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Abstract  

The pathogenesis of IBD, involving dynamic interactions between the microbiome, innate and 

adaptive immune systems, genetics and environmental factors, is a major focus of academic 

interest, in order to reveal more about the heterogeneous clinical course of the disease and in 

pursuit of improved therapeutic targets.  

Metabonomics has been previously used with a variety of biofluids to successfully distinguish 

IBD from controls, but the complex metabolic data also have potential to unlock insights into 

pathogenesis and better understand how to better stratify patients for personalised clinical care.  

In the largest urinary metabonomics IBD study to date, changes in the white European cohort 

confirmed previous published findings, highlighting discriminatory metabolites of gut 

microbial and inflammatory pathway sources. Significant metabolic differences were seen 

when comparing IBD patients and controls from South Asia to white North Europeans, 

demonstrating the influence of ethnicity on the metabolic profile and showing metabolite 

changes related to host-nutrition-microbiome interactions.  

Results from longitudinal measurements of the IBD metabolome in the same individuals over 

several years indicate relative stability despite the relapsing-remitting course of the disease and 

different treatments. This early finding suggests clinical outcomes may only have subtly 

discernible changes on metabolic profiles, potentially limiting its application as a disease-

monitoring tool. 

16S rRNA profiling, employed to characterise the microbiome, showed reduced microbial 

diversity in IBD and 4 key bacterial genera - Veillonella, Acidaminococcus, Lactobacillus and 

Streptococcus - associated with disease. Significant urinary and faecal metabolites in the same 

patients were correlated with these bacteria to demonstrate the feasibility of multi-omic 

integration in IBD. 

Furthermore, the breath VOC profiles of IBD patients obtained by SIFT-MS were distinct from 

those of heathy controls, with the significant compounds originating from microbial sources, 

and inflammatory pathways, demonstrating the potential of this technology and another facet 

to metabolic profiling in IBD. 
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Chapter 1: Introduction 

1.1 Inflammatory bowel disease 

1.1.1 IBD pathology and diagnosis 

The inflammatory bowel diseases (IBD), of which Crohn’s disease and ulcerative colitis (UC) 

are the principle types, are lifelong inflammatory conditions of the gastrointestinal tract (1, 2). 

The main IBD sub-types share commonalities – both are chronic, idiopathic conditions 

characterised by episodes of relapse and remission (3). Clinically there are overlapping 

symptoms, which are usually reflective of disease location, and often reflective of disease 

severity. Diarrhoea and urgency, with or without abdominal pain, are the most common 

symptoms. In UC and Crohn’s colitis blood is often present in stool. Constitutional symptoms 

of fatigue and weight loss are variable. In Crohn’s disease symptoms can be more 

heterogeneous and non-specific. Some pathological mechanisms are common to both and many 

of the medical treatments are shared.  

However there are important features specific to each disease. Ulcerative colitis is, by 

definition, restricted only to the colon (although backwash ileitis can sometimes occur, this is 

considered a secondary phenomenon from the colonic inflammation) whereas Crohn’s disease 

can affect any part of the gastrointestinal tract, although typically is found in the terminal ileum 

and/or colon. Features specific to Crohn’s include perianal involvement and fistulation to other 

organs.  

Histo-pathologically the diseases are distinct, with different ‘typical’ features, although in 

clinical practice it can sometimes be impossible to separate on the grounds of the histological 

findings alone (3). Crohn’s disease is usually patchy, with deep trans-mural involvement and 
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non-caseating granulomata are more commonly (but not ubiquitously) seen. UC usually has 

continuous mucosal inflammation and crypt abscesses are a more frequent finding.   

The international standard of phenotype subtyping of Crohn’s and UC is the Montreal 

classification (4) as shown in table 1.1. 

Crohn’s disease Ulcerative colitis 

Age at diagnosis 

A1: Below 16 years 

A2: Between 17 and 40 

A3: Above 40 years old 

  

Location 

L1: Ileal 

L2: Colonic 

L3: Ileocolonic 

L4: Isolated upper GI 

diseasea 

Extent 

E1: ulcerative proctitis 

E2: Left sided (disease 

distal to splenic flexure) 

E3: Extensive / 

pancolitis (disease 

proximal to splenic 

flexure) 

Behaviour 

B1: non-stricturing, 

non-penetrating 

B2: stricturing 

B3: penetrating 

p: perianal diseaseb 

  

 

Table 1.1. Montreal classification of Crohn’s and ulcerative colitis 

a modifier which can be added to L1-3 when upper GI disease present; bmodifier which can be 

added to B1-3 when perianal disease present 

 

Hence it is recommended that the diagnosis of IBD and its subtype is a clinical one, based on 

a combination of clinical findings, endoscopy, histology, radiology and biochemical 

investigations (1, 2). An estimated 10% of IBD is termed ‘IBD unclassified’ (IBD-U) - this is 

a colitis which fulfils neither the diagnostic criteria of Crohn’s or UC (5). 

1.1.2 Treatment and identifying response and progression 

Medical therapies for IBD are targeted and escalated according severity of disease or non-

response, and include steroids, immunosuppression and anti-tumour necrosis factor (anti-TNF) 
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therapies. Surgical management is indicated for treatment of complications (including fistulae, 

strictures, perforations) and in those patients with fulminant disease where medical therapy has 

failed or those intolerant of medical treatments. Surgery is required more often in Crohn’s 

disease, with a lifetime risk of 80% compared to 20% in UC (6), and a high recurrence of 

Crohn’s (60% at 10 years) with requirements for further surgery (7).  

Aminosalicylates (5-Aminosalicylic acid / 5ASA) treatments are administered topically or 

orally, and can be used to treat mild / moderate flares of UC. However their main role is for 

maintenance of clinical remission (8) (with an additional benefit being possible reduction of 

colorectal cancer risk (9)) and thus a large proportion of UC patients will be prescribed these 

long-term.  

Steroids are indicated in acute flares of IBD, and whilst they have potent anti-inflammatory 

effects, their systemic side effect profile (including osteoporosis, adrenal suppression, insulin 

resistance, glaucoma and psychosis) limit long term use. To avoid repeated or prolonged steroid 

courses immunomodulators, including azathioprine and 6-mercaptopurine (thiopurines) or 

methotrexate (folic acid antagonist), are given, with evidence of efficacy in maintenance of 

clinical remission in both types of IBD (10, 11), and reduction of post-surgical recurrence in 

Crohn’s (12).  

Over recent years the armoury of IBD therapeutic options has grown, and continues to develop.  

Monoclonal antibodies (mAbs) to anti-tumour necrosis factor α (anti-TNFs), known as 

biological agents (biologics), have been established therapy for moderate to severe disease for 

the last 15 years (13). Originally only Infliximab (chimeric mouse/human whole monoclonal 

antibody) and Adaulimumab (humanised whole monoclonal antibody) were available for use 

in IBD, but newer licenced drugs include Golimumab (another humanised whole monoclonal 
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antibody), Vedolizumab (monoclonal antibody selective to the α4β7 integrin-receptor) and 

Ustekinumab (humanised monoclonal antibody to interleukins 12 and 23) as well as lower-cost 

biosimilar TNF-inhibitors which have recently become available (14). Late phase trials of small 

molecules also show promising results (15). 

Whilst there is good evidence that biologic treatments are effective in both reducing clinical 

symptoms and improving quality of life measures, as well as mucosal healing and disease 

modification (16, 17), up to 40% of patients have primary or secondary treatment failure or 

drug intolerance (18). Additionally, these treatments are expensive, and administration carries 

a risk of adverse events, most commonly opportunistic infections, but also rarely 

demyelination, heart failure or malignancy.  

The previously conventional algorithm of ‘step-up’ treatment, escalates the potency of 

treatment as the disease continues to relapse, off-setting the higher risks of drug side effects 

and cost against the need to treat more progressive and aggressive disease. Current guidelines 

indicate biologics are indicated for the use of moderate or severely active IBD which in non-

responsive to conventional therapy or in those who are intolerant or who have contraindications 

to conventional treatment (8). However this reactive management strategy, treating clinical 

symptomology and response, can fail to change the natural history of disease progression and 

complications (19). 

The alternative ‘top-down’ paradigm – initiating more intensive combined therapies early after 

diagnosis with the expectation of modifying the long term disease course – has both health 

economic implications and risks ‘over-treating’ up to 30% of patients (20). Long term 

outcomes from ‘step-up’ and ‘top-down’ approaches, including remission, hospitalisation and 

surgery, appear to be equivocal (21). 
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Therefore one of the current challenges facing IBD specialists is personalising treatment to 

identify the right people in which to initiate the right treatment at the right time, in order to 

maximise effectiveness and minimise adverse events. The new concept of ‘accelerated step-

up’ treatment, aims for more individualised proactive management of patients according to 

severity and prognosis with the goal of improving outcomes (22).  

At present there are no validated biomarkers available in clinical practice which can predict 

response to therapy (23); the search in translational medicine is to identify biomarkers of 

treatment response, or methods to stratify patients according to disease phenotype (15).  

Decision making is currently a clinical one, based on multiple factors including patient choice, 

age and disease features. Patients of all ethnicities are currently treated the same, despite 

evidence that ethnic groups have different clinical IBD phenotypes (24, 25) and show different 

treatment failure rates (26). It would be very valuable to better understand the contribution of 

ethnicity on disease phenotype and disease outcomes.  

 

1.1.3. The multifactorial concept of IBD Pathogenesis 

The 4 key components of IBD pathogenesis, as it is currently understood, are likely to be 

genetics, environment, immunological response and the gut microbiome (27). Whilst research 

in each of these areas has moved our understanding forward, the complex interconnection 

between these elements has not yet been fully explained. The constantly evolving interactions 

between these components means that cause versus consequence is difficult to determine, and 

the role of each is dynamic and changeable (28). 
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Figure 1.1: Conceptualised pathogenesis of IBD 

The current concept of pathogenesis (figure 1.1) explains an aberrant and persistent 

inflammatory response to environmental stimuli, of which the most significant is likely to be 

altered gut bacteria, in individual with predisposing genetic factors relating to both innate and 

adaptive immunity, bacterial defence and gut barrier function (29).  

 

1.1.3.1. Genetics and immunology 

Familial clustering of cases first suggested a genetic component to IBD, with a positive family 

history conferring a 8-10 fold relative risk of IBD (30) and twin concordance of 30-50% in 

monozygotic twins with Crohn’s (compared to 15% in UC) (31). A number of genetic 

associations were described, particularly with HLA polymorphisms (eg HLA DRB1*0103 in 

UC (32)) , but it was not until identification of the nucleotide-binding oligomerization domain 
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containing protein 2 (NOD2) / caspase recruitment domain-containing protein 15 (CARD15)  

gene variant on chromosome 16 (33) and its relationship to ileal Crohn’s was established that 

a specific gene was linked to disease susceptibility. Progression in genetic technologies enabled 

the identification of single nucleotide polymorphisms (SNPs); and the largest genome wide 

association study (GWAS) to date identified more than 163 gene loci associated with IBD in 

Caucasians with 110 common to both UC and Crohn’s (34). More recently 28 further loci were 

discovered in a cross-ethnicity study, demonstrating population specific genetics (35).  

The NOD2/CARD15 gene codes for an intracellular receptor for bacterially produced muramyl 

dipeptide (MDP), which stimulates autophagy via activation of NFκB pathways. It is also 

directly involved in T-cell response regulation and is involved with both innate and adaptive 

pathways.  Other identified genes relate to autophagy defects, including ATG16L1 and IRGM, 

affecting intracellular homestasis as well as antibacterial resistance and phagocytosis (36).  

Advances in genetic research have highlighted the combined effects of gene mutations leading 

to significant defects in innate and adaptive immunological pathways, toll-like receptors 

(allowing recognition of pathogen-associated microbial patterns) and a reduction in inducible 

regulatory T cells (37).  

Although the progression of our understanding of these genetic and immunological 

mechanisms reveals key insights into disease pathogenesis, the identified genes to date only 

explain less than 15% of the heritability (genetic risk) of IBD (28) – hence so called ‘missing 

heritability’- suggesting other significant factors implicated in pathogenesis, most likely 

environmental and immunological. Whilst this does not dispute the importance of genetic 

susceptibility in IBD it demonstrates that the pathogenic model is much more complex. 

Epigenetics – the phenomenon of heritable modifications in gene expression without alterations 
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in DNA – may explain some of this effect (38), and may be described as the interface between 

DNA and our external cellular environment (39). It is recognised that in IBD the environment 

and gut microbiota influence the immune response via epigenetics to determine if inflammation 

is instigated and/or precipitated (28) 

1.1.3.2. Environment and diet 

Epidemiological studies have linked IBD to, amongst other factors, smoking (40), stress (41), 

appendicetomy (42), non-steroidal anti-inflammatories (43) and vitamin D deficiency (44). 

Smoking has the strongest and most replicated causal association; with meta-analyses 

demonstrating an adverse outcome of smoking in Crohn’s – both in disease risk, disease 

progression and post-operative recurrence (45), but an inversely protective effect in UC risk 

and outcomes (46).  

Epidemiological data show a rapid rise in the incidence and prevalence of IBD worldwide over 

the last 70 years. Whilst conventionally considered a disease of the ‘Western’ world (highest 

global rates in North America and Northern Europe (47)) the fastest rise in incidence is Asia 

and Eastern Europe in line with industrialisation of these countries (48). Whilst likely to be the 

result of multifactorial environmental causes, diet and improved sanitation (‘hygiene 

hypothesis’) are the two obvious factors implicated. The effect of diet on disease or the 

microbiome is notoriously difficult to fully establish, due to recall bias, misreporting and the 

heterogeneity of most diets. No specific diet or dietary constituent has been shown to cause or 

ameliorate IBD, but the significant impact of nutrients on the microbiota is established (49). A 

high-fat, high-dairy, high-calorie diet was linked to increased rates of colitis in a Japanese study 

(50), with dietary constituents acting as luminal ‘antigens’ in animal models (51). The 

relationship between diet and the intestinal microbiome, has been demonstrated in ecological 
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studies, with dominant Bacteroides and low Firmicute species found in the gut microbiome of 

rural African children on a high fibre diet, compared to the inverse ratio seen in European 

children consuming animal proteins, high sugar and low fibre intake (52). Again, animal 

models reinforce this link between diet and the microbiota, with bacterial species enriched by 

a high-fat, high-sugar diet causing obesity in genetically predisposed mice (53). There is 

evidence that diet not only modifies the composition of the gut microbiota, but also affects the 

abundance or absence of available substrates for host and bacterial metabolic processes, 

including maintenance of mucosal immunity (54). 

 

1.1.3.3. Gut microbiome 

1.1.3.3.1. Gut microbial function and composition 

The gut microbiome plays an essential role in maintenance of host health or disease (55) with 

a balanced symbiosis of the human-microbial axis in the healthy physiological state (56). The 

GI tract bacterial community forms the largest and most complex ecosystem in the human body 

comprising of 1013 to 1014 microorganisms (57). Human genes are outnumbered by collective 

resident microbial genes by a factor of 100 with the huge majority of these resident in the 

gastrointestinal tract.  The gut microbiota can be regarded as a metabolic super-organ (58) 

which plays the following essential roles: 

• synthesis of essential short-chain fatty acids and vitamins  

• development of  the immune system and protection from pathogenic species (59) 

• influence of energy homeostasis and body mass (60) 

• drug metabolism (61) 
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There is overwhelming evidence for the microbiome impacting on disease status through 

human–microorganism functional interactions, with  variations in the microbiome associated 

with metabolic diseases including diabetes (62), amongst many others (63, 64). Microbial 

alterations have been connected to inflammation, co-morbidities and markers of frailty in the 

elderly (65) and other systemic diseases (coronary heart disease (66) and rheumatoid arthritis 

(67)) by linkage of specific metabolic phenotypes shown to be driven by microbial metabolism. 

IBD has emerged as one of the most strongly established diseases linked to the gut microbiota 

(68) and is one of the most researched diseases in this area. 

It has been established that the composition and diversity of the microbiome is determined in 

childhood, reaches stability in adulthood and declines in stability again towards old age (69). 

IBD has a bi-modal incidence, with the largest peak aged 15-30 and a second smaller peak in 

the 50-70 years group (70) and a smaller, but rapidly increasing paediatric (<15 years old) 

cohort (71). These early and late peaks coincide with the most variable composition of the 

microbiome and may point to lack of resilience of the gut microbes in resisting fluctuations 

initiating IBD, or may suggest different contributions of the microbiome in disease instigation 

and/or propagation (72). 

Multiple influences affect bacterial configuration, especially during the initial establishment 

phase (64), including host genetics, environmental exposures (including antibiotic use (73) and 

method of delivery (74)), contact with microbes / hygiene and diet (75). Whilst the gut 

microbiota composition shows some fluctuation with time within an individual (76) the 

functional productivity appears to be more stable (77), suggesting that overall function rather 

than the content is most important.  
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The microbial concentration increases along the length of the GI tract from mouth to anus, with 

the maximal diversity in the distal gut (caecum, colon, rectum). Gene-sequencing studies have 

identified over over 1800 genera and 15,000 phylotypes in healthy subjects (78) although the 

colonic microbiome is strongly predominated (over 80%) by Bacteroides and Firmicutes taxa 

(79). Importantly studies have shown that low abundance species can play unique key 

molecular functions in the gut, so that even small perturbations in the balance can cause and 

perpetuate microbial dysfunction (80).  

1.1.3.3.2. Dysbiosis in IBD; cause or consequence? 

Technological advances have refined identification and cataloguing of the microbiome, 

including fungi, viruses, eukaryotes as well as bacterial species. The microbiota in IBD has 

been well studied in both animal models and human subjects with a variety of techniques.  

Two main pieces of evidence underline the key role of dysbiosis in IBD. Firstly, there is 

substantial and consistent evidence that an alteration in the composition of the microbiome – 

termed dysbiosis – is seen in IBD (81-83), however specific bacterial findings have not been 

entirely similar between studies, this in part due to the multiple other influences on gut bacteria 

including diet, age and geography (84). One result repeatedly seen however is the loss of 

species richness (α-diversity) seen in IBD (85, 86). Reduced species richness is also seen in 

monzygous twins discordant for Crohn’s (87). There is also evidence that the microbial 

diversity in inflamed tissue is reduced compared to non-inflamed colonic tissue (88).  

Studies identifying specific changes in the microbial contents have been somewhat 

contradictory (37) with most groups documenting an increase in Bacteroidetes phyla in IBD 
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(89, 90) but others a decrease (91). Gammaproteobacteria is noted to be increased in both types 

of IBD (92, 93). 

No single causative organism has been recognised in IBD but one noteworthy and consistent 

finding is the reduction in Faecalibacterium prausnitzii in Crohn’s disease (94-96) and to a 

slightly lesser extent UC (97). F. prausnitzii is part of the C. leptum group (of the Firmicutes 

phylum) which are one of the important bacterial sources of butyrate – the major energy source 

for colonocytes, which also exerts significant immunomodulatory and anti-inflammatory 

effects (98). Separate to the function of butyrate F. prausnitzii has been shown to display direct 

anti-inflammatory properties in murine in vitro and in vivo models (94).  

In addition to butyrate, other short chain fatty acid (with immunoregulatory function) 

producing bacteria have been found to be altered in IBD, specifically Ruminococcaceae family 

(85) and Leuconostocaceae (72) suggesting the change in these bacteria is linked to the 

functional alterations seen in IBD. Other microbial functions associated with IBD include 

decreases in amino acid biosynthesis, increase in auxotrophy (inability to synthesize certain 

substances required for growth and metabolism) and increased oxidative stress (72).  

Secondly, the aberrant immune response to bacteria can be demonstrated in animal models 

with the development of colitis upon the introduction of bacteria into genetically susceptible 

animals (99). In humans defunctioning stomas are effective in improving perianal and colonic 

Crohn’s disease (100), while restoration of the faecal stream restarts inflammatory symptoms 

(101). Additionally antibiotics (anti-microbials) have been demonstrated to ameliorate 

intestinal inflammation (102) and are an important therapy in pouchitis (inflammation of 

surgically created neo-rectum) (103); evidence which suggests the manipulation of the 

microbiome as a potential target for therapeutic strategies. 
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There is also evidence of the interplay between host genetics, the immune system and the 

microbiota. Alterations in the gut microbial make-up are seen in patients carrying NOD2 and 

ATG16L1 risk alleles, specifically a reduction in Faecalibacterium and increase in Escherichia 

(92), tying together genotype with dysbiosis. Murine models show that NOD2-deficient 

animals have a dysbiosis in the terminal ileum with more Bacteroides, Firmicutes, and Bacillus 

present. Cells expressing NOD2 (mostly Paneth cells of the terminal ileum) are unable to 

effectively kill bacteria and therefore cannot regulate the ileal microbiota (104). 

It is not clear from simply cataloguing the intestinal microbes how much the dysbiosis is the 

ignition or the fuel for chronic inflammation, or what role specific bacteria are related to in the 

inflammatory process (105). It is likely to be more important to explore the functional output 

of the microbiome and the subsequent disrupted metabolic processes than simply identifying 

and quantifying the bacteria [55].  

An interdisciplinary approach may offer an approach to answering these questions, and 

metagenomic studies have started to explore the functional role of gut bacteria in IBD. 

 

1.1.3.3.3. Exploring the gut microbiota 

Studying the gut microbiota was previously limited by culture based techniques which failed 

to identify a large proportion of the microbial community. Next generation sequencing (NGS) 

has revolutionised the approach to understanding the commensal microbes living in the human 

body. High throughput technology and falling cost has enabled the application of NGS to the 

exploration of the gut microbiome and its function in health and disease.  
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In NGS 16S rRNA is extracted and amplified from the total DNA by PCR techniques, then 

sequenced, and bioinformatic analysis is applied to provide the relative phylogenetic 

composition of a sample. Reference genomes can be used as a comparison to infer the 

functional capacity of the gut microbiome [85].  

Combined metagenomic (study of the variation of species in a microbial sample) and 

metaproteomic (study of the proteins in a biological sample) techniques in IBD patients have 

demonstrated the reduced ability of bacteria to self-produce amino acids and an up-regulated 

ability to transport these amino acids from areas of inflammation as well as increased oxidative 

stress pathways (106) .  

Despite the valuable data thus far, there remain significant gaps in the knowledge of how 

microbes act as pathogens, and the relevance of perturbed host-microbial pathways and 

subsequent functions. A more multifaceted approach to investigating the altered functional and 

dynamic relationships of each component in pathogenesis is required to start to unravel more 

about the relationship between the gut microbiota and IBD pathology.  
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1.2 Characterising IBD using Nuclear Magnetic Resonance Spectroscopy and 

Metabonomics 

1.2.1. Metabonomics 

Metabonomics is the technique of identifying and quantifying low-molecular mass metabolites 

contained in a biological specimen using, most commonly, 1H nuclear magnetic resonance 

(NMR) spectroscopy or mass spectroscopy platforms (107). The information set generated is 

large and complex, representing the entire biological and metabolic functions of an individual, 

as well as external influences, at the time point of sampling.  

NMR spectroscopy is an untargeted technique, with a short analysis time, providing 

comprehensive structural information of the most abundant metabolites contained in a sample; 

typically 20-70 identifiable compounds including amino and organic acids, sugars, amines, 

nucleosides, phenolic compounds, osmolytes, and lipids (108). This is a powerful and sensitive 

investigative tool, as even minor external or internal perturbations cause detectable variations 

in the metabolic profile. Thus this can reveal novel insights into disease mechanisms or the 

effects of environmental factors that may not be identified by other techniques. However there 

are multiple potential confounders that must be considered when using metabonomics; 

standardised methods (including sample collection and processing) must be employed with 

rigour to ensure reproducibility and large cohorts are required for validation. Clinical 

phenotypic data is essential to allow meaningful recovery of information and translation of 

results into the clinical arena.  

Thus far metabonomics has been used in drug development (109), toxicology studies (110) and 

animal models (111) as well as basic science clinical research in many disease states. The 

strategy of combining metabonomics data with other ‘omic’ techniques, known as ‘systems 



34 

 
 

 

biology approach’, involves modelling of complex biological systems through complementary 

pathways. This thesis involves work incorporating microbiological data (discussed further in 

chapter 1.3.1) with metabonomics and understanding the correlations between the two. 

Metabonomics and its integration with other technologies, has an evolving role in clinical 

research exploring mechanisms of disease pathogenesis, with the potential to be developed and 

applied in the clinical field for diagnostics or monitoring purposes. 

Metabonomics can be performed on a wide variety of biofluids including urine, plasma, serum 

or faecal water, as well as biological vapours including breath, the headspace of biofluids, 

surgical gas vapour, or using intact tissue specimens. Each of these types of sampling has 

comparative advantages and disadvantages and may require invasive sampling, as well as 

different processing techniques. They may also be combined to provide complementary 

metabolic information from the same individual, reflecting the integrated systems biology 

approach above.   

 

1.2.2 Metabonomics in IBD 

Metabonomics (also referred to as metabolomics in the literature and this thesis) may 

potentially address key issues in IBD at several levels from bench to bedside - helping to 

characterise and dissect the pathological mechanisms described above by exploring the small 

molecules that play a functional role in the interaction between microbial communities and the 

immune system. Clinical applications may potentially include a novel, non-invasive diagnostic 

method, but rather than identifying a biomarker for the disease, this knowledge is more likely 

promote the understanding of an individual’s specific disease phenotype allowing optimisation 

of individualised treatment.  
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Metabonomics has been applied in IBD research using a variety of biofluids, but most often 

using faecal water, urine, plasma/serum or colonic biopsies (112). These samples are easily 

handled and mostly non-invasively acquired (although colonic biopsies require colonoscopy). 

Urine and faecal water do not even require venepuncture for collection.  

All the above biofluids have demonstrated differences in metabolic profiles between IBD 

patients and healthy controls (113-116) and several have been able to discriminate sub-types 

of UC and Crohn’s from one another (117-119).  

Serum and plasma studies and colonic biopsy samples (not studied in this thesis) show more 

information about host metabolism, and less inter-individual variation (120) but do not contain 

much information about the gut microbiota or its function. Studies in serum and plasma are 

summarised in table 1.2. 

Changes in the serum/plasma and colonic biopsies mostly relate to altered amino acid 

metabolism (115, 121) possibly related to underlying malabsorption or increased catabolism 

due to inflammation. One study went further to show that the amino acid profile 

(‘AminoIndex’) could distinguish patients with Crohn’s from UC from healthy controls, as 

well as identify active disease from quiescent within the same diagnosis (122).  
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Sample size Author Analytical 

platform 

Differences between IBD 

and healthy controls 

Differences between 

Crohn’s and UC 

CD (n=24)  

UC (n=20)  

HC (n=23) 

Williams 

(119) 

1H-NMR ↓ low-density lipoproteins 

and HDLs in IBD 

↑ N-

acetylglycoprotein in 

Crohn’s 

↓ Lipids and choline in 

Crohn’s 

CD (n=19)  

UC (n=24)   

HC (n=17) 

Dawiskiba 

(116) 

1H-NMR ↑ N-acetylated compounds 

and phenylalanine in IBD 

↓ low-density lipoproteins 

and very low-density 

lipoproteins in IBD 

 

Unable to differentiate 

 

CD (n=20)  

UC (n=20)  

HC (n=40) 

Schicho (115) 1H-NMR ↑ methanol, mannose, and 

amino acids in IBD 

↓  urea, citrate and acetate in 

IBD 

 

Weak statistical 

models 

CD (n=21) 

UC (n=13) 

HC (n=17) 

Ooi (121) GC/MS ↑ Fumaric acid in UC 

↑ Fumaric acid, malic acid, 

and succinic acid in Crohn’s 

 

↓ Aconitic acid in 

Crohn’s 

↑ Succinic acid in 

Crohn’s 

CD (n=165) 

UC (n=222)  

HC (n=210) 

Hisamatsu 

(122) 

Plasma 

aminograms 

↓ histidine and tryptophan in 

IBD 

Differences in amino 

acids between active 

UC and Crohn’s  

 

Table 1.2: Table of metabonomic studies using serum/plasma in IBD 

 

Metabonomics have been examined in animal IBD models (also not studied in this thesis), with 

the advantage that they present less challenges than human subjects in accounting for potential 

confounders such as diet, genetics and environment. Mouse models show metabonomic 

alterations in urine (123, 124) and serum (124) associated with development of colitis. Urinary 

changes were mostly relating to methylamines and other metabolites produced by gut bacteria; 

serum metabolic changes reflect alteration in energy pathways including ketone bodies.  
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1.2.2.1. Faecal water metabolic profiling in IBD  

Faecal water profiling was the first biofluid to demonstrate changes relating to IBD in humans. 

The strengthening evidence for gut dysbiosis as a central pathological mechanism attracted 

interest in the use of faecal water or extracts to explore the metabolic relationship between host 

and bacteria. Faecal profiles consist of metabolites from host cellular pathways, bacterial 

microbiota and xenobiotics (molecules produced externally to the host organism – mostly 

breakdown products of nutrition or drugs). They also contain human commensal co-

metabolites which are produced by a combination of microbial and human metabolism (125). 

Sample size Author Analytical 

platform 

Differences between IBD 

and healthy controls 

Differences between 

Crohn’s and UC 

CD (n=10)  

UC (n=10)  

HC (n=13) 

Marchesi 

(117) 

1H-NMR ↑ amino acids in IBD 

↓ SCFAs, trimethylamine 

and methylamine in IBD 

↑ amino acids and 

glycerol in Crohn’s 

↓ butyrate and acetate 

in Crohn’s 

 

CD (n=44)  

UC (n=48)   

HC (n=21) 

Bjerrum 

(113) 

1H-NMR ↑ amino acids in IBD 

↓ SCFAs in IBD 

*unable to differentiate CD 

from healthy 

↓ Aspartic acid and 

glutamate in inactive 

Crohn’s vs inactive 

UC 

 

UC (n=13)  

HC (n=22) 

Le Gall (126) 1H-NMR ↑ levels of taurine and 

cadavarine in UC 

N/A 

CD(n=10 

twins)  

HC(n=7 twins) 

Jansson (127) ICR-FT/MS ↑ amino acids and bile acid 

metabolites in IBD 

N/A 

CD (n=50) 

UC (n=82) 

HC (n=51) 

Santoru (128) GC-MS           
1H-NMR 

and LC-

QTOF-MS 

↑ biogenic amines, amino 

acids, lipids in IBD 

↓ B group vitamins in IBD 

 

Poor statistical models  

 

Table 1.3: Table of metabonomic studies using faecal extracts in IBD – adapted from (125) 

and (112) 
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Marchesi et al (117) demonstrated depletion of gut bacterial metabolites in IBD stool including 

short chain fatty acids (SCFAs) (predominantly butyrate and acetate) and bacterially-produced 

food breakdown products (methylamine and trimethylamine) consistent with dysbiosis in these 

individuals. Higher amino acid concentrations were seen in the faecal IBD samples, consistent 

with increased gut loss of protein through an inflammatory malabsorption process. Jansson et 

al (127) discovered multiple differentiating masses discriminating concordant and discordant 

twins with Crohn’s and healthy twin pairs using Fourier Transform Ion Cyclotron Resonance 

Mass Spectrometer, and related them to bile acid and fatty acid biosynthesis, and tyrosine 

pathways amongst others. A 1H-NMR study (126) found elevated levels of taurine in faecal 

water of UC patients compared to controls – this is a metabolite produced by bacterial 

breakdown of bile products in the colon, and/or an intracellular anti-oxidant and anti-

inflammatory. Cadavarine was also detected in higher quantities in the UC cohort than controls, 

with the authors suggesting this was due to an alteration in microbes. As in the Marchesi study, 

SCFAs and branched chain fatty acids (BCFAs) were also reduced.  

The study by Bjerrum et al (113) also studied faecal extracts with 1H-NMR to investigate 

metabolic differences in active and inactive IBD cohorts and healthy controls. Some 

differences were consistent with previous data. Firstly, a decline in SCFAs (butyrate and 

propionate), which are products of bacterial fermentation of polysaccharides, and are an 

important energy substrate for colonic tissue (129). They also display anti-inflammatory 

properties via inhibition of NFκB pathways (130). Another replicated finding was the greater 

abundance of amino acids (in this study lysine, alanine, tyrosine, phenylalanine, and glycine) 

in active IBD compared to controls, potentially related to gut malabsorption. However in this 

study recognised significant confounders were not excluded – namely intestinal surgery, 

treatment with anti-TNF-α antibodies and potentially other medication. On exclusion of these 
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subgroups the results changed dramatically, and the significance of comparative models 

switched (some models became invalid whilst others became valid), highlighting the necessity 

to closely control for clinical variables and the careful interpretation of results. 

Santoru et al (128) published a more recent study of faecal water metabolic profiling using 

three analytical techniques – NMR, gas chromatography–mass spectrometry and liquid 

chromatography quadrupole time-of-flight mass spectrometry. In their IBD cohort they also 

found more polyamines and amino acids which was postulated to be due to malabsorption, 

oxidative stress mechanisms or dysbiosis. 

In addition to solid or liquid faecal samples, more recently the volatile contents of faecal 

headspace have been investigated in IBD – this will be discussed further later in this chapter 

(1.2.4.1.). 

All these above studies demonstrate metabolic profiling of faeces can reveal important 

information relating to functional changes from the dysbiosis of normal bacterial ecology as 

well as malabsorption and inflammation pathways in IBD. 

 

1.2.2.2. Urinary profiling in IBD 

Urine is also a useful biofluid to study gut pathology and there have been several studies 

examining the differentiating metabolites in urine between IBD disease types, disease activity 

and location (see table). Urine is arguably the most easily obtained biofluid, with a high 

acceptability to patients, is stable over time and requires minimal pre-analysis preparation. 

Urine contains both gut bacterial metabolites and bacterial host commensal co-metabolites 

which are absorbed from the colon into the systemic circulation and excreted in urine. Studies 
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have shown bacterial perturbations can be detected in urine metabolic profiles of both animal 

models (131) and in human disease (55).  

A potential limitation of this approach is that there may be more inter-individual variation in 

urine profiles in the general population than that seen in serum/plasma, including age and 

gender related changes, as well as environmental influences such as diet, which all must be 

accounted for.  

 

Sample size Author 
Analytical 

platform 

Differences between IBD 

and healthy controls 

Differences 

between Crohn’s 

and UC 

CD (n =86)  

UC (n =60)  

HC (n=60) 

Williams 

(118) 

1H-NMR ↑ glycine, methylhistidine, 

guanidinoacetate in IBD 

↓ hippurate in IBD 

↑ formate in CD 

↓ hippurate and 4-

cresol sulphate in 

CD 

 

CD (n =30)  

UC (n =30)  

HC (n=60) 

Stephens 

(114) 

1H-NMR ↓ succinate, citrate and 

hippurate in IBD 

No differentiation 

found between 

groups after 

controlling for 

surgery. 

CD (n =20)  

UC (n =20)  

HC (n=40) 

Schicho (115) 1H-NMR ↑ mannitol, allantoin, xylose, 

and carnitine in IBD 

↓ hippurate and betaine in 

IBD 

No differences 

CD (n =19)  

UC (n =24)  

HC (n=17) 

Dawiskiba 

(116) 

1H-NMR ↓ taurine, citrate, succinate 

and hippurate in IBD 

No differences 

UC (n =68)  

HC (n=25) 

Bjerrum 

(132) 

1H-NMR No differences  N/A 

 

Table 1.4: Table of metabonomic studies using urine in IBD - adapted from (125) and (112) 



41 

 
 

 

Williams et al (118) first demonstrated changes in metabolic profiles in urine with 1H NMR 

spectroscopy in a cohort of IBD patients and healthy controls. In addition to distinguishing 

disease from healthy, the 2 subtypes of IBD could be separated by multivariate techniques. The 

most significantly reduced metabolite (in Crohns greater than UC) was hippurate, a human 

bacterial co-metabolite produced by bacterial fermentation of polyphenols, purines or aromatic 

amino acids, which undergoes hepatic conjugation and urinary excretion (133). This finding 

was replicated in work by Stephens (114) and Schicho (115) also found hippurate levels were 

less in IBD. Clostridia species, which are lowered in IBD, are associated with hippurate levels 

(134) suggesting dysbiosis as the cause.  

