, we set
λx(t) = λ, ∀x ∈ {e, v, c}, and for average transmit power
P̄n(t) at the n-th time slot, n ∈ [N ], of the t-th iteration,
t ∈ [T ], we calculate values of γe,n

m (t), γv,n
m (t) and γc,n

m (t)
for ESA-DSGD, ECESA-DSGD and CA-DSGD through (22),
(32) and (42), respectively. Also, we consider P̄n(t) = P̄ ,
∀n, t, for the analog schemes, and P̄m∗(t)(t) = P̄ , ∀t, for the
digital schemes. The performance is measured as the accuracy
with respect to the test data samples, called test accuracy,
versus the normalized time Nt.

We consider two scenarios to model the data distribution
across the devices: in IID data distribution, B randomly
selected training data samples are assigned to each device at
the beginning of training; while in non-IID data distribution,
each device has B training data samples, where half of them
are selected at random from only one class/label; that is, for
each device, we first select two classes/labels at random, and
then randomly select B/2 data samples from each of the two
classes/labels. At each iteration, devices use all the B local
data samples to compute their gradient estimates, i.e., the batch
size is equal to the size of the local datasets.

For numerical comparison, we also consider the error-free
shared link approach, where at each time slot the PS receives
the average of the gradient estimates, 1

M

∑M
m=1 gm (θt), in

a noiseless fashion. We note that, for the error-free shared
link approach, we have N = 1. We consider three alternative
digital schemes employing sparse binary compression [18],
QSGD [8] and SignSGD [12] algorithms for gradient com-
pression, respectively. When we refer to D-DSGD it refers
to using the sparse binary compression technique. For a fair
comparison, we apply QSGD and SignSGD to a limited
number of gradient entries such that the final number of bits
does not exceed the capacity of the underlying fading MAC.
To be more precise, considering the device scheduling policy
given in (6), qS(t) and qQ(t) gradient entries with highest
magnitudes are selected for transmission for SignSGD and
QSGD, respectively, while all the other entries are set to
zero. With the SignSGD algorithm [12], the scheduled device
transmits only the signs of the qS(t) selected entries, and a
total of

rS(t) = log2

(
d

qS(t)

)
+ qS(t) bits, ∀t, (47)

are required to send the sign and location of each selected
entry, and qS(t) is set as the largest integer satisfying rS(t) ≤
R(t). With the QSGD algorithm [8], the scheduled device
transmits a quantized version of each of the qQ(t) selected
entries with a quantization level of 2l

Q

, the l2-norm of the
resultant vector with qQ(t) non-zero entries, and the locations
of the non-zero entries. Thus, a total of

rQ(t) = 32 + log2

(
d

qQ(t)

)
+ (1 + lQ)qQ(t) bits, ∀t, (48)
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(b) Non-IID data distribution

Fig. 2: Test accuracy for IID and non-IID data distribution scenarios for M = 25, B = 1000 and P̄ = 20.

are sent over the wireless fading MAC, where qQ(t) is set as
the largest integer satisfying rQ(t) ≤ Rt. Here we consider a
quantization level lQ = 2 for QSGD.

We further consider the OD-DSGD scheme, where each
device has access to bs/Mc distinct subchannels to perform
digital transmission without interfering with other devices.
Due to symmetry across devices, we allocate subchannels
(m−1) bs/Mc+1 to m bs/Mc to device m, m ∈ [M ]. Simi-
larly to the D-DSGD scheme, we use the capacity upperbound
to determine the number of bits each user can convey to the
PS at each iteration. This bound is computed by waterfilling
across the bs/Mc channels available to each device as in (9)-
(11). We use sparse binary compression with the OD-DSGD
scheme as well with the sparsity level qO

m(t) set as the largest
integer satisfying log2

(
d

qOm(t)

)
+ 33 ≤ RO

m(t), ∀t.
In Fig. 2, we compare the performances of different analog

and digital schemes for IID and non-IID data distribution
scenarios, for M = 25 devices, B = 1000 training data
samples and average transmit power constraint P̄ = 20. We
consider s̃ = 2s = d/10, i.e., N = 1 for CA-DSGD, and we
set the threshold value to λ = 10−3. Observe that for both IID
and non-IID data distribution cases CA-DSGD outperforms
all other analog and digital schemes with the improvement
substantially larger for non-IID data distribution, which shows
its robustness to bias in the data distribution. CA-DSGD has
a smaller convergence speed in non-IID case which is due
to the reduction in the similarity of the sparsity patterns of
the gradients across devices, although it does converge much
faster and to a much higher accuracy level compared to the
other schemes under consideration. The gap between the error-
free shared link approach and CA-DSGD is relatively small
for the IID case, and the final test accuracies of the two
approaches are also similar for the non-IID case, although CA-
DSGD converges more slowly in this case. Unlike the digital
schemes, CA-DSGD benefits from the superposition property
of the underlying wireless MAC by aligning the transmit
powers to dominate the noise. We further highlight that the
main reasons for the degradation of the ESA-DSGD over
CA-DSGD are i) scheduling gradient entries for transmission

