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Abstract 

The aim of the project is to develop high performance, lightweight, durable, and 

environmentally friendly construction materials. Construction materials should have 
high compressive and flexural strength, low porosity, low thermal conductivity, low 

shrinkage and high water vapour permeability (breathability). The following 
materials were selected to achieve this aim; lime was selected as the base matrix 
material with hemp (fibres and shives) and wood glue (Poly vinyl acetate, PVAc). 

Specially selected nanomaterials were used as fillers. The properties of the 
developed material were used to design an eco-friendly wall consisting of a central 

'Core' which will be the load bearing element, highly insulative layers with low 
thermal conductivity 'Insulators' and outer rendering materials for enhanced 
aesthetics purpose and breathability 'Renders'. The research conducted in this project 

enabled a number of different construction materials to be developed, each 
exhibiting their own characteristics to enable the aims and objectives of the project 

to be achieved.  
A summary of the findings is as follows: 
A load bearing wall requires relatively high compressive and flexural strengths of 

about 5 MPa and 4.0 MPa, respectively or higher. The 'Core' material designed 
consisted of 10 wt. % hemp fibres, 12 % PVAc/L, 4 wt. % nZnO (nanozinc oxide) 

and lime (NHL5, which its quantity was 1 kg for each batch of 4 samples for the 
whole project) and prepared using air curing method. The compressive strength was 
17.7 MPa and the flexural strength was greater than 7.0 MPa, which were the highest 

results of strength throughout the project. The same mentioned mixture (10 wt. % 
hemp fibres, 12 % PVAc/L, 4 wt. % nanozinc oxide of lime) was cured using 'Oven-

drying', the strengths in compression and flexure were still considerable, being 10 
MPa and 4 MPa respectively which were more than the minimum limit of 
loadbearing material. This material, therefore, due to its high compressive strength, 

used as the 'Core' load bearing element of the proposed wall in the absence of a 
timber framework.  

The 'Insulator' was developed using a water removal 'Solvent exchange' technique 
and the mixture was 20 wt. % hemp shives, 12 % PVAc/L, 4 wt. % nanozinc oxide 
and lime. The thermal conductivity was 0.06 W/mK, much lower than that of pure 

lime which was 0.16 W/mK. The 'Insulator' will be applied in two layers, one on 
either side of the 'Core'.  

The 'Render' was developed using lime and 4 wt. % nanozinc oxide by wt. of lime 
and cured via air curing. It possessed a low porosity (18 %) in comparison to that of 

pure lime (36.4 %) and low thermal conductivity,  (0.13 W/mK) in comparison to 

pure lime 0.16 W/mK cured by solvent exchange. 
Shrinkage was lowest in a Render material containing 4 % wt. nZnO, averaging 750 

microstrain (µs) compared to the control sample (lime only) of 2428 µs. 
Chopped fibres, PVAc and nanozinc oxide were used for the first time with lime and 

no other examples of this exist in the literature  (in the best knowledge of the 
researcher). Water vapour permeability (breathability), which is a beneficial property 
for construction materials was generally enhanced by using nanomaterials and the 

optimum breathability was achieved by adding 2 wt. % nanoclay to lime. 
The results achieved were used to design an eco-friendly wall in accordance with the 

Building Regulations. The U-value target was 0.18 W/m2K and the results show that 
a decrease in thickness of 40 mm could be achieved by using optimum materials 
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developed in this project in comparison to traditional hemp shives/Lime walls, in 
addition to eliminating timber studding which is normally required to provide 

support to non-loadbearing lime based walls.  
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 Introduction Chapter 1 -

 Chapter Overview 1.1

 Background and Motivation 1.1.1

There is a general tendency to find new products that do not generate carbon 

emissions when they are manufactured or used later (Y. Liu, Kuang, Huang, Wu, & 

Wang, 2009). The aim is to move to green renewable energy and environmentally 

friendly materials (Anderzej K. B., Adam Jaskiewicz, and, & Walczak, 2012; 

Ariadurai, 2013; Harlin & Vikman, 2010; Laadila et al., 2017; Madhuri B. M., 

Prashant S. K., Aravin p. p., & S., 2012; Saba, Tahir, & Jawaid, 2014). The 

construction materials industry is a high emitter of carbon dioxide and, therefore, the 

driver behind this project is to contribute to a more eco-friendly environment by 

developing low carbon construction materials for use in buildings. Construction of 

buildings in the UK is traditionally done using common building materials such as concrete 

blocks, bricks and less so, timber. Although timber is a sustainable product, concrete blocks 

and bricks require a lot of energy input during fabrication, concrete especially being a large 

producer of CO2 during its manufacture (a5verage, 0.74 kg CO2/1 kg concrete) (Turner & 

Collins, 2013) in comparison to 0.77 kg CO2/Manufactured kg lime (EuLA, 2014). The 

quantity of CO2 emissions, however, will be calculated for 1 m
3
 of concrete and compared to 

lime/hemp nanocomposite in Chapter 8 after the densities of the proposed wall layers are 

found in Chapter 7. 

 Reducing energy consumption either domestically or industrially is an important part of 

achieving the UK Government’s legally binding commitment to reducing greenhouse gas 

emissions by at least 80% (relative to 1990 levels) by 2050. New, low embodied energy 

construction materials are urgently required to enable the construction industry to 

revolutionise and drastically decrease its carbon footprint. A barrier to using lime and hemp 

as building materials is that a large thickness of material is required to meet thermal 

transmission requirements (U Values) as required by the Building Regulations. A large 

thickness not only negatively impacts on the footprint of the building, but it also influences 

the drying time meaning shuttering has to remain in place for a longer period of time and, 

therefore, extends the construction time. Damp and cold weather periods further aggravates 

this issue. The research employed rapid drying of the samples as soon as was practically 

possible to determine if accelerated water removal is worth pursuing as a technique for on-

site construction. These methods included a solvent exchange technique using isopropanol 
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and oven drying to hasten the water removal but with the aim of not having an adverse effect 

on material properties. 

 The Third Industrial Revolution 1.1.2

In May 2007, the European Parliament issued a formal obligatory declaration 

(Rifkin, 2011) for all 27 member countries in the European Union to be committed 

to the third industrial revolution that transforms Europe and possibly the world to a 

post carbon era. This revolution means transformation from re liance on the great 

energy stations to millions of residential units and homes which are rearranged to be 

minor energy stations connected by a distribution net to meet the demand for energy 

in residential and industrial buildings or in transportation systems. Distribution of 

electrical energy will be controlled by a computer program on the web according to 

the demand. The prices will be defined when and where the peak demand happens. 

These minor stations or mini-plants will be provided by all kind of energy methods 

and their instruments (solar, wind, bio, hydrogen and geothermal) energy with a 

storage of energy technologies. The prices of a unit energy will be defined according 

the demand level. Rifkin, 2011, reported that "The foundation of the green economy 

and the third industrial revolution consists of five pillars each of which only 

functions in combination with one another: 

1 Transition from fossil to renewable energies 

2 Transformation of all buildings into mini-generating plants 

3 Development and build-up of energy storage technologies and capacities (e.g. 

hydrogen) 

4 Capitalizing on internet technology for the development of a smart and bi-

directional (peer-to-peer) energy-sharing-grid 

5 Transformation of the transportation system to electric plug-in and fuel."  

 Redesigning Requirements of the New Clean Energy Building 1.1.3

The key point here is the transformation of all buildings to mini generating plants. 

This means a rearrangement of the present buildings and the future buildings to be 

fitted with green energy and built from environmentally friendly and sustainable 
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materials. This means high performance, durable, lightweight and high energy 

efficiency buildings are needed to ensure working continuity of this small energy 

station (house or building). This kind of building is possible by high performance 

lightweight nanocomposite materials, because it easier to redesign the houses and 

buildings in comparison to heavy concrete buildings. Hemp fibre reinforced lime 

nanocomposites (nanosilica, nanocellulose, nanoclay, expanded graphite, nanozinc 

oxide and so on), which forms the basis of the present project, is more lightweight 

than concrete and is a good candidate to meet this requirement. 

 Redesigning Buildings Considering Solar Roofs and Facades 1.1.4

New roofs can be constructed from transparent solar energy materials to achieve 

many tasks, one as a roof, and another as an energy generator. It may also act as 

energy storage for batteries in the home or transparent facades of buildings as shown 

in Figure 1.1 and Figure 1.2 (Ohannessian, 2015; Ulbikas, 2017). The windows and 

doors may act as solar energy panels Figure 1.3 (London, 2017). If the building 

material is from hemp fibre reinforced lime nanocomposites as in this project, these 

consideration should be taken into account in structural design regarding of 

calculating the roof loads and the facade loads of clean energy tools exerted on the 

hemp fibre reinforced lime nanocomposites walls. 
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Figure ‎1.1 Transparent 

solar roof (Ohannessian, 

2015).  

Figure ‎1.2 Building 

transparent façade 

generating solar 

energy (Ohannessian, 

2015; Ulbikas, 2017). 

Figure ‎1.3 Solar window 

(London, 2017). 

 Redesigning Buildings Considering Battery Storage and Heat Collector 1.1.5

According to the third industrial revolution plan, houses should be mini energy 

stations. The home may be redesigned for battery storage as well as saving energy to 

supply power for electric vehicles or to feedback energy to the buildings or grid. 

This means homes must be redesigned to resist the aggressive acids of the battery 

system or redesign a special battery storage room in the building. 

 As for the heat collector, the home should be redesigned as a heat collector for 

boilers and for the heating system, see Figure 1.4 and Figure 1.5 (Griffiths, 2015). 

 

Figure ‎1.4 Roof heat collector for hot water and heating combined with other 

heat resources (like biogas) (Griffiths, 2015). 
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Figure  1.5 Home redesigned for roof solar energy, storage of batteries, and 

transparent door and window solar energy (Griffiths, 2015). 

 Redesigning Buildings Considering for Bioenergy 1.1.6

Furthermore, other redesigning includes a bioenergy device which could be built into 

the kitchen to produce biogases for cooking. However, this must be designed using 

fire-proof insulator walls which may be built from hemp/lime nanocomposites which 

were considered as good fireproof. It was reported that the internal face of a hemp 

lime wall was exposed to fire and it resisted for 73 minutes with respect to insulation 

and load bearing capacity (Gregor, 2014). Some tests were conducted to justify fire 

resistance for the French manufacturer Isochanvre and the various forms of material 

were classified as M0 and M1 "non-flammable materials" and M2 which is ‘low 

flammability".  

 Redesigning Buildings Considering Vertical Wind Turbines 1.1.7

As for wind energy, special reinforced supports must be erected on the building roofs 

for fixing the small vertical wind turbines; the columns and walls under these 

locations will be designed to carry the dead, live and dynamic loads, see Figure1.6 

and Figure 1.7, both of them are from the rooftop wind turbine kinds (Nezeraud, 

2012; T. Singh, 2012). These arrangements are applicable on the other methods and 

devices of clean energy like hydrogen production from water for vehicles fuel, 
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device of the geothermal energy produced from the difference of temperature 

degrees of heat inside and outside the earth to generate electricity or on the high heat 

at large depths in the ground to inject water and using the generated steam operating 

the electric generators. All these devices should find their way to be considered in 

the building construction properties which needs special composite construction 

materials.  

  

Figure ‎1.6 Domestic roof vertical wind 

turbine (Nezeraud, 2012). 

 

Figure ‎1.7 Group home roof vertical 

turbines (Nezeraud, 2012). 