In the Crohn’s cohort of the Williams study, 4-cresol sulphate was significantly reduced and 

formate increased relative to UC and controls. 4-cresol sulphate is a metabolite of tyrosine 

(135), produced primarily by Clostridia and Bacteroidetes species, both of which have been 

shown to be lower in the bacterial bowel communities in IBD, specifically Crohn’s (86) . 

Formate is the signature metabolite produced primarily by Escherichia coli (136) and other 

Enterobacteriaceae, which have been shown to increase in active Crohn’s disease in microbial 

molecular studies (137). 

Stephens et al (114) were also able to use multivariate techniques to distinguish IBD from 

healthy controls although UC could not be separated from Crohn’s. Metabolites differentiating 

IBD from controls included gut bacterial co-metabolites as seen above (hippurate, formate, 

methanol, acetate and methylamine) as well as succinate and citrate – metabolic intermediates 

in the tricarboxylic acid (TCA) energy cycle. The amino acids asparagine, lysine, and histidine 

were also reduced relative to controls, with authors suggesting intestinal malabsorption as the 

cause, similar to findings(117) in faecal studies.  
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Schicho and colleagues studied serum, plasma and urinary metabonomics in an IBD cohort and 

compared to healthy controls. Robust models could discriminate between diseased and non-

diseased individuals, but not identify the sub-types of IBD from each other. Citrate and 

succinate were lowered in IBD as in the Stephens study (114), as well as hippurate, as seen in 

the 2 studies above (114, 118). Other discriminating metabolites included allantoin and 

tryptophan (raised levels in UC) and lactate and carnitine (elevated levels in both Crohn’s and 

UC relative to controls). These findings correlated with urinary metabolic changes in a mouse 

model of colitis by the same authors (124). 

An integrated metabonomic study in UC performed by Bjerrum et al (132) was the only study 

not to be able to differentiate either active or inactive UC from healthy controls with urinary 

metabonomics. However other samples from the same cohort demonstrated differences in 

mucosal biopies and colonocytes.  

The consistent findings of urinary metabonomic studies this far highlight alterations in 

metabolites secondary to disturbances in the gut microbiome, as well as alterations in energy 

pathways and malabsorption, demonstrating the validity of urinary metabolic profiling to 

investigate the pathogenesis of IBD. 

 

1.2.3. Integration of complementary metabolic and microbiological approaches 

The above approaches have been successful in identifying potential features specific to IBD 

that distinguish it at a metabolic and microbiological level from healthy people. The next 

challenge is to apply these techniques together in the same patient group to try and start to 

unravel the complex genetic-environmental-immune interaction in IBD at a functional 

descriptive level (138). 
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Ultimately the improved characterisation of IBD phenotypes with distinctive pathogenic 

mechanisms will allow better tailored treatments and decision making in the clinical 

environment (139).     

 

1.2.4 Novel techniques of metabolic profiling in IBD  

In addition to more traditional biofluids as discussed above, the application of metabolic 

profiling has expanded to examining gaseous biological samples to investigate airborne gas 

phase biomarkers in IBD.  

1.2.4.1. Volatile Organic Compounds (VOCs) and the volatilome  

Biological volatile organic compounds (VOCs), defined as carbon-based chemicals with a high 

vapour pressure in room atmospheric conditions, are produced from a multitude of sources 

within the human body, including, but not exclusively, exhaled breath, sweat, urine, saliva, 

blood and faeces, and comprise the so-called ‘volatilome’ (volatile metabolic signature of an 

individual) (140). As with other metabonomic data these VOCs are recognised to be a measure 

of an entire system’s biology; produced by both host and bacterial host co-metabolic processes 

and representative of the combined pathological and physiological processes of an individual 

at any particular time. In addition, VOCs can detect metabolites difficult or impossible to 

measure by blood tests or alternative means, representing otherwise unmeasurable processes 

(58) and have been shown to relate to gut disorders, including dysbiosis, measurable distant to 

the GI tract (141). 

Developments of more sophisticated micro and nanotechnology have allowed the detection and 

identification of minute concentrations of molecules in breath (discussed below) and the 
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headspace (air above a sample in a sealed container) of urine and faeces and have related these 

to gastrointestinal diseases, more recently IBD.  

The testing of faeces is a rational starting point for VOC testing in gastroenterology, as faeces 

consists largely of the direct products of digestion and bacterial metabolism, and has 

characteristic odiferous contents, which have been noted to change distinctly with disease 

(142). 

Sample size Author 
Analytical 

platform 

Differences between IBD 

and healthy controls 

Differences between 

Crohn’s and UC 

CD (n =22)  

UC (n =20)  

HC (n=19) 

Walton 

(143) 

GC-MS ↑ ester and alcohol derivates 

of SCFAs and indole in 

Crohn’s (not UC) 

↑ ester and alcohol 

derivates of SCFAs 

and indole in Crohn’s 

compared to UC 

 

CD (n =62)  

UC (n =48)  

HC (n=109) 

Ahmed 

(144) 

GC-MS ↑ aldehydes (heptanal, 

propanal, pentanal) in active 

CD;  

↑ Isobutanol, undecane and 

Methoxy-phenyl-oxime in 

UC 

Not compared 

CD (n =83)  

UC (n =68)  

HC (n=40) 

De Preter 

(145) 

GC-MS ↓ MCFAs and protein 

metabolites in IBD 

↑ Propanal, methylene 

chloride, 

benzaldehyde, acetone 

and 2-Methyl-

propanal in Crohn’s 

colitis  

CD (n =117)  

UC (n =100)  

HC (n=109) 

Ahmed 

(146) 

GC-MS ↑ Heptanal, 1-octenol, 2-

piperidinone in CD; 

Bicyclohexane, 4-

methylene-1-methylethyl in 

UC 

↓ SCFAs in active Crohn’s. 

↑ propyl-acetate, 1-

octen-3-ol, 2-

piperidinone in active 

CD compared to active 

UC 

↓ 2-butanal in active 

CD compared to UC 

 

Table 1.5: Table of metabonomic studies using faecal VOCs in IBD – adapted from (125) and 

(112) 
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Early GC-MS data discovered a potential relationship between Clostridia species (147), and 

later other anaerobic bacteria (148) with altered levels of SCFA VOCs in clinical specimens. 

Garner et al analysed faecal samples with GC-MS in cohorts of healthy donors, patients with 

bacterial gastrointestinal infections (C. difficile, and C. jejuni) and in UC, demonstrating 

significant differences between the groups which enabled excellent predictive diagnostic 

accuracy (149). GC-MS has subsequently been applied in the analysis of faecal VOCs 

including a cohort of UC and Crohn’s patients by Walton et al. (143). This showed a distinct 

difference in 8 of the 13 analysed VOCs between IBD (and irritable bowel syndrome) and 

healthy volunteers, with statistically significantly elevated levels of SCFA derivatives in 

Crohn’s, which normalised after treatment was initiated.  

De Preter et al. found a reduction in medium chain fatty acids (MCFAs) (pentanoate, 

hexanoate, heptanoate, octanoate and nonanoate) and protein metabolites (3-methyl-1H-indole, 

p-cresol, dimethyl sulfide, 2-methyl butanoate, methyl propyl sulfide and methyl-2-propenyl 

disulphide) in the IBD cohort compared to controls (145). MCFAs have not been widely 

reported in association with IBD, although in piglets the addition of MCFAs to the diet has 

been shown to alter microbially produced metabolites in the small bowel (150). And as seen in 

other studies (113, 117) De Preter showed SCFAs were reduced in IBD although not to a 

statistically significant level. This study also linked some metabolites to disease activity in both 

IBDs, but no rigorous relationship to disease location.  

Furthermore in a study by Ahmed et al (144) irritable bowel disease could be separated from 

both types of active IBD as well as healthy controls, using GC-MS of faecal headspace VOCs, 

suggesting the potential for developing this for diagnostic purposes in this condition.  Using 

the same method, this group went on to examine a larger IBD population with specific 
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subgroups with active and inactive disease to compare to controls (146). Distinct VOC profiles 

separated active from inactive Crohn’s and from healthy volunteers, as well as small bowel 

Crohn’s from controls, and colonic Crohn’s from UC. In contrast however profiling was not 

able to separate active from inactive UC or from controls. Authors propose the altered VOCs 

are a phenomenon of gut microbial dysbiosis in line with other findings.  

VOCs relating to the gut microbial composition to are also detectable in the headspace of urine 

using electronic-nose and Field Asymmetric Ion Mobility Spectroscopy (FAIMS), enabling 

separation of UC from Crohn’s patients, as well as identification of active from quiescent 

disease (although numbers in the subgroups of this study very small) (151).  

1.2.4.2. Exhaled breath analysis 

In the search for novel, non-invasive approaches, exhaled breath (EB) analysis has become of 

increased interest in recent years and is a rapidly evolving frontier in medical research for 

diseases of the lung and beyond. Breath has been recognised historically as a clinical sign of 

hepatic encephalopathy (foetor hepaticus) or diabetic ketoacidosis, and ammonia and acetone 

were among the first compounds to be objectively measured. Pauling et al’s landmark (152) 

paper in 1971 using gas-liquid partition chromatography was the first to identify over 250 

substances which represented blood-borne low molecular weight (typically 300 g mol−1) (153) 

compounds exchanged at the blood/air interface (later called VOCs) of alveoli, that were 

detectable in exhaled breath (EB). This was the first recognition that breath constituents in 

minute amounts, representing systemic physiology and pathology, could be identified and 

quantified. 

Current roles for breath testing include monitoring of asthma and detection of airways 

inflammation, regulation of gases during anaesthetic, alcohol measurement, diagnosis of 
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neonatal jaundice, and early diagnosis of heart transplant rejection (154). In gastroenterology 

breath analysis has mostly been used for diagnosis of bacterial conditions such as small 

intestinal bacterial overgrowth or helicobacter pylori by detecting a chosen end-product of 

bacterial activity. Up until now the application of breath testing in a clinical context has been 

limited due to the insensitivity of the available methods requiring pre-concentration 

manoeuvres (155) and the problems of analysing multiple compounds (156). But there is great 

potential to exploit the sensitivity of newer technology in analysing the minute fractions of 

volatile products in EB that reflect systemic conditions. Significant advances in technology 

such as gas chromatography mass spectrometry (GC-MS) (157) and selective ion flow mass 

spectrometry (158), enables accurate and reproducible measurement of breath compounds, as 

well as an opportunity to increase our understanding of the underlying metabolic and biological 

pathways linked to breath in IBD. (159) 

Usually the diagnosis of endoluminal gastroenterological disease requires invasive tests 

including endoscopy and biopsy. These investigations tend to be expensive, time consuming 

and carry rare, but serious, possible complications. They can also be relatively uncomfortable 

and/or unpleasant for patients. Whilst breath testing is unlikely to replace the gold standard 

diagnostic algorithm in IBD, it may potentially offer a complementary approach to disease 

monitoring or treatment response; and integration of this data with other methods may yield 

as-yet undiscovered metabolic evidence relating to pathogenesis. Advantages of breath 

analysis are that it is non-invasive and highly acceptable to patients. Compared to other 

metabolic profiling techniques it is relatively inexpensive (160) but still information-rich. 

Technically its advantages are that no sample preparation is required, and processing and 

analysis are fast.   
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Exhaled air is composed mostly of nitrogen, oxygen, carbon dioxide, water vapour and inert 

gases, as well as, in a relatively tiny fraction, VOCs at a part-per-billion-by-volume range 

(161). These are a mixture of exogenous and endogenous gaseous components in an 

approximately 50:50 proportion. Exogenous compounds are present at a negative alveolar 

gradient, ie the concentration of VOC is greater in the atmosphere than in the breath. The source 

of these are mostly environmental, including pollutants, and to a lesser degree, diet. 

Endogenous VOCs are present at a positive alveolar gradient, signifying the source is from 

within the person sampled. These are generated from pathological and physiological host 

metabolic pathways, as well as bacterial metabolism (162). 

Endogenous VOCs include hydrocarbons (ethane, pentane and isoprene), oxygen-containing 

compounds (acetone, acetaldehyde, methanol, ethanol, and propanol), sulphur-containing 

compounds (dimethylsulfide, carbon disulphide) and nitrogen-containing substances 

(ammonia and dimethyl/trimethylamine) (161).  

1.2.4.2.1. Exhaled breath VOCs in clinical research  

Alterations in EB profiles have been recognised in inter alia gastro-oesophageal cancer(163), 

fatty liver disease in children (164), Alzheimers disease (165), idiopathic Parkinson’s disease 

(166) and thyroid cancer (167).  

There are several developed methodologies of measuring breath VOCs, each with its own pros 

and cons; and equally these approaches may be combined and complementary to one another. 

One potential drawback of developing technology is that there is no established consensus of 

standard operating procedure and not all potential confounders are fully understood (159). A 

brief comparison of breath analyser techniques is shown below: 
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Technique Advantages Disadvantages 

Gas chromatography mass 

spectrometry (GC-MS) 

Complete profile recognition 

 

Not done in real-time 

Time consuming 

Needs sample pre-

concentration 

Ion mobility spectrometry Faster than GC-MS 

 

No complete profile 

recognition 

Not done in real-time 

Time consuming 

Proton transfer reaction 

mass spectrometry (PTR-

MS) 

Real time 

High sensitivity (<ppb) 

Fast 

No complete profile 

recognition 

No single VOC 

identification 

Limited number of VOCs 

detectable 

Selected ion flow tube mass 

spectrometry (SIFT-MS) 

Real time 

High sensitivity (<ppb) 

Fast 

No maximum of VOCs 

measured 

No complete profile 

recognition 

 

 

Table 1.6: Comparison of various analytical techniques in breath research – adapted from (159) 

 

Despite this, the ease of use of exhaled breath analysis makes it an attractive option, as although 

investigating GI disease and the gut microbiome has been most commonly been performed 

with faecal analysis, the drawbacks of using stool samples may have limited translation into 

wide scale clinical research (168). This may be in part due to cost and/or difficulty collecting 

samples, as well as the recognition that bacterial function rather than composition is equally 

important (as discussed earlier) to measure and understand. To this end exhaled breath analysis 

may be supplementary to faecal analysis, and other biofluid metabonomics, and may help 

answer some vital pathophysiological questions (159).  
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1.2.4.2.2. Exhaled breath VOCs in IBD   

Single EB compounds have thus far been the most studied in IBD, with most published work 

focusing on pentane and ethane as markers of inflammation and oxidative stress. Kokoszka 

first demonstrated that breath pentane was associated with intestinal inflammation in rodent 

colitis models, and subsequently revealed elevated breath pentane in patients with intestinal 

inflammation, as defined by a positive indium-111-labeled leukocyte scan (169). Sedghi et al. 

measured breath ethane and pentane in patients with diagnosed IBD and compared this with 

longitudinal clinical scores, endoscopic data and chemiluminescence of rectal tissue, but found 

only ethane was positively correlated with disease activity, pentane was not (170). Another 

study showed that three breath alkanes - ethane, propane, and pentane - were all significantly 

different in patients with active IBD compared to controls (171). Dryahina (172) et al. 

examined pentane in a cohort of healthy volunteers and IBD patients. Breath pentane was 

significantly higher in both subtypes of IBD (greater in CD than UC) than controls, with a very 

high AUC (0.927) for diagnosing IBD. Although there were statistically significantly different 

mean levels of pentane between UC and CD, there was a relatively low AUC (0.68) when 

applying pentane as a discriminatory test and no difference in quantified pentane between the 

groups with active compared to quiescent disease. However the same group went on to show 

that in a larger cohort studied, pentane levels were significantly different in patients with 

disease activity compared to those in complete remission suggesting that pentane 

concentrations correlated with activity (173). The above studies propose oxidative stress 

causing excessive lipid cellular fatty acid peroxidation during as the responsible pathway for 

production of alkanes in blood, subsequently detectable in breath.  
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Other single EB compounds measured in IBD include: exhaled nitric oxide which was shown 

to be higher in IBD than controls, and relatively more elevated in UC than CD and in those 

with active disease (174); methane which is lower in breath in IBD than healthy controls (175); 

and exhaled carbon monoxide which was not shown to differ in IBD (176).  

A single compound is unlikely to be sufficiently sensitive to be able to diagnose or monitor 

chronic diseases, or reveal information about complex pathological or metabolic processes, 

especially with possible external influences. Originally breath analysis in IBD had concentrated 

on single VOCs, however it is apparent though that simultaneous measurement of multiple 

VOCs to form a breath profile will provide more significant information. (58) Measuring 

multiple VOCs to form a breath ‘profile’ or ‘fingerprint’ is more likely to allow discrimination 

between conditions, as it reflects all of the concurrent physiological processes occurring at one 

time (159).  

A multi-compound breath analysis in IBD in a paediatric cohort (177) using SIFT-MS breath 

analysed 21 compounds, of which three alkenes (1-octene, 1-decene, (E)-2-nonene) were 

identified that could collectively distinguish IBD patients from controls. They were unable to 

distinguish CD from UC and there was no correlation with disease activity.  

FAIMs has also been applied in an adult IBD population, with a good ability to distinguish 

IBD breath profiles from controls, and a moderate ability to separate UC from Crohn’s (178). 

One of the limitiations of FAIMS is that it cannot accurately identify metabolic compounds, 

rather relying on a ‘breath print’ or breath ‘bio-signature’ to differentiate between conditions. 

SIFT-MS, whilst more expensive, has a much higher diagnostic power and superior ability to 

quantify chemicals (178), which is essential in understanding the origin of the altered breath 

profile. 
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1.3. The study of IBD and ethnicity 

Epidemiological studies show that IBD, which was once a disease almost exclusively confined 

to Western developed countries, is becoming a global phenomenon, associated with significant 

mortality and morbidity. IBD prevalence has increased substantially in the last 60 years, at time 

doubling every decade, with the highest rates currently seen in Canada, Northern Europe and 

Australia (47). The most recent systematic review of world-wide population-based studies 

estimated a prevalence of IBD of 0.3% in Western countries, with most of these countries 

showing a stable or decreasing incidence of the disease (179).  

There is considerable variation in the burden of IBD in different geographic regions, mostly 

seen in a West versus East ‘divide’ as well as between different ethnic groups in the same 

location (47). In contrast to the West, the incidence of both Crohn’s and UC is accelerating in 

newly-industrialised countries (179) although limited data makes exact percent calculations 

impossible.  

Most research to date has been based on Caucasian populations (180), with relatively few 

population based studies of IBD in South Asia (only 6 on the most recent meta-analysis) (179), 

and even less research in non-Caucasian IBD patient cohorts in Western countries (181). IBD 

appears to manifest itself as a different clinical phenotype in different ethnic groups (24, 25, 

180) and studies suggest that response to therapy and disease progression may be affected by 

ethnicity (26). 

One challenge of studying ethnicity is that race is defined geographically, most often by the 

continent from which a person originated, whereas the concept of ethnicity is usually self-

identified, and encompasses cultural, religious and social aspects as well (182). In this way 

ethnicity can be considered a social definition rather than a scientific definition (183).  
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A potential confounder when studying ethnicity, is that through integration of ethnic 

communities over history, ethnicity terminology is often inadequate to describe the 

heterogeneity of populations (183), and many individuals self-identify as a mixture, or as more 

than one ethnicity (184). As with any self-identified characteristic there is potential for mis-

reporting. However an epidemiological perspective would strongly favour the use of self-

identified ethnicity as the best descriptor in medical research (182). In the studies in this thesis, 

as with most other medical research into ethnicity, self-reporting is the most practical way of 

collecting and categorising individuals.  

Studying IBD in different ethnic groups offers the chance to reveal significant components of 

the complex paradigm of pathophysiology IBD. Ethnic subgroups are genetically different 

from one another, but the phenomenon of migration provides an interesting model to test the 

effect of environment on the development of IBD, helping to untangle the relationship between 

genetics and environment.  

Additionally, there is interest in this area as the epidemiology of the UK population is changing 

and through studying IBD in different ethnic groups there is the opportunity better understand 

IBD in specific patient populations. According to the 2011 National census, England and Wales 

is becoming more ethnically diverse with rising numbers of all minority ethnic groups (185) 

including the percentage of self-reported ethnic groups of Asian origin (including Indian, 

Pakistani, Bangladeshi and other Asian origin) all increasing in size between 2001 and 2011. 

In this PhD the definition of South Asian includes Indian, Pakistani and Bangladeshi – the three 

largest groups of Asians in the UK (185) as well as Sri Lankan, as these countries are 

geographically close. This group make up the second highest percentage (7.5%) of the English 

and Welsh resident population after White (White British and any other White) (86%). London 
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is the most ethnically diverse area, with the greatest proportional change over recent years 

(White British group falling between 2001 and 2011 by 14.9% and Asian increasing by 3%).  

In the UK the rate of UC is higher in the South Asian population than non-South Asian  with 

rates of 10.8 per 100,000 compared to 5.3 (186) with the inverse true in Crohn’s with an 

incidence of 3.1 per 100,000 versus 5.3 (187).  

In Scotland the relative risk (adjusted for age and socioeconomic deprivation) of UC is higher 

in Indian men and Pakistani men and women (188). For Crohn’s the relative risk is higher in 

Pakistani men, but only slightly higher in women, with data missing for the Indian sub-

population (188).  

 

1.3.1. IBD manifests differently clinically according to ethnicity 

It has been shown that IBD phenotype and disease outcomes differs between Asians and 

Caucasians (189) when studied in native populations of Asia (see table). In combined data from 

Asian countries the main differences in Asian cohorts compared to Western patients is the male 

predominance and higher rates of perianal disease in Crohn’s, less familial aggregation, less 

requirement for surgery and fewer extra-intestinal manifestations (EIMs) (190). 

However, data amalgamated in this particular paper were compiled from other parts of Asia 

including Eastern Asia (China, Korea and Taiwan) and South Eastern Asia (Malaysia, 

Singapore), and in this thesis only patients from South Asia were studied.  
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Clinical characteristics 

of IBD 
West Asia 

Gender 

CD: Female predominance CD: Male predominance 

UC: Equal gender distribution 
UC: Equal gender 

distribution 

Peak age of diagnosis 
20–30 years old for CD                               

30–40 years old for UC 

Similar to the West but 

smaller second peak for CD 

and UC 

CD phenotype 

Equal disease distribution with 

isolated colonic disease 

predominance in some studies 

Ileo-colonic disease 

predominant 

Perianal disease more 

common (33–40%) 

UC phenotype 
Approximately 30% for proctitis, 

distal colitis and extensive colitis 

Disease distribution similar 

to the West 

Milder disease course 

Extra-intestinal 

manifestation 
21%–41% 

Overall lower frequency 

(6%–14%) 

Primary sclerosing 

cholangitis 

 

2-7% 0-1% 

Colorectal cancer 3%–5% 
Lower rates 

(0%–1.8%) 

Colectomy rates – 

Variable in Asia but lower 

than the West especially for 

UC 

Family history of IBD 10%–25% 
Lower rates of familial 

aggregation (0%–3%) 

 

Table 1.7: Characteristics of IBD in Western and Asian populations - Adapted from (190) 

 

There are a substantial paucity of data lacking from individual South Asian countries including 

Bangladesh and Pakistan (179). The Indian Society of Gastroenterology (ISG) Task Force 

reported the first national audit of IBD in 2012, with the main findings being a considerably 

higher rate of EIMs (over 50% for both disease types) and a higher proportion of extensive UC 

and relatively rare proportion of proctitis, in contrast to the pooled data from Asia. (191) 
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The clinical phenotype of South Asian populations in the UK has also been studied. Walker et 

al showed that South Asians living in London demonstrated a distinct disease phenotype 

compared to Caucasians in the same area (181). There were some consistencies with the data 

from Asians studied in native countries, but also some differences, possibly suggesting that 

disease phenotype manifests differently dependent on environment. Pan-colitis was more 

common in Asian patients compared to Northern Europeans in the UK (63 vs 42.5%) and 

proctitis was rare in comparison (9.9 vs. 26.1%). In this cohort there was a higher rate of 

paediatric Crohn’s amongst South Asians and less smokers. The Asian Crohn’s cohort had 

statistically less penetrating disease and less requirement for surgery.   

In a pure Bangladeshi cohort studied in London the findings were different (192). Crohn’s was 

more prevalent than UC in the Bangladeshi group compared to Caucasians which is 

contradictory to other studies of South Asians (186, 192), possibly because of environmental 

factors related to religion (alcohol, diet) (192). In this analysis there was no difference between 

the ethnic groups with Crohn’s in terms of phenotype, however Bangladeshi’s were more likely 

to require steroids and treatment escalation with thiopurines and anti-TNFs. In the UC cohort, 

Bangladeshis had more extensive UC than Caucasians but did not require more surgery or 

escalated medical treatment.  

When comparing first generation (born outside of the UK) and second generation (born in the 

UK) South Asian IBD patients, time spent in the UK did not appear to influence the rate of UC 

- consistent with other epidemiological data (186)  – as seen but did the risk of Crohn’s (risk 

increasing with time) (181).   

Although data is limited to small cohorts, there is some evidence that ethnicity affects treatment 

response in UC to 5-ASAs / sulfasalazine therapy with 49.6% relapsing in an Asian study 
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population (193) compared to 72% relapsing in a Western cohort (194). Although it is worth 

noting that the two groups were not directly compared. Steroids in UC appear to be comparably 

effective (189) in both ethnicities. There may be a higher response rate to biologics 

(unpublished data) in Asian countries although this has not been fully investigated and use of 

these therapies is limited (189). There is no data specifically in South Asian patients in Asia or 

the UK. 

1.3.2. The changing global picture of IBD 

The areas with the most significant and rapid increases are developing countries, including 

Asia (195) whilst the incidence in developed countries appears to be stable (196). Although 

some of this is due to improved access to healthcare and diagnosis reporting in developing 

areas, it is certainly a true epidemiological occurrence. In fact incidence rates and prevalence 

values from developing and under-developed countries are likely underestimated (47). Whilst 

the genetics of a population can be considered to be essentially unchanged over time, 

environment must account for at least a substantial influence on the growing incidence in these 

regions. Influences such as improved hygiene and socioeconomic development (196) are 

proposed to explain the epidemiological pattern of IBD following that in the West but lagging 

by 50 years (197). These factors interplay with other pathological mechanisms discussed 

above, including diet and microbial dysbiosis. 

 

1.3.3. The effect of migration on IBD in a population  

Genetic susceptibility in Asian populations is different compared to Caucasians (198). Less 

familial clustering has been seen in non-Caucasian populations than is observed in Caucasians 

(199) and there is a global difference in the susceptibility genes for IBD seen in different 
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geographical and racial groups. The major NOD2/CARD15 polymorphisms associated with 

susceptibility to Crohn’s in Caucasians are rare or absent in Indian populations and a 

polymorphism in the interleukin 23 receptor (ILR23R) gene was not protective against IBD in 

the Indian cohort as it is in Caucasians(200).  

Migration provides an ideal model in which to study the effect of environment on ethnic 

groups, and there is a clear increased risk of developing IBD in those who migrate from a low 

prevalence area to a high prevalence region (201).  Data have shown that second generation 

Asians in the UK are at even higher risk than the indigenous population of developing IBD 

(202, 203). It is also seen that IBD is more common in urban than rural regions within the same 

country (204) and there may be a variety of different environments risks to account for both of 

these findings including diet, lifestyle behaviour, medication, pollution and sanitation (205). 

The effects of all of these factors are notoriously difficult to measure as they cannot be 

adequately controlled for in prospective studies and therefore we rely on observational data.  

In order to understand the temporal and geographical trends of IBD more studies are needed 

from developing countries and in non-Caucasian populations (47). Through examining the data 

in IBD from ethnically and genetically different populations fundamental aspects of IBD 

pathogenesis can be examined and applied in the context of a diverse multicultural clinical 

population.  
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1.4. Scope of this thesis 

This thesis explores the further use of metabolic profiling in IBD, in a variety of stratified 

patient groups, and examines different aspects of how metabonomics can be better understood 

and refined, to ultimately improve its translational impact to the clinical arena. Each of the 4 

chapters includes the results, as well as a discussion and conclusion within the chapter.  

 

Chapter 2: Materials and Methods 

To prevent repetition this is an overall shared methodology chapter as several studies use the 

same techniques. Specifics relating to each individual dataset are further defined in each 

individual chapter.  

 

Chapter 3: Exploring the effect of ethnicity on urinary metabolic profiles in IBD 

This part of the thesis studies urinary metabonomic data from ethnically different IBD 

populations in order to better understand the important metabolic differences between these 

groups. 

Hypothesis: Ethnicity has a significant effect on the urine metabolic profile in inflammatory 

bowel disease which may relate to the microbiome, and reflects that South Asians are an under-

recognised cohort in IBD research.  
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Chapter 4: Effects of time on urinary metabonomic signatures in IBD 

This chapter examines the stability of the urinary metabolic profile in IBD over time, in order 

to improve interpretation of this methodology, to assess changes associated with disease and 

to examine the potential of urinary metabonomics as a predictor of disease outcome.  

Hypothesis: Urinary metabonomics may separate patients who subsequently develop disease 

progression from those with a less aggressive phenotype, and metabolic profiles are altered by 

disease complications and medical interventions over time. 

 

Chapter 5: Pilot Study integrating microbial and metabonomic data in IBD 

In this cross-sectional study metabonomic data are integrated with bacterial compositional data 

to explore correlations between key urinary and faecal metabolites and the microbiome in IBD. 

Hypothesis: Marker metabolites identified in urine and stool differentiating IBD from controls 

can be directly correlated to dysbiosis in the disease through identified alterations in gut 

bacteria.  

 

Chapter 6: Exhaled breath VOC analysis as a novel metabolic profiling technique in IBD 

Here, a novel metabolic approach to non-invasive testing in IBD is performed, using breath 

analysis for the first time in adults to explore the exhaled compounds associated with the 

disease.  

Hypothesis: Exhaled breath VOC profiles differ in IBD and can be used to discriminate patients 

from controls. 
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Chapter 2: Materials and Methods 

2.1 Study participants and clinical data 

Ethical approvals for the studies were obtained from St. Mary’s Research Ethics Committee 

(Ref 05/Q0403/106) with additional later amendments from the Fulham NRES Committee. 

All patients gave written, informed consent and received a patient information sheet. Healthy 

volunteers also gave written, informed consent and received a volunteer information sheet. 

Demographic data including age and self-reported ethnicity was recorded. 

2.1.1 Clinical phenotyping of IBD patients 

IBD patients were diagnosed with IBD based on rigorous review of clinical data, endoscopy, 

histology and imaging (4, 146). Diseases were sub-classified according to the Montreal 

classifications (206). Disease activity was assessed using the Harvey-Bradshaw index (HBI) 

for CD patients (207) or the simplified clinical colitis activity index (SCCAI) for UC patients 

(208). Disease was considered active if the score was ≥5. 

Disease information was collected from a thorough review of medical notes, clinical letter 

database, radiology and pathology results for each patient.  

IBD medications were recorded as 5-aminosalicylates, immunosuppressants (defined as 

azathioprine or 6-mercaptopurine (6MP)), anti-TNFs (infliximab or adalimumab) and 

steroids(209).  

Patients with significant co-morbidities were also excluded. These were considered to be 

systemic conditions which may influence the metabolome, and included cardiovascular 

disease, respiratory disease, neurological conditions, infections, cancer and atopy.  
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For historical samples, recorded demographic and phenotypic data was used and a review of 

any available historical records was performed. Where corresponding information was missing 

for patients their samples were excluded from the analysis or sub-analysis.  

2.1.2 Metabonomic and dietary information 

In addition to this information, patients and volunteers recorded dietary data (24-hour recall 

and usual weekly), alcohol use, smoking history, exercise and other medications. No dietary 

restrictions were imposed to simulate real life circumstances; however it was recorded if a 

participant was vegetarian or not.  

2.2 Sample collection and preparation 

2.2.1 Urine samples  

Urine was collected in 30ml universal sample containers (Sigma-Aldrich, USA). Random urine 

was taken rather than first void (early morning) samples as these have been shown to exhibit 

more intra-individual variation due to lifestyle and diet than those collected later in the day 

(210). Samples were collected within 6 hours of production. 

Specimens were centrifuged at 14,000 rpm for 20 minutes to removed solid particulate matter, 

and then aliquoted and stored at -800C in microcentrifuge tubes (Ependorff, Germany) until 

NMR analysis. 

2.2.2 Faecal sample collection and water extraction for NMR 

Stool was collected in a 30ml universal sample container with spoon cap (Sigma-Aldrich, 

USA) and frozen at -80oC on the same day of sample donation (within 12 hours) until analysis. 
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To extract faecal water 500mg of faeces was mixed with sterile phosphate buffered saline in a 

2:1 ratio and vortexed for 5 minutes. The resultant mixture was centrifuged for 10 minutes at 

18000g at 4oC. The supernatant was stored in aliquots of 600µL in microcentrifuge tubes for 

NMR analysis. 

2.2.3 Extraction of DNA from faeces for microbial analysis 

Extraction of DNA from faecal samples was performed using the QIAamp Fast DNA Stool 

Mini Kit. Laboratory materials were supplied by Qiagen, unless otherwise stated. 

Centrifugation was performed at 14,000rpm, at room temperature, unless stated otherwise. 

2.2.3.1 Preparation of the reagents used 

Buffers AW1 and AW2 were diluted to correct concentration with 100% ethanol. Buffers AL 

and InhibitEx ® were incubated at 21oC to dissolve any precipitates and all buffers were mixed 

thoroughly before use. 

2.2.3.2 DNA extraction 

For each specimen 180-220mg of stool was weighed into a 2ml microcentrifuge tube 

(Ependorff, Germany) and kept frozen on ice. 1ml of InhibitEx® buffer was added to each 

sample, and then vortexed for up to 5 minutes to ensure sample was homogenised. 

The suspension was then incubated to 95oC in a thermomixer for 5 minutes to lyse cells. 

Samples were then mixed again on the vortex for 15 seconds. Samples were centrifuged for 1 

minute to pellet stool particles or until there was no solid matter remaining in the suspension. 

15ul of Proteinase K was added to new 1.5ml microcentrifuge tubes and 200ul of supernatant 

was added. These were mixed before addition of 200ul of Buffer AL and a further 15 seconds 
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on the vortex to mix samples. Tubes were heated to 70oC for 10 minutes before 200ul of 96-

100% ethanol was added and mixed again on the vortex. 

600ul of lysate was pipetted into a QIAamp spin column in a 2ml collection tube and 

centrifuged for 1 minute, or until all filtrate had passed through the spin column. The collection 

tube containing filtrate was discarded and replaced.  

500ul of Buffer AW1 was inoculated on the spin column and centrifuged for 1 minute and the 

collection tube containing filtrate was discarded and replaced. 

500ul of Buffer AW2 was added and centrifuged for 3 minutes. In order to prevent any residue 

of Buffer AW2 contaminating the QIAamp spin column, the spin tube was discarded and 

replaced again, and spin columns centrifuged for an additional 3 minutes.  