only based on the channel gains; ii) transmitting the entire
gradient vectors of relatively huge dimensions (compared to
the channel bandwidth); iii) ignoring the gradient entries which
have not been transmitted due to the poor conditions of their
corresponding channels. We note that ECESA-DSGD resolves
the last issue by utilizing error accumulation technique, which
provides some gains with respect to ESA-DSGD, but we
observe that better scheduling and more efficient utilization
of the bandwidth through linear projection provide significant
gains, especially for the non-IID case, where the performances
of ESA-DSGD and ECESA-DSGD significantly degrade in
terms of the test accuracy, as well as the convergence speed.
Also, D-DSGD provides a better accuracy than SignSGD
and QSGD for both data distribution scenarios, and the
performance of all the digital schemes under consideration
deteriorate substantially in the non-IID case; this performance
loss is more severe for QSGD.

In the following experiments, we only consider IID data
distribution. In Fig. 3, we compare the performances of dif-
ferent analog and digital algorithms for two different average
transmit power values P̄ = 10 and P̄ = 30. We consider
M = 25 and B = 10, and we set s̃ = 2s = d/10,
i.e., N = 1 for CA-DSGD, and λ = 5 × 10−3. As it can
be seen, CA-DSGD continues to outperform all the other
schemes, with a relatively small gap to the error-free shared
link approach. By comparing Figures 3a and 3b, it can be seen
that the performances of all the schemes improve with P̄ , but
the improvement is more significant for the digital schemes
in terms of both the accuracy and the convergence speed,
except QSGD which only improves in terms of accuracy.
This shows that the analog schemes are less sensitive to a
reduction in the average transmit power than the digital ones.
This is because, thanks to the signal-superposition property,
the system continues to operate in a relatively high effective
signal-to-noise ratio (SNR) regime despite reduction in the
transmission power of individual devices.

In Fig. 4, we compare the performances of analog and
digital schemes for different (M,B) pairs, (M,B) ∈
{(15, 2000), (30, 1000)}, both having the same size of training



10

0 250 500 750 1000 1250 1500 1750 2000
Normalized time, Nt

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Te

st
 a

cc
ur

ac
y

Error-free shared link
CA-DSGD
ECESA-DSGD
ESA-DSGD
D-DSGD
SignSGD
QSGD

(a) P̄ = 10
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(b) P̄ = 30

Fig. 3: Test accuracy of different algorithms for two different P̄ values, P̄ ∈ {10, 30}, when M = 25 and B = 1000.
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(a) (M,B) = (15, 2000)
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(b) (M,B) = (30, 1000)

Fig. 4: Test accuracy of different algorithms different (M,B) pairs when MB is fixed, and P̄ = 10.

data in total. We consider P̄ = 10, and we set λ = 5× 10−3,
and s̃ = 2s = d/10, which results in N = 1 for CA-DSGD.
It is again evident that CA-DSGD outperforms all the other
schemes with the improvement over ESA-DSGD and ECESA-
DSGD more noticeable for the higher M value. As it can be
seen, the performances of the analog schemes improve with
M , since increasing M provides additional power introduced
by each device and increases the robustness of the estimation
against noise. We note that this improvement is larger for CA-
DSGD, which is due to the more efficient utilization of the
gradient estimates computed by the devices. Digital schemes
also gain from increasing M , which is due to the additional
power allocated to the selected device, as the devices are
less frequently scheduled for transmission. We note that the
superiority of the ECESA-DSGD over ESA-DSGD reduces
with M , which shows that error accumulation is less effective
for higher M values when MB is fixed. This is because for
larger M , the chance of receiving more estimates for each
entry of the actual gradient vector is higher (each gradient
entry is estimated more accurately at the PS), and it is less

likely that no estimate of any gradient entry is received by the
PS. Accordingly, the benefit of error accumulation becomes
less significant for higher number of devices.

In Fig. 5, we compare the performance of D-DSGD with
that of OD-DSGD for different P̄ values, P̄ ∈ {20, 100},
when M = 25 and B = 1000. For both power values we
observe that D-DSGD significantly outperforms OD-DSGD in
terms of accuracy and convergence speed, while the superiority
is more highlighted for the higher P̄ value. This shows that
opportunistically allocating all the available bandwidth to only
a single device is better than sharing it equally among all the
devices which indicates that it is better to receive an accurate
gradient estimate from a single device at each iteration,
instead of receiving coarse estimates from all the devices. This
improvement is more significant when P̄ increases.