The recharged batteries, fuel gas and hydrogen bottles are sold to the fuel station for 

vehicles and cooking, energy uses and these, as it was mentioned, need to be 

designed into the building with special considerations, for example the storage of 

batteries requires durable construction materials against acids and fire (Rifkin, 2011). 

 Redesigning Buildings Considering High Heat Isolation (High Energy 1.1.8

Efficiency)  

The new building should be designed to meet a low energy requirement. High 

insulative materials are required for walls, roofs and floors for energy conservation 

along with their ability to be durable and loadbearing materials. 

The aim of the present research is to investigate and achieve new forms of eco-

friendly construction materials with good heat isolation, strength (loadbearing), low 

porosity, low shrinkage and high breathability.  

 Research Aims and Objectives 1.1.9

The aim of this research is to develop a fibre (hemp fibres/ or fibre glass for flexural 

and compressive strength improvement or hemp shives for heat insulation 
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improvement) reinforced lime nanocomposites. Chopped fibres to be used are 

measured in mm length. The material is fibre reinforced lime nanocomposite 

(nanoclay, nclay, nanosilica, nSiO2, expanded graphite, EG, nanofibrillated 

cellulose, nFc and nanozinc oxide, nZnO blended with lime binder). To investigate 

and improve the strength, porosity, shrinkage, water vapour permeability 

(breathability) and thermal properties of this material by adding nanomaterials and 

hemp fibres or fibre glass in small proportions. Upon the best of the researcher's 

knowledge, limited research has been attempted to find materials that would exhibit 

most of the relevant properties for building construction through the addition of 

numerous nanomaterials and fibres (natural and industrial). The main aim is to 

transform the material from non-loadbearing to loadbearing mateial. 

 The focus of previous research studies concerned enhancing only on one or two 

properties such as porosity or thermal conductivity (T. Gao, Sandberg, & Jelle, 2014; 

Maddalena & Hamilton, 2017; Rollins, Collet, & Andres, 2018). This project is 

unique since it tries to design a proposed wall (Sec.1.9, Fig 1.10) by developing new 

building materials from hemp/lime nanocomposites with enhanced properties by 

adding nanomaterials (nanoclay, nclay, nanosilica, nSiO2, expanded graphite, EG, 

nanofibrillated cellulose, nFc and nanozinc oxide, nZnO) of small proportions and 

fibres (glass or hemp which are not nanosize). Polyvinyl acetate or wood glue 

(PVAc) will be used to enhance the adhesion between fibres and lime and to increase 

both flexural and compressive strength. Specimens of hemp/lime nanocomposites 

will be tested in the lab. Ideally, the hemp/lime nanocomposite will be light-weight 

compared to concrete and durable. It will have sufficient flexural and compressive 

strengths (loadbearing material) to withstand the expected loadings, low thermal 

conductivity (heat isolation) to save energy, low porosity against water ingress, low 

shrinkage to avoid cracking and good water vapour permeability, in comparison with 

concrete, for a healthy environment inside the building by eliminating condensation. 

It should be easy to install and can either be precast or cast in-situ. 

In the current project, from the point that it was mentioned above, many of the 

studies that discussed the methods of improving one or more properties will be 

highlighted. To help in choosing the right construction material and the proper 

nanomaterials, one must focus on the main properties of nanocomposite construction 
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material for building constructions which are flexural and compressive strength, 

porosity resistance, shrinkage to avoid the weakness of cracking and water vapour 

permeability (breathability). Thermal conductivity is studied to achieve heat 

isolation. The aim is also to establish the nanomaterials which will enhance these 

aforementioned properties. However, different studies that explored improving other 

properties will be mentioned but not in detail, such as creep, thermal stability, UV 

resistance and contamination resistance. 

Three methods of curing will be used (Air, Solvent exchange and Oven curing) to 

test the effect of moisture content and drying on the properties of the materials.  

 Nanomaterials, Fibres and their Potential as Constituents in High 1.2

Performance, Lightweight Building Materials 

The emergence of nanomaterials has the potential to enhance the behaviour of lime 

based materials. In building and construction, one has to consider the properties of 

durability, flexural and compression strength, thermal conductivity resistance (heat 

isolation), porosity resistance (water proof) and ultra violet resistance (Saba et al., 

2014).  Fortunately, all these desired properties can almost be improved by using 

nanomaterials and fibres as it will be explained in Chapter 3. This matter has 

recently motivated researchers to use biomass nanocomposites in building 

components because it is environmentally friendly, sustainable and biodegradable 

(Anderzej K. B. et al., 2012; Ariadurai, 2013; Saba et al., 2014). Nanomaterials in 

this project will be nanosilica (nSiO2), nanoclay (nclay), Expanded Graphite (EG), 

nanofibrillated cellulose (nFc) and nanozinc oxide (nZnO). 

 Hemp Shives and lime 1.3

Homes and buildings recently in the UK are made of hemp shiv and lime inside 

timber or steel frames; by contrast, in France they started more than 50 years ago 

Figure 1.8 and Figure 1.9 show example hemp lime of buildings. The shives in the 

stem compose of 60-80% which contains the majority of cellulose in the hemp, 34-

48 %. Hemicellulose forms 21-37% and lignin 16-28% of the hemp plant (Cigasova, 

Stevulova, Terpakova, Sicakova, & Junak, 2013). Hemp is energy modest (no need 

for more energy in its life production), health friendly (non-toxic) kg CO2/m3 and 

carbon friendly (minimal pollution of CO2 in its whole life). It is an organic material 
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derived from the plant Cannabis Sativa and not much fuel is needed to grow and 

harvest it. Hemp (Cannabis Sativa L.) is grown to get good strong fibres for multi-

purposes, food oil from their seeds and core shiv for animal beds and now for 

insulator panels in construction. Hemp contains less than 0.3 of tetrahydrocannabinol 

(THC) which is the legal limit to be accepted by law – not considered as a drug like 

marijuana which is a plant resembling hemp (Peev, 2012).  

 

 In this project, the aim is to develop high performance materials for lightweight 

construction. There were three initial choices of composites to achieve the goals by 

using nanomaterials and fibres for improving the main properties (flexural and 

compressive strength, thermal conductivity and porosity). Shrinkage and water 

vapour permeability were also studied but they were of secondary importance. The 

choices were:  

1 Fibre-reinforcement polymer nanocomposite (transparent polymers 

like polycarbonate). 

2 Fibre-reinforcement geopolymer nanocomposites. 

3 Fibre-reinforcement biomass lime nanocomposite. 

  

Figure ‎1.8 Hemp lime home under 

construction (Benhaim, 2013) 

Figure ‎1.9 Hemp lime home (Antonelli, 

2015) 

The third choice of fibre-reinforced biomass nanocomposites was adopted in the 

present project due to their key characteristics, namely environmentally friendly, 

sustainable and their ability to be developed. 
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 Fibre Choices for Improving Strength 1.4

The choice adopted for this study was fibre reinforced hemp lime binder 

nanocomposite. The main aim was to enhance material properties to give a n 

environmentally friendly, sustainable, biodegradable, breathable and a cost effective 

material for eco-friendly home and building construction. 

The goal is to transform hemp lime binder composite into a load bearing material, 

either as cast in-situ or pre-cast as panels. To date, hemp lime binder composite is 

used in buildings and houses as walls, roofs and floors but supported by a timber or 

steel frame. Panel infills are about 1m2 in elevation.  

As for the fibre choices, hemp fibres or fibre glass, were selected to develop the 

flexural and compressive strength of lime nanocomposite as load bearing materials.  

Fibre glass choice will be used for comparison with hemp fibres. As for 

nanomaterials, as a result of reviewing the literature; nanosilica, nanoclay, 

nanocellulose and expanded graphite were selected with different percentages to 

study and optimise their impact on the flexural and compressive strength. In the 

present project, an enhancement in strength was found by using nanomaterials but 

the best improvement was by using chopped fibres, 6 mm long fibre glass or 6-10 

mm long hemp fibres. Based on knowledge to date, this is the first time chopped 

fibres from glass or hemp were mixed with lime which to give a high flexural and 

compressive strength. Also this is the first time the material was transformed into a 

load bearing material. It was reported that a load bearing material must have a 

compressive strength in the region 3-5 MPa, (de Bruijn, Jeppsson, Sandin, & 

Nilsson, 2009). According to the literature, the hemp fibres were used as multilayers 

of fabric or the hemp stem was crushed as shives with its bast (including fibres). 

They were then mixed with lime but the nanocomposite was still very weak and non-

load bearing, about 0.2-0.5 MPa (Evrard, 2003) or about 0.4-1.2 MPa (Arnaud, 

Cerezo, & Samri, 2006). 

 Adhesive Enhancement for Fibres 1.5

Polyvinyl acetate was selected as an adhesive to enhance the bond between the fibres 

(hemp and glass) and the lime binder; as a result, the compressive strength was 

increased many times. Since hemp fibres are eco-friendly, biodegradable and 
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sustainable, the hemp fibres were the preferred choice in place of the fibre glass.  

Poly vinyl acetate (PVAc) is made synthetically from plastic origin, but it was made 

from organic origin (animal bones, hooves and hides) before discovering the plastic 

origin. The plastic origin of PVAc (white glue) is nontoxic and biodegrades slowly 

(Zara, 2016) and that means both origins are nontoxic and biodegradable. 

 Nanomaterials for Enhancing Strength 1.6

Nanosilica, nanoclay, nanocellulose and expanded graphite were adopted to study 

their impact on enhancing the strength (flexural and compressive) of lime and hemp 

(fibres or shives) lime composites. The choices were made according to a literature 

review as shown in the Chapter 2. 

 Nanomaterials for Thermal Conductivity 1.7

For the thermal conductivity, nanosilica, nanoclay and nanozinc oxide were used to 

study their effect on the thermal conductivity. Again, these nanomaterials were 

selected based on an extensive literature review.  

 Material Choices for Porosity  1.8

For porosity, nanosilica, nanoclay, expanded graphite and nanozinc oxide were 

selected based on a literature review. In addition, nanozinc oxide has antibacterial 

properties and is compatible with human body cell properties which makes it a 

promising material in construction (Tavassoli Hojati et al., 2013). 

 Summary 1.9

The addition of fibres to the lime had the greatest influence in reducing shrinkage in 

addition to the main impact to improve flexural and compressive strength. The 

breathability property of lime is important and it can be improved by nanomaterials 

due to their particle size which amends and organises the pore diameters (Nazari & 

Riahi, 2011).  

The optimum design of the load bearing, thermally efficient wall was as follows see 

Figure 1.10: the Core of the wall will be from hemp fibres, lime binder, PVAc and 

nanomaterials such as nZnO which is the best for the core as it will be seen in 
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Chapter 4, 4, 6 and 7. The Insulator will be made from hemp shives, lime binder, 

PVAc and nanomaterials such as nclay, nSiO2, EG and nZnO and nanozinc oxide is 

the best as it will be see in Chapter 5, 6 and 7. The Render will be made from the 

aforementioned nanomaterials (nanozinc oxide is the best as it will be seen in 

Chapter 5, 6 and 7) and lime, low percentages of hemp fibres (say around 5 %) to 

decrease the shrinkage.  

  

 

Figure ‎1.10 Cross section through the proposed wall. 

 Outline of the Thesis 1.10

The thesis is divided into eight main chapters as follows: 

Chapter 1 Introduction: This introduces the research and explains why nanomaterials 

can be a viable solution for enhancing the properties of different construction 

materials such as Polymers, Cement and Biomass. 