QIAamp spin columns were placed in 1.5ml microcentrifuge tubes and 200ul Buffer ATE was 

pipetted onto the membrane of the column. After 1 minute at room temperature samples were 

centrifuged to elute DNA. Microcentrifuge tubes were then stored at -20oC until quantification 

of DNA was performed. 

2.2.3.3 Quantification of DNA 

Quantitation of DNA was performed using a QubitTM fluorometer and quantitation assays. 

Standards #1 and #2 were used to calibrate the fluorometer prior to reading samples. 200µl of 

each sample was transferred to 0.5ml Qubit® assay tubes and incubated at 20oC for 2 minutes 

before each reading.  

Fluorescence was measured and expressed as a concentration of DNA in the assay tube in 

ng/mL.  
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2.3 Microbial diversity analysis of faecal samples 

Culture-independent analysis of the gut microbiome has improved the exploration of the gut 

microbiome and its role as a central driver in host health and disease. Not only is a significant 

percentage of the gut microbiome as yet uncultured (79) but newer techniques including 

metagenomic and 16S rRNA gene-based methods are also able to describe the functions of the 

microbes as well as identify the species present. Whilst it is known that the luminal contents of 

the gut differ from the mucosal-associated microbiota (211) it is established that faecal 

microbial analysis is more practical, safer and delivers a valuable mechanism into investigating 

the gut microbiota (212). 

2.3.1 16S rRNA gene analysis 

16S ribosomal RNA analysis is becoming a prevalent method of rapid, cheaply and accurately 

quantifying the bacterial populations within clinical samples. It enables the description of 

bacterial diversity within a sample by creating inventories of 16S rRNA genes. This is not to 

be confused with metagenomics analysis which is the measurement of the entire genetic data 

within a sample.  

Firstly DNA is extracted from the biological samples, then polymerase chain reaction (PCR) 

is performed on specified regions of the 16S gene using ‘universal’ primers aimed to include 

as wide a range of microorganisms as possible. The generated data is then compared to 

validated microbial sequencing databases for identification purposes. 

Data demonstrates the clustering of related sequences at a particular level of identity, called 

operational taxonomic units (OTUs). OTU counts for each organism in a sample can be shown 

with a level of 97% usually being representative of a species and 95% being representative of 

a genus. Some bacteria can only be identified at the genus or family level rather than species. 
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2.3.1.1 Illumina 2 step technique 

Samples were analysed by Research and Testing Laboratories, Lubbock, Texas, with the 

Illumina 2-step technique. Methodology below supplied by Research and Testing: 

V1-V2 regions were amplified for sequencing in a two-step process. The forward primer was 

constructed with (5’-3’) the Illumina i5 sequencing primer 

(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG) and the forward gene specific 

primer. The reverse primer was constructed with (5’-3’) the Illumina i7 sequencing primer 

(GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG) and the reverse gene specific 

primer. Amplifications were performed in 25 ul reactions with Qiagen HotStar Taq master mix 

(Qiagen Inc, Valencia, California), 1ul of each 5uM primer, and 1ul of template. Reactions 

were performed on ABI Veriti thermocyclers (Applied Biosytems, Carlsbad, California) under 

the following thermal profile: 95○C for 5 min, then 25 cycles of 94○C for 30 sec, 54○C for 40 

sec, 72○C for 1 min, followed by one cycle of 72○C for 10 min and 4○C hold. 

Products from the first stage amplification were added to a second PCR based on qualitatively 

determine concentrations. Primers for the second PCR were designed based on the Illumina 

Nextera PCR primers as follows:  

Forward - AATGATACGGCGACCACCGAGATCTACAC[i5index]TCGTCGGCAGCGTC 

Reverse - CAAGCAGAAGACGGCATACGAGAT[i7index]GTCTCGTGGGCTCGG.  

The second stage amplification was run the same as the first stage except for 10 cycles. 

Amplification products were visualized with eGels (Life Technologies, Grand Island, New 

York). Products were then pooled equimolar and each pool was size selected in two rounds 
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using Agencourt AMPure XP (BeckmanCoulter, Indianapolis, Indiana) in a 0.7 ratio for both 

rounds. Size selected pools were then quantified using the Quibit 2.0 fluorometer (Life 

Technologies) and loaded on an Illumina MiSeq (Illumina, Inc. San Diego, California) 2x300 

flow cell at 10pM. 

2.3.1.2 16S data processing  

Mothur (213) was used to process the 16S rRNA gene sequences generated by the Illumina 

MiSeq platform. Forward (R1) and reverse (R2) reads were paired, ensuring any low-count 

reads were excluded. Sequences containing ambiguous bases were removed and duplicates 

removed, leaving only unique sequences which were then aligned to customised references. 

Poorly aligned or redundant sequences were culled, leaving groups of sequences to be sorted 

into groups with abundances. Taxonomy was assigned against the SILVA rRNA database 

(214).  

Data were transferred from Mothur format to be used in Microbiomeanalyst software (215) 

online. 

2.3.1.3 Microbial composition analysis  

Relative bacterial abundance (percentage) was measured at phylum, class, order, family and 

genus levels and shown in stacked bar charts.  

Heatmap visualisation with clustering dendrogram was produced to visualise the relationship 

between bacteria and samples as per their direct (Euclidean) distance. Heatmaps use a colour 

super-imposed on a data matrix to visualise the larger and smaller values. Hierarchical 

clustering demonstrates similarities (close distance) by linking data to one another in a ranked 
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(most similar) order of height. This is used as an overview to highlight associations with 

particular bacteria. 

2.3.1.4. Diversity index analysis  

There are a variety of metrics which can be used to describe the diversity of biological samples. 

Estimators of ‘within sample’ (alpha) diversity can measure the richness (number of species 

per sample) and evenness (includes the relative abundance of difference species in a sample). 

The Observed OTU count and Chao1 index describe richness alone, Shannon index and 

Fisher’s index describe both richness and evenness of the samples. These indices can be 

measured and compared between groups and a p value ascribed to determined significance.  

As each of the indices are calculated slightly differently (ie are slightly difference 

representations of the same biodiversity) it is helpful to measure and quote several indices when 

comparing groups. 

2.3.1.5. Beta diversity analysis 

To compare the composition of different bacterial communities between groups beta diversity 

is calculated. This is a multivariate technique which measures the distance (or dissimilarity) 

between every pair of samples, to form a dissimilarity matrix.  

Principal coordinate analysis (PCoA) (also known as multidimensional scaling, MDS) enables 

visualisation of the matrix in low dimensional (2D or 3D) space to show similar clusters, or 

highlight outliers, based on their Euclidean distance. In this there is similarity to primary 

component analysis (PCA, described later) however the difference between the two is that PCA 

is based on similarities and PCoA on dissimilarities (216). 
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The interpretation of a PCoA is whether samples cluster together based on the degree of 

dissimilarity, and further interpretation beyond this is limited. Each axis has an eigenvalue 

which describes the variance accounted for in that axis. The higher the cumulative eigenvalues 

the better the PCoA displays differences. R2 values are sometimes displayed to quantify the 

variance demonstrated, with models being tested for significance with a p value.  

PCoA can be constructed using a variety of metrics to measure distance (dissimilarity) 

including Bray-Curtis (Non-phylogeny based, taking abundance into account), Unweighted 

UniFrac (based on phylogenetic branches, and OTU count) and Weighted UniFrac 

(phylogenetic and OUT count and abundance) (217).  

2.3.1.6. Differential Abundance analysis 

The significant bacteria (at each taxonomic level) between groups were identified with EdgeR 

(218), a bioinformatics package which calculates statistical significance of the bacteria 

accounting for biological variability. P values (<0.05 considered significant) were corrected 

for false discovery rate.  

 

2.4 Urinary and faecal water NMR spectroscopy 

2.4.1 NMR spectroscopy 

Nuclear magnetic resonance spectroscopy is used throughout this thesis to allow biological 

samples (urine and stool) to be interrogated for the molecular structures within it and thereby 

the metabolic composition. NMR relies on a radio frequency pulse to cause the atomic nuclei 

of a sample to resonate at a specific frequency whilst the sample is held in a strong external 

magnetic field (219).   
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2.4.1.1 Basics of NMR Spectroscopy 

Some atomic nuclei, including protons (1H), possess the quantum mechanical property called 

spin, whereby when placed in a magnetic field (B0), they align in one of two orientations - 

either a higher (parallel) or lower (anti-parallel) energy spin state. Applying a radiofrequency 

excitation pulse (B1) causes a transition in the energy state of the nuclei, and once this is 

removed the nuclei recover to equilibrium state, releasing absorbed energy. This signal, known 

as free-induction decay (FID) is detected and measured by receiver coils, and characterised by 

the time it takes to return to original spin (spin-lattice relaxation - T1) and the amplitude of the 

relaxation in the transverse plan (spin-spin relaxation - T2) (220). The FID is resolved into a 

frequency domain spectrum by Fourier transformation, displaying the energy difference 

between the protons two spin states. This is displayed as spectrum, where the chemical shift δ 

(expressed in parts per million) describes the difference between the resonant frequency of the 

nucleus and a reference signal, in this case 3-trimethylsilyl-1-1-(2,2,3,3,-2H4) propionate 

(TSP), a chemically non-reactive standard.  

The specific chemical shift of each nuclei is determined by several factors, including chemical 

shielding, electronegativity and electron density and in addition to this the interaction of 

neighbouring nuclei in a covalent bond, known as ‘spin-spin coupling’, which gives rise to 

multiple peaks in a spectrum determined by the number of protons bonded to adjacent atoms. 

Prior knowledge of the multiple peaks and chemical shifts allows identification of the 

molecules present in a complex mixture. The signal intensity is proportional to the number of 

nuclei contributing to that signal, and so by integrating the area under a peak a relative 

quantification of a compound can be made (219).  
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Figure 2.1: Example of NMR spectrum 

 

2.4.2 Preparation of urine samples for NMR 

Urine samples were prepared using a standardised method (221). Laboratory agents were 

supplied by Sigma-Aldrich, USA, unless otherwise stated.  

400µL of urine was mixed with 200µL of phosphate buffer (pH7.4) to stablise pH. The 

phosphate buffer contained TSP to act as a reference standard, and D20 to act as a field lock. 

Samples were centrifuged at 12,000g for 5 minutes then 550µL was transferred to sterilised 

5mm NMR tubes.  

2.4.3 Preparation of faecal water samples for NMR 

Faecal water samples were prepared by the same standardised method in 2.4.2. 
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2.4.4 NMR Data acquisition and pre-processing 

2.4.4.1 Data acquisition 

NMR spectra was acquired on an Avance 600MHz NMR spectrometer  (Bruker  Biospin) using 

standardised protocol with water presaturation. Samples were randomised to reduce the effect 

of temperature shift and field drift during the acquisition. Standard 1-dimenssional NOESY 

spectra were acquired over 32 scans (4 dummy scans) with the receiver gain at 90.5 with a 90o 

high power pulse angle for 13.35µseconds (Bruker pulse programme: noesypr1d). 

1H-1H correlation spectroscopy (COSY) and 1H-1H total correlation spectroscopy (TOCSY) 

NMR spectra were also acquired to aid assignment of peaks to metabolites.  

2.4.4.2 Pre-processing 

Acquired free induction decays for one-dimensional data were multiplied by an  exponential  

window  function  with  a  line  broadening  of  0.3Hz, followed by a Fourier  transformation.  

Phasing and baseline correction were performed using in-house software. Referencing was set 

to TSP (δ 0.0). Spectra were visualised using Topspin (3.5, Bruker BioSpin 2006) then 

imported into Matlab R2014a (Version 8.5, Mathworks) for processing and analysis.  

Regions containing the water resonance, urea (in urine) and TSP were removed (see individual 

chapters for specific chemical shift details). Full resolution spectra were used. The advantages 

of this are that assignment of peaks is more accurate, and the full data information is retained. 

Alternatively ‘binning’ can be used, where the spectral intensity from small pre-defined regions 

are combined into a variable. This makes the reduced spectral dataset more manageable, and 

can overcome some effect of chemical shift, however it reduces the accuracy of data and can 

confuse statistical modelling. In order to overcome the effects of peak shift associated with 
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variations in pH and ionic strength of samples, the spectra were aligned using an in-house 

algorithm: recursive segment-wise peak alignment (RSPA) (222). This allows better 

comparison of spectra and removes artefactual variation to improve robustness of analysis 

(222). 

Clinical samples invariably contain a variety of peaks representing xenometabolites produced 

from medications. There is debate in the literature as to the optimal method to account for these 

when analysing data (223). Other published works have excluded large regions (δ 2.12-2.22 

and δ 4.70-9.50) of the NMR spectra to control for this (117), but this excludes a substantial 

proportion of the biologically relevant metabolite data, including the aromatic region in which 

many important peaks previously reported to be altered in IBD are located. Three approaches 

were used in this thesis. Firstly, the most rigorous way to prevent xenometabolites influencing 

the statistical models was to exclude all of the samples which included drug peaks. However, 

as many IBD patients take 5-ASA medications and or paracetamol (which both have large 

dominant drug peaks in the aromatic region), this approach was only possible in the largest 

study (ethnicity: Chapter 3) otherwise the subgroups became too small for accurate analysis. 

This is the most robust method, as it not only removes the xenometabolite signals themselves, 

but also removes the effect of medication on the other metabolic constituents. Alternatively, in 

the smaller studies, the regions in which the drug peaks were present were either individually 

removed from the spectra prior to processing the data, or were selectively removed using an 

in-house script for Statistical Total Correlation Spectroscopy (STOCSY) Editing (224). This 

edits out the resonances highly statistically correlated with a chosen peak, at a pre-defined 

covariance set by the user (usually 0.9). It allows removal of the drug peak whilst leaving the 

unrelated resonances intact and without the need to exclude the entire region. This was 

performed on 5-ASA (225) and paracetamol (226) metabolites in some studies in this thesis.   
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Median-fold change normalisation (also known as probabilistic quotient) (227) was performed 

to account for metabolome-wide effects such as urine dilution / stool concentration. This 

calculates a ratio (quotient) of each variable in relation to a reference spectrum calculated from 

all the samples. This identifies changes in a sample which are due to biological effect, rather 

than overall changes to affecting the whole sample such as dilution.  

Scaling and mean centring was then performed. Scaling is performed to prevent the models 

being dominated by the large peaks of high concentration metabolites (228). There are several 

alternative methods of scaling and the optimal method is best determined by the specific dataset 

itself (229). Univariate scaling divides each variable by its standard variation thereby giving 

all peaks equal weighting (of one). Pareto scaling uses the square root of the standard deviation 

as a scaling factor instead of the standard deviation alone, and allows enhancement of the 

contribution of small concentration metabolites to be visualised. Logarithmic scaling can also 

be used as an alternative, which removes heteroscedasticity (values with different variabilities 

in a dataset) and reduces the differences between very high and low value metabolites by 

pseudo-scaling (230). 

 

2.5 Breath testing with SIFT-MS  

SIFT-MS uses selected precursor ions (H3O
+, NO+ and O2+) injected into flowing helium gas 

carrier, to ionise the trace compounds in a gaseous sample, in this case breath. These precursor 

ions do not react significantly with the major components of air (nitrogen, oxygen etc) but form 

characteristic product (analyte) ions with trace volatiles; thus with knowledge of the ion-

molecule chemistry, accurate identification of trace compounds can be made to a parts-per-

billion by-volume (ppbv) or parts-per-million by-volume (ppmv) level. As the sample is 



75 

 
 

 

introduced at a known flow rate, hence determining the reaction time, the count rates can be 

converted to quantification allowing sensitive and accurate real-time trace-gas analysis.  

SIFT-MS can run in 2 modes: Full scan mode (FS) in which the downstream analytical mass 

spectrometer/detection system is scanned over a pre-determined time period over a range of 

mass to charge (m/z) values, or multi-ion mode (MIM), during which the spectrometer is 

rapidly switched between selected m/z values to target selected trace gas species. MIM is more 

sensitive and reproducible than FS mode (231) and therefore was employed for this thesis. 

2.5.1 Exhaled breath capture technique 

Breath capture technique and SIFT-MS details are described in chapter 6.4.2 – 6.4.3. 

 

2.6 Data analysis 

Data treatment and statistical analysis was performed in either Excel, GraphPad Prism 6 

(GraphPad Software Inc. CA, USA) or IBM SPSS statistics 21 (SPSS Inc., Chicago, IL). For 

analysis of phenotypic data the Mann-Whitney U test or Kruskal-Wallis test (as appropriate) 

were applied for continuous variables and Fisher’s exact test for categorical variables.  

2.6.1 Targeted analysis of hypothesised metabolites in NMR spectra 

Targeted analysis of metabolites was performed to identify and elucidate important metabolites 

in the models which had been hypothesised as contributing to separation in the datasets. The 

area under the peak for each specified metabolite was integrated giving a relative index, from 

which the median was used to compare groups. Kruskall-Wallis and / or Mann-Whitney U test 

were calculated and to correct for multiple comparisons the Benjamini-Hochberg or Bonferroni 

correction was applied.  
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2.6.2 Multivariate statistical analysis 

The most common approach to interpreting the highly complex nature of metabonomic datasets 

(NMR or SIFT-MS) is with multivariate statistical analysis. These techniques try and reduce 

the dimensionality of the data and improve the ease of handling and understanding of pattern 

recognition. For the NMR data this was undertaken in Matlab, for the SIFT-MS data Pirouette 

v4.0 (Informetrix, Inc. Bothwell WA, USA) was used.  

2.6.2.1 Principle component analysis  

Principle component analysis (PCA) is an ‘unsupervised’ approach, by which it means a model 

is constructed without knowing the class to which each sample belongs. This provides an 

overall structure of the samples relative to each other, and can show clustering relationships as 

well as outliers (biological or pathological). The scores are displayed on a scores plot which is 

a 2D graphical representation of the co-ordinates of each sample in 3-D space.  

‘Principal components’ (PCs) represent the combinations of metabolites accounting for the 

variation of the dataset as a whole, with the first principal component being the strongest 

contributor, the second PC being the second greatest etc.  

2.6.2.2 Partial Least Squares Discriminant Analysis 

Partial Least Squares discriminant analysis (PLS-DA) is used to is to identify class differences 

from multivariate dataset. By assigning class membership an algorithm is generated to expose 

the separation between classes, expressed as a score in space (232). However not all variation 

is related directly to the class, and therefore an orthogonal component can be added (to become 

O-PLS-DA), so that the described variation is attributable to the ascribed class, allowing 

enhanced biological interpretability. Of note, adding an orthogonal component does not offer 
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increased statistical advantage; nor necessarily change the model in PLS-DA but can aid 

interpretation of models (233) In a similar fashion OPLS or PLS can show the association 

between continuous measurements and the data rather than discrete classes.  

2.6.2.2.1 Loadings 

Loadings describe the relative influence of the variables driving the separation in the model. 

Loadings can be visualised in a pseudo-spectrum in which positive or negative correlations 

related to class are demonstrated, enabling the identification of metabolites contributing to the 

model (234, 235).  

2.6.2.2.2 Validation 

‘Over-fitting’ by which samples are forced into models to allow class separation is a risk of 

PLS-DA statistics; validation is therefore essential to ensure reliability of the model. A type of 

internal cross-validation must be employed – either leave-one-out-cross validation (LOOCV) 

or 7-fold cross validation (7FCV). These techniques create multiple permutations of the model 

to test its statistical strength, by creating a training set (either by excluding each sample in turn 

(LOOCV) or every seventh sample (7FCV)), and attempting to re-predict the class of the 

excluded sample back into the model. In this way each sample also acts as a control for the 

remainder of the dataset. So whilst randomly generated class assignment can show good 

separation on a model, it would not stand up to internal cross validation.  

The quality assessment (Q2) statistic is generated as a measure of the predicted and original 

data to provide a qualitative measure of the predictability of the model (where Q2 =1 indicates 

perfect predictability).  
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The R2 value is also be given, allowing an estimation of how well the model explains the 

variation in the data. Highly disparate R2 and Q2 values suggest forced ‘over-fitting’ of the 

data.  

Permutation calculation is further evidence of the reliability of a model, which unlike internal 

cross validation does not require leaving out portions of data. By generating random models 

(100 up to 1,000 as specified) it tests the null hypothesis that the Q2 of the model is derived by 

chance, and thus can give a p value in which p<0.05 would be considered significant. 

 

Figure 2.2: Permutation testing plot (p=0.001 with 1000 permutations) 
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2.6.2.3 Assignment strategy for NMR spectra 

Human urinary and faecal metabolites were identified in the spectra according to published 

data or the Human Metabolome Database – an electronic database which describes over 40,000 

metabolites with chemical and spectral information, including 1600 drugs / drug metabolites. 

If a peak could not be assigned this way a STOCSY was performed to show associated peaks, 

and Chenomx NMR Suite (8.2) used. This is a software package which allows importation of 

spectra for comparison against known metabolites to improve identification (236). 

Once identified the area under the peak for each metabolite was specified in ppm and integrated 

with a software script (integrate_JMP.m) to give the correlation coefficient (r). To ensure that 

the metabolites were statistically significantly correlated, the non-directional probability was 

calculated for each r value, where a probability of <0.05 was considered significant. 

2.7 Integration of metabonomic and bacterial data 

Matlab R2014a (Version 8.5, Mathworks) was employed to analyse the correlations between 

the metabonomic and 16S rRNA bacterial data using Spearman’s correlations. The statistically 

significant metabolites identified from the metabonomic data, and the candidate bacteria 

differentiating the groups were combined to generate heatmap correlograms. Each correlation 

was tested for significance with a p value ≤0.05 considered to be significant. Only significant 

correlation coefficients were plotted, with blank spaces for no correlation. Each result was 

represented as a coloured pie charts, in red (positive) or blue (negative) with the proportion of 

pie representing strength of correlation.  
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Chapter 3: Exploring the effect of ethnicity on urinary metabolic profiles in IBD 

3.1 Summary 

In this large study, the urinary metabolic profiles of South Asian and white Northern European 

IBD patients were compared to healthy controls and to each other. Two complementary 

techniques were used to analyse the data to improve the validity of results and further 

investigate the effect of IBD and ethnicity on the metabolome.  

In the largest IBD metabonomics study to date, univariate and multivariate analysis of the white 

Northern European results were consistent with previous studies differentiating IBD from 

controls and subtypes from one another. Confirmatory metabolites were seen as previously 

shown, relating to the gut microbiome and inflammatory related energy cycles. Several new 

differentiating metabolites were also identified. 

In South Asians Crohn’s could be robustly separated from controls using OPLSDA, but UC 

could not; despite univariate analysis showing differences between ethnicities in specific 

measured metabolites. Reasons for this are explored and discussed.  

In comparing both healthy controls and groups of IBD of both ethnicities, interesting and novel 

differences were seen in both univariate and multivariate models.  The metabolites holding 

differential power between Northern Europeans and South Asians in both healthy volunteers 

and IBD were hippurate and p-cresol, both microbial co-metabolites. When examining the 

metabolome alterations, it is likely that diet, genetics and gut bacteria combine in so-called a 

host- nutrition-microbiome interaction. These findings demonstrate that in order to realise the 

potential of metabolomics in an IBD population it is essential to account for influences of 

ethnicity and diet when stratifying patient groups. 
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3.2 Aims and hypothesis 

i. The aim was to examine and compare the urinary metabolic profiles of IBD patients 

and controls from white Northern European and South Asian backgrounds. 

ii. It was hypothesised that IBD patients of both ethnic backgrounds would show 

alterations in urinary metabolites demonstrable by metabolomics, and these 

metabolites would be related to the gut microbiota, tricarboxylic acid (TCA) energy 

cycles and amino acids, as demonstrated in previous literature. 

iii. It was hypothesised that South Asian IBD patients would share some similarities to 

their white counterparts, enabling them to be distinguished from healthy controls 

using urinary metabonomics. But it was also hypothesised that South Asian patients 

and controls would have differences in the metabolic profile compared to white 

Northern European equivalents reflecting their different backgrounds.  

 

3.3 Introduction 

The heterogeneity of the inflammatory bowel diseases, including genetic predisposition (198), 

clinical phenotype (181) and treatment response (26) has been demonstrated across different 

ethnicities. IBD has been sparsely studied in populations other than Caucasians (181), but with 

the fastest increase in incidence of IBD in the developing world (195), and an incidence in 

South Asian migrants superseding that of the native UK population (202), it is essential to 

understand more about IBD among different populations. In the UK the phenotype of the 

population is also changing; South Asians are the second largest ethnic group after whites in 

the UK, with a rising percentage of South Asians and falling white British percentage (237). 

Recent consensus statistics also record the number of IBD patients of non-Caucasian origin 
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across Western Europe is increasing (238). Hospitalisation and diagnosis of IBD in minority 

ethnic groups are increasing significantly, with the most marked increase in Asians (239). 

Current management algorithms used in the UK are based on guidelines derived from largely 

Caucasian data (240), but with the advent of personalised medicine, it is essential to be able to 

tailor the approach to managing IBD in individual patients, accounting for variables including 

ethnicity. 

It has been well established in the white UK population that urinary NMR profiling can separate 

patients with Crohn’s and UC from healthy controls (118), with gut bacterial metabolites 

having a dominant role in differentiating these groups (118). It is also established that the gut 

microbiota differs according to both geography and ethnicity (241) but the interrelationship of 

ethnicity, environment and the gut microbiome is not clear. Research in different ethnic 

populations are needed to address these questions and better understand IBD in these cohorts.  

The design of this study was to examine urinary metabonomics in large groups of IBD patients 

and healthy controls from white and South Asian ethnicities to help understand the similarities 

and differences between disease groups from these backgrounds. It was also designed to gain 

insight into this research technique in a new cohort and how ethnicity may affect the way these 

data are interpreted. 

3.4. Methods 

3.4.1 Subjects 

The study group totalled 542, of which 405 were patients and 137 were self-reported healthy 

controls. Diagnosis of IBD was based on clinical, endoscopic and histological data collected 

from notes and electronic radiology/pathology databases.  
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IBD patients were recruited from St Mary’s and Hammersmith Hospitals (Imperial College 

NHS Healthcare Trust) in gastroenterology clinic. And also from West Middlesex Hospital, 

Ealing Hospital, Northwick Park Hospital and John Radcliffe Hospital, Oxford.  

Patients with significant co-morbidities were excluded. These were considered to be systemic 

conditions which may influence the metabolome and included cardiovascular or respiratory 

diseases, neurological conditions, infections, cancer and atopy. Other exclusion criteria were: 

pregnant females, anyone on antibiotics or pro/pre-biotics, patients with stomas or those on a 

therapeutic diet (semi-elemental, elemental or parenteral nutrition) for IBD. 

Patients and controls of the following self-reported ethnicities were included:  

• White: British / Irish / any other white European background – this group is referred to 

as white, white European or Caucasian in this study.  

• Asian: Indian / Pakistani / Bangladeshi / Sri Lankan  

The following ethnicities were excluded: 

• Black: African / Caribbean / any other 

• Chinese: Chinese / any other 

• Mixed: Asian and white / Black African or Caribbean and white / any other mixed 

Metadata was collected for all patients and controls as previously reported in chapter 2 

including vegetarian status.   

3.4.2 NMR Spectroscopic Analysis 

Midstream urine samples were taken, aliquoted and stored at −80 °C in siliconised microvials 

(Sigma-Aldrich, USA) until analysis. Before analysis, samples were thawed to room 

temperature and centrifuged at 13 000 rpm for 20 min at 4 °C. 
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Samples were randomised and analysed by 1D 1HNMR spectroscopy by standardised 

technique as previously described in chapter 2. 6 quality controls were used which were 

composite of all samples, one sample run in each box. This was used for validation to detect 

drift during data acquisition and for statistical analysis as a representative spectrum. 

 

3.4.3 Demographic and phenotypic data analysis 

Phenotypic data was analysed using the Mann-Whitney U test and Fisher’s exact test or the 

Chi-squared test (Χ2) as appropriate. For the phenotypic data a Holm-Bonferroni adjustment 

was applied to correct for multiple comparisons. 

 

3.4.4. Data Acquisition and Pre-Processing 

Spectral analysis was performed using Matlab in-house software (spec_preproc_v5). 4 samples 

were excluded due to inadequate water suppression. Resonances for TSP (δ -0.04 to 0.2), water 

(δ 4.63-4.923) and urea (δ 5.518 – 6.197) were removed. A further sample was excluded due 

to an abnormal base line reading. Spectral alignment (RSPA (222) and manual) and 

probabilistic quotient normalization was applied (227).  

 

3.4.5 Hypothesis driven analysis of individual metabolites 

Targeted profiling was performed using integral regions of 19 metabolites hypothesised to be 

different between groups. Metabolites were chosen on the basis that they had previously been 
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identified in other studies as differentiating between IBD subtypes and/or controls (114-116, 

118, 132), as well as bacterial host-co-metabolites (table 3.1). 

The median relative levels of metabolites were compared across groups and the Kruskal-Wallis 

test (GraphPad Prism v5.0 (GraphPad Software Inc., USA)) applied to test for differences. 

Benjamini-Hochberg correction with a false discovery rate of 0.1 was applied to account for 

multiple comparisons. The Mann-Whitney U test was used in to clarify differences between 

groups and p values corrected for multiple comparisons. 

Analysis was performed to compare groups by diagnosis, and also according to ethnicity. 

Metabolite Formula  Multiplicity Chemical shift (ppm) 

Alanine βCH3; CH  d 1.49 

   q  3.79 

Acetate C2H3O2 s 1.92 

Citrate CH2; CH2  d 2.55 

   d 2.67 

Creatine CH3; CH2 s 3.05 

  s 3.92 

Creatinine N-CH3; N-CH2  s 3.06 

  s 4.08 

4-Cresol sulphate CH3; CH; CH  s 2.35 

  d 7.21 

  d 7.28 

Dimethylamine N-(CH3)2  s 2.73 

Formate CH2 s 8.46 

Glycine CH2  s 3.57 
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Glycolate CH2  s 3.95 

Guanidoacetate CH2 s 3.80 

Hippurate CH2; 

CH; CH; CH 

 d 3.97 

  t 7.55 

  t 7.64 

  d 7.83 

Lactate CH3; CH  d  1.33 

  q 4.14 

Methanol CH3; -OH s 3.34 

3-Methylhistidine CH; N-

CH3; CH; CH 

 m 3.24 

  s 3.74 

  s 7.02 

  s 7.63 

Succinate C4H6O4 s 2.39 

Trans-aconitate C6H6O6 s 3.74 

  s 6.93 

Trigonelline C7H7NO2 s 4.43 

  m 8.07 

  m 8.82 

  s 9.11 

Trimethylamine-N-

oxide 

N-(CH3)3  s 
3.27 

Table 3.1: Table listing metabolites in urine chosen for targeted analysis, and chemical formula. 

For each metabolite the chemical shift of their 1H NMR peaks, along with multiplicity, are 

shown. Bold and greyed box indicates the shift selected for peak integration in this 

experiment.  

s=singlet, d=doublet, t=triplet, m=multiplet, dd=doublet of doublets 
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3.4.6 Multivariate analysis of groups 

A PCA was constructed to visualise outliers, and distance from the model (DModX) was 

applied to exclude those above the critical value (Dcrit).  

To assess the differences in metabolic data OPLS-DA were performed using Matlab (R21014a, 

The MathsWorks inc) and Simca (version 14.1, Umetrics, Umeå, Sweden). Pareto scaling 

(mean-centred data divided by the square root of the standard deviation – used to visualise 

small or medium variations in data (228)) or log transformation was applied and 7-fold cross 

validation was undertaken in each model. R2 and Q2 values are described, and for positive Q2 

values permutation testing or CV-ANOVA testing was performed to calculate a p value 

(considered significant if value <0.05).  

Metabolites identified as contributing to the model were identified from the loadings plot using 

a combination of resources including Human Metabolome Database and Chenomx Profiler 

(Chenomx NMR Suite 8.1). Statistical evidence from STOCSY Matlab (R2014b, The 

MathsWorks, MA, USA) was used to confirm relationships between peaks correlating to 

metabolites.  

The maximum r value (correlation coefficient) for each metabolite was measured and the 

significance calculated using http://vassarstats.net/rsig.html where a non-directional p value of 

<0.05 was considered significant.  

 

 

 

 

http://vassarstats.net/rsig.html
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3.5 Results 

3.5.1 Phenotypic dataset 

Table 3.2 shows the phenotypic data of the patients and controls included in this study.  

 

 White European South Asian 

 

Healthy 

controls 

CD 

 

UC 

 

Healthy 

controls  

CD 

 

UC 

 

n 98 160 123 39 42 80 

Age (years) 

Median (Range) 

31 

(18-67) 

 

36 

(19-79) 

 

42 

(17-80) 

40 

(21-70) 

43 

(18-76) 

42 

(18-77) 

Male 

41 

(42%) 

76 

(48%) 

59 

(48%) 

19 

(49%) 

14 

(33%) 

59 

(73%) 

Smokers 

3 

 (3%) 

5 

 (3%) 

5 

 (4%) 

0 

 

4 

(10%) 

6 

(8%) 

Vegetarians* 

3 

(3%) 

2 

(1%) 

5 

(4%) 

19  

(50%) 

10 

(25%) 

19 

(23%) 

Active diseasea* 

 

  

28 

(17%) 

17 

(14%) 

 

 

4 

(10%) 

13 

(16%) 

HBI (median) 2  2  

SCCAI (median)  1  2 

IBD surgery 

56 

(35%) 

2 

(2%) 

20 

(48%) 

0 
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Table 3.2: Characteristics of the study population 

aAs defined by disease activity index ≥5 b Medications: M1: 5-ASA; M2: immunosuppressants 

(Azathioprine/6-MP); M3:anti-TNF c Location (206): L1:ileal disease; L2: colonic disease; 

L3:ileocolonic disease; E1:proctitis; E2:disease limit distal to splenic flexure; E3:disease 

proximal to the splenic flexure d Behaviour (206): B1:inflammatory; B2:structuring; 

B3:fistulating * small amounts patient data missing. 

 

 

The cohorts were compared for demographic differences using the Chi-squared test for 

categorical variables and Mann-Whitney U test for continuous variables (Table 3.3). The 

phenotypic data of the IBD patients were compared in Table 3.4. P values of <0.05 were 

considered statistically significant. 

 

 

Age at diagnosis: 

Median (range) 

24.5 

(12-77) 

29 

(11-73) 

31.5 

(12-57) 

27 

(10-77) 

Medication use in 

preceding 4 weeksb 

M1 : 20 M1 : 54 M1 :12 M1 :58 

M2 : 78 M2 :  40 M2 :18 M2 : 33 

M3 : 23  M3 : 5 M3 : 5 M3 : 2 

Disease location c 

 

L1 : 24 E1 : 29 L1 : 7 E1: 6 

L2 : 50 E2 : 32 L2 : 16 E2 : 26 

L3 : 68 E3 : 45 L3 : 19 E3: 48 

Disease behaviour d 

 

B1 : 114  B1 : 26 

B2 : 12 B2 : 7 

B3 : 12 B3 : 4 
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 White European South Asian P value 

Male:female a 

Controls 41:57 19:20 0.94 

CD 76:84 14:28 0.10 

UC 59:64 59:21 <0.01 

Age (median) b 

Controls 31 

 

40 <0.01 

CD 36 43 0.09 

UC 42 42 0.5 

Smokers a 

Controls 3 (3%) 0 0.27 

CD 5 (3%) 4 (10%) 0.08 

UC 5 (4%) 6 (8%) 0.29 

Table 3.3: Comparison of the study participants  

aAnalysed by Chi-squared test bAnalysed by Mann-Whitney U test  

Bold values are P values that showed significance (P<0.05). 