In Fig. 6 we investigate the impact of s̃ on the performance
of CA-DSGD. We consider s̃ ∈ {2s, 4s} = {d/10, d/5} for
CA-DSGD, in which s̃ = 2s and s̃ = 4s are equivalent
to N = 1 and N = 2, respectively. We have M = 15,
B = 1000 and P̄ = 1, ans we set λ = 5 × 10−3.
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Fig. 5: Test accuracies of D-DSGD and OD-DSGD schemes
for different P̄ values, P̄ ∈ {20, 100}, when M = 25 and
B = 1000.
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Fig. 6: Test accuracies of different analog schemes with
different s̃ values, s̃ ∈ {2s, 4s}, for the CA-DSGD scheme,
when M = 25, B = 1000, P̄ = 1.

We highlight the superiority of the CA-DSGD scheme for
both s̃ values under consideration over ESA-DSGD. The
ECESA-DSGD scheme, which is equivalent to CA-DSGD
for s̃ = d, also outperforms ESA-DSGD slightly. However,
as it can be seen, the performance of CA-DSGD degrades
as s̃ increases, which indicates that transmitting more sparse
versions of the gradient estimates while using the available
channel bandwidth for further iterations results in a higher
accuracy. The flexibility in choosing the dimension of the
transmitted gradient estimates makes the proposed CA-DSGD
scheme particularly compelling for learning at the wireless
edge under strict bandwidth limit.

In Fig. 7, we consider the impact of imperfect CSI on
the performance of analog schemes CA-DSGD and ECESA-
DSGD for M = 25, B = 1000 and P̄ = 10. We set
λ = 5 × 10−3, and s̃ = 2s = d/10, which results in N = 1
for CA-DSGD. We assume a noisy CSI at device m given
by ĥnm,i(t) = hnm,i(t) + h̃nm,i(t), ∀m,n, i, t, where h̃nm,i(t) is
i.i.d. according to CN (0, 1), i.e., a complex normal random
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Fig. 7: Test accuracies of CA-DSGD and ECESA-DSGD
schemes under imperfect CSI ĥnm,i(t) = hnm,i(t) + h̃nm,i(t),
∀m,n, i, t, with h̃nm,i(t) i.i.d. according to CN (0, 1), when
M = 25, B = 1000 and P̄ = 10.

variable with the same variance as the actual channel gain
hnm,i(t). We note that all the processing at the devices, such as
power allocation, finding the setMn

i (t), and obtaining γv,n
m (t)

and γc,n
m (t), and consequently γ̄v,n(t) and γ̄c,n(t) for CA-

DSGD and ECESA-DSGD, respectively, are performed based
on the imperfect CSI ĥnm,i(t), ∀m,n, t. As it can be seen,
both the CA-DSGD and ECESA-DSGD are robust against
the imperfect CSI. To be more precise, after 2250 time slots
(2250 SGD iterations for CA-DSGD and 225 SGD iterations
for ECESA-DSGD), the final test accuracy reduction for CA-
DSGD due to the imperfect CSI is 0.67%, and that of ECESA-
DSGD is 0.76%. We highlight that, with imperfect CSI,
even though the users will allocate higher or lower power to
each subchannel than the optimal one, the cumulative effect
becomes negligible since these variations across users are
averaged out thanks to the superposition property.

VI. CONCLUSIONS

We have studied FL at the wireless edge, where M devices
with limited transmit power and datasets communicate with
the PS over a bandwidth-limited fading MAC to minimize
a loss function by performing DSGD. The PS updates the
parameter vector, and shares it with the devices over an error-
free shared link. We first presented a digital approach that
treats computation and communication separately. At each iter-
ation of the proposed D-DSGD scheme, one device is selected
depending on the channel states, and the selected device first
quantizes its gradient estimate, and transmits the quantized
bits to the PS using a capacity-achieving channel code. Then
we studied an alternative analog transmission approach, which
does not employ quantization or channel coding, and exploits
the superposition property of the wireless MAC, rather than
orthogonalizing the transmissions from different devices. We
have proposed the CA-DSGD scheme, where each device
employs gradient sparsification with error accumulation fol-
lowed by linear projection to reduce the typically very large
parameter vector dimension to the limited channel bandwidth.
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We have also designed a power allocation scheme to align the
received vectors at the PS while satisfying the average power
constraints at the devices. The CA-DSGD scheme allows a
much more efficient use of the limited channel bandwidth, and
benefits from the “beamforming effect” thanks to the similarity
in the patterns of the gradient estimates across devices. The
impact of various system parameters on the performance is
studied numerically considering MNIST classification across
edge devices as an example. Numerical results show that CA-
DSGD outperforms D-DSGD and other state-of-the-art analog
schemes consistently, while this improvement is even more
significant for the non-IID data distribution scenario.
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