Chapter 2 Literature Review: A detailed literature review is conducted on the 

influence of different nanomaterials, fibres (of glass or hemp) and hemp shives in 

enhancing the key material properties such as flexural and compressive strength, 

thermal conductivity, porosity and shrinkage. A summary of the findings are 

presented in tabular form which demonstrates the effect of using nanomaterials on 

the properties of different matrices of polymer, cement, lime and biomass materials. 

Chapter 3 Test Methods: A summary of the methodology of the experiments and 

how the lime binder properties will be enhanced is summarised in this chapter (from 



Chapter 1        Introduction 

13 
 

the literature review given in Chapter 2) and forms the basis for choices of the 

materials in the project. An explanation of the characteristics of the different 

nanomaterials is also presented.  

 Chapter 4 Results and discussion of compressive and flexural strength: A detailed 

analysis of the experimental results for the tests of strength (flexural and 

compressive) using nanomaterials (nanosilica, nanoclay, nanocellulose and expanded 

graphite), fibres (glass and hemp) and hemp shives. The chapter also includes 

analysis and discussion of the results. 

Chapter 5 Results and discussion of porosity and water absorption tests: a detailed 

analysis of the experiments for porosity and water absorption tests, followed by a 

discussion of results is presented. 

Chapter 6 Results and discussion of shrinkage and water vapour permeability: a 

detailed analysis of the results using nanomaterials (nanosilica, nanoclay, nanozinc 

oxide and expanded graphite), fibres (glass and hemp) and hemp shives is given. A 

discussion of the results completes the chapter. 

Chapter 7 Results and discussion of thermal conductivity: a detailed analysis of 

thermal conductivity using nanomaterials (nanosilica, nanoclay, nanozinc oxide and 

expanded graphite), fibres (glass and hemp) and hemp shives is given. Analysis and 

discussion of the results is also given.  

Chapter 8 Conclusions and future work: Conclusions are given in addition to 

highlighting the future work that could be conducted to enhance the findings from 

that project. 
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 Literature Review Chapter 2 -

 Introduction 2.1

In this chapter, an introduction about composites in general, building construction 

materials and nanocomposites is presented. Furthermore, a brief summary about 

nanomaterials and their synthesis routes will be given. The beginning of this project 

consisted of studying the literature in order to identify required properties for 

construction materials and fillers used to enhance those properties.  

Due to a limited number of publications in the field of transforming lime to a loadbearing 

construction material, it was decided to complementary conduct a literature review of 

research on other materials, such as cement and polymers. Important properties for 

Loadbearing construction materials are high compressive and flexural strength, low porosity, 

low thermal conductivity and low shrinkage. The approach in this work was to follow 

studies on polymers and other materials and the additives used to enhance the above 

mentioned properties. However, as at the present moment there is no distinct correlation 

between additives used to improve the properties of polymeric, cement, other construction 

materials and additives usable for lime matrices, through tests will have to be performed.  

 Composite materials  2.2

Composite materials are composed of two or more components; the main material is 

called the matrix and the others are fillers. It is a combination of two or more 

materials that results in better properties than those of the individual components 

used alone (Campbell, 2010; Jeon & Baek, 2010a; Zaman, Gutub, & Wafa, 2013). 

Figure 2.1 and Figure 2.2 show polymer composite panels for walls, floors and roofs  

made from polyurethane and additives.  

The composite gains new chemical and physical characteristics when its components 

are combined together. If the fillers are nanomaterials and biomass like hemp and the 

matrix is a lime binder, it is known as biomass lime nanocomposites (Constantinides, 

2013; Harlin & Vikman, 2010).  
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Figure ‎2.1 Polymer composite panels 

of floors and walls of houses 

(Inovatecsystem, 2006-2016) 

Figure ‎2.2 Polymer composite roof panels 

for roofs working (Inovatecsystem, 2006-

2016) 

A composite dome was built in Libya in 1968; it was manufactured in the UK as a 

sandwich polymer composite with an aluminium skeleton. Also, a polymer 

composite roof (umbrella form) was made in the UK and built in Dubai in 1972. As 

mentioned earlier, in 1970-1980, this kind of building structure became well-known; 

it depends on different skeletal frames. After 1985, structures were completely 

erected from polymer composite materials as modular units (Hollaway, 2003).  

A bio-composite is a new technique with low cost and is environmentally friendly. It 

is different from all the conventional materials and possesses the required properties 

of traditional materials, but still there is a gap in properties and economic 

considerations between the high competitors of the conventional industrial and 

biocomposites materials (Ariadurai, 2013).  

 Nanocomposites 2.3

Nanocomposites are polymer, cement or any other material or bio-material matrices 

mixed with fillers. These fillers are nanoscale (Burgueno, Mohanty, & Quagliata, 

2007). Richard P. Feynman in 1959 (published in 1960) pointed out in his famous 

lecture that "there's plenty of room at the bottom" (Feynman, 1960). 
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This initiated a significant development in all sciences; physics, chemistry and 

biology. This indicates the serious roles at the level of molecules and atoms which is 

now called nanoscale. This scale is less than 100 nanometres and the material within 

this scale have properties different from those in the original materials. 

 

 Nanoscale 2.3.1

The scale of nanomaterials is near to the atom dimensions. It is a billionth part of 

meter, 10-9 m (Jain & Singh, 2007). In the Greek language, the word "nano" means 

dwarfs and it has become a term pointing to a billionth. "Nano" is a matter or a thing 

on the nano-size level (Feldman, 2014) It starts from 0.1-100 nm. (Bandyopadhyay-

Ghosh, Ghosh, & Sain, 2015b). Figure 2.3 shows a comparison between nano, micro 

and ordinary metric size. 

 

Figure ‎2.3 Comparison of different nanoscales (Nikalje, 2015) 

 

 Methods for Manufacturing Nanomaterials 2.3.2

There are two methods for manufacturing nanomaterials. They are top-down: the 

nanomaterial is prepared by reducing and decomposing the original material into 

nanoscale size and the bottom-up which is an assembly process of molecular or 

atomic scale components applied to construct the materials, see Figure 2.4 (Sanchez 

& Sobolev, 2010). 
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 Shapes of Nanomaterials 2.3.3

Depending on the size levels of nanomaterials, they can be classified into three 

kinds: 1-Nanoparticles: which have three dimensions that are in the nanomaterial 

scale. 2-Nanofibres: which have one of three dimensions in the micro-dimensions 

and the other two are located in the nanoscale. 3-Nanolayers: found in a film or a 

sheet form that has 1-2 nm thickness and lengths of about hundreds to thousands 

nanometres such as clay layers. Figure 2.5 shows the kinds of nanomaterials 

according their nanoscale dimensions. 4- Nanotubes are described into two 

dimensions; one of them is a diameter in nanoscale which is  a hollow core and the 

second dimension which is the length, is in microscale. 

 



Chapter 2        Literature Review 

18 
 

 

Figure ‎2.4 Top down and bottom up methods to synthesise 

nanomaterials (Bose, 2016). 
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Figure ‎2.5 Various types of nanoscale materials (Chrissafis & 

Bikiaris, 2011) 

  Nanomaterial Applications 2.3.4

Nanomaterials have emerged as a big revolution due to their capability to improve 

the properties of polymers when added, such as the mechanical properties, which 

include tensile, flexural and compressive strength, modulus of elasticity and impact 

resistance amongst others. They decrease porosity which is also a decrease of 

permeability to water and gases, improve thermal conductivity resistance and heat 

isolation, enhance stability against heat, enhance flame retardancy, decrease smoke 

release, improve chemical resistance, surface appearance, electrical and thermal 

conductivity and the optical clarity for transparency polymers in contrast to the 

ordinary fillers (Chrissafis and Bikiaris, 2011). 
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 Nanomaterials and Fibres Selection 2.3.5

The key to a successful outcome is to establish which nanomaterials enhance certain 

properties. Ultimately, the properties to be enhanced  herein are flexural and 

compressive strength of materials, porosity resistance (low porosity), thermal 

conductivity (low), shrinkage (low) and maintain or increase water vapour 

permeability. 

In this project the matrix to be considered is lime paste. The fillers are biomass 

which are hemp shiv, hemp fibres or fibre glass (for comparison with hemp fibres), 

PVAc (Polyvinyl acetate) to increase adhesion between fibres, lime and 

nanomaterials such as expanded graphite (EG), nanofibrillated cellulose (nFC), 

nanosilica (nSiO2), nanoclay (nClay) and nanozinc oxide (nZnO). 

 Development of the Main Properties of Building Materials 2.4

As stated before, the methods of enhancing and improving one or more properties of 

matrices or polymer nanocomposites for different uses have been discussed and 

investigated in these studies. Some studies discussed improving one or more 

physical properties like Young's modulus, tensile strength and the impact resistance 

and provided information on the nanomaterials and synthesis and natural fibres that 

were used to improve these properties (Bhattacharya, 2016). Other research studied 

the methods of improving the thermal activity of matrices or polymer 

nanocomposites in both directions for heat isolation (low thermal conductivity) and 

heat conduction (high thermal conductivity). Others addressed the methods that 

decrease or increase the thermal conductivity of the polymer nanocomposites 

(Chrissafis & Bikiaris, 2011; Liao et al., 2012; Zhu, Cai, Zhou, & Shi, 2008). Some 

researchers focused on the porosity from both decreasing and increasing the porosity 

or permeability of polymer nanocomposites depending on whether they intended to 

develop porous or nonporous materials (Constantinides, 2013). Some studies 

examined the weather effects on the polymer nanocomposites such as ultra violet 

resistance, which means the resistance to sun light and the heat of sunlight (Biplab K 

Deka & Maji, 2012; Biplab K Deka, Mandal, & Maji, 2012; Devi & Maji, 2012; 

Feldman, 2014).   
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Other studies were involved in enhancing chemical resistance and some discussed 

the methods of improving the properties of building construction materials. They 

intended to improve traditional materials like cement, concrete or steel bars used for 

concrete reinforcement. To the best of the researcher's knowledge, there is no study 

that discussed or examined the main properties of nanocomposite construction 

material as a whole package that is needed for building construction, especially 

materials needed for residential buildings and houses.  

 Development of Mechanical Properties (Flexural and Compressive Strength) 2.4.1

For brittle materials like cement, gypsum, rock and lime; flexural and compressive 

strengths are very important for civil engineering and building construction. Due to 

the importance of both compressive and flexural strengths, they will be considered 

the dominant factors that define which of the nanocomposites and fibres will be 

selected and adopted to conduct the other tests that are required for building 

construction. The effects on mechanical strength in the literature studies in general 

will be followed to help in this project because there was little or no research on lime 

(binder) matrix biomass nanocomposites to guide the research. 

  Nano Carbontubes Fibres (CNTs) and Nanocarbon fibres (CNF) 2.4.1.1

CNTs have been studied in a lot of papers. It was reported that CNTs represent a 

significant improvement in flexural strength, the modulus of elasticity, toughness 

and compressive strength. The flexural strength, flexural toughness and compressive 

strength were increased by 85 %, 205 % and 22% respectively using 0.5% carbon 

nanotubes in cement by weight (P. W. Chen & Chung, 1993). 