 

 White  South Asian P value 

Age at diagnosis (median) b 

CD 24.5 (12-77) 31.5 (12-57) 0.00338 

UC 29 (11-73) 27 (10-77) 0.65 

Disease location a 

CD L1 : 24 L1 : 7 0.97 

 L2 : 50 L2 : 16 0.73 
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 L3 : 68 L3 : 19 0.76 

 p: 26 p:11 0.14 

UC E1 : 29 E1: 6 0.0006 

 E2 : 32 E2 : 26 0.74 

 E3 : 45 E3: 48 0.017 

Disease activity a 

Active CD 28 4 0.17 

Active UC 17 13 0.68 

Disease behaviour a 

CD B1 : 114 B1 : 26 0.10 

 B2 : 12 B2 : 7 0.08 

 B3 : 12 B3 : 4 0.69 

Surgery a 

CD 56 (35%) 20 (48%) 0.13 

UC 2 (2%) 0 0.25 

Medications a 

CD M1 : 20 M1 :12 0.011 

 M2 : 78 M2 :18 0.49 

 M3 : 23  M3 : 5 0.68 

UC M1 : 54 M1 :58 0.000062 

 M2 :  40 M2 : 33 0.21 

 M3 : 5 M3 : 2 0.55 

Table 3.4: Comparison of IBD patient cohorts aAnalysed by Chi-squared test bAnalysed by 

Mann-Whitney U test. Significant  P values (P<0.05) in bold 
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Figure 3.1: Graph comparing Crohn’s disease location for white and South Asian patients.  

 

 

Figure 3.2: Graph comparing UC disease location for white European and South Asian patients. 

Significant p values are shown. *p = 0.0006 **p = 0.17 
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The South Asian UC cohort had significantly more male subjects and the South Asian control 

cohort was older (median age 40 years compared to 31 in Caucasian controls).  

In terms of phenotype, the South Asian Crohn’s cohort was significantly older at diagnosis 

(31.5 vs 24.5 years). A much smaller percentage of South Asians had proctitis compared to 

Caucasians in the UC group (figure 3.2). There were more South Asians on 5-ASAs than those 

in the Caucasian group. No other significant differences were seen.   

 

3.5.2 NMR urinary analysis 

Typical 1H NMR urinary spectra for each group are shown in figure 3.3. 

 

Figure 3.3: Median spectra from Crohn’s (blue), UC (green) and healthy controls (red) showing 

average differences in metabolites in part of the aromatic region.  
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3.5.2.1 Hypothesis driven targeted metabolite analysis 

Median relative values for the 19 compounds as measured in each group are shown in 

supplement 1. 

 

3.5.2.1.1 Analysis of metabolites by disease  

Table 3.5 shows p values for statistically significant metabolites differing between healthy 

controls, Crohn’s and UC, in the three comparison groups; samples of all ethnicities, Europeans 

and South Asians.  

Samples of all ethnicities 

Statistically significant metabolites with p values between Controls, UC and Crohn’s 

 p value across all 

three groupsa 

p value  

Controls vs CD b 

p value  

Controls vs UC b 

p value 

UC vs CD b 

Hippurate  <0.0001* <0.0001* 0.0003* 0.1640 

Glycine  0.0105* 0.0156* 0.4864 0.0069* 

Formate  0.0141* 0.5671 0.0056* 0.0243* 

Methanol  0.0334 0.0074* 0.1430 0.4557 

Table 3.5: p values for statistically significant metabolites differing between healthy controls, 

Crohn’s and UC  

a as measured by Kruskal-Wallis test. b as measured by Mann-Whitney U test 

*bold values remain significant post multiple comparison testing with Benjamini-Hochberg 

correction 

 

When samples of all ethnicities were analysed together (table 3.5) hippurate (measured as a 

relative integrated area) was the most significantly different metabolite differentiating across 
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all groups (p<0.0001). After applying correction for multiple testing, glycine and formate 

remained statistically significant between the groups, but methanol did not.  

Further analysis compared metabolites from two groups to each other with Mann-Whitney U 

test. All p values and corrected p values (q values) are shown in supplement 2. 

 

 

Figure 3.4: Relative integrated area of significant metabolites in each group with statistically 

significant p values between groups shown by * 
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3.5.2.1.2 Analysis of ethnic specific cohorts 

In Europeans (table 3.6) hippurate was again strongly significant (p<0.0001), with p values for 

methanol and glycine remaining significant after multiple correction testing. In South Asians 

hippurate was also the most dominant discriminatory metabolite, but the other significantly 

different metabolites – TMNO, succinate and formate differed to findings in Caucasians.  

Statistically significant metabolites with p values between Controls, UC and Crohn’s 

White Europeans 

 p value across all 

three groupsa 

p value  

Controls vs CD b 

p value  

Controls vs UC b 

p value 

UC vs CD b 

Hippurate <0.0001* <0.001* 0.1317 0.0024* 

Methanol 0.0134* 0.0031* 0.1027 0.3578 

Glycine 0.0154* 0.0056* 0.5198 0.0536 

Citrate 0. 0353* 0.5140 0.0572 0.0114* 

Alanine 0.0265* 0.0100* 0.0517 0.7575 

South Asian 

Hippurate 0.0022* 0.0004* 0.0508 0.0459* 

Trimethylamine-

N-oxide 

0.0046* 0.0007* 0.1127 0.0368* 

Succinate 0.0055* 0.0013* 0.0701 0.0644 

Formate 0.0068* 0.0722 0.0019* 0.6604 

Table 3.6: p values for statistically significant metabolites differing between healthy controls, 

Crohn’s and UC in each separate ethnic group. a as measured by Kruskal-Wallis test. b as 

measured by Mann-Whitney U test. *bold values remain significant post multiple comparison 

testing with Benjamini-Hochberg correction 
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Figure 3.5: Relative integrated area of significant metabolites in each group, divided into 

ethnicity, with statistically significant p values between groups shown by * 
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3.5.2.1.3 Marker metabolites between ethnicities  

Table 3.7 shows p values for comparisons of South Asians and Europeans compared in groups 

of controls, Crohn’s and UC.  

Statistically significant metabolites with p values between white Europeans and South Asians 

 Healthy controls 

European : South Asian 

Crohn’s 

European : South Asian 

UC 

European : South Asian 

4-cresol sulphate <0.0001* 0.0019* 0.0003* 

Hippurate 0.0032* 0.0016* 0.0011* 

Trimethylamine-

N-oxide 

0.1167 0.0001* 0.0336* 

Succinate 0.6939 0.0099* 0.0114* 

Alanine <0.0001* 0.9965 0.0058* 

Methanol 0.0016* 0.4401 0.6910 

Citrate 0.0397* 0.9133 0.1693 

Lactate 0.0216* 0.5274 0.1162 

Formate 0.0229* 0.4046 0.6253 

 

Table 3.7: p values for statistically significant metabolites differing between cohorts.  

a as measured by Kruskal-Wallis test. b as measured by Mann-Whitney U test *bold values 

remain significant post multiple comparison testing with Benjamini-Hochberg correction 

 

When comparing Caucasians to South Asians, groups of Crohn’s, UC and the healthy controls 

all had significantly higher 4-cresol sulphate and hippurate in the urine. 
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Figure 3.6: Box and whisker plots for 4-cresol sulphate and hippurate, measured for each group, 

with statistically significant p values shown between comparative groups of ethnicity. 
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Metabolites which differed between ethnic groups of IBD patients were TMAO and succinate 

(in both Crohn’s and UC) and alanine (in UC only). In healthy participants alanine (higher in 

South Asians) and methanol (lower in South Asians) were significantly different. Citrate, 

lactate and formate were altered but p values were not significant after multiple correction 

testing.  

3.5.2.2 Multivariate analysis 

3.5.2.2.1 PCA 

From preliminary analysis of the PCA, drug peaks (xenometabolites) were seen driving 

separation between IBD patients and healthy controls – these were identified as 5-ASA 

metabolites and paracetamol from the loadings plots using Statistical Total Correlation 

Spectroscopy (STOCSY) (figure 3.7).  

 

Figure 3.7: STOCSY plot with driver peak at δ 7.73. Peaks highlighted in increasing shades of 

red display a high degree of correlation (>0.7) with the driver peak, whereas those in decreasing 

shades of blue are weakly correlated and unrelated.  
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As discussed in chapter 2 there are a variety of ways to handle this potential confounder. 

Removing regions with drug peaks or using an statistical application to remove the drugs peaks 

(STOCSY-E) are reasonable methods when the size of the groups are smaller, as no samples 

need to be excluded. But as xenometabolites not only create specific drug peaks, they may also 

exert an influence on the metabolic constituents themselves, the most rigorous technique is to 

remove all samples identified with such xenometabolite peaks. As the groups in this analysis 

were large enough to remove participants, still leaving large numbers in each cohort, this was 

the chosen methodology here.  

205 samples containing peaks at resonances identified as 5-ASA drugs and/or paracetamol 

(117, 226) (table 3.8) (144 patients had recorded 5-ASAs in the drug history) were removed, 

leaving 358 samples to include for analysis.  

Metabolite  Multiplicity Chemical shift (ppm)  δ 

N-acetyl-5-aminosalicylate  s 2.17 

  d 6.95 

 d 7.40 

 d 7.70 

Paracetamol glucuronide s 2.17 

 d 7.13 

 d 7.36 

Paracetamol sulphate s 2.18 

 d 7.31 

 d 7.70 

Table 3.8: Table listing chemical shifts for the peaks for 5-ASA and paracetamol.  

s=singlet, d=doublet 
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Other IBD drugs including steroids, anti-TNFs and thiopurines have not been reliably detected 

and quantified in human urine according to the Human Metabolome Database and therefore 

patients on these medications were not excluded. As one study (114) suggested that anti-TNFs 

altered the metabolic profile, analysis was later performed to look at whether patients on anti-

TNFs could be distinguished with OPLS-DA. 7 outliers were excluded from the PCA as gross 

outliers and the PCA shown in figure 3.8. 

The phenotypic data for the new dataset is shown below (table 3.9). 

 

 

 

 

 White European South Asian 

 Healthy 

controls 

CD 

 

UC 

 

Healthy 

controls 

CD 

 

UC 

 

n 83 96 69 39 25 46 

Age (years) 

Median (Range) 

31 

(18-67) 

 

35 

(19-72) 

 

44 

(21-78) 

40 

(21-70) 

41 

(18-71) 

44 

(18-69) 

Male 

39 

(47%) 

40 

(42%) 

36 

(52%) 

19 

(49%) 

14 

(56%) 

21 

(46%) 

Smokers 

3 

(4%) 

2 

(2%) 

3 

(4%) 

0 

 

3 

(12%) 

5 

(10%) 

Vegetarians* 3 2 3 16 3 8 
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(3%) (2%) (5%) (41%) (17%) (21%) 

1st generation* 

(%) 

 

23 

(59%) 

8 

(40%) 

18 

(69%) 

Active disease a * 

(%) 

 

  

 

26% 

 

20% 

 

 

 

8% 

 

6 % 

HBI (median) 2  1  

SCCAI (median)  1  1 

IBD surgery 

40 

(42%) 

2 

(3%) 

13 

(52%) 

0 

Medications use in 

preceding 4 weeksb  

M1 : 6 M1 : 12 M1 :2 M1 : 19 

M2 : 50 M2 :  19 M2 :13 M2 : 16 

M3 : 7  M3 : 0 M3 : 5 M3 : 1 

Disease location c 

 

L1 : 22 E1 : 19 L1 : 2 E1: 7 

L2 : 40 E2 : 20 L2 : 9 E2 : 10 

L3 : 26 E3 : 24 L3 : 11 E3: 24 

Disease behaviour d 

 

B1 : 76  B1 : 13 

B2 : 6 B2 : 4 

B3 : 4 B3 : 6 

Table 3.9: Characteristics of the study population with 5-ASAs removed 

aAs defined by disease activity index ≥5 b Medications: M1: 5-ASA; M2: immunosuppressants 

(Azathioprine/6-MP); M3:anti-TNF c Location (206): L1:ileal disease; L2: colonic disease; 

L3:ileocolonic disease; E1:proctitis; E2:disease limit distal to splenic flexure; E3:disease 

proximal to the splenic flexure d Behaviour (206): B1:inflammatory; B2:structuring; 

B3:fistulating * small amounts patient data missing. 
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Figure 3.8: PCA scores plot of CD patients, UC and controls.  

 

3.5.2.2.2 O-PLS-DA  

O-PSL-DA models with one predictive component (to limit over-fitting) were created to 

compare cohorts according to disease types and comparisons made to healthy controls. In 

addition to 7-fold cross-validation, permutation testing was performed for each model with a 

positive Q2 for statistical robustness. Firstly all ethnicities were included, then sub-groups of 

each ethnicity were compared. Major discriminatory metabolites were identified from the 

loadings and the significantly correlated metabolites from each model described. 
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3.5.2.2.2.1 Comparison of IBD patients by diagnosis  

An example of a cross-validated O-PLS-DA model is shown in figure 3.9 showing distinct 

separation of samples based on diagnosis. Figure 3.10 shows the corresponding loadings plot 

for the model with significant metabolites documented in the table.  

 

Figure 3.9: Cross-validated O-PLS-DA scores plot of healthy controls and Crohn’s patients.  

 

The R2 and Q2 of the O-PLS-DA models to compare groups by diagnosis are shown in table 

3.10 with the list of differentiating metabolites identified from the loadings plot listed in order 

of importance. 
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Figure 3.10: Loadings plot for OPLS-DA model of healthy controls and Crohn’s patients.   
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All samples  

 

 

n R2 Q2 P value (1000 

permutation testing) 

Significantly correlated* metabolites in 

order of importance 

H vs 

IBD 

351 0.596 0.627 0.001 Hippurate ↑:↓ 

Ascorbate ↓:↑ 

1 methyl-histidine ↓:↑ 

NMND ↑:↓  

N-acetyl glycoproteins ↓:↑ 

Dimethylglyceine ↑:↓ 
4-HPA ↓:↑ 

Creatine ↓:↑ 

Guanidoacetate ↓:↑ 

H : CD 243 0.6593 0.6225 0.001 Hippurate ↑:↓ 

NAG fraction  ↓:↑ 

4-HPA ↓:↑ 

Cis-trans-aconitate (TCA) ↑:↓ 

Creatine ↓:↑ 

4-DTA ↑:↓ 

Lactic acid ↑:↓ 

Gamma-amino-N-butyrate ↓:↑ 

Alanine ↑:↓ 

Ascorbate ↑:↓ 

Glycine ↓:↑ 

Pantothenate ↓:↑ 

Phenyacetylglutamine (PAGn) ↓:↑ 

Guanidoacetate ↓:↑ 

Creatine ↓:↑ 

Methanol ↑:↓ 

H : UC 226 0.7983 0.7567 0.007 Hippurate ↑:↓ 

Fatty acyl chain protons ↓:↑ 

Furoylglycine ↑:↓ 

HMB ↓:↑ 

NMND ↑:↓ 

Ascorbate ↓:↑ 

Formate ↑:↓ 

Lactate ↑:↓ 

Citrate ↓:↑ 

UC : CD 221 0.88 0.2818 0.001 N-Acetylglutamic acid ↓:↑ 

Alpha-hydroxyisobutyrate (2-

hydroxyisobutyrate) ↑:↓ 

Phenyacetylglutamine (PAGn) ↓:↑ 

Creatine ↓:↑ 

4-DTA ↑:↓ 

Unidentified 

BHMB ↑:↓ 

Trigonelline ↓:↑ 

Formate ↓:↑ 

Lactate ↑:↓ 

Citrate ↑:↓ 

Acetate ↓:↑ 

Glycine ↓:↑ 

Hippurate ↑:↓ 
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Table 3.10: Summary of O-PLS-DA models constructed from all samples. R2 (% of variance 

accounted for) and Q2 (predictability of the model) are given, as well as the p value for the 

model after testing. Discriminatory metabolites are given in order of importance. *r value with 

p<0.05 Bold ↑:↓ indicates positive direction of relative change in first group relative to second, 

e.g. in Healthy vs IBD hippurate is higher in healthy controls compared to IBD patients. 

 

 

Models of all mixed ethnicity samples showed robust separation between healthy controls 

compared to all IBD patients, Crohn’s patients and UC patients, as well as between UC and 

Crohn’s disease. The models stool up to robust testing of 1000 permutations with significant p 

values in all cases.  

By measuring the maximum r value for each metabolite identified from the loadings plot, 

hippurate was identified as dominating the models separating healthy controls from CD and 

UC. Other metabolites with statistically significant correlation values discriminating healthy 

controls from Crohn’s were ascorbate, methyl-histidine, NMND, N-acetyl glycoproteins, and 

dimethylglyceine. For healthy controls versus UC patients the strongest metabolites were (after 

hippurate) fatty acyl chain protons, furoylglycine, beta-hydroxy-beta-methylbutyrate (HMB), 

1-Methylnicotinamide (NMND) and ascorbate.  

In the comparison of IBD subtypes N-Acetylglutamic acid, alpha-hydroxyisobutyrate (2-

hydroxyisobutyrate), phenyacetylglutamine (PAGn), creatine and 4-DTA (4-deoxythreonic 

acid) were important. 
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3.5.2.2.2.2 Validation of results 

Other similar studies have shown that after further sub-analysis of groups their results were no 

longer significant or models were less strongly predictive. Therefore validation was performed. 

i. For validation, to ensure that the metabolic alterations were due to disease and not 

to the effect of medication (118) the comparisons were remodelled using only IBD 

patients and healthy controls taking no medications at all (both IBD or non-IBD 

medications).  

Participants on no medications at all 

 

 n R2 Q2 P value (100 permutation testing) 

H vs IBD 186 0.4433 0.2322 0.01 

H vs CD 136 0.7942 0.7411 0.01 

H vs UC 124 0.8797 0.8475 0.01 

UC vs CD 92 0.8819 0.5512 0.01 

Table 3.11: Summary of O-PLS-DA models from participants on no medications. R2, Q2 and p 

value for each model are described.  

These models showed stronger Q2 values, (with the exception of the healthy vs Crohn’s) with 

significant p values for participants on no medications, corroborating the above results (table 

3.11). 

ii. In another paper exclusion of post-surgical patients removed the ability to 

distinguish between UC and CD (114). Therefore as a further validation, the 

analysis was repeated with all patients (54) who had undergone surgery removed. 

Surgical patients excluded  

 

 n R2 Q2 P value (100 permutation testing) 

H vs IBD 297 0.5829 0.2074 0.01 

H vs CD 193 0.7443 0.6972 0.01 

H vs UC 224 0.8012 0.7582 0.02 

UC vs CD 167 0.9019 0.2481 0.04 

Table 3.12: Summary of OPLS-DA models from surgical patients excluded. R2, Q2 and p value 

for each model are described.  
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These comparisons confirmed that the models all remained valid and robust (table 3.12). 

iii. Furthermore it has been suggested that patients on anti-TNF treatments showed 

significant differences in their metabolite profiles and in one paper exclusion of 

such patients rendered discriminant analysis non-significant (114). Therefore the 22 

patients on anti-TNFs were removed from the models for validation.  

 

Participants on anti-TNF treatment excluded 

 

 n R2 Q2 P value (100 permutation testing) 

H vs IBD 329 0.6290 0.2033 0.01 

H vs CD 224 0.6798 0.6365 0.01 

H vs UC 221 0.7996 0.7548 0.01 

UC vs CD 201 0.8888 0.2822 0.01 

Table 3.13: Summary of OPLS-DA models repeated with patients on anti-TNF treatments 

excluded. R2, Q2 and p value for each model are described.  

 

All models remained valid by permutation testing suggesting anti-TNFs do not significantly 

alter the models (table 3.13). 

 

 

3.5.2.2.2.3 Comparison of IBD patients in ethnic cohorts 

Groups were further analysed as separate cohorts according to ethnicity to examine if the same 

metabolic changes were seen in South Asians and white Europeans. 
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Table 3.14: Summary of OPLS-DA models constructed from white European patients and 

controls. For each model the R2 ,Q2 and p value for the model are given. Major discriminatory 

metabolites for each model are described in order of importance.  

*r value with p<0.05 Bold ↑:↓ indicates positive direction change in first group relative to 

second 

 

The Caucasian group showed similarly robust models as the mixed ethnicity group (table 3.14). 

White Europeans  

 

 

n R2 Q2 P value (1000 

permutation 

testing) 

Significantly correlated* metabolites in order of 

importance 

H : CD 177 0.6335 0.627 0.003 Beta-aminoisobutyrate (3-aminoisobutyrate) 

↑:↓ 

Hippurate ↑:↓ 

Unassigned ↓:↑  

Creatine ↓:↑ 

N-Acetylglutamate ↓:↑ 

4-hydroxybutyrate ↓:↑ 

Glycine ↓:↑ 

Alanine ↓:↑ 

Cholate ↑:↓ 

Guanidoacetate  ↓:↑ 

Creatinine ↑:↓ 

Methanol ↑:↓ 

4-cresol sulphate  ↓:↑ 
H : UC 145 0.8149 0.7691 0.012 Fatty acyl chain protons ↓:↑ 

Hippurate ↑:↓ 

Citric acid ↓:↑ 

Citrate ↓:↑ 

Cholate ↓:↑ 

Alanine ↓:↑ 

Ascorbate ↓:↑ 

Succinate ↓:↑ 

Glycolate ↓:↑ 

UC : CD 156 0.8817 0.4578 0.008 N-Acetylglutamate ↓:↑ 

Lipids in LDL ↑:↓ 

Hippurate  ↑:↓ 

Alpha-hydroxyisobutyrate (2-

hydroxyisobutyrate) ↑:↓ 

Citrate ↑:↓ 

Phenyacetylglutamine (PAGn) ↓:↑ 

Creatine ↓:↑ 

Acetate ↓:↑ 

Methyl-histidine ↑:↓ 

Isovalerylglycine ↑:↓ 
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Table 3.15: Summary of O-PLS-DA models in South Asians. R2 ,Q2 and p value for the models 

are given. Major discriminatory metabolites for each model are described in order of 

importance. *r value with p<0.05 Bold ↑:↓ indicates positive direction change in first group 

relative to second 

 

In the South Asian patients, there was a strong model separating Crohn’s from healthy controls, 

with butyrate, nicotinamide metabolites and hippurate most strongly influencing (table 3.15). 

However, in the South Asian cohort O-PLS-DA models were unable to reproducibly identify 

South Asian UC from controls or the two subtypes of IBD.  There were no significant models 

to interrogate for discriminatory metabolites.  

 

 

 

 

South Asians  

 

 

n R2 Q2 P value  Significantly correlated* metabolites in order 

of importance 

H : CD 64 0.94 0.54 0.005 Butyrate ↓:↑ 

1-Methylnicotinamide (NMND) ↑:↓ 

Nicotinamide ribotide   ↑:↓ 

Hippurate ↑:↓ 

Glucose ↑:↓ 

4-cresol sulphate  ↓:↑ 

Trigonelline ↓:↑ 

Nicotinamide  ↑:↓ 

Isoleucine   ↓:↑ 

H : UC 85 0.18 0.69 0.16  

 

 

UC : CD 48 0.40 0.21 >0.50  

 

;, 
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Subgroups were analysed to examine whether differences were due to dietary status, with 

vegetarians being compared to omnivores in each ethnicity and combined (table 3.16). No valid 

models could separate these groups. 

 

Comparison by diet 

 n R2 Q2 p value (100 

permutation testing) 

Vegetarians vs 

omnivores  

(all ethnicities) 

351 0.04 0.707 >0.5 

Vegetarians vs 

omnivores  

(South Asian) 

104 0.0001 0.1169 >0.5 

Vegetarians vs 

omnivores  

(white European) 

244 0.0211 0.0183 >0.5 

 

Table 3.16: Summary of O-PLS-DA models comparing vegetarian and omnivore status for all 

participants, and in groups of specific ethnicity. R2, Q2 and p value for the models are given. 

 

The number of patients in the subgroups were too unequal to allow comparison of IBD subtype 

according to vegetarian status (for example only 2 vegetarian Caucasian CD patients compared 

to 96 omnivores). 
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3.5.2.2.2.4 Comparing ethnicities  

Multivariate analysis was also applied to investigate the differences between samples of 

difference ethnicities according to diagnosis (table 3.17). 

 n R2 Q2 p value*  
Significantly correlated** 

metabolites in order of importance 

Healthy controls 

Caucasian : South 

Asian 

122 0.321 0.1555 0.001 

Alanine ↑:↓ 

Triglycerides ↑:↓ 

Phenyacetylglutamine (PAGn) 

↓:↑ 

4 cresol sulphate ↑:↓ 

Acetic acid ↑:↓ 

Hippurate ↓:↑ 

Methanol ↓:↑ 

Lysine ↑:↓ 

Beta-aminoisobutyrate (3-

aminoisobutyrate) ↓:↑ 

Lactate ↓:↑ 

Citrate ↑:↓ 

Trans-aconitate ↓:↑ 

Tartrate ↓:↑ 

Formate ↑:↓ 

Glycolate ↑:↓ 

Crohn’s 

Caucasian : South 

Asian 

111 0.1431 0.0284 0.011 

Glutamate ↑:↓ 

Glucose ↑:↓ 

4-amino Hippurate ↑:↓ 

4-cresol sulphate (p-CS) ↓:↑ 

Succinate ↓:↑ 

Methyl-histidine ↑:↓ 

Acetate ↑:↓ 

Hippurate ↓:↑ 

Glycine ↓:↑ 

 

UC 

Caucasian : South 

Asian 

94 
0.4771 0.1762 

0.33 

 

 

 

Table 3.17: Summary of OPLS-DA models comparing ethnicity by each diagnosis and in 

healthy controls. R2, Q2 and p value for the models are given. Major discriminatory metabolites 

for each model are described in order of importance.  

*p value calculated with 1000 permutation testing **r value with p<0.05 Bold ↑:↓ indicates 

positive direction change in first group relative to second  
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There were significant differences between healthy controls of white Europeans and South 

Asian ethnicity. Although the Q2 value was not particularly high, the model was robust and 

identified 15 metabolites with significant correlation values within the model.  

In healthy adults the strongest metabolites were alanine, triglycerides, phenyacetylglutamine 

(PAGn), 4 cresol sulphate, acetic acid and hippurate. All of these were higher in Caucasians 

except for PAG and hippurate.  

In the Crohn’s group there was again a strong model; glutamate, glucose, 4-amino hippurate 

and 4-cresol sulphate were the strongly correlated metabolites.  

In the UC model although there was a positive Q2 value it did not pass permutation testing and 

therefore cannot be analysed further. 

 

3.5.2.2.2.5 Comparison of first and second generation South Asians 

It was not possible to separate by O-PLS-DA according to 1st vs 2nd generation in either controls 

or IBD patients. However these groups were small as data was missing from a proportion 

(group sizes = controls: 39, CD: 20, UC: 26). 

 

3.5.2.2.2.6 Comparison by disease location 

To investigate if metabolic differences could separate isolated colonic Crohn’s disease (L2) 

from UC, comparisons were made between the two, in the mixed cohort and individual 

ethnicity groups (table 3.18). 
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Comparison by disease location 

 n R2 Q2 

All patients                Colonic CD: UC 154 0.3289 -0.1523 

White European         Colonic CD: UC 97 0.4872 -0.2418 

South Asian               Colonic CD: UC  56 0.5007 -0.1362 

 

Table 3.18: Summary of OPLS-DA models comparing colonic Crohn’s disease to UC, in 

groups of mixed ethnicity and for white Europeans and South Asians separately. R2 and Q2 

values for the models are given.  

 

There were no valid models in any ethnicity group suggesting colonic Crohn’s cannot be 

separated from UC by urinary metabonomics.  

 

3.5.2.2.2.7 Comparison by surgical status 

To examine the effect of surgery, groups were compared of those who had undergone intestinal 

resection versus those who had never had surgery (table 3.19).  

Surgical analysis 

 n 

(patients with previous 

surgery/total) 

R2 Q2 p value * 

 

All IBD patients  55/222 

 

0.2351 -0.0088 
 

Crohn’s patients  51/119 

 

0.4277 0.211 0.02 

UC patients 2/102 

 

0.0382 -0.135  

Table 3.19: Summary of OPLS-DA models separating patients with previous intestinal 

resections from all other IBD patients, and post-surgical patients with Crohn’s and UC 

separately. R2, Q2 and p value for the models are given.  

*p value with 100 permutation testing 
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A difference was shown in the Crohn’s patient group, suggesting that surgery has a 

demonstrable effect on the metabolic profile in Crohn’s.  

 

3.5.2.2.2.8 Comparison by gender 

To compare to the published literature, which has consistently demonstrated differences 

between males and females with NMR, samples were compared by gender (table 3.20). 

Gender analysis 

 R2 Q2 p value* 

(100 permutations) 

All 0.526 0.5225 0.01 

White Europeans 0.501 0.4949 0.01 

South Asians 0.595 0.5846 0.18 

Healthy controls 0.545 0.5316 0.01 

IBD patients  0.517 0.5132 0.01 

Table 3.20: Summary of O-PLS-DA models testing separation of males and females in the 

whole cohort, each ethnicity, healthy adults and IBD patients. R2, Q2 and p value for the models 

are given. *p value with 100 permutation testing 

 

Data were examined for gender differences and all groups showed similar Q2 values with a 

significant p value except the South Asian cohort. Loadings plots showed the discriminant 

metabolites were a higher creatinine in male subjects (this dominated the Caucasian, healthy 

and IBD models) and higher creatine (most significant in the South Asian group) and citrate in 

females of all groups. 

 



118 

 
 

 

3.5.2.2.2.9 Validation of storage methodology 

To verify that there was no effect from freezer storage of samples over time, comparisons were 

made of samples collected and stored for less than 1 year compared to more than one year 

(table 3.21).  

 

Storage time analysis 

 n R2 Q2 

All samples acquired 542 0.2910 -0.0103 

Samples used for OPLSDA 

analysis  

351 0.2592 -0.0375 

Table 3.21: Summary of O-PLS-DA models testing samples stored for <1 year compared to >1 

year. R2 and Q2  values for the models are given.  

 

Q2 values for samples stored longer compared to recently were negative, showing no metabolic 

differences between those sample sets.    
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3.6 Discussion 

Although several studies have used urinary metabolic profiling to investigate IBD, this is a 

significantly larger sized study than publications in this area to date, and the first time it has 

been done specifically in groups of different ethnicities. Both hypothesis driven targeted 

analysis and multivariate statistical modelling were used as methods to demonstrate metabolic 

differences between diseased and non-diseased, and in two different ethnic cohorts. Using two 

statistical approaches to the data analysis provides complementary results, and also enables this 

dataset to be compared to previously published findings.  

 

Summary and discussion of results by each method 

3.6.1. Hypothesis driven targeted metabolite analysis 

Specific metabolite analysis is a targeted approach to investigate hypothesis derived differences 

between groups (242). Whilst metabonomics is an enormously powerful and information rich 

technique, one of the main analytical challenges is extracting accurate quantitative information 

from spectra whilst accounting for effects of the chemical environment such as small pH or 

temperature changes during acquisition (242). By pre-identifying specific metabolites thought 

to relate to underlying pathological mechanisms, and integrating their peak resonances, a 

quantifiable value compares groups directly. With this approach the choice of post-processing 

technique (such as scaling) has less effect on results, there are less potential effects of 

xenometabolites and it avoids the complex interpretation required in multivariate mathematical 

modelling. It also addresses the potential criticism of ‘top down’ metabolic profiling and allows 

comparison with previous peer-reviewed data.  
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The chosen metabolites were based on previously published results from other studies profiling 

IBD (114-116, 118, 132) hypothesising that the metabolic profile in IBD reflects the 

microbiome, energy cycle disruption and colonocyte metabolic pathways.  

In this study the pattern of alteration in chosen metabolites between groups were largely 

consistent with previously reported results (hippurate, formate, methanol, glycine, alanine and 

succinate) (114-116, 118, 132) although reduced TMAO in South Asian IBD appears to be a 

new finding.  

 

3.6.2 Multivariate pattern-recognition analysis  

Multivariate statistical methods are proven analytical techniques developed to handle the large 

number of metabolites and identify discriminating features between cohorts (243). This 

approach enables low concentration metabolites to be identified and can highlight subtle 

patterns between biological cohorts relating to the disease processes.  

When applied to the whole dataset of over 350 individuals of mixed ethnicities, O-PLS-DA 

demonstrated findings in keeping with other studies (114-116, 118), clearly separating IBD 

from healthy controls using larger cohorts than any previously published data in this area. Each 

model was rigorously tested with permutation testing – a step not taken in many published 

metabonomic analyses. Furthermore, subgroups were removed in turn that had in previous 

papers been suggested as distorting or swaying the models (114). Removal of all patients on 

medications, post-surgical patients and those on anti-TNF treatments did not affect the ability 

to discriminate between IBD and controls or between the subtypes of IBD. The Q2 values of 

each model were high (HC:CD 0.623 and HC:UC 0.757) and comparable, or better, than 

published papers (114, 116, 118). 
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Multivariate models were also able to discriminate UC from Crohn’s, which has only been 

shown in the Williams paper (118) but not replicated in other studies (114-116). This may be 

because the Williams cohort was larger in size than the other studies. In this thesis the Q2 value 

of the CD:UC comparison was the lowest of all the models (0.282), but stood up to vigorous 

permutation testing, and the Q2 improved with removal of all patients on medications (IBD and 

non-IBD related). This may suggest that it is certainly possible to discriminate IBD subtypes 

with metabonomics, but the discrimination is more subtle and potentially affected by other 

confounders.  

This study, using participants of mixed ethnicity tested the ‘all-comers’ approach, that IBD has 

a significant effect on the metabolome, detectable in a group of mixed ethnicity.  

However, when separating out the cohorts, it was seen that in the South Asian cohort only 

Crohn’s disease was able to be identified from controls by multivariate analysis. OPLS-DA 

models separating South Asian UC patients from controls and the IBD subtypes from one 

another failed permutation testing; suggesting that Crohn’s has a stronger effect on the urine 

metabolome than UC, which correlates with other studies (114, 118). However, in the earlier 

univariate analysis, several key metabolites were significantly different between the Asian UC 

group and controls.  

These new data in a different ethnic group highlight that the effect of ethnicity on the metabolic 

profile, which was not considered in other previous papers, is important in IBD and must be 

accounted for. 
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3.6.3 Significant metabolites altered in IBD 

Loadings plots identified discriminating metabolites associated with IBD, many metabolites 

had been described previously by other authors, some were described for the first time in IBD.  

3.6.3.1 Hippurate: the most significant metabolite? 

Hippurate dominated the separation between groups regardless of ethnicity, underlining its 

significance in the IBD metabolome. Reduced urinary hippurate has been the most consistently 

demonstrated finding in IBD metabolic profiling, with consensus of results across all papers 

(114-116, 118). Levels of hippurate are lowest in Crohn’s compared to UC compared to 

controls.  

Hippurate is a mammalian-microbial co-metabolite formed by the glycine conjugation of 

benzoic acid in mitochondria (244). The ubiquitous nature of hippurate, being associated with 

a wide range of disease states and external influences, means that its relationship with IBD 

must be carefully interpreted.  

It has been shown to vary in multiple pathological and physiological states, including diabetes 

(245), hypertension (246) and obesity (247), amongst others making determining the origin of 

its perturbation complex. Additionally, all of the three systemic conditions above are also 

associated with gut dysbiosis (244). Although diabetes and hypertension were exclusion 

criteria in this study, BMI was not measured (incomplete data collection), and obesity cannot 

be accounted for. 