Adding 0.2 wt. % CNTs (carbon nanotubes) and 0.2 wt.% CNFs (carbon nanofibers) 

using w/c ratio of 0.35 at 28 days to cement gave both high strength at 7 days in 

comparison to 0.1 % composites. The results of compressive strength gave 54.5 % 

and 67.5 % increase respectively in comparison to pure cement. The results of 

flexural strength gave 14.06 % and 8.7 % increase. Adding of CNF also enhanced 

electrical conductivity and thermal conductivity. These materials, CNT and CNF are 

sometimes used but they were not beneficial in building construction materials 

because thermal and electrical isolation is required in civil structures (Sinha Ray, 

2013). 
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  Nanocellulose 2.4.1.2

 As for nanocellulose, a study reported that a polycarbonate polymer matrix with 10 

wt. % loading of microfibrillated cellulose (MFC) was developed by solving MFC 

and making a film of MFC using the hot press device for making layer upon layer of 

polycarbonate enhanced the tensile strength about 24% in comparison to the pure 

polycarbonate. This film was made from bleached wood pulp nanofibrillated 

cellulose 2 wt. % suspension of water passing through vacuum membrane filter to 

produce 50 microns film and polycarbonate film (Panthapulakkal & Sain, 2012b). 

Melamine formaldehyde and microfibrillated cellulose nanocomposites exhibited a 

high tensile strength of about 142 MPa by adding 5 wt.% of microfibrillated 

cellulose to melamine formaldehyde in comparison to tensile strength of pure 

polymer (104 MPa) (Henriksson, 2007). Another study pointed out that micro-

fibrillated cellulose passed 30 times through the refiner and 5 wt. % to wood pulp 

made a jump in tensile strength of wood pulp compared to a 16 time pass through the 

refiner; it was raised from 200 to 300 MPa (Bandyopadhyay-Ghosh, Ghosh, & Sain, 

2015a).  

A bacterial cellulose ribbon was saturated with phenolic resin and it showed a higher 

strength than micro-fibrillated cellulose; Young's Modulus increased from 19 to 28 

GPa and the bending strength increased from 370 to 425 MPa (A. N. Nakagaito, 

Iwamoto, & Yano, 2004; A.N. Nakagaito & Yano, 2004). Nanocellulose was used as 

a suspension 7 % concentration helped to increase the compressive strength of the 

cement with changing the density of the cement slurry, due to its specific weight of 

1.06 and high water content, water can be replaced by nanocellulose to a small 

extent. Compressive strength was increased from 16.9 MPa of pure cement to 26.72 

MPa using 5 % nanocellulose and 0.4 w/c (Shenoy, Joshi, & Dange, 2019). It is 

reported that adding 0.15 % by weight of nanocellulose fibres leads to a 15 % and 20 

% increase in the flexural and compressive strengths of cement paste respectively 

due to the high degree of hydration and to the increase in the density of cement paste 

microstructure (Jiao et al., 2016).  

 Nanosilica  2.4.1.3

Nanosilica is another material used to enhance many properties in matrices like 

cement, lime, biomass, biopolymer and polymer nanocomposites, these applications 

will be explained in the next paragraphs from the literature review. Among these 
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properties is flexural, compressive and tensile strength. One of these studies 

mentioned that 4 vol. % of nanosilica (nSiO2) was added to polycarbonate (PC). The 

composite gave maximum tensile strength and fracture toughness by adding 4 vol. % 

nanofillers. The improvement in fracture toughness of PC was 43%. Tensile and 

fracture properties decrease if the nanosilica loading increase more than the 

mentioned percent (Zhou & Burkhart, 2009). Impact resistance of the polycarbonate 

2 vol. % nanosilica (nSiO2) composites significantly improved from 521 N 

maximum failure load for neat PC to 1330 N due to the positive effect of the 

nanofillers (Luyt et al., 2010). Nanosilica was also added to polyvinyl alcohol (PVA) 

of 60 vol. % nSiO2/PVA and the tensile strength went up from 89.9 MPa for neat 

polymer to 122.2 MPa for polymer nanocomposite. For epoxy, the tensile strength 

increased from 127 MPa to 141 MPa for the same percentage (Oja & Nanosiliko, 

2013). Nanosilica was mixed with a melt mix method using a Brabender mixer with 

polycarbonate. The ultimate tensile strength was performed at 4 vol. %. It increased 

from 63.41 MPa for neat PC to 66.13 MPa for the nanosilica influenced mix (R.-J. 

Zhou & T. Burkhart, 2010). 

Nanoparticles of SiO2 (nanosilica) can fill the spaces between particles of gel of C–

S–H in cement, acting as a nano-filler. The pozzolanic reaction with calcium 

hydroxide led to increase the amount of C–S–H (Calcium-Silicate-Hydrate which are 

the main products of the of cement) which produced higher density, increase the 

compressive and flexural strengths and improve durability of the cement mortar. 

This was achieved by adding nanosilca to synthesied cement slurry which was used 

for oil wells. Quantity of 70 g Na2SiO3.9H2O (Merck) was added to 450 g of distilled 

water and 54.66 g of surfactant factor, N-cetyl-N,N,N-trimethyl ammonium bromide 

g (CTAB) were blended with 400 g of water and stirring 15 minutes. The solution 

was added to the solution of silicate The compressive strength was increased 5.54 

MPa to 27.59 MPa at 120 hrs and 87.7°C (Choolaei, Rashidi, Ardjmand, Yadegari, 

& Soltanian, 2012). It was reported that adding 1 wt. % of nSiO2 to cement, 

compressive strength was increased 37 % in respect with the pure cement (Rai & 

Tiwari, 2018). In another study, nanosilica was added (1,3, 5, 7 and 10 %) to cement  

sand, 1: 2.75 and w/c, 0.485 at 28 days, the highest compressive and flexural 

strengths were 36.76 MPa and 5.72 MPa respectively compared to pure cement 23.6 

MPa and 3.57 MPa (Yehia, A Khattab, S Khalil, & El-Baky, 2013). 
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 Nanoclay 2.4.1.4

Nanoclay has attracted the attention of researchers due to its potential to enhance the 

mechanical properties of many matrices and polymers. Tensile strength of 4 wt. % 

nanoclay (montmorillonite MMT)/ poly vinyl alcohol (PVA) was increased by 62 % 

of neat PVA (Soundararajah, Karunaratne, & Rajapakse, 2009). In another study, 

PVA blended with 5 wt. % of graphene oxide (GO) and MMT 1:3 GO/ MMT by wt., 

increased the tensile strength from 27 MPa for neat PVA to 80.7 MPa for 

nanocomposite (Raheel et al., 2015). The flexural strength of glass fibre reinforced 

epoxy blending with nanoclay (Cloisite 15 A) silane treated was increased from 155 

MPa for 10% of silane treated nanoclay to 278 MPa for 200 % silane treated 

nanoclay. The tensile strength of the mixture was increased from 261 MPa to 390 

MPa for silane treated nanoclay and from 50% - 200% silane/nanoclay (Sharma, 

Chhibber, & Mehta, 2016).  

It was found that adding 8 wt. % of nano-metakaolin to cement at 0.5 water/cement 

(water to cement ratio), the tensile and compressive strengths were improved 49 % 

and 7 % respectively (M. Morsy, Alsayed, & Aqel, 2010). Other study was reported 

that cement mixed with 1 wt. % of calcined nanoclay (CNC) decreased the porosity 

and increased compressive strength. Calcined nanoclay is produced by heating nanoclay 

(Cloisite 30B) at 900° C for 2h. The study outcome was the compressive strength increased 

from 53.1 to 74.2 MPa or 40% increase by adding 1 wt. % CNC and the compressive 

strength improved to 69.8 MPa by mixing the cement  of 1 wt. % nanoclay (NC) (A. 

Hakamy, F. Shaikh, & I. M. Low, 2015). Furthermore, cement added to sand 1: 2.75, 

0.485 w/c at 28 days and they were mixed with many percentages of nanoclay (1,3, 5, 7 and 

10 %). The highest compressive and flexural strengths were 37.73 MPa and 5.91 MPa 

respectively by adding 10 wt. % nanoclay in comparison to pure cement 23.6 MPa and 3.57 

MPa respectively (Yehia et al., 2013).  

  Expanded Graphite (EG) 2.4.1.5

EG was used in some studies to enhance mechanical properties, but it was used to 

improve electrical and thermal conductivity properties of the composites which must 

be low in construction materials. For example, it was added to polymethyl 

methacrylate (PMMA) after it was slowly oxidised and became surface modified by 

many processes. Firstly, expanded graphite was chemically changed by adding 

sulphuric acid (H2SO4) and hydrogen peroxide (H2O2), and then it was surface 
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modified by mixing them with potassium permanganate (KMnO4) and H2SO4. 

Adding modified surface of EG improved the mechanical properties of the PMMA 

composite; the modulus of elasticity was enhanced 3 times compared to the pure 

polymer. In contrast, the electrical conductivity was highly increased for the 

composites (> 1700 S/m or Siemens/meter) (P. Wang et al., 2017).  

Epoxy was mixed with graphite nano-platelets (GNP), which the expanded graphite 

is derived from, after improving interfacial adhesion of GNP/ epoxy by ultra violet 

ozone treatment (UV/O). This composite showed flexural strength improvement. It 

was about 50 MPa for neat epoxy and 65 MPa for UV/Oz treatment GNP/ epoxy (Li, 

Kim, & Lung Sham, 2005). Expanded graphite was grafted with acrylamide and 

blended with epoxy showing a remarkable increase of flexural strength and modulus 

of elasticity; they were about 84.5 MPa, 2.77 GPa for pure epoxy and about 95 MPa, 

3.55 GPa for 3 vol. % nano-graphite epoxy composite respectively. For grafted 

nano-platelets, the flexural strength was increased to about 112 MPa and the flexural 

modulus was about 3.94 GPa (Lowrence & Fukushina, 2009).  

Blending graphite powder (electric discharge machining EDM) with lime from 0 %-50 

%, which is the origin of expanded graphite to hydraulic lime NHL5, increased the 

compressive strength three times to pure lime and 80% thermal conductivity, reducing 

the porosity and water absorption too (Barbero-Barrera, Medina, & Guardia-Martin, 

2017). The steps of manufacturing EDM are pulverising the coke, kneading, again 

pulverizing, isostatic pressing, baking to 1000 °C, impregnation or fertilizing, 

graphitising upto 3000 °C, moulding to graphite block, machining, purifying, roughing 

and milling (Flores Medina, Barbero-Barrera, & Bustamante, 2016). Expanded graphite 

was synthesised by preparing expanded graphite/paraffin gypsum composite (EGPG) 

modified by 1 wt. % carbon fibres, EGPG or gypsum blended with 10 wt. % EG/P 

(paraffin) and 1 wt. % CF (carbon fibres). The flexural and compressive strength of 

EGPG were increased by 65.6 % and 6.4 %, respectively. Unfortunately, the thermal 

conductivity increased 36.0 % which is not beneficial in construction materials (B. Zhang, 

Tian, Jin, Lo, & Cui, 2018). Mixing of cement with expanded graphite treated with 

ozone led to increase in the bonding between cement paste and the carbon of EG 

depending on the effect of gaseous ozone on modification of EG surfaces. Oxygen 

groups (carbonyl, phenol and carboxyl) were composed leading to this bonding 
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effect and improving the resistance to bending load in the pre-cracking zone 

(Slosarczyk & Krawczyk, 2016). 

Hydraulic lime (NHL5) was mixed with graphite which is considered as compatible 

with lime paste and the compressive strength was increased three times compared to 

the neat graphite. Moreover, the porosity and water absorption were decreased. 

Unfortunately, the thermal conductivity was increased up to 80% as a result of this 

addition (Barbero-Barrera, Medina, & Guardia-Martin, 2017). 

 

 Fibres (Synthetic and Natural).  2.4.1.6

Fibres are used to improve the mechanical properties of matrices (polymer, cement 

gypsum and lime). There are many kinds of industrial fibres like steel, cuprum, 

polypropylene and carbon fibres. The most common industry fibres in the 

composites are glass fibre. In general, there is no mention in the literature of fibres 

being used to reinforce lime binder except when the lime or gypsum render and 

ceiling were reinforced by fabric hessian and chopped animal hairs (Bowley, 1994). 

Recently, hemp fabric was used as layers with lime/cement but still nonloadbearing  

material. The crushed hemp stem as shives with their fibres (not separated from 

shives) (de Bruijn et al., 2009) and this method didn't help to raise the material from 

nonloadbearing to loadbearing material (de Bruijn et al., 2009). All these examples 

will be discussed in the next sections. 

 Fibre Glass 2.4.1.6.1

Fibre glass is relatively low cost and has a good chemical resistance to acids and 

solvents. It is used to reinforce polymers, lead and cement. 84 wt. % of molten lead 

mixed with 16 wt. % of fibre glass improved tensile strength of the composite from 

average 200 MPa up to 315 MPa (Goddard & Kendall, 1977). Flexural strength for 

cement mixed with 5 wt. % fibre glass was increased from the traditional value of 

cement which is around 4 MPa (Aho & Ndububa, 2015; M.-h. Zhang, Jiang, & 

Chen, 2008) for cement mortar to 35 MPa for the composite (Thomas, 1972).  

Fibre glass in 50 mm lengths was mixed with 4 wt. % to water resistant gypsum (its 

compressive strength was 35 MPa from the supplier), the flexural strength 

significantly improved for 28 days from 4.96 MPa for gypsum to 22 MPa for the 
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composite and the tensile strength from 2.75 to 18 MPa respectively. The water 

resistance gypsum mentioned above is industrially made by mixing ground 

granulated slag with ordinary Portland cement and calcined phosphogypsum. Lastly, 

a retarder is added in a ball mill (M. Singh & Garg, 1992). There was no study, to 

the best knowledge of the researcher, about using fibre glass with lime. 

 In contrast, fibre glass was used as a reinforcing in cement, 10-40 mm length of 

fibre glass mixed with cement 2-8 vol. %. The optimum properties of the composite 

at 28 days were by adding 6 vol. % of fibre glass, flexural strength was increased 4-5 

times, the tensile strength was improved 3-4 times, the impact strength was highly 

improved 15-20 times compared with cement (Ali, Majumdar, & Singh, 1975). 

 Hemp Fibres 2.4.1.6.2

Hemp is a plant described as a quickly renewable construction material, 

biodegradable, sustainable and eco-friendly. Hemp is a fast growing, annually 

harvested plant and its stem can be 4 m high or more. The stem of the hemp is 

enveloped by the bark and the bundles of fibres are inside the bark which has a high 

tensile strength see Figure 2.6. 

Natural fibres like flex, hemp shiv, with or without its fibres, were used to reinforce 

the variety of matrices (cement, polymers lime, etc...). The components are mainly 

used in industrial objects; food oil, fabric and clothes, nutrition, bakery and 

medicines (de Bruijn et al., 2009). This is with the exception of 5 % of hemp which 

is used in construction materials, most of them as insulations (N Stevulova & 

Schwarzova, 2014). 
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Figure ‎2.6 Stem part of hemp plant s howing the fibres in outer 

envelope (bast) and the woody core which is crushed as hemp shiv 

(Marczyk, Jul 12, 2013 ) 

A study reported using 40 wt. % of hemp shiv and 31 % water/binder with different 

percentages such that all binders in each sample were equal to 29 wt.% of the binder 

for the different samples: (1) 24 wt.% lime and 5 wt.% of cement; (2) 24, 2.5, 2.5 

wt.% lime of (lime, cement, zeolite); (3) 24, 5 wt.% (lime and zeolite); (4) 29 wt.% 

of (C) ; and using 40 wt. % Hemp Flux with (5) 24, 5 wt.% of (lime: cement); (6) 29 

wt.% (MgO and C). It was reported that the compressive strength results were very 

low (0.3, 0.27, 0.23, 2.73, 0.73 and 1.86 MPa respectively) but the thermal 

conductivity results were reasonable in comparison to those of the insulators (which 

will be considered in Chapter 7). The thermal conductivity results ranged between 

0.069 to 0.111 W/mK (Nadezda Stevulova et al., 2013).  

A research reported that the compression strength from 10 different labs, of samples 

composed of hemp shiv and cement with citric acid were between 0.32-0.45 MPa 

(Niyigena et al., 2015). As shown from the minimum compressive strength of load 

bearing materials, lime/shives or cement/shiv composites could only be used as 

insulators because their insignificant compressive strength.  

Lime mixed with hemp shiv/flax straw was studied and it showed that the lime hemp 

flax composite was low in strength, density and thermal conductivity but it has 

absorptivity. Compressive strength was between 0.41-0.85 MPa and flexural strength 
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was between 0.05-0.24 MPa (Brzyski, Barnat-Hunek, Suchorab, & Łagód, 2017). It 

was reported that load bearing lightweight expanded clay has a compressive strength 

of 3-5 MPa (de Bruijn et al., 2009) and that means any material to be loadbearing 

must be higher than this value. It is obvious from that all compressive strength in 

literature studies were < 1 MPa or a little more and no study could transform the 

material to load bearing material in compressive strength to the value which was 

mentioned in the last section (3-5 MPa) and the flexural strengths also were very low 

< 1 MPa or a little more which is not match with flexural strength of cement mortar 

around 4 MPa or concrete around 7 MPa. 

  Adhesive Material 2.4.1.7

An adhesive material was included as a way of increasing bond between fibres and 

the lime matrix. Polyvinyl acetate (PVAc) was selected as a suitable option. 

Polyvinyl acetate is made synthetically from plastic origin, but can be made from organic 

origin (animal bones, hooves and hides). The plastic origin of PVAc (white glue) is nontoxic 

and biodegrades slowly (Zara, 2016). It was reported that the adhesion strength of two 

wood pieces at dry, wet and elevated temperatures was raised with the increased 

loading percentages (1, 2, and 4 wt. %) of nanoclay to PVAc (Kaboorani & Riedl, 

2011).It was reported that the lap shear joint strength for pine wood was increased 

from 4.8 to 11.53 MPa by adding PVAc blended with 4 wt. % of nanoclay (Aydemir, 

Gündüz, Aşık, & Wang, 2016)  

From the above studies, the best option for developing the mechanical strength is 

hemp fibre reinforced lime and lime singularly blended with nanosilica, nanoclay, 

nanocellulose or expanded graphite. Fibre glass was used for comparison to the 

result of hemp fibres. The PVAc was selected to improve the adhesion between lime 

and hemp fibres and hemp shives. The nanocarbon tubes were excluded from this 

study because it was expensive and it increased, as in the literature research, the 

thermal conductivity which contradicts with the heat isolation concept of 

construction materials. Strength will be critical the render layers (R) and the core 

layer (C) of the proposed wall mentioned in Chapter 1, but for insulation layers (I), 

the focus will be on developing thermal insulation. 
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  Development of Thermal Conductivity 2.4.2

It is very important in building construction to use materials which have high heat 

isolation i.e. low thermal conductivity. A thermal conductivity test includes isolating 

and conducting materials. In some industries, high thermal activity materials are 

advantageous, like radiator bodies or the covers of the motors of the machine, 

vehicles or industry motors to transform or spread the heat to the surrounding spaces 

and to decrease the heat of the motor. In building construction, heat isolation is 

required to keep the building away from climatic heat to conserve conditioning 

energy (Energy, 2008; Laustsen, 2008). The desired construction material should 

have high heat insulation to keep the inside of the building at a comfortable 

temperature for humans even if the outside temperature is high or low, so it is 

preferred to use low thermal conductivity construction materials. In general, lower 

than 0.3 W/mK, the thermal conductivity is very good, but for highly effective 

thermal insulation materials values are preferred to be under 0.1 W/mK (Sičáková, 

2015; Nadezda Stevulova, Cigasova, Schwarzova, Sicakova, & Junak, 2018).  

  Nanoclay 2.4.2.1

Nanoclay was used for decreasing thermal conductivity and increasing stability in 

different kinds of matrices. From literature studies it was found that thermal  

conductivity of nanocomposite polymethyl methacrylate PMMA was increased with 

the increase of the percentages of nanoclay of 0.5, 1 and 2 wt. % (A Hakamy, F. U. 

A.  Shaikh, & I. M.  Low, 2014).  

Ordinary cement was blended with nanoclay and calcined nanoclay (produced by 

heating the nanoclay at 800, 850 and 900 ºC for 2 h using an electric furnace with 

increase of heat by 10º C/min. The percentages of nanoclay and calcined nanoclay 

were 1, 2 and 3 wt. % of cement. It was found that the thermal stability (resistance 

ability of the material to the deformation and decomposition under temperature 

effect) was improved by 3.3 % compared to the neat cement paste (A Hakamy et al., 

2015). Therefore, nanoclay can be considered as a good filler for thermal stability of 

cement matrix. Hemp fabric (HF)/cement blended with 1, 2 and 3 wt. % nanoclay 

(Cloisite 30B) of cement were used as an improvement for the cement composites. 

The hemp fabric was included as two layers inside of the cement paste and the layers 

were about 2.5 wt. % of the cement. The morphology of calcium silicate hydrate gel 
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(C–S–H) was improved due to the presence of nanoclay and good dispersion of 

nanoclay in the matrix. A percentage of 1 wt. % of nanoclay decreases the intensities 

of calcium hydroxide more than 3 wt. % because of the agglomeration of nanoclay at 

high percentages. The thermal stability of hemp fibres nanocomposite was slightly 

better than cement paste due to the resistance of nanoclay against the decomposition 

(Tahereh Ghaffari, Ali Barzegar, Fahimeh Hamedi Rad, & Moslehifard, 2016).  

It was reported that the thermal conductivity was reduced about 61.8 % - 61.4 % 

with the increase of temperature (25-1000°C) by adding 0.1% - 0.2% nanoclay by 

wt. in replace with cement at 200°C. The compressive strength and thermal 

conductivity of concrete was decreased about 58.1 % - 61.4 % at 800 °C but the 

thermal conductivity was increased by adding 0.3-0.5 % nanoclay (W. C. Wang, 

2017). This means the optimum percent of nanoclay for decreasing thermal 

conductivity is within the range 0.1%- 0.2%. 