The current paradigm in IBD suggests that low hippurate is linked to gut dysbiosis (115). One 

postulated mechanism for this is specific bacterial species change; urinary hippurate levels 

have been correlated with the abundance of Clostridia in the gut microbiome (134). Decreased 
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Clostridia species in Crohn’s disease has been shown in several studies (68), and also in UC  

(86). These bacteria have essential roles modulating the gut immune response through 

maintenance of epithelial barrier integrity (91). 

Food is also a significant alternate source of hippurate, including black tea (248), fruit and 

vegetables (249). In the dietary histories taken from patients in this study, food rich in 

polyphenolic compounds (benzoate producers) (133) were specifically documented to account 

for this potential source of hippurate. No group had a significantly higher intake of black, green 

or herbal teas, carbonated drinks, berries or yoghurt, excluding this as a cause of altered 

hippurate in the urine. 

To further endorse the link between the disturbance of hippurate and gut dysbiosis in IBD 

Williams et al (133) demonstrated normal benzoate conjugation in Crohn’s patients, and by 

accounting for accurate dietary intake, were able to exclude other reasons for lowered hippurate 

levels in IBD patients. They concluded from this that disturbances in hippurate seen in IBD 

were likely to be the result of alterations in microbial composition and its interaction with 

human metabolic pathways.  

3.6.3.2 Other bacterially derived metabolites 

There is strong evidence that the microbiome is one of the main influences on the metabolome 

in IBD. In this study, as well as hippurate, several other bacterial metabolites or bacterial-host 

co-metabolites were found to be important candidates in distinguishing IBD from controls 

including methanol, formate and 4-cresol sulphate.  

Methanol was reduced in both UC and Crohn’s on univariate analysis (but only statistically 

significantly in Crohn’s) and also was a significant discriminator in the multivariate separation 

of Crohn’s from controls. This confirms the same finding in three other studies (114-116). 
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Interestingly, formate was reduced in South Asian IBD patients – this result was also seen in 

studies by Dawiskiba (116), Stephens (114) and Schicho(115) (ethnicity of patients unknown). 

However in our cohort of white North Europeans formate was higher in IBD, and this was the 

same pattern shown by Williams et al (118) in their Caucasian study where formate was higher 

in Crohn’s compared to UC and controls. Formate is also a gut microbial-host produced co-

metabolite, produced by bacteria including enterobacteria (136) which has been shown to be 

altered in IBD (68). This may suggest that IBD related metabolic changes are related to 

alterations in microbial communities which are specific to ethnic group.  

4-cresol sulphate was identified as a driver in the models separating Crohn’s from controls in 

both ethnic groups. 4-cresol sulphate (also known as p-cresol sulphate) is produced by bacterial 

metabolism of the amino acid tyrosine, specifically by Clostridia and Bacteroides. 

Interestingly these are the same bacteria (Clostridia and Bacteroides) shown to be reduced in 

IBD (68, 86). 

Phenyacetylglutamine (PAG), a gut-microbial co-metabolite (62)was also significant in the 

models differentiating IBD from controls further reinforcing the evidence for dysbiosis in the 

disease.  

Trimethylamine-N-oxide (TMAO), another bacterial-host co-metabolite, was reduced in South 

Asian Crohn’s patients relative to UC and healthy people. This appears to be a new finding, as 

no difference in TMAO was shown in either the Williams (118) or Stephens (114) papers (and 

similarly in this dataset no difference in TMAO was seen in Caucasians in this study). However 

murine models have previously demonstrated alterations in urinary TMAO with the initiation 

of colitis in IL-10 animals (123).  
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3.6.2.3 Energy cycle metabolites 

Citrate, succinate and cis-trans-aconitate, all TCA cycle intermediaries, helped discriminate 

IBD from controls. Consistent findings were shown in the published studies from all other 

groups (114-116, 118) pointing to increased energy requirements and more rapid turnover of 

metabolic energy pathways. Creatine, a cellular fuel metabolite, was also elevated in the 

Schicho study (115) as well as mouse colitis models (124).  

In South Asians, succinate, an energy metabolite formed as part of the Kreb’s cycle 

(tricarboxylic acid (TCA) cycle) was significantly reduced in Crohn’s compared to controls 

(with a trend towards significance in UC, p=0.070) in accordance with other published studies 

(114-116). This reflects disruptions in energy metabolic pathways and/or increased energy 

demand in the inflammatory state (116). Succinate and other TCA intermediates were also 

significantly altered in a mouse colitis model (250), suggesting that the development of colitis 

increases energy requirements or reduces absorption of nutrients for synthetic energy pathways 

due to gut damage.  

N-Acetylglutamic acid, another part of the TCA energy cycle was also lowered in UC 

compared to Crohn’s. 

In the South Asian group there were several nicotinamide metabolites identified separating 

Crohn’s from controls. These form part of the tryptophan / nicotinamide adenine dinucleotide 

(NAD) energy pathway and are linked to high energy turnover states (251). Urinary 

nicotinamide metabolite disruptions have been reported in stressed animals as a mimic for IBD 

(251), as well as autism (252), Parkinson’s (253) and major depression (254) 
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3.6.2.4 Short chain fatty acids 

Short chain fatty acids are produced by the saccharolytic fermentation of oligosaccharides, but 

are more strongly correlated with faecal metabolic profiling, as discussed in chapter 5.  

In this urine study, butyrate, the main energy substrate for colonocytes, was a key marker in 

differentiating Crohn’s patients from controls in South Asians. It has been used in published 

studies as a surrogate marker for gut permeability (255).  

Higher levels of Low density lipoproteins (LDLs) and isovalerylglycine (a metabolite of fatty 

acids) were identified in UC patients compared to Crohn’s. This suggest a disturbance in lipid 

metabolism, which was also shown in a DSS-induced acute colitis in animal models (256).  

Acetate also differentiated UC from Crohn’s in the white European population and mixed 

group.  

3.6.2.5 Amino Acids 

Alanine contributed significantly to the models differentiating controls from Crohn’s and UC 

in multivariate analysis in Northern Europeans and was also significant in the univariate results 

in the same cohort. The strongest effect seen was in Crohn’s.  

The amino acid glycine was significantly higher in Caucasians with Crohn’s compared to their 

controls, as seen in the Williams’ study (118).  

Dawiskiba (116) also found higher levels of glycine and alanine associated with active IBD, 

thought to be related to their anti-inflammatory properties or impairment of macrophage and 

neutrophil activation (257). Amino acids and their derived metabolites have been also shown 

to be increased in serum and plasma(115), faecal samples (117) and colonocytes (258) in IBD.  
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In a novel finding, UC patients had higher hydroxy-beta-methylbutyrate, a leucine metabolite, 

is associated with muscle loss in critically ill patients (259) and suggesting a catabolic state. 

And methylhistidine (not previously described) was altered in IBD, most specifically Crohn’s.  

3.6.2.6 Organic acids 

Organic acids, produced by nucleic acid metabolism, including beta-aminoisobutyrate and 

alpha-hydroxyisobutyrate were reduced in IBD. This finding was also seen in the study by 

Dawiskiba where changes were linked to altered energy pathways related to IBD inflammation 

(116). Beta-aminoisobutyrate has also been shown to be altered in the urine of cancer patients 

(260) related to higher cell turnover. 

 

3.6.2.7 Novel metabolites 

Most of the above metabolites are altered in a consistent pattern to published literature; 

however some metabolites identified in this study are described here for the first time in IBD.  

2-hydroxyisobutyrate, raised in UC, has been linked to chronic oxidative stress, secondary to 

alterations to the rate of glutathione synthesis which then changes the rate of urinary excretion 

of 2-hydroxyisobutyrate (261). 4-Deoxythreonic acid (DTA), also higher in UC patients, is a 

carboxylic acid which so far has only been described as being associated with type 1 diabetes 

(262) and advanced pregnancy (263).  

Other novel metabolites were guanidoacetate and pantothenate, the origin of these 

perturbations is not clear. 
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3.6.4 Examining the effect of ethnicity on the metabolic profile 

There is minimal published data on urinary metabonomics in healthy populations of different 

ethnicities, and none in inflammatory bowel disease. One paper suggests urinary metabonomics 

changes related to race (and independent of diet and other variables) are linked to the gut 

microbiome being different across ethnicities (264). A further paper showed metabonomic 

variation across geographical regions of Europe in healthy adults – postulated to be linked to 

diet (265) but difficult to directly link. To the best of my knowledge this thesis has examined 

the first data comparing urinary metabolic profiles in healthy patients and IBD patients to 

understand the contribution of ethnicity on our metabolome. 

Previous urinary metabonomics studies in IBD discussed in this thesis were carried out by 

Danish (132), Polish (116) and Canadian (114, 115) authors, none of which stated the ethnicity 

of participants in their papers. The study by Williams (118) was performed in an exclusively 

Caucasian UK cohort.  

 

3.6.4.1 Metabolic profiling comparing different ethnicities 

4-cresol sulphate and hippurate were found at significantly lower levels in South Asians 

compared to Caucasians regardless of disease or health. These metabolites that are consistently 

changed across both types of IBD and healthy controls are therefore likely to reflect the 

difference in ethnicity.  

4-cresol sulphate is mostly found in animal proteins and thus urinary excretion of 4-cresol 

sulphate has been shown to be lower in vegetarians than omnivores (135). As there are more 

vegetarians in the South Asian group this may explain some of the difference between 
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ethnicities. It is not clear if this reduced 4-cresol sulphate is related to lower protein intake in 

vegetarians (thereby reducing available substrate), or increased dietary fibre (increased 

carbohydrate source for microbial growth and therefore less waste product) as these dietary 

patterns often co-exist (135).  Furthermore, it may be that the long term adaptive microbial 

changes in response to diet (266) determine our gut bacterial enterotype, such that species 

known to synthesise 4-cresol sulphate may be reduced in these individuals(267) in preference 

to other species who show higher energy harvest from vegetarian sources. The effect of diet on 

the metabolome is further discussed below.  

Hippurate was also significantly lower in South Asian Crohn’s patients, UC patients and in 

healthy volunteers compared to their Caucasian counterparts. As discussed above, hippurate is 

mammalian-microbial co-metabolite, and is associated with dietary intake of certain foods 

(specifically fruit, vegetables, green and black tea (249)) and is also linked to the gut 

microbiome (244).  

Both hippurate and 4-cresol sulphate are metabolic co-metabolites and therefore altered by 

dysbiosis, diet or host; or most likely an interaction of all three.  

Whilst the literature on comparative metabonomics across different ethnic groups is limited, it 

is well established that the microbiome is altered by both geography and ethnicity (84). Walsh 

et al demonstrated in a multi-centre European study that geographical region had a large 

influence on the urine metabolic profile (265). Ethnicity itself encompasses the effect of 

genetics, environment and diet, all of which also impact on the composition of the microbiome 

(268).  

When comparing healthy controls of different ethnicity, in addition to hippurate and 4-cresol 

sulphate, other bacterial metabolites including methanol formate and PAG were different, also 
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suggesting a microbial origin. Energy cycle metabolites (citrate and trans-aconitate), organic 

acids (3-aminoisobutyrate) and triglycerides were altered, which may be dietary or genetic 

influences.  

By demonstrating that the urine metabonomic profile varies between ethnicities, it highlights 

another confounder which must be accounted for when studying metabonomics across 

populations and in large multi-country research. Whilst age, sex and diet are often reported, 

ethnicity or cultural background is often lacking. It is relatively easy to standardise aspects of 

methodology in order to compare data, it is more challenging to describe differences between 

populations geographically and ethnically (265). However these effects, even if small 

compared to other influences on the metabolome such as disease, must be better understood in 

order to accurately interpret metabonomic data.  

 

3.6.4.2 Examining IBD in different ethnicities 

This study shows that the metabolic profiles of IBD patients are different in South Asians and 

white Northern Europeans.  

In Crohn’s the microbial co-metabolites 4-cresol sulphate, hippurate and TMNO were 

identified as statistically significant in the univariate analysis, as well as succinate. In UC the 

identical metabolites were affected, as well as alanine. OPLS-DA demonstrated that Crohn’s 

appears to be metabolically different between the two ethnicities, with models showing 

glutamate, glucose, 4-amino-hippurate, 4-cresol sulphate, succinate, methyl-histidine, acetate, 

hippurate, and glycine identified in the loadings plot. Although the Q2 value was small (0.0284) 

the p value was significant (p = 0.011). 
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However, in UC the OPLS-DA model failed validation testing. This is unexpected given that 

the univariate analysis showed differences, and that the phenotype of South Asian UC in this 

set was different (more pancolitis and less proctitis) to the Caucasian population. The reasons 

for this finding are not clear, especially as the univariate analysis showed clear differences here.  

The lack of valid OPLSDA models may be a limitation of using multivariate analysis in smaller 

groups which lack the power of larger cohorts (number in each group of South Asians was 25-

46, compared to Caucasian 69-96). Another reason reliable models cannot sometimes be built 

with PLS is if the groups are non-homogenous or have a high intra-class variability [52]. 

Although it is difficult to quantify this, it can be seen that the South Asian samples have a wider 

distribution on the PCA plot, suggesting a wider variation within the dataset. 

One previous study has catalogued and described gut microbial changes that differ between 

South Asian and Caucasian UC patients, demonstrating distinct changes associated with 

ethnicity and disease severity (269).  

Although there are no comparable data in IBD, other metabonomics studies in different ethnic 

groups show distinct differences in Hispanic and non-Hispanic pregnant women (270), in 

oesophageal cancer in groups of Han, Kazak and Uygur patients [60] and colorectal cancer in 

different ethnicities (271).  

My study and other published studies suggest that both microbiota composition and metabolic 

function differ according to ethnicity, and this is likely to drive the differences seen metabolic 

urinary profiles in IBD.  
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3.6.4.3 Ethnicity and the effect of diet on the metabolome and microbiome 

Nutritional research identifies diet as a major driver of the microbiota composition and function 

(272). It can be seen that both long standing food patterns, as well as short-dietary manipulation 

can alter the composition and diversity of the gut microbiota (273). And both the host 

metabolism and metabolic profile is altered by diet in the healthy host and the patient (272). 

Cardiovascular and cancer risks, as well as overall mortality has been linked to diet (274). It is 

therefore clear that diet plays an important role in determining health and disease through 

nutrition-host-microbiome interactions, although the exact role of microbes and their 

nutritional metabolic metabolites varies from disease to disease. 

Previous metabonomic studies have tried to explore the effect of diet on the metabolic profile, 

and link microbial composition to diet-dependent gut microbial metabolites (275). Several 

population based studies have examined metabolic diversity in stratified groups to find 

associations with metabolic profiles and diet (246, 276). Others have examined short term 

nutritional interventions (249, 277). 

One published study specifically comparing the urine metabolome in vegetarians and 

omnivores showed vegetarians have higher urinary excretion of citrate and less TMAO, 

methylhistidine and phenylalanine than omnivores (278). In this thesis the same pattern is seen 

in the healthy cohort analysis (higher citrate in the urine of South Asians, lower levels of 

TMAO and methylhistidine) consistent with proportionally more vegetarians in the South 

Asian controls group. 

Alanine (higher levels in South Asians), a non-essential amino acid, has been associated with 

a high animal protein diet, but can also be found in vegetarian diets (legumes, pulses, beans, 

nuts). As mentioned above, several bacterial metabolites differed between the groups.   
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Although diet must be rigorously considered as a significant potential explanation for some the 

differences seen in metabolic profiles between ethnicities it is unlikely to be the single cause 

of the differences seen. It is likely that diet has an effect on metabonomics both directly, and 

also in influencing the gut microbial composition itself, which would contribute to separating 

Caucasian from South Asian metabolic profiles in both disease and healthy adults.  

It also must be considered that in patients with gastrointestinal diseases, including IBD it is 

very common for patients to alter their diet to try and alleviate symptomatology (279). 

Literature suggests that more than 76% of IBD patients do this at some point during their 

disease (280). When examining the effect of diet on different ethnicities in IBD it may be that 

this manipulation in nutritional intake may have a variable, and unaccounted for, effect on the 

metabolic profile. 

One of the challenges when assessing diet is its complex and varied composition, and how to 

compare cohorts to each other, or understand the contribution of each of the foodstuffs. Often 

definitions such as Western versus rural diet are used (52) or omnivorous versus vegetarian 

(281). In this thesis diet was defined as omnivorous or vegetarian (no red or white meat or fish, 

consumes dairy / eggs) and a 24 hour dietary recall taken. This was so that groups could be 

compared, and so that any metabolic differences could be interrogated to see if diet could 

explain them. However it is important to acknowledge that there are differences in the 

composition of a vegetarian diet compared to a carnivorous diet, beyond the exclusion of meat 

consumption. Vegetarians tend to consume more fibre and omega-6 polyunsaturated fatty 

acids, and less unsaturated fats, but deficiency in dietary iron and vitamin B12 is more common 

(272). To properly investigate the effect of diet a study would have to be appropriately 

controlled with comparable sized vegetarian and omnivorous groups and full food diaries used. 
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However, in this study it did help begin to unravel possible reasons behind differences in ethnic 

metabolic profiles. 

As seen in phenotypic data, South Asians not only manifest IBD phenotypically differently, 

but also display a different metabolic profile to Caucasians with IBD. Differences are also 

shown between groups of healthy controls that highlight the need to consider ethnicity when 

using metabonomics, and that a combination of genetics, diet (beyond a simple 

vegetarian:omnivore comparison) and microbiome account may for these differences. 

Significantly these findings underline the importance of further research in this area in different 

ethnic groups, as well as the need to control for ethnicity as a potential confounder when using 

metabonomics in a clinical population.  

 

3.6.5 Other analyses of data 

3.6.5.1 Comparison of 1st vs 2nd generation South Asians 

Although it was not possible to separate these groups, this analysis was limited by missing data 

and unequal group sizes.  

3.6.5.2 Disease location 

There were no valid models constructed to distinguish colonic Crohn’s from UC in either ethnic 

(or mixed ethnicity) group. Stephens (114) and De Preter (145) also could not separate these 

groups with multi-variate techniques, suggesting that colonic Crohn’s is metabolically similar 

to UC in the urinary profile. It should also be considered that there may also be an element of 

misdiagnosis between the 2 diseases, confusing the data.  
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3.6.5.3 Effect of surgery 

Models showed an effect of surgery in the Crohn’s patients. The effect of surgery has 

previously been shown to affect predictive models in IBD (114). This finding was also seen in 

Chapter 4. 

3.6.5.4 Validation analysis: Gender  

As samples are normalised within the dataset (mean-fold normalisation) to account for 

dilutional change, this type of data cannot be quantitatively compared to other papers. For 

validation the data were examined for gender differences which have been well established. 

The findings replicated previous studies in healthy controls (282-284)  showing differences 

between male and female cohorts and the distinguishing metabolites were the same as seen in 

other studies. The groups were further sub-analysed as a healthy cohort, all IBD patients, 

Caucasians and South Asians. All models showed very similar Q2 value and all showed higher 

creatinine in males and higher citrate and creatine in females, as shown in other studies (282). 

Only the South Asian group had a non-significant p value – this is likely because it was the 

smallest of the sub-analysis groups.  

3.6.5.5 Validation analysis: Storage methodology 

In one study freezing has been shown to have a very subtle effect on NMR data (285), although 

other papers report no effect (286, 287). Overall the reproducibility of NMR pre- and post-

freezing is ‘remarkable’ (285). Freezing procedures may have minute effects on pH dependent 

metabolite peaks, but not the concentration changes of metabolites, however targeted univariate 

analysis overcomes this as the exact peak position is not quite as relevant (285). 
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As some older samples were used (to maximise numbers and improve the power of the study), 

comparison was made using O-PLS-DA modelling to check if there was any effect of freezing 

on the samples. There was no separation seen on scores plots and no positive Q2 values between 

the historical and recent datasets. This excludes a significant effect of storage on the results. 

3.6.5.6 Disease activity 

One study suggests urine metabonomics can differentiate active IBD from quiescent disease 

(116), whilst other studies suggest there are no metabolic changes detectable in urine related to 

clinical or biochemical markers of active inflammation (118). Several urine studies did not 

analyse disease activity in their cohort (114, 115). 

Findings in serum and plasma seem more consistent however, and have linked TCA cycle-

related molecules and amino acids with disease activity indices (288), favouring the use of 

these biofluids, for the study of inflammation in IBD.  

Urine is the preferred approach to reveal microbial effects on the metabolic signature as more 

urinary metabolites are bacterially-derived or produced by host-bacteria co-metabolism (62). 

Results show that gut bacteria do not appear to differ depending on disease activity, or when 

comparing samples from actively inflamed areas or not (289, 290), and this may be why it is 

more difficult to relate urinary metabonomic profiles to activity indices. 

In this study, numbers in the active and quiescent disease groups were unequal and therefore 

O-PLSDA analysis would be less valid. Although it was accounted for in the clinical 

parameters, this study was not designed to investigate the effects of disease activity on 

metabolites, but in designing a study to further examine this, it would appear that a combined 

serum/plasma and urine study would be ideal. 
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3.6.6 Strengths of this study 

This is, to date, the largest cohort of IBD patients ever analysed for metabolic profiling, and 

whilst a power calculation is not possible in metabonomics, the larger the group, the stronger 

the validity of the results. 

The unique aspect of this study is the analysis of ethnicity in a disease area in which lower 

prevalent ethnicities are at higher risk of IBD in the UK and in which research is minimal and 

lacking. Previous studies have examined metabonomics in IBD, this work highlights the 

significant effect of ethnicity on the metabolic signature, in both health and disease states, and 

something that must be controlled for when using metabolic profiling. 

Several analytical methods applied to the data ensure the robustness of the discriminatory 

power of the technique in investigating IBD and the effect of ethnicity. A targeted approach 

rather than ‘all’ identifiable metabolites tactic tests the hypothesis of other published data that 

gut microbial differences, as well as energy cycle metabolites and amino acids are responsible 

for separation seen in IBD metabolic profiles. In addition, for the targeted profiling analysis 

multiple comparison corrections were applied – other papers have not performed this on their 

data (114). In addition to this, re-analysis was performed on participants recorded as not taking 

any medications at all to remove the effect of xenometabolites on results.  

3.6.7 Limitations of the study  

Groups in the OPLS-DA analysis were smaller because those on 5-ASAs were excluded. There 

is no consensus approach to dealing with xenometabolites in the spectrum and some 

controversy exists around this (132). Other groups have chosen to exclude large regions of the 

spectra (117, 132) but include all samples. The regions containing 5-ASA and paracetamol 

metabolites also contain other biologically important metabolites – including glutamate, 
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glutamine, glutathione, cholate, homocysteine, cholate, glycocholate, methionine, methyl-

succinate, proline, cystathionine, asparagine, o-cresol, phenol, methylguanidine, tyramine, 

tyrosine, π-methylhistidine, amongst others. Therefore excluding these portions from analysis 

would lose a potentially enormous amount of physiological data and skew or alter the results 

(223). When this approach has been used in previous studies of urinary metabolic profiling, no 

differences were found between clinical cohorts (132) suggesting that these areas contain 

crucial biologically relevant metabolites.  

In this chapter excluding the samples containing 5-ASAs was the most rigorous approach, as 

not only does it exclude the effect of the peaks from xenometabolites, but also the effect of 

drugs on other metabolites and associated systemic metabolic differences. Although this does 

not replicate ‘real life’ in one sense, it could be considered a similar approach to investigating 

newly diagnosed patients before initiation of treatment commences.  

A further potential confounder is the unequal sizes of ethnic cohorts; nearly double the white 

participants than South Asian. Although this is a ‘real life’ ratio, it may have affected the ability 

of the multivariate analysis to demonstrate differences in the South Asian cohort. Despite this 

it should be stated that group sizes were significantly larger than most other total cohort sizes 

in similar papers.  

Dietary differences must be acknowledged as a potential confounder - one which is very 

difficult to control for when analysing metabolic data. Whilst dietary data was meticulously 

collected from each participant (including specific dietary constituents known to affect the 

metabolome such as green/black tea intake, as well as ‘usual’ diet) to aid analysis and explain 

results, without imposing dietary restrictions it is always difficult to truly compare diet between 

individuals. Partly this is because dietary recall is notoriously inaccurate (291) which makes 
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the determination and quantification of nutritional effect difficult. In addition the ‘Western’ 

diet, rich in saturated fat, refined carbohydrates, and food additives, is acknowledged as an 

independent risk factor for development of IBD  (292) through the effects on the gut 

microbiota, effects on intestinal permeability, and inflammatory promotion. For ethnic 

migrants in the UK it is also likely that there is an overlap in diet between more ‘traditional’ 

South Asian diet and ‘Western’ diets and that a more hybrid intake of foods are consumed.  

Future studies could consider excluding vegetarians, or directly comparing vegetarian-only 

groups, although the cohort sizes for sub-analysis in this study were too small.  

In addition to diet, it is well recognised that obesity is related to dysbiosis and alterations in the 

metabolic profile (293). As some of the body mass index (BMI) data was missing for this study, 

it was impossible to account for the possible effect obesity on the results.  

Lack of data to further characterise ethnicity (first / second generation status) was missing from 

some subjects, as well as length of time of residency in the UK was not accounted for. It may 

be over simplifying to categorise patients based on ethnicity alone, and may have been 

improved by stratifying according to time in residence of UK to account for environment as 

well. 

Additionally, disease activity was measured by a relatively weak indicator, as HBI and SCCAI 

are subjective. Better biochemical parameters would be CRP, or ideally a faecal calprotectin, 

which are more sensitive and objective biomarkers. At the time of the study calprotectin was 

not available and the ethics for blood sampling not in place.   
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3.6.8 Future work 

As with most diseases, IBD is a complex multifactorial perturbation of intra and extracelluar 

pathways in addition to the influences of the gut microbiome, genetics and external 

environment. Metabolomics is a powerful platform with which to explore these relationships 

in difference clinical cohorts and phenotypes, but understanding them can be complex and 

challenging. Whilst this data demonstrates the relationship between ethnicity, IBD and certain 

metabolites, further investigation is required to explore the underlying mechanisms of this, and 

extrapolate how much is cause or effect. Furthermore it is necessary to explore specific 

pathophysiological processes, including dysbiosis, to interpret metabolomic data in the context 

of clinical disease. The challenge is to be able to further refine the understanding of metabolic 

data in order to be able to specifically apply this methodology to a clinical cohort.  

Importantly this study demonstrates that IBD research should be performed in different ethnic 

groups to represent the heterogeneous, and evolving, ethnic mix of our UK patient population. 

As with all results, validation studies are beneficial, and in this cohort testing the metabolite 

models in IBD and healthy controls, along with other gastrointestinal diseases such as infection 

or irritable bowel syndrome could be useful.  

Characterisation of active and inactive disease with calprotectin or histology, would help link 

metabolic changes directly to inflammation, as HBAI and SCAI, although well validated, have 

been shown to lack correlation to ileocolonoscopy (294). Ideally this would be done in a 

longitudinal design to enable the inflammatory and healing processes to be examined and 

explore the temporal relationship of metabonomics in IBD.  

It would also be valuable to look at metabolic profiling in more homogenous, specific groups 

combining the use of genotyping and phenotyping (for example ileal disease and NOD-
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2/CARD-15 status). Also it would be interesting to stratify genotypes in different ethnic groups, 

in whom some IBD genotype associations have been shown to be different (295) to try and 

disentangle the tightly associated factors of ethnicity and environment.  

Furthermore the future of ‘omics’ technology is likely to be the integration of metabolic, 

genetic and proteomic data allowing the investigation of the perturbation seen in IBD at the 

level of genes, proteins and metabolite in both the microbes and host (296).   

 

3.7 Advances in Knowledge 

• This large study confirms that IBD has a strong metabolic signature in urine, with 

consistent alterations in characteristic microbial metabolites and energy cycle 

molecules relating to inflammation.  

• It has shown that urinary metabolic signatures are affected by ethnicity, in both disease 

and healthy states, in one of the few studies to directly compare metabonomics in 

different ethnic cohorts.  Whilst metabolic profiling reveals valuable information about 

‘marker’ metabolites and related pathophysiological processes, these results highlight 

the importance of recognising the multiple endogenous and exogenous influences on 

interpretation of results.  

• In translating this research towards understanding and treating IBD better, studies must 

be performed in different ethnicities to be able to apply meaningful results to a 

heterogeneous patient cohort, and improve a personalised approach to IBD.   
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Chapter 4: Effects of time on urinary metabonomic signatures in IBD 

 

4.1 Summary 

 

Urine samples from IBD patients collected at two time points separated by between 7 and 9 

years were analysed by H1 NMR spectroscopy and the metabonomic profiles were compared. 

PCA showed clustering of individual pairs of samples indicating intra-individual stability. 

When analysed with multivariate statistical techniques there were no differences between the 

baseline samples and the repeat samples, despite a variety of clinical outcomes amongst the 

cohort, nor could a model be created to predict a worse disease outcome.   

This may suggest that urinary metabolic signatures are stable over time, despite different 

disease behaviours and that stability outweighs more subtle longitudinal metabolic changes in 

the urine in IBD. This may limit the application of metabolic profiling in disease monitoring 

and prediction of treatment response, but further larger studies are required.  

It has been shown that the urinary metabolome is altered by intestinal surgery, a finding 

consistent with other papers and results in other chapters of this thesis. Furthermore, although 

only a small preliminary study, signals were seen which may indicate that metabolic profile 

may be able to predict future surgical requirements and help stratify high risk patients in the 

clinical setting. 
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4.2 Aims and hypothesis 

1. The aim was to compare baseline urinary metabolic profiles with repeated samples 7-9 

years later in a cohort of IBD patients, and to analyse if clinical outcome influenced a 

separation in metabolic profiles which may be able to predict outcome. 

2. It was hypothesised that urinary metabonomics may separate patients who subsequently 

develop disease progression from those with a less aggressive phenotype, and that 

metabolic profiles are altered by disease complications and medical interventions over 

time. 

 

4.3 Introduction 

The theory of the unique individual metabolic phenotype, or fingerprint, has been proposed, 

suggesting that our own metabolic phenotype is highly specific to an individual and largely 

invariant over time (297). Whilst the contributions of various environmental influences such 

as diet, lifestyle and age are well recognised and must be accounted for when interpreting 

metabolic profiles, the underlying stable part of a metabolic phenotype is thought to remain 

unique to a person even over a period of years (298).  

Assfalg et al demonstrated that in a cohort of 22 individuals in whom multiple urinary samples 

were analysed (approximately 40 samples across 3 months), distinguishing features were 

present enabling correct assignment to the donor using supervised pattern recognition analysis 

with an accuracy of almost 100% (297). Furthermore, in a longitudinal study of healthy 

volunteers, Bernini et al collected 1849 urine samples from 31 adults over 3 years and showed 

that over the examined time period the individual metabolic signal was largely invariable, with 

all individuals being able to be reassigned to their own metabolic phenotype with a very high 
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correlation value (298). With metabonomic data, small variations are detectable across multiple 

sampling time-points in a person. Bernini described these as either ‘spikes’ – day-to-day 

variations which were attributable to diet or exercise, or ‘waves’ – gradual alterations persisting 

for several days which were strongly linked to gut microbial activity, or more significant and 

persistent (sometimes across years) changes called ‘jumps’. These ‘jumps’ were attributable 

mainly to changes in the gut microbiota and were not influenced by external factors such as 

diet or lifestyle as described by the metadata. 

This finding was confirmed in a shorter study assessing daily and diurnal changes in urinary 

metabolic profiles, which again showed relatively small deviations in an individual’s own 

profile from external and / or temporary influences (120). Overall in healthy people, inter-

individual variation hugely outweighs the effect of intra-individual variation, suggesting there 

is a unique metabolic core signature, which is preserved with time.  

However it is not clear whether or not in patients, the effects of medications, surgery or disease 

itself, may more significantly alter the metabolome over time and whether or not these changes 

are predictable of future outcomes and/or reflect disease progression.   

Longitudinal metabonomics have been used to study other diseases, including viral infections 

(299), bacterial infection (300) and chronic kidney disease (301). Temporal changes in 

metabolite expression, related to up or down regulation of biological pathways, can be linked 

to disease initiation, progression and/or resolution, suggesting that this approach may show 

potential for monitoring or predicting disease. A previous study showed that urinary metabolic 

profiles were different in active and quiescent IBD (116), suggesting that there are detectable 

changes during a disease flare, and thus longitudinal metabonomics have been proposed to 

have potential for tracking disease activity and response to treatment.  
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Pharmacometabonomics has demonstrated how metabonomics can be used to predict drug 

metabolism, efficacy and safety (302), and other studies have identified metabolic markers of 

future cardiovascular disease risk (303). In IBD, whilst there are some clinical, serological and 

endoscopic predictors of disease course (304), no single validated tool is available to accurately 

determine disease susceptibility, natural history, and therapeutic response. As metabonomic 

profiling is a reflection of genotype, gut microbiome and system metabolism, it may be able to 

identify specific phenotypes, predictive of aggressive subtypes of IBD, or non-responders to 

therapy for example. If this proves true, it may in future have a role in personalising the 

treatment of these patients.  

The above studies conducted in healthy people (120, 297, 298) showed stability of the 

metabonomic profile over time. Only one previous IBD study has analysed any longitudinal 

urinary metabonomics to date. Williams et al (118) used repeat samples from IBD patients 

approximately 4 months apart, as part of a larger study, to validate measured levels of 

discriminatory metabolites. They found mean concentrations of key marker metabolites were 

unchanged over this time period in the group. It was not shown whether the cohorts from 

different time points could be separated, but instead suggested that the perturbations in the IBD 

metabolome were longitudinally reproducible.  

It has not been fully investigated as to whether more subtle outcomes of the disease can be 

measured with metabolic profiling. This study aimed to assess if IBD, a chronic relapsing and 

remitting condition, changes the metabolic profile dynamically over time, or whether the 

disease diagnosis itself has a prolonged and unchanged effect on the metabolic signature. The 

design of this study was to compare the urinary metabonomics of the same cohort of patients 

re-sampled after a 7-9 year gap. And also to examine if there were changes identifiable in the 



146 

 
 

 

baseline cohort that could predict future disease outcome over the coming years, which may be 

translatable into clinical application.  

 

4.4. Methods 

4.4.1 Subjects 

39 patients with IBD (based on clinical, endoscopic and histological evidence) at St Mary’s 

Hospital (Imperial NHS Healthcare Trust) who had been sampled as part of a previous study 

between the years 2006 and 2008 were re-recruited to provide a further random urine sample.  

Identical metadata was collected at both time sampling points (as previously reported in chapter 

2.) In addition CRP levels were collected for the second set of samples (not collected at 

baseline). 

Clinic letters, radiology and endoscopy reports were reviewed to record medication, surgical 

interventions, endoscopic findings and complications. Clinical outcome was defined as 

‘progression’ if there was either  

i. an escalation in medication required (initiation of immunosuppression or biologics) 

ii. progression of disease location or phenotype (Montreal Classification)  

iii. requirement of surgery (intestinal resection) 

 

4.4.2 NMR Spectroscopic Analysis 

Urine was analysed by 1D 1HNMR spectroscopy. All samples were prepared as described 

previously (chapter 2) and randomised during preparation and spectral acquisition. An 
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exponential window function with a line broadening of 0.3 Hz was applied prior to Fourier 

transformation to all 1D NMR spectra.  

 

4.4.3 Data Acquisition and Pre-Processing 

Spectra were imported into Matlab using spec_preproc_v5 (in-house software) and phasing, 

baseline correction and referencing to TSP was performed. Resonances for TSP (δ -0.2 to 0.2), 

water (δ 4.553 -4.923) and urea (δ 5.645 – 6.167) were removed. Spectra were aligned using 

first an automated recursive segment-wise peak alignment (in-house script) (222) followed by 

manual alignment to minimise shifts in the peaks due to pH variation during acquisition. Data 

was normalised by probabilistic quotient normalization method to reduce inter-sample 

concentration variability and allow samples to be directly compared (227).  

A PCA was constructed to identify significant outliers, and distance from the model (DModX) 

calculated to identify those above the critical value (Dcrit); these were excluded from the 

model. PCA was used to visualise the association of pairs of samples to one another. 

For the supervised analysis O-PLS and O-PLS-DA models were constructed in Matlab using 

scripts as described in chapter 2. O-PLS models were used to show associations between the 

metabolic variables and continuous measurements, and O-PLS-DA models used for discrete 

variables. The discriminatory power of each model was tested with 7-fold cross validation 

(7FCV). For each multivariate model the Q2 (predictive ability) of the model was calculated. 

A small or negative value indicated there was no robust discrimination possible between 

classes. A positive Q2 was tested using the permutation method – where 100 permutations are 

generated, and a robust value was considered as within the 95th percentile (p<0.05). 
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4.5 Results 

4.5.1 Phenotypic dataset 

Table 4.1 shows the phenotypic data of the patients included in this study.  

One patient had the diagnosis changed from Crohn’s to UC in the time period. For comparative 

models this individual was excluded.  
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CD 

Baseline 

(Time = 0) 

CD 

(Time 1)  

UC 

Baseline (Time = 0) 

UC 

(Time 1) 

n 22 21 17 18 

Age (years) 

Median (Range) 

42  

(23-66) 
 

48 

(30-73) 
 

39 

 

(17-61) 

 48  

(25-69) 

Median time between 

samples (years) 
7  7  

Male 8 (36%)  12 (70%)  

Smokers 5 2 1 2 

Active disease a 
8 

(36%) 

6 

(28%) 

3 

(17%) 

2 

(11%) 

CRP b 0.9 b 1.9 

IBD surgery 8 11 2 2 

Progression of disease at 

time 1 : combined 

outcomes (%)  

 
12 

(57%) 

 
3 

(17%) 

Required (further) surgery  4  0 

Required addition of 

immunosuppressants 
 4 

 
1 

Required initiation of 

biologics 
 5 

 
0 

Disease location / 

behaviour progression 
 2 

 
2 

Developed other 

significant disease 

diagnosis 

 2 

 

2 

Age at diagnosis: 

Median (range) 

 24  

(12-53) 
  

30 

(10-63) 
 

Medications use in 

preceding 4 weeks c 

 

M1 : 9 M1 : 5 M1 : 8 M1 : 13 

M2 : 7 M2 : 11 M2 : 8 M2 : 8 

M3 : 1 M3 : 5 M3 : 0 M3 : 1 

M4 : 0 M4 : 0 M4 : 0 M4 : 1 

Disease location d 

 

L1 : 3 L1 : 2 E1 : 7 E1: 5 

L2 : 8 L2 : 8 E2 : 1 E2 : 2 

L3 : 10 L3 : 12 E3 : 9 E3: 11 

Disease behaviour e 

 

B1 : 10 B1 : 9 

B2 : 5 B2 : 6 

B3 : 7 B3 : 8 

Table 4.1: Characteristics of the study population 

aAs defined by disease activity index ≥5 bData not available c Medications: M1: 5-ASA; M2: 

immunosuppressants (Azathioprine/6-MP); M3:anti-TNF; M4:steroids d Location (206): 

L1:ileal disease; L2: colonic disease; L3:ileocolonic disease; E1:proctitis; E2:disease limit 

distal to splenic flexure; E3:disease proximal to the splenic flexure e Behaviour (206): 

B1:inflammatory; B2:structuring; B3:fistulating  



150 

 
 

 

4.5.2 Statistical analysis 

4.5.2.1 PCA 

When visualising the spectral data, two samples from the same patient were dominated by huge 

glucose peaks and therefore removed from the dataset. A PCA was constructed with the 

remaining 76 samples. Variables were mean-centred and scaled to unit variance, to prevent the 

model being dominated by large values and a Hotellings T2 eclipse was generated to visualise 

outliers. From the loadings of the PCA model spectral peaks correlating to paracetamol and 5-

ASA (117, 226) were identified as driving the model and therefore the regions at δ2.134-2.187, 

δ7.113-7.182 and 7.337-7.402 were removed and the PCA remade.  

From this 2 samples were shown as strong outliers (1 Crohn’s, 1 UC) which would incorrectly 

sway the model and therefore should be excluded. To identify any moderate outliers (which 

would not be good fit to the model) the distance from the model (DModX) was calculated for 

each sample, and those above the critical value (Dcrit) were excluded from the model. 1 further 

moderate outlier (Crohn’s) was thus excluded. Of the excluded outliers 2 samples contained 

drug peaks (unidentified) and one contained very high levels of dimethylamine in the spectra 

(no known reason identified).  
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Figure 4.1: PCA scores plot showing coloured pairs of samples taken from same patients 

 

The PCA scores plot shows clustering of pair of samples from the same individuals, as shown 

with coloured links, with most samples from the same person being closely clustered. 
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4.5.2.2 O-PLS-DA and O-PLS regression 

4.5.2.2.1 Comparison of longitudinal samples 

For the supervised analysis O-PLS-DA models were constructed to see if there was a difference 

between baseline samples and repeat samples – this was done for all combined samples and 

each IBD subtype (table 4.2). All Q2 values were negative (no robust predictive model could 

be made) suggesting there were no distinct differences between the cohorts when sampled 7 

years apart.  

 Comparison Q2 value 

All samples  

Baseline vs time 1 

 

-0.123 

UC patients  -0.005 

 

CD patients -0.087 

Table 4.2: Summary of OPLS-DA models to separate baseline samples from time point 1 across 

all samples, and by disease subtype. Q2 for each model are described.  

  

4.5.2.2.2 Separating samples by disease subtype and disease activity 

Models were made to look for significant differences in the UC versus CD cohorts from all 

samples, at baseline and at time 1. For positive Q2 values a permutation test was run to calculate 

a p value to test significance. See table 4.3. The models were unable to accurately separate UC 

from CD when analysed at separate time-points (baseline or time 1) or with all samples 

together.  
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 Comparison Q2 value P value 

All samples  

UC : CD 

 

0.0286 0.11 

Time 0 0.061 0.22 

Time 1 0.0046 0.37 

Table 4.3: O-PLS-DA models to distinguish UC from Crohn’s samples 

No models could be created to show differentiation of active disease from inactive disease. 

(table 4.4).  

 Comparison Q2 value P value 

All samples Active : inactive 

disease 

 

-0.093  

CD 0.0574 0.13 

UC -0.06  

Table 4.4: O-PLS-DA models to distinguish patients with active disease (HBI or SCAI ≥5) 

from quiescent disease. Q2 for each model is described, p value calculated for positive Q2 only. 

4.5.2.2.3 Analysis of gender cohorts 

When analysing according to gender, models for each separate time point showed differences 

between sexes. All Q2 values were positive with significant p values (table 4.5). The loadings 

plots for these three models identified the same discriminatory metabolites – creatinine (most 

significant), hippurate, and citrate.  

 Comparison Q2 value P value 

All samples 

gender 

0.2051 0.01* 

Time 0 0.141 0.02* 

Time 1 0.282 0.01* 

Table 4.5: O-PLS-DA models to distinguish IBD patients by gender. Q2 and p value for each 

model are described.  *significant if ≤0.05 
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4.5.2.2.4 Modelling according to clinical outcome and medications 

Multivariate models were calculated to see if groups of patients with different clinical outcomes 

could be separated. Specifically baseline samples were compared according to future outcome, 

to see if retrospectively those patients who went on to require (further) surgery or escalation of 

treatment could be ‘predicted’.  

These models were unable to discriminate between samples from patients that had stable 

disease over the time period between samples, or patients that had disease progression. 

However the subgroup of patients who had undergone surgery showed robust separation with 

significant p value on testing. Baseline samples also showed a strong model ‘predicting’ those 

who would go on to require (further) surgery (all CD), although it is worth noting that this 

group were small (n=4). 

Analysis showed no difference between subgroups of patients according to taking different 

medications (table 4.6). 
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Timepoint Comparison Q2 value P value 

All samples Progressive: stable diseasea 0.0746 0.12 

Baseline  0.0008 0.26 

Timepoint 1 0.0008 0.13 

All samples Post-surgical patients vs 

never had surgery 

0.326 0.01* 

Baseline Patients who went on to 

require future surgery 

0.015 0.03* 

Baseline Patients who went on to 

require future biologics 

-0.36  

Baseline Patients who went on to 

require future 

immunosuppression 

-0.148  

All samples Taking 

immunosuppression 

-0.0776  

Baseline  0.013 0.21 

Timepoint 1 -0.193  

All samples Taking 5-ASA -0.078  

Baseline  -0.413  

Timepoint 1 0.0865 0.11 

All samplesb 
Taking Anti-TNFs 0.065 0.47 

Table 4.6: O-PLS-DA models to compare groups based on disease outcome and medication 

use. aas defined above as either an escalation in medication required (initiation of 

immunosuppression or biologics), progression of disease location or phenotype (Montreal 

Classification) or requirement of surgery (intestinal resection). bSeparate time point analysis 

not performed because of small numbers. *significant if ≤0.05 
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Figure 4.2: O-PLS-DA cross validated scores comparing post-surgical patients and patients who 

have never had surgery. Red spots are those who have had surgery, blue spots are patients who have 

never had surgery. 

 

Figure 4.3: O-PLS-DA cross validated scores of baseline samples showing patients who went 

on to require future surgery (red).  
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4.5.2.2.5 Modelling according to CRP and age 

OPLS regression was used to investigate if there was a relationship between the metabolic data 

and continuous data; CRP at time point 1 (data missing for baseline samples) and age (analysed 

as combined data and for each subgroup at each time point) (table 4.7). There were no 

statistically significant associations seen. 

 

Variable Subgroup  Time point P value 

CRP  Time 1 0.97 

Age 

 

All samples All samples 0.06 

Time 0 0.37 

Time 1 0.23 

CD All samples 0.24 

Time 0 0.42 

Time 1 0.79 

UC 

 

All samples 0.26 

Time 0 0.88 

Time 1 0.37 

 

Table 4.7: OPLS regression models for CRP and age 
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4.6 Discussion 

This preliminary study was undertaken to examine whether urinary metabolic profiles in IBD 

alter over a prolonged time, and whether there may be metabolic markers which could separate 

those patients who subsequently had disease progression from those in whom disease remained 

stable. To date there are no longitudinal data in IBD metabonomics to compare this to in the 

literature; this is the first work (as far as known) examining the effects of time on metabonomic 

signatures in this disease area. 

Results from this cohort do not appear to confirm the hypothesis that subtle IBD-related 

changes may be demonstrated in longitudinal metabolic studies, and in fact, the overall stability 

of individual profiles may make revealing and interpreting subtle changes challenging. 

 

4.6.1 PCA analysis 

One of the most complex aspects of handling metabonomic data is analysis and interpretation 

of longitudinal data (305), especially when there are only a small number of samples from each 

individual. However longitudinal data potentially hold key information describing the 

evolution of biological processes in a population and its relationship to dynamic disease. Such 

studies are required to enable metabonomic data to be applied for monitoring or prognostication 

purposes (299). Alternative analytical approaches such as Markov and Bayesian models require 

multiple samples from an individual to construct a trajectory curve (305), for which this study 

was not adequately powered. In this study PCA was used, as it is a well suited technique to 

handle a longitudinal dataset (306), and variation in the data can be displayed and related to a 

priori information.  
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PCA visualisation of these data showed clustering of pairs of samples from the same patient in 

many cases. Whilst a correlation coefficient cannot be calculated from only 2 samples from the 

same individual, there are clear intra-individual similarities displayed on the PCA, despite a 

wide array of clinical outcomes within the cohort, both disease and non-disease related, as well 

as multiple external factors which have changed between the sampling time points. As 

discussed it has been shown that in healthy adults inter-individual variation is more significant 

than intra-individual variation over time suggesting that the unique metabolic signature remains 

relatively stable, and this may hold true in patients, even with the effects of disease over time 

and medications.  

4.6.2 Multivariate analysis 

4.6.2.1 Longitudinal analysis 

When analysed as a whole group, and also separately as UC and Crohn’s, there were no 

significant differences between the collective samples at the two time points. This may suggest 

that the metabonomic signatures are not measurably changed by time; or it may reflect the fact 

that the cohorts in this study are too small to detect differences.  

There may be too many confounders, including a wide range of clinical outcomes in the cohort, 

to extract subtle alterations in metabolic detail. Interpreting the multiple influences on complex 

NMR data can be challenging, and to analyse in detail the effect of specific confounders would 

require much larger and more stratified cohorts. This study highlights that whilst the diagnosis 

of IBD has strong, detectable metabolic consequences, the more subtle variations from disease 

progression or medications may be difficult to accurately extract and would need careful 

interpretation in other studies.  
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4.6.2.2 Disease subtypes 

In this small cohort, multivariate analyses were unable to separate the disease subtypes from 

one another, which is the same finding as other urinary metabonomic studies of similar sizes 

(114-116). Only Williams et al (118) have been able to differentiate UC from CD using urinary 

metabonomics and this may be due to the significantly larger patient numbers in their study. 

4.6.2.3 Gender differences 

When analysing the effect of gender, there was a clear difference between males and females 

which has been well described in literature (282-284). Creatinine (higher in males) and citrate 

(higher in females) are the most consistently described metabolites. The loadings plot from the 

models showed creatinine, hippurate and citrate as most influential in distinguishing between 

gender groups, as seen in other studies, and also as discussed in Chapter 3. 

4.6.2.4 Progression and the effect of surgery 

Models were unable to separate the group of patients in whom disease had progressed from 

those in whom disease remained stable, at either time point or when all sampled were analysed 

together. No predictive models could be created from baseline samples to indicate those whom 

would require escalation of medical treatment to biologics or immunosuppression.  

Although this is a small snapshot study, it may indicate that subtle changes may prove difficult 

to use to predict outcomes or monitor treatments.  

In the sub-analysis of baseline samples, the 4 patients who had never had previous IBD surgery, 

but subsequently went on to require resection, could be identified from a model with a 

significant p value. Interpretation of this result should be made cautiously in view of the small 

number of patients and low Q2. But is an interesting finding that could be examined in more 
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detail in future investigations, as it may have significant potential as a clinically relevant 

biomarker.  

The model was also able to separate the subgroup of patients who had undergone bowel 

resection from patients who had never had surgery. The effect of surgery has previously been 

shown to affect predictive models in IBD (114) and shows that surgery exerts a strong 

metabolic effect, possibly through alterations in the microbiome.  

4.6.2.5 Disease activity 

In this study there was no clear separation in O-PLS-DA models between IBD patients with 

active disease and those in remission. Models were also tested in UC and Crohn’s separately 

and no separation seen. Further analysis of each disease at single time points was not possible 

because of small numbers. This is consistent with a study in UC (132) which was also unable 

to show differences in active or inactive colitis. A later study however, was able to differentiate 

between active and quiescent IBD (116), suggesting that this may be possible, although there 

are no subsequent studies to confirm this. 

4.6.2.6 Medications 

There were no differences seen on multivariate analysis between any subgroups on 

medications. The 5-ASA drug metabolites were removed in pre-processing, and 

immunosuppressants and anti-TNFs have not been shown to have detectable xenometabolites 

in urine. Stephens et al (114) did show a difference in the urine metabonomics of Crohn’s 

patients on anti-TNF treatments, although it is not stated what metabolic differences were 

shown (whether this was detectable drug or systemic metabolic effect). In our study one of the 

outliers removed from the model was a Crohn’s patient on anti-TNF treatment, but as there 

were only 6 patients on anti-TNFs in total, interpretation of this subgroup is limited.  
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4.6.3 Limitations of the study 

The major limitation to this work is the size of study and only having a pair of samples from 

each patient rather than several repeated samples. Additionally the study would be improved 

by a control group of healthy volunteers monitored over the same time period for comparison. 

A further limitation is that within a relatively small group of IBD patients there was a wide 

diversity of clinical outcomes, including medications, surgery, other diseases. Although this 

reflects real life, it does affect the ability to build a predictive model if subgroups are very small 

and/or heterogenous.  

 

4.6.4 Future work 

In order to develop metabonomics as a biomarker tool for IBD follow-up, a clear association 

with time and disease progression must be established. This pilot work suggests there may not 

be a large enough or significant alteration detectable using this technique and this may therefore 

limit its use in the clinical arena as a monitoring tool.  

To adequately assess these questions a prospective study is required, with more frequent 

samples, in a larger cohort, to assess effect of time, natural history of disease, response to 

treatments and requirement for surgery.  

 

4.7 Advances in Knowledge 

• Changes in the urinary metabolic profiles of IBD patients appear stable over a period 

of several years. This may make the longitudinal use of this technique for monitoring 
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disease difficult, without further understanding of the more subtle effects of activity, 

medication and disease progression.  

• Metabonomics may be able to predict the requirement for future surgery, but this is a 

preliminary finding.  

• Surgery appears to have a significant effect on the urinary metabolic phenotype of an 

IBD patient which is likely to be linked to microbiome changes.  
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Chapter 5: Pilot Study integrating microbial and metabonomic data in IBD 

5.1 Summary 

Dysbiosis is widely recognised as being integral to the pathogenesis and perpetration of IBD, 

although there is no accepted consensus description of the microbial changes or its exact 

relationship with gut inflammation. Metabonomics have been successfully applied to 

demonstrate metabolic changes in non-invasive biofluids in IBD.  

Whilst metabonomics provides useful information about cellular perturbations, and 

microbiomics described important gut microbial changes, the integration of these ‘omic’ 

techniques may potentially reveal more about the functional interaction of the host-

microbiome-metabolome in IBD.  

This pilot study was undertaken to explore the integration of tri-omics in IBD for the first time. 

In this chapter 16S rRNA profiling of faeces, as well as metabolic profiling of urine and faecal 

water are examined in 46 adults (34 with IBD), and the discriminatory metabolites correlated 

with marker bacteria. Consistent with other chapters, urinary metabolic profiling strongly 

discriminated between UC, Crohn’s and healthy controls, with significant metabolites being 

microbial or inflammatory in origin. Faecal water metabonomics clearly separated UC from 

controls, although Crohn’s could not be robustly identified. As seen in other published data the 

metabolites were mostly faecal short chain fatty acids as well as microbial co-metabolites.  

16S rRNA profiling confirmed reduction in diversity in IBD compared to controls, and in 

differential abundance analysis, Veillonella, Acidaminococcus, Lactobacillus and 

Streptococcus were demonstrated to differ between groups. Correlation coefficient testing 

revealed the relationships between specific bacterial genera and significant discriminatory 

metabolites.  
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5.2 Aims and hypothesis 

1. The aim was to describe gut microbial composition and diversity of species in IBD 

patients and compare them with healthy adults using 16S rRNA profiling of stool. 

2. The second aim was to examine with metabonomics the urine and stool of the same 

cohort, and correlate the most abundant NMR visible metabolites present in these 

biofluids with the bacterial species identified from the gut microbiome.  

3. The hypothesis was that marker metabolites identified in urine and stool differentiating 

IBD from controls can be directly correlated to dysbiosis in the disease through 

identified alterations in gut bacteria.  

4.  

5.3 Introduction 

The gut microbiome has become a high priority for IBD research due to the overwhelming 

evidence of ecological and functional perturbations seen in the disease (72). Whilst there is a 

large and growing volume of studies examining the composition and metabolic potential of gut 

microbes, the precise role of the microbiome in IBD remains unclear. Dysbiosis in this disease 

has been well established by studies, with an almost unanimous finding of a reduction in 

biodiversity compared to healthy controls (307).  Not all microbial studies have shown 

consistent results however, and it is likely that the exact ‘IBD microbiome’ is heterogeneous 

and individual-specific. Not only do intrinsic host factors affect the microbial milieu, including 

ethnicity and genetics, there are also multiple external factors including diet and environment.  

Twin studies (concordance rates in identical twins of 40-50% in CD and only 10% in UC) 

demonstrate that beyond genetics, environment plays a significant role in disease risk (308). 

The increasing incidence in Westernised countries is occurring at a rate too rapid to be genetic, 
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and may well be at least partly explained by the ‘hygiene hypothesis’, where less early exposure 

to microbes is critical to shaping development of the immune response, and determining the 

future risk of chronic inflammatory disorders (308). 

Further evidence from genetic analyses link IBD with loci associated with immune responses 

to bacteria (309), and these specific gene alleles have also been tied directly to changes in the 

microbial community (92). 

Despite most healthy adults having a microbiome highly variable from one another, and 

variable over time (77), the metabolic ability of the bacterial genes actually remains very stable 

(77). So in addition to taxonomic profiling, one of the important challenges remains better 

understanding the function of the gut microbiome and how this ties into the complex paradigm 

of disease initiation, propagation and healing. Hence it is not sufficient to merely catalogue the 

microbiome, but correlation with functional data is essential.  

16S studies are a powerful, rapid and relatively cheap technique to catalogue and quantify 

bacterial species, however, unlike metagenomics, their main limitation is that they do not 

generate function or metabolic data. Metabonomics identifies the metabolites present in a 

biofluid in order to describe the metabolic and biological processes of an individual. By 

combining this approach with microbial profiling in the same cohort, gut-microbial-host 

interactions can be studied, and correlations between bacteria and metabolic products can be 

examined. 

A recently published study in an Italian IBD cohort has shown correlations between 16S 

microbial data and faecal water (128). In a similar approach, in this chapter both stool and urine 

metabonomics are correlated with gut microbes in the same patients, to evaluate if robust 

associations can be determined with this data integration approach.  
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5.4. Methods 

5.4.1 Subjects 

46 adult subjects, all Caucasian, consented to donate stool and urine samples (given on the 

same day). 34 were IBD patients (14 UC and 20 CD) at St Mary’s Hospital and 12 were self-

reported healthy volunteers. Exclusion criteria for IBD patients included intestinal surgery, 

therapeutic diet, other significant co-morbidities (as defined in chapter 3) or pregnancy. 

Metadata and dietary data were recorded, as previously described.  

5.4.2. Urine and Stool Sample Preparation 

Samples were prepared as described in sections 2.2.1 and 2.2.2. and preparation for NMR was 

conducted as in sections 2.4.2 and 2.4.3. 

5.4.3. Urine and Faecal water NMR Spectroscopic Analysis 

1H NMR spectroscopy was performed on the samples in a randomised order on the Avance 

600MHz NMR spectrometer (Bruker Biospin) using the protocol described in 2.4.1. 

5.4.4. Urine data Pre-Processing and Analysis  

Phasing, baseline correction and removal of urea, water and TSP peaks was performed in 

Matlab as written in section 2.4.2. For this dataset the regions were defined as TSP δ -0.2 – 0.2, 

water δ 4.51-5.00 and urea δ 5.52 – 6.19. RSPA, hand alignment and PQ normalisation were 

performed (see section 2.4.2.).  

STOCSY (235) was performed on 5-ASA resonances and STOCSYE (224) used to edit out 

peaks with a correlation value of greater than 0.7, using peaks at 2.17, 7.73 as references. This 
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was checked against metadata and confirmed that all samples who had peaks removed were 

patients taking 5-ASAs.  

PCA and OPLS-DA multivariate analyses were performed, with metabolites identified from 

valid models using assignment strategy described in chapter 2. 

5.4.5. Faecal water data Pre-Processing and Analysis  

The faecal water NMR data was pre-processed as per the urine. In this dataset TSP was 

removed in the regions δ -0.2 – 0.2 and water δ 4.863 to 4.703. Normalisation by probabilistic 

quotient method was applied.  

5.4.6. DNA extraction and 16S rRNA gene sequencing 

Faecal water was extracted from stool samples and DNA extracted as per section 2.2.3 and 

2.3.1. 16S rRNA gene sequencing was performed on V1-V2 regions using Illumina MiSeq 2 

step technique. Bacterial community composition was assigned using SILVA taxonomy (310) 

which ranks to the level of genus.  

5.4.7. Microbiome analysis 

Microbial composition, diversity profiling, as well as analysis of differential abundance was 

performed using microbiomeanalyst.ca (215) Statistical analysis was with the Mann–Whitney 

U test (comparison of groups) with a p value ≤0.05 considered to be significant.  

5.4.8. Correlation of gut microbiota with urinary and stool metabonomics  

Statistical correlation was analysed using Matlab R2014a (Version 8.5, Mathworks). 

Correlations were determined using Spearman’s correlation tests. Heatmap correlograms were 

generated to display the relationship between the significant metabolites identified from each 
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biofluid and the bacteria identified as differentiating between IBD and controls. Correlations 

were tested with a p value ≤0.05 considered to be significant. Significant correlation 

coefficients were plotted as coloured pie charts (non-significant correlation coefficients 

represented as blank spaces) representing positive (red) or negative (blue) association and pie 

chart to demonstrate strength of correlation.  

 

5.5 Results 

5.5.1 Phenotypic dataset  

Table 5.1 shows the characteristics of the subjects in this chapter.  

The UC population was significantly older than the Crohn’s group or controls. There were no 

statistically significant differences between the groups in terms of gender, smokers, or between 

proportions of patients with active disease. The UC group used more 5-ASAs.  
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Table 5.1 Characteristics of the study population 

aAs defined by disease activity index ≥5 b Medications: M1: 5-ASA; M2: immunosuppressants 

(Azathioprine/6-MP); M3:anti-TNF c Location (206): L1:ileal disease; L2: colonic disease; 

L3:ileocolonic disease; E1:proctitis; E2:disease limit distal to splenic flexure; E3:disease 

proximal to the splenic flexure d Behaviour (206): B1:inflammatory; B2:structuring; 

B3:fistulating ep value as calculated by Chi squared test or Kruskal-Wallis *significant if ≤0.05 

 Healthy 

controls 
CD UC 

p valuee 

n 12 20 14  

Age (years) 

Median (Range) 

34  

(23 - 67) 
 

45.5 

(23 - 79) 
 

 

53 

(25 – 76) 
0.001* 

Male  

Number (%) 

6 

 (50%) 

6  

(30%) 

6  

(42%) 
0.50 

Smokers 

Number (%) 

 

2 

(17%) 

0 

 

2 

 (14%) 
0.52 

Active diseasea 

 

  

6 

(30%) 

2 

(14%) 
0.29 

Medication use in preceding 

4 weeksb 

M1 : 5 M1 : 9 0.02* 

 

M2 : 5 
M2 : 4  0.81 

 

M3 : 5 
M3 : 1 0.17 

Disease location c 

 

L1 : 8 E1 : 6  

L2 : 8 E2 : 4  

L3 : 4 E3 : 4  

Disease behaviour d 

 

B1 : 10   

B2 : 8  

B3 : 2  



171 

 
 

 

5.5.2 NMR urinary analysis 

5.5.2.1 Principal Components Analysis  

PCA plot showed 2 outliers (identified as one Crohn’s patient and one healthy control) and 

these were excluded from the model and any subsequent analysis. These 2 individuals had the 

highest BMIs of all subjects (32.8 and 38.6). There were no moderate outliers (as defined by 

above the critical distance from the model Dcrit) to exclude.  

 

 

 

 

 

 

 

Figure 5.1: PCA scores plot of all included urine samples, coloured according to class with 2 

components displayed. Outliers have been removed. 
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5.5.2.2 O‐PLS‐DA modelling 

OPSLDA models were made to compare groups according to diagnosis. The summary of 

models is shown in table 5.2. 

Urine samples 

 n R2 Q2 P value (1000 permutations) 

Healthy vs IBD 44 0.74 0.33 0.001* 

Healthy vs CD 

 

30 

 

0.33 0.28 0.028* 

Healthy vs UC 25 0.34 0.43 0.020* 

UC vs CD 33 0.03 0.10 0.220 

Table 5.2: Summary of OPLS-DA models of urine comparing 3 groups. R2, Q2 and p value for 

each model are described.  *significant if ≤0.05 

 

 

Figure 5.2: OPLS-DA cross-validated scores for healthy controls and Crohn’s patients. 
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Figure 5.3: O-PLS-DA cross-validated scores for healthy controls and UC patients.  

 

The O-PLS-DA models were able to show robust (7-fold-cross-validation) and significant (post 

permutation testing) separation between healthy controls and both types of IBD. In this small 

group it was not possible to distinguish between CD and UC. 

The corresponding coefficient plots (loadings) for the valid models were examined to identify 

metabolites associated with the differences between the groups.  
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Figure 5.4: Coefficient plot for urine OPLS-DA model of healthy controls and Crohn’s patients 

colour-coded by the correlation coefficient (r2).   
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 Significantly correlated* metabolites in urine 

in order of importance 

Healthy vs Crohn’s N-methyl-2-pyridone-5-carboxamide  ↑:↓ 

Methylnicatinamide ↑:↓ 

1-Methylnicotinamide (NMND) ↑:↓ 

Dimethylamine  ↑:↓ 

 2-Hydroxyisobutyrate ↑:↓  

Creatinine ↑:↓ 

Gamma-hydroxybutyrate (4-hydroxybutyrate) ↓:↑ 

Malonic acid  ↓:↑ 

Valine ↑:↓ 

Dimethylsulfone  ↑:↓ 

Phenylacetylglycine (PAG) ↓:↑ 

1,9-dimethylurate  ↑:↓ 

Succinate  ↑:↓ 

Hippurate ↑:↓ 

Healthy vs UC 

 

3-Hydroxyphenylacetate (3-HPA) ↓:↑ 

Trimethylamine ↑:↓ 

N-acetyl-L-aspartic acid↑:↓ 

Unidentified (d) δ 1.468 ↑:↓ 

Valine  ↑:↓ 

2-hydroxyisobutyrate ↑:↓ 

3-Methyl-L-histidine ↓:↑ 

N-butyrlglycine ↑:↓ 

5-hydroxylysine  ↑:↓ 

Methylnicatinamide ↑:↓ 

Butyrate↑:↓ 

Unidentified (dd) δ 1.981  ↓:↑ 

3,4-Dihydroxyphenylacetate ↓:↑ 

Gamma-hydroxybutyrate (4-Hydroxybutyrate)  ↓:↑ 

Creatinine↑:↓ 

Table 5.3: Significantly correlated urine metabolites identified from loadings plots. *r value 

with p<0.05 Bold ↑:↓ indicates positive direction of relative change of metabolite in first group 

relative to second. 

 

The corresponding loadings plots show the differences in the metabolic profiles of healthy 

people and those with CD were related to N-methyl-2-pyridone-5-carboxamide, 

methylnicatinamide, NMND, dimethylamine and 2-Hydroxyisobutyrate. Hippurate featured 

lower on the list. When comparing healthy people and UC patients 3-HPA, trimethylamine, n-

acetyl-L-aspartic acid and an unidentified compound (with doublet at δ 1.468).  



176 

 
 

 

The area under the peak of selected metabolites identified by multivariate modelling as being 

significantly different between groups were measured. These selected urinary metabolite 

values were used to correlated with microbial data in a correlogram to identify significant 

correlations. 

 

5.5.3 NMR faecal water analysis 

5.5.3.1 Principal Components Analysis 

As per analysis of urine samples, initial PCA was used to identify significant outliers. One 

sample (UC patient) was subsequently removed. 

When STOCSYE was applied to remove 5-aminosalicylic acid resonances, some 

xenometabolites still appeared in the spectral data. Therefore in line with published data in 

faecal water NMR, the regions of 2.156 – 2.172 and 6.78 – 7.775 containing these peaks were 

removed. Although this did cut out a proportion of spectral data, it allowed interpretation of 

multivariate analysis without the effect of 5-ASA and its metabolite, N-5-ASA dominating.  
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Figure 5.5: Cross-validated PCA score plot of all included faecal water samples, coloured 

according to class with 2 components chosen. (0 = healthy controls, 1 = Crohn’s patients and 

2 = UC). 

 

 

5.5.3.2. O‐PLS‐DA modelling 

For the supervised analysis OPLS-DA models were constructed to compare each pairwise 

comparison. 

Faecal water samples 

 

 n R2 Q2 P value (1000 permutations) 

H vs IBD 45 0.6205 0.332 0.67 

H vs CD 
31 

 
0.437 0.447 0.58 

H vs UC 25 0.168 0.173 0.010* 

UC vs CD 33 0.017 -0.04 0.78 

Table 5.4: Summary of PLS-DA models of faecal water comparing 3 groups: Healthy 

controls, Crohn’s and UC.  *significant if ≤0.05 
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Despite reasonable Q2 values, only the model comparing healthy controls with UC showed 

robust separation after permutation testing. This model was interrogated for significant 

metabolites (r value with calculated p value <0.05) responsible for separating the groups.  

 
Figure 5.6: Coefficient plot for faecal water OPLS-DA model of healthy controls and UC 

colour-coded by the correlation coefficient (r2).   

 

 

 

 Significantly correlated* metabolites in urine 

in order of importance 

Healthy vs UC 

 

Propionate  ↑:↓ 

Proline  ↑:↓ 

Isoleucine ↑:↓ 

Acetate  ↑:↓ 

Aspartate  ↑:↓ 

Butyrate  ↑:↓ 

Trimethylamine  ↓:↑ 

Alanine  ↑:↓ 

Threonine  ↑:↓ 

Leucine  ↑:↓ 

Methylamine  ↑:↓ 

Table 5.5: Significantly correlated faecal water metabolites identified from loadings plots of 

healthy patients versus UC. *r value with p<0.05 Bold ↑:↓ indicates positive direction of 

relative change of metabolite in first group relative to second. 

 

propionate 
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Propionate, proline, isoleucine, acetate, aspartate and butyrate were the most correlated 

metabolites found. All of these were higher in healthy adults than in UC.  

 

5.5.4. Microbial Analysis 

5.5.4.1. Microbial composition analysis 

The gut microbiome in the majority of subjects was predominantly Bacteroidetes and 

Firmicutes with a considerable variation in the ratio of these in all groups. Two subjects (both 

with Crohn’s) had a strong predominance of Proteobacteria.  

 

 

 

 

 

 

 

 

 

Figure 5.7: Mean phylum-level abundance for Controls, Crohn’s and UC 

 

A: Controls B: CD C: UC 
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Mean phylum-level relative abundances (percentage) are shown in figure 5.7. UC patients had 

a similar ratio of Bacteroidetes and Firmicutes to healthy controls, whereas both these species 

were reduced in the Crohn’s group.  

Microbial composition of samples at order, family and genus level are shown in figures 5.8, 

5.9, 5.10 and 5.11. 
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Figure 5.8: Stacked bar plot showing variation in bacterial relative abundances at the phylum 

level for Crohn’s (red labels), Controls (green labels) and UC (blue labels). 
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Figure 5.9: Stacked bar chart (percentage abundance) of abundance profile (order). CD (red 

labels), Controls (green labels) and UC (blue labels). 
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Figure 5.10: Stacked bar chart (percentage abundance) of abundance profile at family level for 

Crohn’s (red labels), Controls (green labels) and UC (blue labels). 
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Figure 5.11: Stacked bar chart (percentage abundance) of abundance profile at genus level for 

Crohn’s (red labels), Controls (green labels) and UC (blue labels). 
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Heatmap visualisation was used to show the relative percentage of 16S rRNA gene sequences 

assigned to each bacterial genus across the samples analysed. Heatmap colours range between 

dark red (higher abundance) and dark blue (lower abundance). Hierarchical clustering helps 

display the relationships between bacteria and samples according to the direct distance between 

them. There was significant intra-individual variation and inter-individual variation seen on the 

heatmap.  