 Nanosilica 2.4.2.2

Nanosilica was mentioned in the research as having an effect on thermal 

conductivity. It was reported that the thermal conductivity of nano-silica sand 50-

1000 nano-meters decreased 70% when the size was decreased from micro to 

nanoscale (Chari, Sharma, Prasad, & Murthy, 2013). Nanosilica was used as a filler 

1-5 % from 12, 50 and 150 nm scale on cement, 4-5 wt. %  of 50 nm scale of nano-

silica had the best effect and gave high compressive strength and low thermal 

conductivity. The thermal conductivity was reduced 38 % compared with pure 

cement at 900ºC. The thermal conductivity was in the range 0.42-0.57 W/mK after 

the composite was heated to 900ºC (Jittabut, 2015). Thermal conductivity of cement 

decreased by mixing waste glass (replacing the river sand by waste milled glass) and 

nanosilica (1 and 3 wt. %). It was reported that, thermal conductivity was decreased 

depending on the use of waste glass, in contrast the adding of nanosilica at high 

percentages (3 wt. %) caused more decrease in thermal conductivity compared to 

using only river sand and glass waste samples (0 wt. % nanosilica). Thermal 

conductivity of river sand sample (0 wt. % nanosilica) was about 1.65 W/mK, waste 

glass sample of (0 wt. % nanosilica) was 1.45 W/mK and waste glass sample 3 wt. % 

nanosilica was 0.45 (Sikora, Horszczaruk, Skoczylas, & Rucińska, 2017).  
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 Nanozinc Oxide 2.4.2.3

As for nanozinc oxide the literature mainly mentioned its impact on thermal 

conductivity and at the same time has some improvement for strength, anti-bacteria 

and resistance to ultra violet. An alkali solution of zinc oxide which was made from 

zinc nitrate Zn (NO3)2.6H2O and NaOH 0.5/1 by vol in 100 ml water and for mixing 

with the polymer matrix. The solution was stirred at 75ºC and heated. Polyvinyl 

pyrrolidone with starch 1/0.5 wt. % was added 0.5, 1.0 vol. % to the mixture. It was 

reported that zinc oxide solution is as an effective nanofiller to decrease thermal 

conductivity in respect to its heat absorption capacity property but the study didn't 

mention any value about thermal conductivity. The heat absorption capacity of the 

matrix became very high, 30-40 % more at nZnO loading 0.5, 0.1 and 1 vol. % of 5 

vol. % PVP or 1 vol. % of polyvinyl alcohol (PVA) in comparison to the original 

matrix without nanozinc oxide. The nanozinc oxide fluid decreased the diffusion of 

temperature which was generated by sonication (Bhagat & Khanna, 2015). 

 Curing the specimens of concrete, which were blended with a replacement of 2 wt. 

% percentage of ZnO2 in lime water, enhances the permeability and the strength. The 

nanoscale zinc oxide improved the pore structure by decreasing the harmful pores. 

The pores in concrete can be considered as: (1)- Harmless pores < 20 nm (2)- Few-

harmful pores 20-50 nm (3)- Harmful pores 50-200 nm (4)- Multi-harmful pores > 

200 nm. Nano ZnO2 could develop the mechanical and physical properties (Nazari & 

Riahi, 2011).  

Using ZnO as an additive to Al matrix in micro and nanoscale and nano-micro (two 

phases) self-assembled composites resulted in the thermal conductivity of micro-

composites reducing only 15 % for loading (ZnO- 4 % Al) such that Zn(1-x)AlxO (0 ≤ 

x ≥ 0.03). The large reduction achieved using nanocomposites in thermal 

conductivity was 3 times that of the micro-composites due to the uniform 

distribution of nano ZnAl2O4 (precipitation). The thermal conductivity was higher 

than the micro-composites were used with the increase of the percentage of Al; in 

contrast, the nanocomposites gave the lowest thermal conductivity at decreasing Al 

to 2 wt. %. The thermal conductivity was 7.5 W/ mK at room temperature for ZnO- 

2 % Al but this value was decreased to 3.7 W/ mK at 600ºC which was lower than 

pure ZnO by 73 % at room temperature and 40 % at 600ºC. The control role at low 
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temperature to perform low thermal conductivity is for two reasons which are 

phonon-boundary and phonon impurity scattering because 90 % of thermal 

conductivity is related to the thermal conductivity of phonon and the phonon 

scattering takes the main contribution (Y. Zhao et al., 2012).  

Phonon is the quantum of acoustic or vibrational energy, considered as a particle and 

used especially in mathematical models to calculate thermal and vibrational 

properties of solids (Harcourt, 2016).  

Nanozinc oxide blended at 2 wt. % and 4 wt. % with asphalt, to avoid moisture 

damage, led to a better aggregate coat with asphalt binder and improving adhesion 

between the asphalt and acidic aggregate due to decrease the acidity of the aggregate 

which led to decrease the active surface free energy of the modified asphalt binder  

(Hamedi, Nejad, & Oveisi, 2016). 

 Summary of Selected Materials 2.4.2.4

Nanomaterials 2.4.2.4.1

In the present work, nanomaterials nSiO2 and nZnO were chosen to study their effect 

on thermal conductivity of NHL5 lime binder (render). Furthermore, 2% loading by 

wt. nClay was identified as the nanomaterial to improve the mechanical strength but 

concerns existed as to its influence on thermal conductivity. The nanomaterial 

(nSiO2) not only enhances the mechanical strength but also decreases porosity and 

shrinkage, loading 2% by weight of lime was suggested. Adding nZnO at 4% wt. 

lime is expected to decrease thermal conductivity with additional benefits such as 

stability and protection against UV effects. 

Hemp shiv and hemp fibre mixed with lime binder was the choice of organic 

materials to give a nanocomposite material. Lime plus selected nanomaterials was 

chosen as the render. The aim is to develop high performing wall layers as shown in 

Figure 1.10. The tests conducted were dependant of the requirements on the various 

layers shown in Figure 1.10 and consisted of a mixture of thermal conductivity, 

porosity/density and compressive strength. 

  

 



Chapter 2        Literature Review 

34 
 

 Decrease in Porosity 2.4.2.5

Porosity resistance is also an important property in building construction materials. It 

is determined by many methods: by water pressure which can enter the material and 

calculate the depth of penetration with time, or by mercury pressure obliged to enter 

the pores while the increments of volume pores are calculated. Some nanomaterials 

were reported in the literature studies as sealed materials, porosity resistant or 

permeability resistant (decrease or close pore size). It was reported that sealing 

additives were used for the purpose of sealing off porous matrix like bentonite slurry 

to seal the wells during drilling operation (Foley, VanderHooven, & Hull, 1981)  

 Nanosilica 2.4.2.6

 Nanosilica was mixed with cement; these silica particles penetrate the micro-pores 

and line the pores decreasing porosity; they might seal and close these pores 

(Aggarwal, Singh, & Aggarwal, 2015; Ershadi, Ebadi, Rabani, Ershadi, & Soltanian, 

2011; Yusak et al., 2014). A study confirmed that nanosilica mixed with oil well 

cement slurry led to low permeability and porosity and high compressive strength; 

for example, 3 wt. % of nanosilica. The porosity test was 45 % for neat slurry 

cement and 28.5 % for slurry-cement/nanosilica (Ershadi et al., 2011). Another study 

added sintered nanosilica which became porous because it was exposed to 300°C. 

The polymer of the matrix, which was designed for dentist medicine, penetrated the 

porous silica to become nonporous and a high modulus polymer nanocomposite 

(Atai, Pahlavan, & Moin, 2012).  

 Nanoclay 2.4.2.7

Nanoclay was studied as a porosity resistant or a barrier. It is reported that 50-500 

times the permeability of gas through polymer was decreased by a small loading of 

nanoclay; it enhanced the barrier properties of the polymer (Choudalakis & Gotsis, 

2009; H. Kim, Miura, & Macosko, 2010; Z. Duan, and, & Huang, 2013). Adding 1 

wt. % of nanoclay to the cement decreased porosity 20.6 % compared to neat cement 

(Low, Hakamy, & Shaikh, 2017). Actually, nanoclay research studies explained that 

nanoclay was a barrier more than porosity resistance.  
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The research demonstrated that the nanoparticles, which have more effect on 

porosity resistance, are excellent when added to the polymer as a barrier polymer 

nanocomposite. Nanoclay; in addition to its role as a barrier and porosity resistance,  

it enhances the physical properties like tensile strength. In the present project, 

nanoclay will be used to decrease porosity in the nanocomposite materials for 

building construction. 

 Graphene and Expanded Graphite 2.4.2.8

 Graphene and expanded graphite are unique materials which were also used in the 

literature studies as a barrier against water (Du & Pang, 2015; Potts, Dreyer, 

Bielawski, & Ruoff, 2011). Mixing small quantities of graphene oxide with cement 

(0.05 wt. %), the compressive strength of the cement was enhanced 15-33 % and the 

flexural strength was improved by 41-59 % (Babak, Abolfazl, Alimorad, & Parviz, 

2014; Chuah, Pan, Sanjayan, Wang, & Duan, 2014; Zhu Pan, Wenhui, Li, & Collins, 

2013). Porosity of cement was decreased from 32.8 % to 28.2 % using graphene 

oxide 0.03 wt. % (Gong et al., 2014).  

 Nanozinc Oxide 2.4.2.9

 Nanozinc oxide was mentioned as a material for decreasing porosity, Alginate 

hydrogel 3 % of water, 1% chitosan hydrogel dissolved in 1 % acetic acid and 

precipitated by 1 wt. % NaOH solution was mixed with zinc oxide for making 

wound bandage. 60 %–80 % porosity of the total bandage volume was of alginate 

control bandages, in contrast to 60 % - 70 % porosity of the nZnO blended 

composite bandages. The interaction of alginate with nZnO has an impact on 

porosity reduction which was about 12% (Mohandas, Pt, Raja, Lakshmanan, & 

Jayakumar, 2015) and this encourages the idea that there is a probability if nanozinc 

oxide decreasing the porosity of lime regardless of the research subject was 

irrelevant to the present project. Nano-zinc oxide was blended with cement (Portland 

Pozzolana) by 0, 0.5, 1 and 1.5 wt. % and the water cement ratio was 0.35. The study 

showed that nanozinc oxide improved the mechanical properties and the porosity 

was decreased for the cement paste. 1.5 wt. % nanozinc oxide improved the 

compressive strength of mortar 1:2 cement to sand by 17.27 % and the porosity of 

solid mortar was highly decreased (A. P. a. Singh & Tiwari, 2017). Asphalt binder 

was mixed with 2 and 4 % nZnO to study the humidity damage of the asphalt. The 
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asphalt binder acidity was decreased which increased the adhesion of asphalt with 

acidic aggregate in dry and wet conditions and the acid surface free energy (SFE) of 

the asphalt was significantly decreased. This led to an increased adhesion between 

asphalt and aggregate and decreased the voids as a result porosity. (Hamedi et al., 

2016). From reviewing the literature, it seems that nZnO has multi-effects. One of 

these effects is decreasing porosity; the nanozinc oxide decreased the humidity 

damage on asphalt by decreasing the pores between the aggregate and asphalt binder 

and lowered the porosity. 

Specimens of concrete mixed with 1 wt. % percentage of nZnO2 in limewater, 

reduced the porosity by 8 %. The nanoscale zinc oxide improved the pore structure 

by decreasing the harmful pores within 20-50 nano-meter or less. The pores in 

concrete can be considered and classified as stated in Section 2.3.2.3, nZnO2 could 

develop the mechanical and physical properties (Nazari & Riahi, 2011). It has two 

contradicting roles: it enhances the strength of the matrix and decreases the porosity, 

which is reasonable due to increasing density and making different links with many 

kinds of chemical roots such as hydroxyl and carboxyl. At the same time it has 

another role, it lowers the thermal conductivity of many matrices, which seems 

opposite of the first role but the studies explained this property due its potential to 

absorb heat by slowly releasing it and due to its capability to absorb a broad 

spectrum of solar radiation see Section 2.3.2.3 The collection properties of nZnO are 

very interesting in construction and it opens the doors for promising uses in the 

construction industry. 

  Conclusion 2.5

From the literature review conducted in the chapter, the choice of materials and 

nanomaterials to improve the properties of lime binder and lime biomass lime 

nanocomposite and to optimise these improvements are given in the following 

sections. 