 

 

Figure 5.12: Hierarchical clustering and heatmap visualisation across all samples according to 

their Euclidean (direct) distance.  
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5.5.4.2. Comparison of Alpha diversity  

Microbiota diversity within each stool sample (alpha diversity) at OTU level was tested with 4 

measures: Observed, Chao-1, Shannon index and Fisher indices. All indices showed lower 

diversity in the Crohn’s compared to UC, compared to controls group, with significant p values 

in all except the Shannon index. 

A:        B: 

 

C:       D: 

Figure 5.13: Alpha diversity box plots comparing each class for A: Chao-1 richness, B: 

observed diversity, C: Shannon and D: Fisher Index 
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Alpha diversity profiling Significance testing (p 

value) 

Chao 1 index 0.0325* 

Observed diversity of 

OTUs 

0.0496* 

Shannon Index 0.173 

Fisher Index 0.0496* 

Table 5.6: Significance testing of 4 indices of alpha diversity between groups. *indicates 

significant p value ≤ 0.05 

 

5.5.4.3. Beta diversity analysis 

Principal coordinate analysis (PCoA) was performed for comparative analysis (beta diversity) 

between groups. For this low abundance features (which may be due to sequencing errors or 

low-level contaminations) and low variance features (which are unlikely to be associated with 

the conditions under study) were filtered out. 

PCoA based on unweighted UniFrac distances (R2 0.068038; p-value < 0.041) showed a 

moderate dispersal of CD patients away from the cluster of controls and UC patients (figure 

5.14). This dissimilarity analysis shows that principal coordinate analysis (PCoA) can 

discriminate the IBD subtypes from healthy controls. However, there is significant overlap 

between the three groups as seen in figure 5.15 

Weighted UniFrac and Bray-Curtis models had similar R2 values (0.045 and 0.053 

respectively) but non-significant p values. 
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Figure 5.14: Principal Co-ordinate Analysis based of unweighted UniFrac distances, with 2 

main axes explaining just over 20% of variance in the model. (R2 0.068; p-value < 0.04) 

 

 

Figure 5.15: 3-D model of PCoA based on unweighted Unifrac distance at OTU level 

(PERMANOVA 0.064; p-value < 0.058) 
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5.5.4.3. Differential Abundance analysis 

The bioinformatics package EdgeR (218) was used to examine differential expression of counts 

between groups (by diagnosis) to identify statistically significant bacteria, ranked by p value 

and adjusted for false discovery rate (FDR). 

Significant results between cohorts showed: 28 OTUs identified (not shown), 4 bacteria at 

genus level taxonomy, 5 at family, 1 by order, 1 by class. The results are shown in table 5.7 

and figures 5.16 and 5.17. 

 

Taxonomy Name p value FDR corrected 

Class Gammaproteobacteria 2.049 x10-5 1.844x10-4  

Order Enterobacteriales 1.314 x10-4 0.0015 

Family Streptococcaceae 1.2169 x10-5 2.5578 x10-4 

Family Lactobacillaceae 2.1315 x10-5 2.5578 x10-4 

Family Enterobacteriaceae 1.4701 x10-3 0.011761 

Family Rikenellaceae 5.1829 x10-3 0.031097 

Family Sutterellaceae 9.6839 x10-3 0.046483 

Genus Acidaminococcus 9.57 x10-9 5.17 x10-7 

Genus Lactobacillus 2.69 x10-5 4.0175 x10-4 

Genus Streptococcus 2.78 x10-5 4.0175 x10-4 

Genus Veillonella 2.98 x10-5 4.0175 x10-4 

Table 5.7: Significant features from each taxonomic group as identified by EdgeR ranked by p 

value and FDR.  

 

 



190 

 
 

 

A: 

 

 

 

B:

 

Figure 5.16: Original and log transformed counts of bacteria identified (genus) with statistically 

significant differential abundance (A: Acidaminococcus, B: Lactobacillus) 
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C: 

 

 

D: 

 

Figure 5.17: Original and log transformed counts of bacteria identified (genus) with 

statistically significant differential abundance (C: Streptococcus and D: Veillonella). 
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5.5.5 Integration of metabonomic and microbial data 

5.5.5.1. Urine metabolic profiles and microbial data 

The metabolites identified as separating UC, Crohn’s patients and controls in the metabolic 

profiles were correlated with the candidate microbes in a correlogram to identify significant 

relationships.  

Squares within the red box represent relationships between bacteria and metabolites, with 

statistically significant correlations shown as a pie chart. Colour is used to demonstrate a 

positive (red) or negative (blue) correlation with the pie chart area being proportional to the 

value of the correlation coefficient. 

Overall in the urine there is an inverse and significant correlation between hippurate and 

trigonelline and veillonella (figure 5.18).  

In the Crohn’s patient’s correlation matrices for urine metabolites show trigonelline is 

negatively correlated with veillonella, and there are positive associations between p-cresol 

sulphate and acidaminococcus, and hydroxyisobutyrate and veillonella (figure 5.19). 
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Figure 5.18: Correlogram showing Spearman’s correlation between key bacteria (genus) and 

urine metabolites in all samples. Blank squares mean no significant correlation. Red circles 

demonstrate a positive correlation, while blue ones designate a negative correlation. In this plot 

the pie chart area is proportional to the value of the correlation coefficient.  
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Figure 5.19: Correlogram showing Spearman’s correlation between key bacteria (genus) and 

urine metabolites in Crohn’s patients. Blank squares mean no significant correlation. Red 

circles demonstrate a positive correlation, while blue ones designate a negative correlation. In 

this plot the pie chart area is proportional to the value of the correlation coefficient.  
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A: UC        B: Healthy adults 

 

 

Figure 5.20: Correlogram showing Spearman’s correlation between key bacteria (genus) and 

urine metabolites in A: UC and B: healthy controls.  

 

In UC and healthy adults there are no direct correlations between metabolites and specific 

bacteria (figure 5.20). 
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5.5.5.1. Faecal water metabolic profiles and microbial data 

As with the urine data, the faecal water marker metabolites were integrated with the significant 

microbes distinguishing the groups in a correlogram according to the Spearman’s coefficients.  

 

Figure 5.21: Correlogram showing Spearman’s correlation between key bacteria (genus) and 

faecal water metabolites in all samples. Blank squares mean no significant correlation. Red 

circles demonstrate a positive correlation, while blue ones designate a negative correlation. In 

this plot the pie chart area is proportional to the value of the correlation coefficient.  

 

In the correlation plot (figure 5.21) there are positive correlations between veillonella and both 

threonine and proline. There is also a negative correlation of alanine with acidaminococcus.  
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Figure 5.22: Correlogram showing Spearman’s correlation between key bacteria (genus) and 

faecal water metabolites in Crohn’s patients. Blank squares mean no significant correlation. 

Red circles demonstrate a positive correlation, while blue ones designate a negative correlation. 

In this plot the pie chart area is proportional to the value of the correlation coefficient.  

 

In the stool of the Crohn’s patients there are several bacteria positively correlated with 

threonine, alanine and aspartate (figure 5.22). Acetate is strongly associated with veillonella, 

and proline also correlated with this. There is an inverse correlation with alanine and 

acidaminococcus.  
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Figure 5.23: Correlogram showing Spearman’s correlation between key bacteria (genus) and 

faecal water metabolites in UC. Blank squares mean no significant correlation. Red circles 

demonstrate a positive correlation, while blue ones designate a negative correlation. In this plot 

the pie chart area is proportional to the value of the correlation coefficient.  

 

In UC (figure 5.23), there are positive associations with butyrate and several bacteria 

(acidaminococcus, lactobacillus and streptococcus) and also isoleucine and leucine with 

acidaminococcus.  
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Figure 5.24: Correlogram for faecal metabolites and bacteria in in healthy controls  

In healthy adults (figure 5.24) there are no direct correlations between faecal metabolites and 

specific bacteria, which is confirmatory that the bacteria identified with IBD are normal in the 

healthy state. 
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5.6 Discussion 

This study used urine and faecal water metabonomics, as well as 16S rRNA bacterial gene 

analysis to extract and correlate microbial data with metabolic data in IBD patients with a 

healthy control cohort for comparison. Whilst dysbiosis in IBD is a well-established 

phenomenon (105), whether the disordered host-microbiome relationship is a pre-requisite for 

inflammation, or is a consequence of disease, is not clear.  

Only one recently published study has also looked at similar correlations in faecal water and 

bacterial profiling (128) in IBD. In our study the addition of urine, which reflects more host 

systemic metabolic alterations, was also combined in a three-way omics integration.  

Our study is a pilot, demonstrating that important functional correlations can be established by 

measuring microbial and metabolic disruptions within the same individuals, as stated in the 

hypothesis. 

Although only a small study, findings were consistent with other papers using one analytical 

technique. 16S microbial data confirmed reduced alpha diversity in IBD, specifically in 

Crohn’s, with enrichment in Proteobacteria, as a results of reduced Bacteroidetes and 

Firmicutes – the dominant phyla in the healthy stable microbiome. Specific bacteria including 

Streptococcus and Veillonella were identified as differentiating between IBD and controls; 

changes that have been described in other IBD studies (128).  

Metabonomic changes in urine mirrored findings in the rest of this thesis, with Crohn’s and 

UC being robustly distinguished from healthy controls. Faecal water metabolic changes were 

distinct in UC but not valid in Crohn’s, likely reflecting the direct effect of colitis on faecal 

constituents.  Published data in faecal water have been less reproducible than urine, although 
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in this dataset it is possible that separation of the Crohn’s cohort from controls was not possible 

due to methodology (as discussed later) and / or the small group.  

The correlations between candidate microbial genera in the different groups and metabolic 

markers showed directional changes specific to each disease. There were many strong and 

significant correlations between the microbiome and faecal metabolites in Crohn’s and some 

in UC. Urinary profiles showed less correlations.  

 

5.6.1. Urine metabonomics  

As shown in previous chapters, urine metabonomics can demonstrate metabolic differences 

between healthy adults and patients with CD and UC separately, as well as combined together. 

Supervised analysis showed robustly tested models could demonstrate separation between 

groups with reasonable Q2 values (0.28 for healthy vs CD and 0.43 for healthy vs UC) despite 

a smaller number of samples/people than previous chapters and other published data.  

Obese outliers were removed from analysis as it has been shown that obesity alters both the 

microbiome and the metabonomic profile (293). All other participants had a BMI of less than 

30 (not obese). 

UC and CD did not separate on PLS-DA models, similar to previously published data and other 

smaller studies.  

Metabolites identified as separating Crohn’s patients from healthy controls corroborate those 

identified in chapter 3 and other studies, including hippurate, 4-hydroxybutyrate, creatinine 

and Phenylacetylglycine (PAG).  
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Other metabolites were also identified as being associated with IBD including 

methylnicotinamide - a nicotinamide metabolite which has been found to have anti-

inflammatory properties (311) and that has been linked to inflammatory processes in the 

cardiovascular system (312) - as well as dimethylamine and dimethylsulfone, both of which 

have microbial sources (261). 

Some of the same metabolic signals were seen differentiating UC from healthy adults as were 

identified in CD, including 2-hydroxyisobutyrate, methylynicatinamide, 4-hydroxybutyrate 

and creatinine.  

The two most significant metabolites in the model were 3-Hydroxyphenylacetate (3-HPA) and 

trimethylamine (TMA). 3-HPA, which is a microbial aromatic compound involved in the 

tyrosine metabolism pathway, has antioxidant effects (261), and this was higher in the UC 

group relative to controls. It has been linked to liver inflammation (313) but not to IBD 

previously.  

TMA (lower in UC than controls) is produced in the gut from dietary sources of choline by 

microbial enzymes (314) (see figure 5.25). Alterations in TMA have been shown to be directly 

associated with gut dysbiosis, as well as metabolic disorders (diabetes, obesity), cancer and 

cardiovascular disease (315). Animal models of colonic inflammation (IL-10 deficient mice) 

also show alterations of urinary TMA (123). 
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Figure 5.25: TMA pathway in the human GI tract (adapt from (315)) 

Trimethylamine oxide (TMAO), which is produced via a microbiome–host metabolic pathway 

from TMA (either by hepatic oxidation or by microbial enzyme TMO monooxygenase) has 

previously been proposed as a novel IBD-biomarker (316), as plasma levels were found to be 

lower in IBD.  TMAO was also lower in urine of the Caucasian UC group (compared to 

controls, and compared to CD) in Chapter 3 of this thesis. TMA levels (see below) in faecal 

water are also shown to be altered in IBD in this study and others (117), suggesting that the 

TMA metabolic pathway can be affected at several different levels by microbial perturbations.  

5.6.2. Faecal metabonomics 

Only UC could be differentiated from controls with faecal water metabolic profiling, with 

multivariate analysis failing to be able to robustly separate Crohn’s from healthy samples or 

from UC. This may suggest that the colonic inflammation of UC has a greater effect on the 

faecal metabolic profile, whilst the reverse is seen in urinary profiles, where Crohn’s which is 
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a more systemic inflammatory condition, exerts a stronger effect on urine metabolic profiles 

than UC.  

In this population the Crohn’s cohort contained a mix of small bowel and colonic disease 

(disease location L1:8 patients, L2:8, L3:4). Larger studies allowing analysis by disease 

location may determine whether the changes seen in UC are disease specific or relate to colonic 

inflammation more generally.  

Another reason for the inability to separate the Crohn’s group may be the removal of parts of 

the spectrum in the aromatic region to avoid the xenometabolites in this region; an area where 

potentially valuable metabolic information exists. This method (117) had to be performed on 

the faecal water data as the STOCSYE (224) software could not remove resonances from 5-

ASA adequately to prevent them influencing the models.  

In the Bjerrum paper (113) the PLS-DA models of both active and inactive CD vs controls 

were initially valid, but once patients post-intestinal surgery were removed from the models, 

the Crohn’s models became invalid, and only active UC could be differentiated from healthy. 

As surgery was an exclusion criteria in this study, the results in our Crohn’s cohort are not 

dissimilar to these published data.  

Whilst Marchesi found a strong faecal signal with Crohn’s (117), the phenotypic data of these 

patients (disease activity, location, behaviour or surgery) is not known. More recently, in a 

larger Italian study, investigators were also able to distinguish Crohn’s from controls with 

faecal water metabonomics, suggesting that cohort size was likely to be the most limiting factor 

of our findings.  

Metabolites associated with UC included propionate (most significant metabolite), butyrate 

and acetate, which are the main short chain fatty acids (SCFAs) produced by gut microbes 
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during fermentation of complex carbohydrates (126). All of these were lower in the UC group 

than controls, which is entirely consistent with other published data (113, 117, 126). 

Clostridium coccoides and Clostridium leptum groups have a principal role in the production 

of SCFAs (132) and these species have been found to be reduced in UC (317, 318). The SCFAs, 

particularly butyrate, are an essential energy source for colonocytes (319), and SCFAs have 

anti-inflammatory properties via inhibition of aTNF activation in the NFkappaB pathway (98, 

130). It has also been shown that active inflammation in UC is associated with impaired 

butyrate oxidation (320), suggesting that SFCA depletion is both a consequence of 

inflammatory dysbiosis and a promoter of on-going inflammation (113). 

This study did not examine the metabolome at species level, but given these findings future 

studies should attempt to associate the reduction in SCFAs with changes in Clostridium 

coccoides and Clostridium leptum directly.   

Methylamine and TMA also strongly contributed to separation in UC; this was also seen in the 

Marchesi study (117) and the Santoru study (128). These mammalian-microbial co-metabolites 

are likely to have been altered by dysbiosis.  

5.6.3. Bacterial community identification 

Phylum level analysis of the microbial community in this cohort revealed a lower percentage 

of Bacteroidetes and Firmicutes in Crohn’s patients than in UC or controls. The same findings 

have been seen in several studies (72, 321).  

Enrichment of Proteobacteria was seen in the Crohn’s group (13%) versus healthy controls 

(6%) and UC patients (3%). Whilst Bacteroidetes and Firmicutes dominate the gut microbiome 

in most healthy adults, in dysbiosis the loss of homeostasis gives Proteobacteria the 

opportunity to increase, and is therefore seen as a marker of microbiome instability (322). 
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Increased relative percentages of Proteobacteria (from approx. 4.5% in healthy adults) (322) 

have been shown in metabolic disorders (13.2%)  (323) and in IBD (14.9%) (93). Other studies 

have proposed that Proteobacteria may have an initiator role in the inflammatory response and 

propagation of IBD (324). 

Diversity analysis revealed the lowest alpha diversity indices in Crohn’s patients, compared to 

UC and healthy adults. All 4 indices, accounting for richness and evenness were lower (only 

Shannon index had a non-significant p-value) across the IBD groups, as seen consistently in 

studies (91, 325, 326). 

Dysbiosis is the most substantial marker of IBD in microbial studies thus far, although it is 

unclear whether it is a reflection of an abnormal immune response and inflammation, or the 

trigger that starts these (308). Most likely there is overlap between these two events occurring 

in a genetically susceptible individual, with multiple microbial drivers and bacteria-host-

immune interactions simultaneously.  

Principal coordinate analysis (PCoA) was used to demonstrate dissimilarity (separation) 

between the groups. And whilst unweighted UniFrac distances could statistically model 

separation, the R value was low (R2 0.068; p-value < 0.041) and there was significant overlap 

between the groups. This is to be expected in human data and suggests small but measurable 

differences between bacterial communities. Although the groups in this study are small, it does 

demonstrate a relative difference in microbial composition when comparing the groups.  

5.6.4. Specific bacteria differing in IBD 

Although a multitude of studies have profiled the IBD microbiome, there are inconsistencies 

in the ages, phenotypes, ethnicities and treatments of the cohorts examined.  Whilst dysbiosis 

is almost universally seen, specific microbial changes are less demonstrable, and no particular 
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recipe of microbial constituents has been linked to either diagnosis or shown to predict 

outcomes (72). Although it is unlikely that one, or a few microbial candidates are responsible, 

some particular bacterial perturbations have been repeatedly linked with IBD; specifically a 

reduction in Faecalibacterum prausnitzii in ileal CD, and an increase in Adherent–invasive 

Escherichia coli (AIEC).  

Faecalibacterum prausnitzii (from the Clostridia class of Firmicutes) is a butyrate producing 

species with known anti-inflammatory properties (327). In this study there was no statistical 

difference in Faecalibacterum (genera level) measured between groups, although only 60% of 

the Crohn’s cohort had ileal involvement, and species level classification was not available. 

Although overall Proteobacter was higher in the Crohn’s patients, no difference was seen in 

E-coli when comparing across groups.  

Specific bacteria identified at the genus level as differentiating between cohorts in this study 

were Veillonella, Acidaminococcus, Lactobacillus and Streptococcus. 

5.6.4.1. Veillonella 

Veillonella (Firmicutes) was raised in the stool of Crohn’s patients compared to UC and 

controls. The same finding was seen in the Santoru study (128). This bacteria has been shown 

to be related to recurrent inflammation in CD post-operatively (328). Veillonellaceae are 

lactate-fermenting bacteria, and have also been found to be enriched in CD (regardless of 

location) in several paediatric studies (329, 330).  

5.6.4.2. Acidaminococcus  

Metagenomic studies have been mostly consistent in demonstrating a reduction in Firmicutes  

(except Lactobacillus) in stool samples in IBD, particularly Crohn’s (321) In this study 



208 

 
 

 

Acidaminococcaceae (gram negative, Firmicute phylum) were profoundly reduced in both the 

CD and UC cohorts compared to controls. This genus has previously been shown to be 

associated with a dysbiosis seen in type 1 diabetes in a paediatric cohort (331), although not 

been shown to be specifically identified in IBD previously.  

5.6.4.3. Lactobacillus 

In this cohort Lactobacilli (Firmicutes phylum) were enriched in the UC cohort significantly 

compared to CD and controls. In one published study, over 11 different types of lactobacillus 

species were shown to be altered in UC compared to controls (332) (some relatively increased, 

others decreased). Lactobacillus was also found be shown to be higher Crohn’s samples in a 

different study (82) using mucosal samples. 

Probiotics, including Lactobacillus species have been postulated as a treatment for IBD (103). 

In a mouse model administration of one species (L. crispatus) was found to aggravate 

chemically induced colitis, whilst another species ameliorated it (L. fermentum). From 16S 

rRNA sequencing it is not possible to classify to a species level and so it is not clear which 

Lactobacillus was higher in the UC group in this study.  

5.6.4.4. Streptococcus 

Similarly, Streptococcus (also Firmicutes phylum) was significantly lower in CD in this cohort. 

The recent Italian paper also highlighted this bacteria as a significant IBD microbiota 

biomarker (128). Contradictory to this finding, a paediatric study showed a gain in 

Streptococcus taxa in treatment naive paediatric Crohn’s patients, (330) but this has not been 

reported in adults.  
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5.6.5 Integration of data 

The statistically significant microbial genera, as shown by differential abundance, and the 

highly discriminate metabolites from each biofluid (r value with p<0.05) were correlated and 

ranked according to Spearman’s analysis.  

Overall there are seen to be more significant, and stronger correlations between bacteria and 

faecal metabolites than urinary ones, as may be expected. In the stool samples in Crohn’s there 

were 9 positive associations, and one negative association between bacteria and metabolites. 

The strongest correlation was with acetate and Veillonellaceae, the only negative was with 

Acidaminococcaceae and alanine. The Spearman correlation coefficient was less strong for UC 

than for Crohn’s, which was also the finding seen by Santoru et al (128). In faecal water 

samples of UC patients Acidaminococcus was the strongest influence with 3 positive metabolic 

associations, and Lactobacillus and Streptococcus had one each. This demonstrates clearly that 

gut bacteria are directly altering the metabolic constituents of the stool.  

In urine there were less metabolic relationships identified, although Veillonellaceae was 

positively linked to hydroxyisobutyrate and inversely related to trigonelline in Crohn’s. 

Acidaminococcus was negatively associated with alanine in the same group.  

In healthy adults there are no direct correlations of either urinary or faecal metabolites with the 

bacteria, this is clearly because the specified bacteria are the ones relating to disease in this 

group.  

This study tested the feasibility of integrating cross-sectional omics data in a cohort of IBD 

patients and controls, to demonstrate patterns and relationships between the gut microbiota and 

metabolic markers in urine and stool. These results suggest that a larger study with a similar 

integrated design will reveal more about microbial-host-metabolic mechanisms and drive 
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forward the understanding of the role of the gut microbiome in pathogenesis, progression and 

treatment of IBD.  

Without further correlating the function of the microbiome with metabolic products, the 

significance of dysbiosis in IBD cannot be properly understood. Multi-omic approaches can 

offer more than metabolic profiling alone, to help draw out meaningful and clinically relevant 

information. The natural development of these studies is to further incorporate proteomics and 

genomics to demonstrate functional relationships within an individual, with a high degree of 

confidence.  

This study successfully demonstrates that integrating these omic technologies is an important 

step forward in robustly associating specific bacteria with IBD related metabolic perturbations.  

 

5.6.6. Study design and Limitations  

This was a pilot study to test the feasibility and value of combining multi-omic datasets in IBD. 

Although this study has demonstrated methodology to combine metabolic and microbial 

signals in a well phenotyped group of patients, the major limiting factor is the small group 

sizes.  It is a novel study design, integrating 3 different datasets to establish direct links between 

bacteria and the metabolic state of the patients, but ideally more samples would improve the 

power of the study.  

Although 16S rRNA gene sequencing is a powerful method of measuring the bacterial 

composition of the microbiome to a genus level, it lacks the specificity to accurately describe 

species, because at this level the read sequences are nearly identical to other bacteria in the 

reference database (333). Further to this, there may be multiple strains of each bacterial species, 
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each with separate metabolic functions (333) which cannot be described by 16S. Whilst this 

method can be used to infer the metabolic capacity of a microbial community by correlating 

phylogenetic trees and clusters of genes shared between taxa, it remains inference not 

measurement. Other authors have done this type of pathways analysis (128) but more work is 

needed with these bioinformatic tools to improve the accuracy of enrichment analyses (334). 

In contrast, metagenomics (high through-put or shot-gun sequencing) examines the entire 

genetic material in a sample, and if sufficient sequencing depth is applied, also holds the 

potential to directly assess metabolic microbial potential and function (335). Additionally high 

through-put or shot-gun sequencing also identifies non-bacterial organisms (archaea, viruses, 

virophages, and eukaryotes) which have also been proposed to contribute to host immune 

response regulation (336). The pay-off for this superior taxonomical and functional resolution 

of metagenomics however, is time and cost. 

The challenge of discovering correlations between metabonomics and gut bacteria remains 

difficult when co-handling two (or three) large sets of multivariate biological data (337). As 

such there are no benchmarked and validated computational approaches, especially for 

metabonomics (334). In this study the data has been analysed for co-occurrence detection, and 

biological associations have been shown between significant bacteria and metabolites. 

Alternative approaches used with metagenomics data and mathematical modelling are network 

inference tools such as SparCC or CoNet (338), however these have not be verified for 

metabonomic data (337). It may be possible to develop these network construction tools for 

integrating metabolic and bacterial data, which may capture more biological correlations.  

As described earlier the microbiome composition is also affected by multiple external factors, 

to a lesser or greater extent according the individual. These include (amongst others) 
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medication, age, smoking, environment, antibiotics, surgery (93) and the effects on the 

microbiome of each of these is variable and immeasurable (321). To account as fully as possible 

for this, accurate phenotypic information was taken from patients, although as a real life cohort, 

the groups were heterogeneous in some aspects, for example an older UC cohort.  

Additionally in this study the stool microbiome was measured. This was chosen because it is 

non-invasively obtained, easily handled and did not require bowel cleansers for sample 

collection at colonoscopy (which may affect the microbiome). However there are data 

recognising that the mucosal-associated microbiome (MAM) is not the same as the faecal-

associated microbiome (FAM) and that MAM may be altered more by active disease (79).  It 

is still worth studying the FAM because this is an easier biofluid to obtain from patients and 

therefore one that is more amenable to a larger, future study, or for development as a potential 

biomarker. 

The above factors may affect the similarity between results in this study and previously 

published work.  

When studying metabonomics the usual caveats must also be considered, including external 

influences and confounders on the metabolic signature such as diet, medication and co-

morbidities (as discussed in chapter 3). However, for the first time the metabolic data extracted 

from 2 different biofluids has been integrated with microbial data, and relationships between 

the two established. This is a helpful first step in trying to elucidate more about the gut-

microbial-host interactions, but it remains a causal link, and further mechanistic investigations 

are required.  

Future work should include a much larger study with sub-populations of well-characterised 

IBD including active and inactive disease (with corresponding faecal calprotectin). It would be 
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valuable to study faecal metagenomics to further explore the microbiome beyond just bacteria, 

and to extract functional data in order to better establish metabolic-microbiome relationships 

in IBD.  

 

 

5.7 Advances in Knowledge 

• Relationships between gut bacteria and candidate metabolic molecules in biofluids can 

be robustly established with omic integration, demonstrating a direct link between 

dysbiosis and metabolic profiles in IBD. 

• Bacteria appear to have more and stronger metabolic correlations in stool than in urine; 

and there are more seen in Crohn’s than UC, as other studies have also shown.  
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Chapter 6: Exhaled breath VOC analysis as a novel metabolic profiling technique in IBD 

 

 

6.1 Summary 

 

Volatile organic compounds from the exhaled breath of IBD patients and controls were 

analysed using SIFT-MS. Here multivariate profiling was employed to demonstrate distinct 

separation of groups according to diagnosis, and concentrations of individual VOCs were 

compared.  The VOCs which were statistically significantly different between the groups were 

used to construct a ROC with integrated areas under the curve ranging between 0.74 and 0.86.  

The discriminatory compounds identified are associated with bacterial dysbiosis and oxidative 

stress, both mechanisms implicated in the pathogenesis of IBD. 

SIFT-MS breath profiling is a novel and developing technology which will enrich our 

understanding of the volatilome as part of the metabolic signature of an individual, and may 

become a useful adjunct in IBD clinical research. 
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6.2 Aims and hypothesis 

1. The aims were to identify and analyse the exhaled breath VOCs in IBD patients and 

controls with SIFT-MS; and to compare VOC profiles between IBD subtypes, and 

between patients and controls using multivariate and univariate analytical techniques. 

2. The hypothesis was that exhaled breath VOC profiles differ in IBD and can be used to 

discriminate patients from controls. 

 

6.3 Introduction 

The exploration of novel technologies may help to address some of the unanswered questions 

in IBD and shed light on pathophysiological pathways in this disease. Breath analysis has 

related VOCs to gastrointestinal pathologies including oesophago-gastric and colorectal 

cancers (163, 339) as well as the pathological processes of dysbiosis and inflammation (162).  

SIFT-MS has previously demonstrated measurable breath patterns in coeliac disease (340) and 

upper gastrointestinal cancers (163) and this study was to test the hypothesis that breath profiles 

would be different in IBD patients when compared to controls using this technology. It was 

hypothesised that the different gut bacteria in IBD, as well as inflammatory change, would 

contribute to alterations in breath VOCs. 

As discussed earlier in this thesis, breath analysis in IBD has previously been limited to 

examination of single or a few compounds (170, 172), showing differences in individual VOCs 

but not in overall breath profiles. At the time this work was published, the only multi-compound 

study to date had been in a paediatric population (177), and whilst this showed discriminatory 

differences between IBD and controls, the cohort was unfasted, and the potentially huge impact 

of diet on the results was not addressed.  
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This study was a pilot of exhaled breath analysis in adults with well characterised IBD, and a 

matched control group. The objective was to demonstrate that alterations in breath VOC 

concentrations can be used to measure pathological processes in IBD, and also to investigate 

the origin of these specific compounds and their relationship to pathogenesis.  
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6.4. Methods 

6.4.1 Subjects 

38 patients with IBD were recruited at St Mary’s Hospital (Imperial NHS Healthcare Trust) 

who had an established diagnosis of Crohn’s disease or ulcerative colitis based on clinical, 

endoscopic and histological evidence . Disease activity was scored according to the Harvey-

Bradshaw index (207) or simple clinical colitis index (208) with active disease considered as a 

score ≥5 in each category. 

20 healthy controls were recruited with no self-reported major comorbidities. All participants 

were Caucasian. 

Exclusion criteria were: significant co-morbidities, pregnant females, those who had taken 

antibiotics or pro/pre-biotics in the last 4 months, patients with stomas or those on a therapeutic 

diet (semi-elemental, elemental or parenteral nutrition) for IBD. 

6.4.2 Exhaled breath capture 

Patients were fasted for a minimum of 4 hours prior to breath collection. Breath samples were 

collected using a standardised procedure reported in published studies (341) (163) . Patients 

and controls were rested for 20 minutes prior to collection to minimise the possible effect of 

exercise (342) and were seated during sampling.  

Mixed alveolar breath samples were captured in double layer (2 × 25 μm) Nalophan (Kalle UK 

Ltd., Witham, U.K.) bags via a 1 mL Luer lok syringe (Terumo Europe, Leuven, Belgium) 

secured with a pull tight security seal. The capacity of the bag was 2 litres and bags were 

washed with dry synthetic air (BOC Ltd.,Guildford, U.K.) prior to use. Each bag was single 

use only. 
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Participants were asked to perform a deep inhalation (as close to maximum as possible) 

followed by a complete expiration, followed by a deep inhalation again. At this point the 

plunger was removed from the syringe and participants blew through the barrel of the syringe 

to fill the bag. The plunger was immediately reinserted into the syringe and samples taken to 

the SIFT-MS laboratory within the hospital, sealed in a Tupperware container to reduce 

environmental contamination. Breath samples were analysed within 2 hours of sampling. 

6.4.3 SIFT-MS 

Breath profiles were characterised using a Profile-3 SIFT-MS instrument (Instrument Science, 

Crewe, UK). Breath samples were held in an incubator at 37oC for 5 minutes prior to sampling. 

Multi-ion mode was used with an analysis time of 60 seconds for selected VOCs. Gas carrier 

rate was set at 20mL/min with a temperature of 80oC. Table 6.1 shows the selected VOCs and 

individual precursor ions used.  

 

Figure 6.1 Example of SIFT-MS VOC profile obtained 
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Molecular formula Precursor ion  Characteristic product ions 

Acetic acid C2H4O2 NO+ NO+·CH3COOH, 

NO+·(H2O)CH3COOH 

Pentanoic acid C5H10O2 H3O
+ C5H10O2H

+ 

Hexanoic acid C6H12O2 H3O
+ C6H12O2H

+, C6H12O2H
+(H2O) 

Propanal C3H6O NO+ C3H5O
+ 

Butanal C4H8O NO+ C4H7O
+ 

Pentanal C5H10O NO+ C5H9O
+ 

Hexanal C6H12O NO+ C6H11O
+ 

Heptanal C7H14O NO+ C7H13O
+ 

Octanal C8H16O NO+ C8H15O
+ 

Nonanal C9H18O NO+ C9H17O
+ 

Decanal C10H20O NO+ C10H19O
+ 

Methanol CH4O H3O
+ CH5O

+, CH5O
+(H2O) 

Propanol C3H8O H3O
+ C3H7

+,C3H7
+(H2O) 

Butanol C4H10O H3O
+ C4H9

+,C4H9
+(H2O) 

Pentanol C5H12O H3O
+ C5H11

+, C5H11
+(H2O) 

Phenol C6H6O NO+ C6H6O
+, C6H6O

+(H2O) 

Methyl phenol C7H8O O2
+ C7H8O

+, C7H8O
+(H2O) 

Ethyl phenol C8H10O NO+ C8H10O
+, C8H10O

+(H2O) 

Acetone C3H6O NO+ NO+·C3H6O 

Dimethyl sulphide C2H6S H3O
+ C2H6SH+ 

Dimethyl disulphide C2H6S2 H3O
+ C2H6S2H

+ 

Hydrogen sulphide H2S H3O
+ H3S

+ 

Carbon disulphide CS2 O2
+ CS2

+ 

Ammonia NH3 O2
+ NH3

+, NH3
+(H2O) 

Hydrogen cyanide HCN H3O
+ H2CN+ 

Isoprene C5H8 NO+ C5H8
+ 

Table 6.1: Molecular formula of VOCs measured, precursor ions used and characteristic 

product ions detected. 
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The VOCs chosen included those previously demonstrated to be altered in gastrointestinal 

disease (163), those derived from bacterial sources (141, 162) and those abundant in the healthy 

population for comparison (table 6.1). 

 

6.4.4 Data analysis 

GraphPad Prism 6 (GraphPad Software Inc. CA, USA) and IBM SPSS statistics 21 (SPSS Inc., 

Chicago, IL) were used to analyse phenotypic data using the Mann-Whitney U test or Kruskal-

Wallis test for continuous variables and Fisher’s exact test for categorical variables.  

PCA and O-PLS-DA (as described previously in Chapter 2) were performed on the data using 

Pirouette v4.0 (Infometrix, Inc. Bothell WA, USA)(343). Datasets underwent pre-processing 

with a log10 transformation. PCA allowed visualisation of clustering and outliers. Loadings 

plots for each principal component were derived to explain the variables responsible for the 

patterns shown in the scores plots, and determine the most contributory VOCs in the modelling. 

In order to validate the models both leave-one-out cross validation (LOOCV) and 7-fold cross 

validation (7FCV) were applied. The Q2 was calculated as a measure of the predictability of 

the model.  