  Materials Identified to Improve Strength (Flexural and Compressive) 2.5.1

of the Lime Matrix 

1- Nanosilica 

2- Nanoclay 
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3- Nano-cellulose 

3- Expanded graphite 

4- Polyvinyl acetate adhesive 

5- Fibre glass 

6- Hemp shiv  

7- Hemp fibres  

 Materials Identified to Decrease Thermal Conductivity of Lime Matrix 2.5.2

1- Nanozinc oxide  

2- Nanosilica  

3- Nanoclay 

  Materials Identified to Decrease Porosity of Lime Matrix 2.5.3

1- Nanozinc oxide  

2- Nanosilica  

3- Nanoclay 

4- Expanded graphite 

 Materials Identified to Reduce Shrinkage of Pure Lime 2.5.4

1- Nano-silica 

2- Nano-clay 

3- Expanded graphite 

4- Fibre glass 

  Materials Identified to Enhance Water Vapour Permeability 2.5.5

(Breathability) of Pure Lime 

1- Nano-silica 

2- Nano-clay 

3- Expanded graphite 

Nano-carbon tubes were not considered because they are expensive and give an 

increase thermal conductivity due to the conductive property of carbon for heat. 
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Instead expanded graphite was used in spite of its high thermal conductivity because 

it is cheaper than nanocarbon tubes and works on both increasing strength and 

decreasing porosity.  

Table 9.1 in Chapter 9 Appendix is a summary of the different matrices (polymers, 

cement, lime, geopolymer and biomass) and the possible nanomaterials that can be 

used to form a nanocomposite. The influence on the matrix nanocomposite 

properties as a result of combining the matrix with the nanomaterial is also given in 

addition to the process which was used. This project concentrated on using biomass 

as the matrix for the development of eco-friendly construction materials. 

 



 

39 
 

 Materials and Test Methodology Chapter 3 -

  Introduction 3.1

In the present project, the target is to use nanomaterials to develop a new, durable 

light-weight building material in comparison to concrete from biomass 

nanocomposites. Biomass materials such as lime/ hemp shives may not have the 

strength characteristics of ordinary construction materials but it can be strengthened 

and used in conjunction with other materials such as hemp fibres mixed with lime 

binder to become a structural material (loadbearing for walls, roofs and floors). 

Furthermore, the lime binder can be improved to have both a low porosity and be a 

low thermally conductive render. Also, insulator materials made from hemp shives 

and lime binder can be improved to be low in thermal conductivity and porosity too. 

The addition of nanomaterials to biomass materials can enhance durability and 

improve its flexural and compressive strengths, thermal conductivity (heat isolation) 

and porosity. This chapter discusses the materials and processes required to develop 

the biomass lime nanocomposite from lime/ hemp (fibres or shives) for loadbearing 

walls, insulator panels for thermal insulation or lime nanocomposite for rendering. 

Also, included is information on the main tests to demonstrate their performance. 

Selection of materials is based on the extensive literature reviewed and summarised 

in Table A.1 in Appendix A, for the enhanced properties of different matrices from 

polymers, cement, gypsum, lime and biomass (although biomass was only 

considered in this project). 

Four property enhancements are proposed (flexural and compressive strength, 

porosity and thermal conductivity) through the addition of nanofillers to varying 

quantities (nanocellulose, nanosilica, nanoclay, expanded graphite, nanozinc oxide) 

in addition to using natural fibres like hemp fibres and industrial such as fibre glass 

for increasing the flexural and compressive strength. Fibre glass and hemp fibres will 

also help reduce material costs as it can partially or totally replace the more 

expensive nanofibres like halocarbon tubes (chlorofloro-carbon which the hydrogen 

replaced by halogen) or nanocellulose. Appendix A, Table A.1 provides an overview 

of the different matrices and associated properties which can be enhanced by 

nanomaterials. 
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  Material Selection 3.2

A detailed review was conducted to identify a number of materials that could be used 

in the research. The nanofillers and fibres were also identified and selected based on 

the property improvement which can be achieved by using these fillers. 

 Matrix Materials 3.2.1

Singleton Birch Secil Natural Hydraulic Lime NHL 5 was purchased from 

Lincolnshire Lime in the UK. Nanomaterials used to decrease the thermal 

conductivity (nClay, nSiO2 and nZnO) were purchased from Sigma Aldrich in the 

UK. Hemp shiv was procured from East Yorkshire Hemp, Driffield, UK (average 

size: 15mm x 5mm). The hemp fibre was sourced from Wild Colours, Birmingham, 

UK. Polyvinyl acetate (PVAc) adhesive was purchased locally (Evo-Stik Super Evo-

bond Waterproof PVA), an environmentally friendly hazard-free wood glue. 

  Lime Matrix 3.2.2

Lime binder NHL5 was purchased locally in UK market as explained in Section 

3.2.1. It was chosen as the main matrix for this project, as it is an environmentally 

friendly material because it belongs to the earth, it was made from natural rocks 

(Calcium carbonate, CaCO3) which is heated (calcined) around 900-1200ºC. It is 

then transformed to calcium oxide, CaO. The last product can be dissolved in water 

and transformed to calcium hydroxide in contrast the calcium carbonate which 

doesn't dissolve in water as in Eq's 3.1 and 3.2.  

CaCO3 heated               CaO + CO2     Equation  3.1 

CaO + H2O                Ca(OH)2     Equation  3.2  

Calcium hydroxide reacts with carbon dioxide to become calcium carbonate. This 

process is called carbonation which occurs throughout the lifetime of the building 

structure from which it is erected as lime. In lime production process, the emission 

that resources of CO2 are three fold (1) process emission is 0.751 kg CO2/kg of lime 

but this is offset due to the CO2 emissions will be adsorbed (2) combustion emission 

is 0.322 CO2/kg of lime (neglected, it will be absorbed by lime to become calcium 

carbonate) (3) electricity emissions are 0.019 CO2/kg of lime. The total emissions 

are, threfore, 0.77 CO2/kg of lime (Turner & Collins, 2013). The emissions will be 
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calculated later for 1 m3 and compared to the emission of the same concrete volume. 

The density of Core, Insulation and Render layers (see Sec 1.9, Figure 1.10) are 

lower than the density of concrete and the weight of 1 m3 from the proposed wall in 

this project is lower than the weight of concrete. Concrete carbon emissions are 

about 2.5 times more than those of lime of the same volume (1 m3) according to their 

densities. As a result, the emission from lime are lower than concrete production 

emissions from all components and resources; fuel and electricity (average 0.74 kg 

CO2/kg of concrete) (EuLA, 2014). Lime is cheap and widely used in different 

aspects. It is lightweight as a construction binder material in comparison to cement 

concrete mix. It is compatible with the biomass from hemp shives and hemp fibres 

which will be used with the present project. The definition of lime in British and 

Europe standard is "calcium oxide and/or hydroxide, and calcium-magnesium oxide 

and/or hydroxide produced by the thermal decomposition (calcination) of naturally 

occurring calcium carbonate (for example limestone, chalk, shells) or naturally 

occurring calcium magnesium carbonate (for example dolomitic limestone, 

dolomite)" (459-1, 2015). It was reported that the compressive strength of cement: 

lime: sand (C:L:S) decreases with the increase of lime content (Arandigoyen & 

Alvarez, 2007), Figure 3.1. 

 

Figure ‎3.1 Correlation between 

compressive strength and deformation of 

cement: lime  sand mixture (Arandigoyen 

& Alvarez, 2007). 

The compressive strength becomes slightly higher when it is added at a ratio up to 

40% of cement to lime-based mortars. The compressive strength highly decreases in 

cement mortars when a minor quantity of lime is added (from Figure 3.1, the ratios 
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of cement/ lime are 1/0, 2/1, 1/1, 1/2, 1/4, 1/8 and 0/1 in contrast, the compressive 

strengths are 49, 40, 35, 20, 9, 4 and 5 MPa respectively ). It was reported that the 

high percent of lime to cement mortars show a plastic behaviour under load that is 

not noticed in the other mixed mortars. Therefore, a big extent of deformation can be 

absorbed by lime-rich mortars before the failure. So that, the rich lime mortars can 

be a material for reformation work or crack fillers (Arandigoyen & Alvarez, 2007). 

That means lime is a weak strength material but its plastic behaviour is one of their 

advantages to absorb vibration and earthquake in building construction. Furthermore, 

its availability as a sustainable material and its eco-friendly property qualifies this 

material to be developed as a main material in building construction. Therefore, this 

present work is to transform its properties from nonloadbearing strength (flexural 

and compressive), to a loadbearing construction material with low thermal 

conductivity, porosity and shrinkage.  

  Hemp 3.2.3

Hemp is a rapidly growing plant, about 3-5 m within three months, intensively 

cultivating 200-250 plants per square meter and pollinated by wind. The dioecious 

kind the male plants are 10-15 % taller and lower strength than fibres in female 

plants which are preferred for use in construction. Hemp which its scientific name is 

Cannabis Sativa L. contains low quantity of tetrahydrocannabinol (THC) = about 0.2 

% < 0.3% (non-psychoactive limit) (Peev, 2012) which is considered non-

psychoactive material and different from the Indian Cannabis that has high 

percentage of marijuana (THC) 3-10% of the active components (Heisters, 2008). 

Hemp gives 5 tonnes biomass per each hectare within four months and this is the 

biggest biomass plant product in the world. The outer bark of stem has the strongest 

fibres. In comparison to cotton, hemp fibres are longer, 8 times higher in tensile 

strength and higher mildew resistance. Fibres, shives and seeds are the important 

product of hemp plants. Figure 3.2 and Figure 3.3 show the hemp plant and the hemp 

fibres. Figure 3.4 and Figure 3.5 show hemp shives and a cross section of hemp 

stem. Hemp is durable, reusable, low energy lifetime, carbon friendly or carbon 

negative, healthy to human use (it is not toxic ) and broad extent of application 

(Peev, 2012). Hemp fibres start in thermal degradation above 150ºC which is a 

relatively high degree (Shahzad, 2013). Tensile strength of hemp fibres is about 550-
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900 MPa (Anderzej K. B. et al., 2012) and the average diameter is 22 micron (Hurter 

& Eng, 2001).  

Accordingly, hemp fibres are proposed to reinforce the lime binder in this project. 

The aim is to reduce energy consumed during building use and to use construction 

materials with lower embodied carbon which can also be recycled. Furthermore, 

there is a tendency to transform to zero carbon housing. Buildings take around 40 % 

share of the CO2 emissions (BEIS, 2018) and this means reducing CO2 emissions in 

building construction is environmentally very important. About 40-60 % of the 

Cannabis Sativa L. plant is hemp shives from the crushed woody core of the plant 

stalk (Edward AJ Hirst, Peter Walker, Kevin A Paine, & Yates, 2010). The natural 

fibres in comparison with industrial fibres are cheaper, lighter, renewable and 

biodegradable (A. Hakamy, F. U. A. Shaikh, & I. M. Low, 2014). 

  

Figure ‎3.2 Hemp plant (Heisters, 

2008). 

Figure ‎3.3 Hemp fibres (Heisters, 

2008). 

For these reasons, hemp fibres were an important choice in the present project and it 

was adopted to be a part of the proposed wall and it was preferred to be used more 

than fibre glass. 
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Figure ‎3.4 Hemp shives  (Wikimedia, 

2017) 

Figure ‎3.5 Cross-section of a hemp 

stem (Canada, 2009) 

  Fibre Glass 3.2.4

Fibre glass (FG) is added to improve the physical properties of the binder, especially 

flexural and compressive strength (Raju, Ramji, & Prasad, 2015). It is sold as 

tissues, rod bars, threads and chops (Bagherpour, 2012). It has been chosen in this 

project to decrease the cost because the nanomaterials are expensive. It may be 

linked to the other nanomaterials in the matrix to strengthen the nanocomposite. 