For each model the misclassification (confusion) matrix was derived, giving the number of 

correctly and incorrectly predicted samples in each group. From the confusion matrices the 

sensitivity and specificity of each model was calculated using the following:  

Sensitivity (%) = true positive / [true positive + false negative] 

Specificity (%) = true negative / [true negative + false positive] 

Positive predictive value (%) = true positive / [true positive + false positive] 

Negative predictive power (%) = true negative / [true negative + false negative] 



221 

 
 

 

 

 CD (actual) Control (actual) 

CD (predicted) [True positive] [False positive] 

Control (predicted) [False negative] [True negative] 

Table 6.2: Example of misclassification matrix for Crohn’s disease vs controls. 

 

Univariate comparisons of VOC concentrations between cohorts were also performed using 

the Mann−Whitney U test. A Receiver Operator Characteristic (ROC) analysis was performed 

for each comparative analysis using statistically significant VOCs (as defined by 

Mann−Whitney U test p≤0.05) for each paired cohorts. Area under the curve was calculated 

with 95% confidence intervals. 

 

 

6.5 Results 

6.5.1 Phenotypic dataset 

Phenotypic and disease data of the patients and controls is shown in table 6.3. Phenotypic data 

of the groups were compared with Chi-squared test for categorical variables and Mann-

Whitney U test for continuous variables. There were no statistically significant differences 

(defined as p value ≤ 0.05) between the groups. 
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Table 6.3: Demographic data and disease characteristics of participants 

aAs defined by disease activity index ≥5 b Medications: M1: 5-ASA; M2: immunosuppressants 

(Azathioprine/6-MP); M3:anti-TNF; M4: steroids  c Location (206): L1:ileal disease; L2: 

colonic disease; L3:ileocolonic disease; E1:proctitis; E2:disease limit distal to splenic flexure; 

E3:disease proximal to the splenic flexure d Behaviour (206): B1:inflammatory; B2:structuring; 

B3:fistulating  

 

 

Healthy 

controls 

 

CD UC 

n 18 18 20 

Age (years) 

Median (Range) 

44.5 

(29-82) 

45.5  

(21-78) 
 

 

49.5 

(23-66) 

Male  

Number (%) 
 

8 (44%) 7 (39%) 

 

10 (50%) 

Smokers 

Number (%) 

 

2 (11%) 3 (17%) 4 (20%) 

 

Active diseasea 

 

 

  

6 (33%) 

 

6 (30%) 

Medication use in preceding 

4 weeksb 

 

M1 : 6 
M1 : 18 

 

M2 : 9 
M2 : 8 

 

M3 : 4 
M3 : 0 

 

M4: 2 
M4: 2 

 

Disease location c 

 

 

L1 : 2 
E1 : 7 

 

L2 : 8 
E2 : 8 

 

L3 : 8 
E3 : 5 

Disease behaviour d 

 

 

B1 : 11 

 

 

B2 : 4 

 

B3 : 3 
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6.5.2 Multivariate analysis 

The dataset was first visualised on a PCA. There were no outliers and therefore no VOC data 

were excluded.  

O-PLS-DA models were then built for the three comparative groups: Crohn’s cohort vs controls 

(figure 6.2), UC vs controls (figure 6.3) and Crohn’s vs UC (figure 6.4). Each comparative 

group showed clear separation between classes.  

 

 

Figure 6.2: O-PLS-DA cross-validated scores for healthy controls and Crohn’s patients.  
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Figure 6.3: O-PLS-DA cross-validated scores for healthy controls and UC patients.  

Figure 6.4: O-PLS-DA cross-validated scores for Crohn’s and UC patients.  
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For each O-PLS-DA model the sensitivity and specificity was calculated from the confusion 

matrices. For each comparison the values were between 88 – 95%. The strongest model was 

Crohn’s disease vs healthy controls with a sensitivity and specificity both of 94.4% and the 

highest Q2 and R2 values (0.78 and 0.79 respectively). There were no differences in the models 

when either LOOCV or 7FCV was used. For each model the regression vectors and loadings 

were analysed to show the VOCs contributing most to the separation.  

 

 

Sensitivity 

(%) 

Specificity 

(%) 

Positive 

predictive 

value (%) 

Negative 

predictive 

value (%) 

Q2 value R2 value 

Three most  

contributory VOCs 

in  O-PLS-DA 

model 

CD vs HC 94.4 94.4 94.4 94.4 0.78 0.79 

Dimethyl sulphide 

Ammonia 

acetone 

UC vs HC 90.5 94.4 95.0 88.9 0.66 0.72 

Acetone 

Methanol 

ammonia 

CD vs UC 88.9 90.0 88.9 90.0 0.69 0.71 

Dimethyl sulphide 

Ammonia 

acetone 

 

Table 6.4: Sensitivity and specificity values of the O-PLS-DA models created; Q2 and R2 values 

and VOCs most contributory to model construction.  
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6.5.3 Univariate analysis 

Individual measured concentrations on VOCs were compared from each group. Those 

compounds which different significantly (as defined by a Mann Whitney U-test p value of 

<0.05) between the cohorts are shown in table 6.5. 

 

 p values 

VOCs 

(ppbv) 

CD UC Healthy 

control 

CD vs 

Healthy 

control 

UC vs 

Healthy 

controls 

CD vs UC 

Dimethyl 

sulphide 

556.2 

[303.9-

1143.2] 

357.2 

[228.7-

698.7] 

302.1 

[182.4-

503.9] 

0.0223 0.438 0.0815 

Hydrogen 

cyanide 

19.2 

[12.4-

27.4] 

12.8 

[10.0-

17.9] 

19.9 

[9.9-25.1] 

0.6224 0.1782 0.0276 

Hydrogen 

sulphide 

1.1 

[0.5-2.3] 

3.1 

[2.0-8.1] 

4.1 

[1.8-8.8] 

0.0062 0.539 0.0022 

Butanal 3.1 

[2.3-4.1] 

1.5 

[1.0-3.0] 

1.9 

[1.1-2.7] 

0.0270 0.9366 0.0388 

Nonanal 1.9 

[1.0-2.7] 

1.3 

[0.7-2.5] 

0.9 

[0.3-1.5] 

0.0098 0.3322 0.1924 

Ammonia 342.1 

[163.0-

470.4] 

207.4 

[133.5-

376.2] 

415.2 

[246.0-

789.4] 

0.2904 0.0101 0.0578 

 

Table 6.5. Measured concentrations in ppbv (parts per billion by volume) of significant VOCs 

from CD, UC and Healthy control groups. Median values are given with interquartile range. 

Significant p values shown in bold.  
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Dimethyl sulphide (p=0.0223), hydrogen sulphide (p=0.0062), butanal (p=0.027) and nonanal 

(p=0.0098) differed significantly between the CD group and healthy controls. In the UC cohort 

there was a significantly lower levels of ammonia (p=0.0101) compared to healthy controls.  

Between UC and CD patients the measured hydrogen cyanide (p=0.0276), butanal (p=0.0388) 

and hydrogen sulphide (p=0.0022) were different. And although they did not reach statistical 

significance, the two compounds contributing most strongly to the multivariate model 

comparing these groups – dimethyl sulphide and ammonia - showed trends towards 

significance (p= 0.0815; p=0.0578 respectively).  

 

 

Figure 6.5: Scatter plots of obtained concentrations of dimethyl sulphide and hydrogen 

sulphide, showing median and 95% confidence bars, with p values between groups shown.  

 

 

Using the discriminatory compounds (see table 6.4) for each comparison, ROC analysis gave 

an integrated AUC of 0.864 for CD vs healthy controls, 0.742 for UC vs controls and 0.828 for 

UC vs CD (table 6.6). 
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 AUC 95% confidence intervals 

CD vs healthy controls 0.864 0.749-0.980 

UC vs healthy controls 0.742 0.581-0.902 

CD vs UC 0.828 0.699-0.956 

Table 6.6: Summary of ROC analysis using significant VOCs to distinguish cohorts.  

 

Further subgroup analysis of disease activity (as defined by HBI and SCAI scores >5) did not 

show any significant differences, although the groups were small. The cohorts were too small 

and / or uneven to allow any meaningful analysis comparing disease location or medication 

use. 

 

6.5.4 Validation 

For validation of the technique, the concentrations of abundant VOCs (defined as compounds 

uniformly present in the exhaled breath of the normal population at concentrations of several 

hundred ppbv (163)) were also measured. Isoprene, acetone and methanol concentrations did 

not differ between the three groups (table 6.7) and the values fell within the ranges reported 

using this technology from other groups (163, 341, 344) 
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 Comparative studies 

VOCs 

 

CD UC Healthy 

control 

CD vs 

HC 

UC vs 

HC 

CD vs 

UC 

HC 

(163) 

 

HC  

(341)  

HC  

(344) 

Mean concentration (ppbv) p values Mean concentration (ppbv) 

Isoprene 69.3 47.8 59.4 0.9196 0.0597 0.0639 64  52 n/a 

Acetone 268.5 351.7 247.9 0.9045 0.2041 0.2737 338 372  363 

Methan

ol 

217.4 235.0 227.9 0.7123 0.6269 0.7107 248 159 238 

 

Table 6.7: Concentration of abundant VOCs in this study and comparison with healthy 

controls of other studies  
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6.6 Discussion 

This pilot study analysed exhaled breath profiles in adult IBD for the first time. Results 

confirmed the hypothesis that SIFT-MS would be able to detect a significant alteration in breath 

VOCs induced by IBD. Multivariate and univariate approaches were employed to highlight 

compounds relating to the disease which may reveal insights in to pathological mechanisms.  

Previous to this work a SIFT-MS study in a paediatric cohort was able to distinguish between 

IBD and controls, but unable to separate the sub-types (177). However this study was able to 

distinguish CD from UC with good sensitivity and specificity.  

Subsequent to this study being published, a FAIMS (field asymmetric ion mobility 

spectroscopy) breath study showed specific ‘breathprints’ associated with IBD, which also 

were distinct between Crohn’s and UC, but could not identify specific compounds for 

interpretation (178).  

Following this study, two other groups published SIFT-MS breath studies in IBD, and both 

were also able to distinguish IBD patients from non-IBD with high accuracy (173, 345).  

This work expands on earlier VOC studies (177) and demonstrates the potential utility of breath 

profiling in IBD. 

 

6.6.1 Understanding the VOC profile in IBD 

To interpret these results it is necessary to investigate the origin of the VOCs altered in IBD 

breath profiles to understand the relationship with the disease.  
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6.6.1.1. Bacterial VOCs: Hydrogen sulphide, dimethyl sulphide, ammonia and hydrogen 

cyanide 

As discussed in this thesis, dysbiosis plays an essential part in the development and continuity 

of IBD, and it has been described how other metabonomic studies have highlighted bacterial 

by-products as discriminatory markers of the disease (118, 143, 146). In this study the 

compounds which different most significantly between Crohn’s patients and controls were 

dimethyl sulphide (DMS) (increased) and hydrogen sulphide (H2S) (decreased). These VOCs 

are mostly produced by gut bacteria (346) but also, in smaller amounts, by human cells (347, 

348). They have also been linked to the initiation of mucosal inflammation (349). Patel et al 

also showed lower concentrations in hydrogen sulphide in IBD, although no difference was 

seen in DMS (177). This may be partly explained as their absolute concentrations of VOCs 

were only shown for the mixed IBD cohort (not sub-types), and in this study DMS was only 

statistically higher in Crohn’s, not in UC, so this finding may have been lost in the mixed IBD 

group. 

More recently Reider et al (345) also showed significantly elevated levels of DMS in the breath 

of IBD patients compared to controls; hydrogen sulphide levels were not statistically altered.  

Hydrogen sulphide and DMS have also been linked to several systemic inflammatory 

conditions including infective endocarditis and hepatic cirrhosis; and DMS has also been 

associated with lung cancer, cystic fibrosis and chronic hepatitis (350). Increased exhaled 

breath levels of hydrogen sulphide have been shown in patients with small intestinal bacterial 

overgrowth correlating to activity of intestinal sulphate-reducing bacteria (351). In the gut 

hydrogen sulphide has been shown to have discrepant cytoprotective and cytotoxic effects on 

colonic mucosa, and likely has a physiologic regulatory function in healthy people (348). 
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Although it has been hypothesized that gut inflammation is related to hydrogen sulphide and 

sulphate-reducing bacteria in ulcerative colitis, evidence is thus far inconclusive and the true 

role of hydrogen sulphide in colonic disease is not clear (352).  

In the UC cohort the ammonia concentration was significantly lower than that of healthy 

controls. Ammonia is formed by amino acid metabolism in the gastrointestinal tract, as well as 

directly from gastrointestinal bacteria (353). It has been studied as a volatile biomarker in a 

variety of conditions including Helicobacter Pylori infection, cirrhosis and renal failure (354). 

The colon has the highest concentration of ammonia in the body (354) but the link to IBD is 

unclear.  

Hydrogen cyanide (HCN) is produced by leucocytes and has been associated with neutrophil 

activation (355) in infection. The source of most exhaled HCN is most likely primarily from 

the oral cavity and respiratory tract. Studies have shown it to be produced by bacteria in vivo 

and in vitro studies (356). HCN has been proposed as a biomarker of specific infections 

including Pseudomonas aeruginosa infection in cystic fibrosis (357, 358), and Burkholderia 

cepacia (356) however findings of other studies have been contradictory (355). Other data 

shows HCN breath levels are actually lower in pneumonia patients (359) and therefore this 

remains controversial and the link to IBD is not clear.  

6.6.1.2 Aldehyde VOCs: butanal and nonanal  

Other significant discriminating compounds identified in CD were elevated levels of butanal 

and nonanal; VOCs belonging to the aldehyde group. Breath aldehydes are elevated in lung 

(360), breast (361), gastric and oesophageal cancers (163) and likely represent oxidative stress 

and tumour cell metabolic pathways.  
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Specifically, nonanal has been shown to be higher in the breath those with upper GI cancer 

(163), and was higher in a cohort of lung cancer patients (both smokers and non-smokers) 

(360), and ovarian cancer patients compared to healthy volunteers (362). Butanal was measured 

at a significantly higher level in the breath of both gastric and oesophageal cancer patients 

(163) as well as in lung cancer (363).  

One of the phenomena associated with inflammation in IBD is oxidative stress (364) caused 

by reactive oxygen molecules (365). Studies have linked other breath markers of oxidative 

stress (not measured in this study) including pentane (172) and ethane (170, 171) to IBD, 

suggesting that possible biomarkers of GI inflammation are detectable with this methodology.  

 

6.6.2 Applications and potential limitations of the study 

6.6.2.1 Strengths of the study 

The novel aspect of this work is that it was the first multi-compound breath study in adult IBD, 

and 19 VOCs in this study have been examined in this disease for the first time. The IBD 

patients were robustly characterised, groups were well matched and accurate metadata was 

collected. Importantly the participants were all fasted, unlike other published studies, as the 

effects of diet on the breath profile is not fully recognised. The sampling technique described 

has previously been shown to minimise exogenous contributions on VOC concentrations. For 

validation the measured concentrations of the abundant VOCs were similar to those in 4 

published studies of healthy adults (163, 341, 344) underlining the reproducibility and 

legitimacy of this technology.  
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The advantages of this modus operandi are that is immediate, non-invasive and acceptable to 

patients. Results have shown robust models separating cohorts of Crohn’s, UC and controls 

with good sensitivity and specificity. With these interesting and novel findings, further 

investigation is warranted to assess the potential application of SIFT-MS in IBD. 

6.6.2.2 Addressing potential confounders  

Although the methodology of breath sampling and measurement used this study has been 

validated in several published papers (163, 341, 366), with over 2000 published breath studies 

there is no overall consensus in design or accepted ‘normal’ values of breath metabolites. Until 

recently breath research was limited by the sensitivity and accuracy of technology but the new 

challenge is to develop reliable and reproducible standard operating procedures, as well as 

further understand the data generated. Further studies are required, on bigger clinical cohorts, 

to verify these findings, as well as allow sub-group analysis to investigate the effect of disease 

activity and location on the IBD breath profile.  

There are multiple possible confounders to breath metabolite quantification data which must 

be addressed and minimised (367). Patient demographics, including age and gender (368), as 

well as ethnicity (369) can affect VOCs, although in our group all participants were Caucasian 

and age and sex were matched between cohorts. It is known that diet has a complex 

contributory effect on breath profiles (370), and whilst patients in this study were fasted for 4 

hours, the full effect of starvation on breath profiles is not known and no accepted consensus 

for this (178).  

It is established that tobacco use can influence VOCs in a healthy population (371) (specifically 

nonanal) through inflammatory and oxidative stress pathways. Smokers were included in the 
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study although the numbers were low and there was no statistical difference in the proportion 

of smokers in the three cohorts.  

Other possible contaminants include environmental pollutants and atmospheric chemicals, 

efforts were made to reduce the potential effect of these by sealing the samples in boxes for 

transportation and performing analysis within 2 hours of sampling. Treatments that alter bowel 

flora, such as antibiotics or laxatives (372) can also affect breath analysis, and therefore patients 

on these were excluded.  

As discussed earlier, breath pentane and ethane levels have been linked to IBD. These two 

compounds were not measured in this pilot study as the VOCs chosen were hypothesised to 

relate to dysbiosis, or have been previously demonstrated to be abnormal in upper GI 

inflammation with this technique (373). Although pentane has been correlated with active IBD, 

it has also been shown to alter in other systemic inflammatory conditions including rheumatoid 

arthritis (374) so it is not clear if this is a non-specific inflammatory phenomenon (375). 

Incorporating measurement of these two alkanes may be useful in helping discriminate active 

and quiescent disease.  

6.6.2.3 Future work 

Large prospective studies are necessary to validate these findings and to underpin confidence 

in this technology and its application to IBD research. As with other metabonomic techniques, 

it is unlikely that a single breath biomarker will be discovered, more likely differences in 

combinations of relevant breath VOCs will be helpful in differentiating between diseases or 

monitoring inflammation. 

As there is no single accepted methodology of this technique, the combination of GC-MS for 

VOC identification, with SIFT-MS for quantification would be a rigorous approach for 
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validation (375), similar to the approach of combining univariate and multivariate analysis in 

previous chapters of this thesis.  

In future, the VOCs found to be altered by IBD in this study should be combined with ethane 

and pentane to test whether this improves the capability of SIFT-MS breath profiling to 

characterise disease activity in IBD.  

 

6.7 Advances in Knowledge 

• SIFT-MS breath profiles demonstrate specific patterns relating to Crohn’s and UC to 

enable them to be differentiated from control and one another with good sensitivity and 

specificity. 

• Significant candidate VOCs identified related to bacterial dysbiosis and oxidative stress 

– both mechanisms implicated in the pathogenesis of IBD. 

• Exhaled breath analysis offers a valuable and innovative approach to further 

characterising, and understanding the meaning of the metabolome in IBD.  
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Chapter 7: General Discussion and Conclusion 

‘All diseases begin in the gut’ 

Hippocrates 460 – 370 BC 

This thesis is composed of four metabonomic investigations of IBD, in exploration of refining 

the use of this science in the disease, to uncover pathogenic insights and better reveal the 

variation on the metabolic profile in different patient groups.  

7.1 Exploring metabolic profiling in different ethnic groups 

Despite South Asians being the second largest sized ethnic group in the UK, and IBD risk in 

the South Asian migrant population exceeding that of white Europeans, data in this group is 

sparse and lacking. In this chapter a large cohort of IBD patients and controls of these two 

ethnicities were profiled with urine NMR. 

One of the key findings was that metabolic profiles differ between both IBD patients and 

healthy controls when comparing white Europeans and South Asians, demonstrating the 

significant effect of ethnicity on the metabolic profile, which may have been underestimated 

in other published metabonomic studies. Furthermore, metabolites identified as separating the 

ethnic groups, hippurate and p-cresol, are bacterial co-metabolites, and whilst differences were 

also seen between the diets of the two ethnic groups, it is most likely that the inter-connection 

of ethnicity, nutrition and dysbiosis are responsible for these alterations. 

As most evidence-based guidelines are based on research from white participants, these results 

underline the importance of further research in IBD populations of different ethnicities, to 

improve an individualised approach to clinical decision making.  
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7.2 Metabolic profiling as a longitudinal technique 

This chapter was to investigate changes in the urinary metabolic profile in IBD patients over 

several years, to try to detect changes in the baseline profile that may predict future disease 

risk, and also to look at how clinical outcomes including surgery and medical treatments affect 

the metabolome. Although only a relatively small cohort, analysis showed that intra-individual 

changes were strongly outweighed by inter-individual variation, and in fact no intervention 

except surgery altered the profile significantly. This was perhaps a surprising finding, given 

the anticipation that metabonomics may be a useful tool in longitudinal studies.  

From these results, whilst only a pilot study, it is clear that further larger studies, specifically 

designed to examine changes over time in the individual IBD metabolome are necessary, if 

metabolic profiling is to be applied to monitor dynamic outcomes such as inflammatory 

resolution, or responses to treatment.  

7.3 Pilot inter-omic exploration of IBD 

Through examining different biofluids it has been seen that the metabolic signal in urine is 

stronger in Crohn’s disease, and in faecal water UC has a stronger effect. This is consistent 

with data from other studies, and is likely due to the fact that faecal water metabolites are 

mostly colonic in origin and urinary metabolites reflect more systemic physiology. This may 

direct future study design in the choice of biofluid selected in exploring particular diseases.  

Using several complementary ‘omic’ approaches together enables the direct relationship 

between microbial disruption and metabolic end products to be established, which previously 

was only hypothesized. An extrapolation of this design in a larger selective cohort could tie 

together specific microbial-metabolite mechanisms otherwise shown in ex-vivo work. 
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7.4 Novel method of analysing the IBD metabolic profile with breath VOC profiling 

Moving forward alongside biofluid metabonomics the volatilome is a growing area of interest, 

and this chapter demonstrated distinct findings in breath related to IBD. Subsequently 

published studies have confirmed similar findings (173, 345) and endorsing SIFT-MS breath 

profiling as a potentially valuable research strategy, and a non-invasive and highly acceptable 

methodology. 

7.5 Lessons learnt from this PhD 

This thesis is the summation of several years of work, during which time the projects evolved 

and changed. In drawing together and analysing these results, aspects have been highlighted 

which could be improved upon – both practical and in scientific design, in order to maximise 

and improve results for future projects. 

Patient recruitment was lengthy and time consuming and a large part of the time spent for all 

the studies. In future, a multi-site collaboration with shared data and sample collection would 

improve the efficiency of patient recruitment. IBD research specialist nurses in the clinic 

environment and publicising the study directly to patients may also help. 

For a subsequent ethical approval it would be logical to include all studies in a combined 

application covering sampling of all biofluids in the same patient cohort, making a large 

integrated study much easier to perform. Similarly all patient phenotype data should be 

accumulated in a large database allowing stratified groups of each phenotype to be easily 

identified and selected.  

The ethnicity study showed it has been difficult to extrapolate the effect of diet on the results 

found. To disentangle the relationship between diet, the microbiome and the metabolic 
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signature, in future even more detailed dietary data should be recorded from participants. 

Retrospective dietary recall is poor, and prospective food diaries are more accurate, however 

as these are time consuming it may be appropriate to apply this to specific subgroups only. This 

may further allow the host- nutrition-microbiome interaction to be explored. 

 

7.6 Direction of future work 

The ethnicity chapter has emphasised that there are important differences between IBD patients 

of white and ethnic minority groups, and there is a significant lack of research in this area. In 

further investigating this future studies should be powered to investigate first and second 

generation South Asians, to examine the effect of migration, environment and genetics.  

In this group it would be interesting to perform genotyping, specifically for alleles associated 

with IBD in this ethnicity (for example HLA-DRB1*1502) to help distinguish the degree of 

influence of genetic and environmental pathogenic factors. Groups of patients of different 

ethnicities with sub-types of disease, such as isolated small bowel Crohn’s disease should also 

be compared as these specific phenotypes clinically manifest differently and this may be 

detectable in the urinary metabolic profile. 

The longitudinal metabonomic study unexpectedly did not shown significant alterations in the 

urinary metabolic profile over time. However, in further investigating this, a study with more 

IBD patients and the addition of controls, as well as more homogenous clinical groups, should 

be undertaken. An example would be treatment naïve patients newly initiated and monitored 

on biologics, with matched controls. The main limitation of the study in chapter 4 was that only 

2 samples were available for each patient, but a prospectively recruited study would allow 

multiple samples to be measured longitudinally. 
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The inter-omic analysis has demonstrated that the integration of complex datasets is feasible 

but again requires larger cohorts for endorsement. As discussed in the chapter it may be 

appropriate here to perform full metagenomics, to not only identify and catalogue the bacteria 

present, but also allow more functional profiles which can be related to metabolic pathways. 

The incorporation of serum and/or breath metabonomics could also potentially add useful 

additional information to this.  

The breath VOC findings are exciting and novel, but as with all pilot studies, larger studies are 

required to confirm and validate findings. The ideal study would involve a bigger, well 

phenotyped IBD population and matched controls. As in our study it would be essential to fast 

all participants pre-sampling, but in future studies, smokers should also be excluded until the 

specific effect of smoking on the breath metabolic profile is known.  

Subsequent to our study being published, two further SIFT-MS studies were published, also 

demonstrating the ability of breath VOCs to distinguish IBD from controls (173, 345), 

corroborating our findings. By combining the subsequent findings of other SIFT-MS studies it 

would be interesting to measure all candidate compounds identified in the three studies as 

distinguishing IBD, as well as ethane and pentane from older published investigations. This 

may improve sensitivity and specificity of area under the ROC further.  

All studies demonstrated alterations in VOCs of bacterial origin implicating dysbiosis as the 

cause, it would therefore be appropriate to demonstrate bacterial changes in the same group of 

patients with 16S profiling to show this relationship.  
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7.7 Perspective on metabolic profiling and its application in IBD research 

The advantage of using a systems biology approach, such as metabonomics, is the powerful 

unbiased data extraction, which can measure multi-level physiological and pathological 

perturbations at one point in time. The changes seen in the metabolic profile in IBD have been 

shown here to be consistent and reproducible, but aside from distinguishing Crohns and colitis 

the nuances of the more subtle changes of the disease on the metabolic profile are yet to be 

fully understood.  

One of the common criticisms of metabonomics is that it has yet to be translated into a valid 

clinical biomarker. Certainly with such complex data the challenge is to be able to decipher 

and explain the results to be able to render them clinically applicable.   

Measuring a complex, dynamic and diverse system (the patient) along with a second integrated 

complex ecosystem (the microbiome) is incredibly difficult to perform experimentally. 

Moreover the extreme heterogeneity of humans makes proving mechanistic associations highly 

challenging. The results from this thesis show that the potential value of metabonomics may 

lie in enhancing our understanding of the complex relationship between internal (microbiome 

and ethnicity) and external factors in IBD pathogenesis and progression; rather than developing 

metabonomics as a simple biomarker or diagnostic test. In trying to extract the maximal 

information from metabonomic studies it is crucial to combine this with other ‘omic’ 

technologies to determine biological relationships, and / or with other complementary biofluid 

analysis such as breath.  

The door is wide open for future studies to develop and build on the findings in this thesis to 

refine and enhance our knowledge of metabolic profiling in IBD, with the ultimate outcome of 

clinically relevant data that will improve the treatment of the disease for patients. 
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Supplement 1 

 

 

Supplement 1: Ethical approval from Research Ethics Committee for study 05/Q0403/106 

12 further amendments were approved from these original ethics. 
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Supplement 2 

20/07/12 

          Division of Medicine 

 

 

CONTROL PARTICIPANT INFORMATION SHEET 

RESEARCH INTO THE CAUSES OF INFLAMMATORY BOWEL DISEASE 

BLOOD, URINE, BREATH AND STOOL SAMPLES 

 

Dear Sir/Madam, 

 

You are being invited to take part in a research study; please take time to read the following 

information carefully. Ask us if there is anything that is not clear. Participation is voluntary and you 

will be given a copy of this information sheet and your consent form. Thank you for reading on. 

We are looking into the causes of inflammatory bowel disease (IBD) a condition which can cause 

debilitating symptoms and significantly impair quality of life. Previous research has suggested that 

genetic and metabolic factors may be important, and this research aims to study this in more detail, 

and to see whether the bacteria that live in the bowel may also affect who develops IBD. 1000 patients 

with and without IBD, and healthy individuals, will be studied using modern techniques. 

If you agree to participate, this will involve simply giving some, or all of the following: a blood 

sample (usually at the same time as routine blood tests), a urine, a stool and a breath sample, plus a 5-

10 minute chat to a doctor.  

We will then analyse the samples to find out more about the disease links to genetic factors and the 

way in which the bacteria in the bowel play a part. 

 

The results of this research will have no implications for individuals, and the samples will be analysed 

anonymously. However the research will give us a greater understanding of bowel disease, and why 

different people get different problems, and it may in future lead to the development of new 

treatments. 

Thank you for reading this information sheet. 

If you have any questions, please contact Dr Lucy Hicks or Sam Powles, who are contactable at the 

GI Unit, St Mary’s Hospital, Praed St, London W2 1NY. Tel 0203 3126678 or 07766153195 
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20/07/12 

Division of Medicine 

 

 

PATIENT INFORMATION SHEET 

RESEARCH INTO THE CAUSES OF INFLAMMATORY BOWEL DISEASE 

BLOOD, URINE, BREATH AND STOOL SAMPLES 

Dear Sir/Madam, 

 

You are being invited to take part in a research study; please take time to read the following 

information carefully. Ask us if there is anything that is not clear. Participation is voluntary and you 

will be given a copy of this information sheet and your consent form. Thank you for reading on. 

We are looking into the causes of inflammatory bowel disease (IBD) a condition which can cause 

debilitating symptoms and significantly impair quality of life. Previous research has suggested that 

genetic and metabolic factors may be important, and this research aims to study this in more detail, 

and to see whether the bacteria that live in the bowel may also affect who develops IBD. 1000 patients 

with and without IBD, and healthy individuals, will be studied using modern techniques. 

If you agree to participate, this will involve simply giving some, or all of the following: a blood 

sample (usually at the same time as routine blood tests), a urine, a stool and a breath sample, plus a 5-

10 minute chat to a doctor.  

We will then analyse the samples to find out more about the disease links to genetic factors and the 

way in which the bacteria in the bowel play a part. 

 

Involvement in this research will in no way affect your treatment.  

The results of this research will have no implications for individuals, and the samples will be analysed 

anonymously. However the research will give us a greater understanding of bowel disease, and why 

different people get different problems, and it may in future lead to the development of new 

treatments. 

Thank you for reading this information sheet. 

If you have any questions, please contact Dr Lucy Hicks or Sam Powles, who are contactable at the 

GI Unit, St Mary’s Hospital, Praed St, London W2 1NY. Tel 0203 3126678 or 07766153195 

Supplement 2: Control and patient information sheets 
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Supplement 3 

 

Supplement 3: Median values for all metabolites in all groups 
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Supplement 4 

a As measured by Kruskall Wallis; b p value corrected post-multiple comparison testing 

c As measured by Mann-Whitney U test; *bold statistically significant  

 

All patients p value across 

all three groups 

a  

q value b HC : CD c HC : UC c UC : CD c 

Lactate 0.0532  0.8174 0.112 0.0779 

Alanine 0.2287  0.2658 0.0984 0.5069 

Acetate 0.4443  0.3814 0.5256 0.2532 

4-cresol 0.5891  0.3795 0.4270 0.8370 

Succinate 0.3412     

Citrate 0.0719     

Dimethylamine 0.2080     

Creatine 0.0974     

TMNO 0.0891     

Methanol 0.0334*  0.0074* 0.1430 0.4557 

Glycine 0.0105* 0.0289* 0.0156* 0.4864 0.0069* 

Methyl-histidine 0.2133     

Guanidoacetate 0.2025     

Glycolate 0.2794     

Creatinine 0.1688     

Trans-aconitate 0.9843     

Hippurate <0.0001* 0.0447* <0.0001* 0.0003* 0.1640 

Formate 0.0141* 0.0474* 0.5671 0.0056* 0.0243* 

Trigonelline 0.0588     
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White Northern 

Europeans 

p value across all 

three groups a  

q value b HC : CD c HC : UC c UC : CD c 

Lactate 0.4098     

Alanine 0.0265*  0.0100* 0.0517 0.7575 

Acetate 0.8974     

4-cresol 0.3043     

Succinate 0.3695     

Citrate 0.0353*  0.5140 0.0572 0.0114* 

Dimethylamine 0.7462     

Creatine 0.1750     

Trimethylamine-N-oxide 0.4648     

Methanol 0.0134* 0.0263* 0.0031* 0.1027 0.3578 

Glycine 0.0154* 0.0289* 0.0056* 0.5198 0.0536 

Methyl-histidine 0.2252     

Guanidoacetate 0.5549     

Glycolate 0.8482     

Creatinine 0.1485     

Trans-aconitate 0.9402     

Hippurate <0.0001* 0.0447* <0.001* 0.1317 0.0024* 

Formate 0.2246     

Trigonelline 0.1677     

 

a As measured by Kruskall Wallis; b p value corrected post-multiple comparison testing 

c As measured by Mann-Whitney U test; *bold statistically significant  
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South Asians 

p value 

across all 

three groups a  

q value b HC : CD c HC : UC c UC : CD c 

Lactate 0.5600     

Alanine 0.2067     

Acetate 0.7719     

4-cresol 0.2248     

Succinate 0.0055* 0.0132* 0.0013* 0.0701 0.0644 

Citrate 0.2937     

Dimethylamine 0.3265     

Creatine 0.3633     

Trimethylamine-

N-oxide 

0.0046* 0.0237* 0.0007* 0.1127 0.0368* 

Methanol 0.6230     

Glycine 0.4538     

Methyl-histidine 0.8000     

Guanidoacetate 0.3957     

Glycolate 0.6324     

Creatinine 0.3452     

Trans-aconitate 0.6727     

Hippurate 0.0022* 0.0447 0.0004* 0.0508 0.0459* 

Formate 0.0068* 0.0474* 0.0722 0.0019* 0.6604 

Trigonelline 0.3226     

 

a As measured by Kruskall Wallis; b p value corrected post-multiple comparison testing 

c As measured by Mann-Whitney U test; *statistically significant; bold remains significant post 

multiple comparison testing 

 

 

 

 

 



251 

 
 

 

P values for each metabolite comparing between ethnicities 

 NE : South Asian 

Crohn’s a 

NE : South Asian 

UC  a 

NE : South Asian 

Healthy controls a 

Lactate 0.5274 0.1162 0.0216* 

Alanine 0.9965 0.0058* <0.0001* 

Acetate 0.4146 0.4782 0.5996 

4-cresol 0.0019* 0.0003* <0.0001* 

Succinate 0.0099* 0.0114* 0.6939 

Citrate 0.9133 0.1693 0.0397* 

Dimethylamine 0.5800 0.0677 0.1525 

Creatine 0.5505 0.1004 0.7637 

Trimethylamine-N-oxide 0.0001* 0.0336* 0.1167 

Methanol 0.4401 0.6910 0.0016* 

Glycine 0.1648 0.7691 0.0808 

Methyl-histidine 0.7113 0.1973 0.6227 

Guanidoacetate 0.4827 0.6253 0.6979 

Glycolate 0.8652 0.8141 0.3139 

Creatinine 0.1846 0.0938 0.7637 

Trans-aconitate 0.9341 0.0925 0.2390 

Hippurate 0.0016* 0.0011* 0.0032* 

Formate 0.4046 0.6253 0.0229* 

Trigonelline 0.5622 0.5279 0.3964 

a As measured by Kruskall Wallis 

Supplement 4: All p values and corrected p values (q values) for comparisons across 3 groups, and 

between two diagnoses for all ethnicities and separately for white Europeans and South Asians. P 

values for each metabolite comparing groups of different ethnicities. 
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