Furthermore, it is used in comparison to hemp fibres and to conduct optimisation in 

their properties. As it appeared from lab experiment the strength results of hemp 

fibres/ lime were also very near to fibre glass/lime but hemp fibres were adopted for 

use in the proposed wall (see Figure 1.10). FG was bought from Sea Coast Company 

in UK (chopped, 6mm long and 13 microns in diameter) and white in colour with a 

density 2.5-2.65 g/cm3 as shown in Figure  3.6.  
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Figure ‎3.6 Chopped fibre glass (Tassew & Lubell, 2014). 

  Polyvinyl Acetate (PVAc) 3.2.5

This is a traditional adhesive which is used for wood connection in the furniture 

industry for example. It has good strength characteristics. It was selected to get more 

enhancements for bonding between fibres and lime binder. The flexural strength 

results were doubled by using this adhesive as will be seen in Chapter 4. The hemp 

fibres or fibre glass were blended with PVAc and then mixed with the lime binder.  

PVAc adhesive was purchased from the UK local market (Evo-Stick Super Evo-

bond waterproof PVA) which is an environmentally hazard-free glue and it is a resin. 

Polyvinyl acetate resin is a chain of monomers (C4H6O2)n and its density is about 

1.03-1.13 g/cm3 (as in the safety data sheet of Evo-Stick Company). The average 

density is 1.08 which closes to the density of water. PVAc can be mixed with water. 

If the percent of PVAc is 30 % of water and the water is 0.4 W/L of a 1 kg of lime, 

that means the water is 400 g from 1000 g lime and the weight of PVAc is (0.3 x 400 

= 120 gm or cm3). This PVAc quantity 120 divided by 1000 gm lime and will be 12 

wt. % of lime. For more precision, if the density of PVAc is taken into consideration; 

120 cm3 of PVAc multiply by its density 1.08 g/cm3 =129.6 gm. Then PVAc percent 

will be 129.6 g/ 1000 g of lime = 12.96 or about 13 wt. % of lime. This difference of 

percent is not large in building construction. It is easier for practical work to use 

volumetric percent of PVAc of water added to water lime ratio in the same 
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measuring cylinder in cm3. The percentages 20, 30, 50, 100 and 200 vol. or wt. % of 

water can be written 8, 12, 20, 40 and 80 wt. % of lime respectively. 

  Nanomaterials 3.2.6

Nanomaterial particles are in nanoscale dimension (1-100 nm), the specific area is a 

very large and active surface which interacts with polymers if they are processed 

very well to give good dispersion. In this research, many materials were selected to 

improve the lime matrix in order to achieve the desired properties for building 

construction, such as nanocellulose to improve tensile or flexural s trength of the 

matrices like lime binder which is cheaper than carbon nanotubes. Besides, it is more 

preferential for heat isolation than CNT's. Nano-silica is very good for sealing 

against water ingress in different matrices like cement, lime or polymers as it 

decreases porosity or blocks pores. In addition to this behaviour, it was found that it 

enhances other physical properties such as flexural, compressive, tensile strength or 

impact resistance. Nano-clay is the choice to achieve low thermal stability. It is also 

fire retardant.  

  Nanocellulose 3.2.7

Nanocellulose was purchased from the laboratories of Maine University, process 

Development Centre in the USA. It is called cellulose nanofibres (CNF). The 

chemical formula of polysaccharides is Cx(H2O)y and the monosaccharides have a 

formula (CH2O)n. Cellulolose is a kind of polysaccharide (Klemm, Heublein, Fink, 

& Bohn, 2005). CNF in this project was supplied as a solid white powder, its pH at 2 

% suspension in water is 5-7 and its thermal decomposition is 175ºC. It enhances the 

mechanical strength of the (lime, cement, polymer …etc.) nanocomposite. To ensure 

good dispersion in a matrix (paper paste and polyvinyl alcohol), it has to be stirred 

on a magnetic plate in water (Fiberlean; Siró & Plackett, 2010; Tanpichai, Sampson, 

& Eichhorn, 2013). Nanocellulose was one of many choices in this project due to its 

ability from the literature review to enhance mechanical properties like flexural and 

compressive strength.  

  Nanosilica 3.2.8

Nanosilica (nSiO2) is an inorganic filler. It was bought from Sigma Aldrich in the 

UK as white powder; its molecular weight is 60.08 g/mol. It is used to enhance water 
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proofing of silica calcium carbonate (SiO2:CaCO3) by decreasing porosity but it also 

enhances the physical properties like tensile strength, impact resistance and hardness. 

It must be suspended in solvent by magnetic stirring, mixed with polymer and stirred 

again to achieve good dispersion (F. A. Morsy, El-Sheikh, & Barhoum; M. Morsy et 

al., 2010; Qijie Xu1, Fangfei Chen1, Xiaohong Li1, & Zhang1, 2013; Quercia 

Bianchi & J H Brouwers, 0002). 

  Nanoclay 3.2.9

Nano-clay was also purchased from Sigma Aldrich in formula H2Al2O6Si. It is 180.1 

g/ mol. with light tan to brown in colour. Its bulk density is 600-1100 kg/m3. It is 

mixed with matrices like cement, gypsum and polymer for thermal stability and heat 

isolation or for decreasing thermal activity. In general it enhances chemical 

resistance, as fire retardant and thermally stable but sometimes it enhances the 

mechanical properties of polymer, cement and biomass composites. Besides, it could 

be suspended in solvent like water and stirred to be added and blended very well in 

starch matrix (Cyras, Manfredi, Ton-That, & Vázquez, 2008; Q. K. Meng, Hetzer, & 

De Kee, 2011; Olad, 2011; Scarfato, Di Maio, Fariello, Russo, & Incarnato, 2012).  

  Nanozinc Oxide 3.2.10

Nano-zinc oxide (nZnO) is an inorganic material reported as Ultra Violet resistant 

(Feldman, 2014; Gomez-Ortiz et al., 2013; Raju et al., 2015; Souza Aguiar, 

Tanomaru, Faria, Leonardo, & Tanomaru-Filho, 2015) but sometimes it enhances 

heat isolation, especially when it is used as a paint coating.  It was reported that it 

improves the tensile strength and the modulus of the elasticity of polycarbonate at 

1wt% by melting and at 0.5 wt. % it improves hardness and wear resistance (Carrion, 

Sanes, & Bermudez, 2007; Raju et al., 2015). It was also purchased from Sigma 

Aldrich as white powder; its density is 5.61 g/cm3. It is suspended by stirring, in 

solvent like water, mixed and stirred with solution of dissolved polymer or after 

stirring, added to cement paste using a mixer to ensure good dispers ion (Bhagat & 

Khanna, 2015; A. Hazarika & Maji, 2014). 

  Expanded Graphite 3.2.11

Expanded graphite is made by exposing natural flake graphite in a bath of chromic 

acid, and then adding concentrated sulfuric acid, which separates the crystal lattice 
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planes, thus the graphite is expanded. It is a black powder in appearance. It can be 

used as a barrier, as insulation between molten metal and the hot top to decrease heat 

loss, fire stops around a fire door and used as gasket or valve for high temperature 

use (Jungbluth, 2008).  

  Processing, Blending and Test Specimens 3.3

A food mixer was used to mix lime binder (NHL5) with nanofillers and water for 5 

minutes at low speed and 15 minutes at quick speed. For dispersion, the nanofillers 

were stirred by magnetic plate with deionized water then added to the mixer. In the 

case of hemp fibres or shives, the mixing became very hard (the workability of the 

mix was very low) and three mixers were broken within many months, before a 

cement mixer was successfully used. The hemp fibres or shives were blended with 

dry lime and then the dispersed nanomaterials in water lime ratio (W/L) were added 

to the mixture of lime and hemp (shives or hemp fibres). The mix was then placed in 

the mould of the required test. The specimens remained in storage (60 % relative 

humidity and temperature of 20ºC) for five days in polyethylene bags before 

demoulding. The specimens remained in storage for 28 days, they are dried  by many 

methods, Air-Cured drying, Solvent exchange using Isopropanol, the specimens are 

immersed in for seven days after 5 days demoulding and Oven-cured drying in an 

oven at 50ºC (oven cured samples) 2 days before the testing. 

The water lime ratio was 0.4 since the nanofillers absorb water, this was accounted 

for by adding water to achieve a similar flow (150 mm) on a flow table compared to 

the control sample. The nanomaterials were magnetically stirred for complete 

nanomaterial dispersion in the water for two hours prior to adding to the mixture. As 

for nclay, it needed more stirring time for better dispersion so this continued 

overnight. The lime and hemp (shives or fibres) were dry mixed for five minutes. 

The PVAc was mixed with the water/nanomaterial mixture and stirred for 15 

minutes before gradually adding into the dry mix of lime hemp (shives or fibres). 

Slow speed mixing continued for 5 minutes on and 10 minutes quick speed. The 

mixed composite was compacted into a mould and via tamping with a mallet of 

dimensions similar to the surface area of the specimen for compaction. A mould size 

of 180 x 130 x 20 mm was used. 



Chapter 3       Test methodology 

49 
 

At 5 days after casting, samples were carefully demoulded and immersed in 

isopropanol for 7 days. Following this, they were dried in an oven for two days at 

60°C. At 14 days, samples were removed from the oven and either tested or 

transferred to a temperature control room (60% RH and 20°C).  

The optimum water lime binder ratio was conducted by a flow rate device as shown 

in Figure  3.7. The mortar was placed in a conical mould and allowed to free fall after 

15 raising/dropping cycles. The spread of mortar diameter had to be 160mm for the 

optimum water lime ratio (when it was demoulded on the flow table, its demoulded 

shape was spherical). The percentage of water binder ratio firstly was 0.5 W/L 

(water lime ratio but if additives are used it means water solid ratio) and the paste 

spread was within the standard limit. The water lime ratio was then decreased to 0.4 

W/L which too, was within the limit. The mix is not very workable tamping was 

used for placing the mix. In practice, hemp is placed by a timber rod and tamping 

head for full compaction.  

 

Figure ‎3.7 Flow rate device determining optimum lime water ratio 

 

  Dispersion 3.3.1

The methods of dispersion, as mentioned in Chapter 2, is the stirring method on a 

magnetic plate and sonication. In addition to that, using a surfactant factor (soluble 

compound that reduces the surface tension of liquids, or interfacial tension between 

two liquids or a liquid and solid) (Nawla, 2004 (vol. 1-10) and 2011 (10-25)), for 

inorganic nanofillers (expanded graphite, nanosilica and nanozinc oxide) to make an 

envelope around the particles, help disperse the particles and prevent the 
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composition of conglomerates. The tendency to make conglomerates results from the 

interior attraction between the active surfaces of the nanomaterial particles (or 

attractive forces, called Van der Waals). In this present project, stirring nanomaterial 

in deionised water by magnetic plate was used for nanoclay and nanocellulose but 

for inorganic nanomaterials like expanded graphite, sonication for one hour after 

stirring on a magnetic plate was used. Nanomaterials were stirred in a beaker with 

deionized water on magnetic plate for 1 hour and then added to the lime in the mixer. 

With regard to the PVAc, it was added after 1 hour to the nanomaterial in the beaker 

and stirred with the nanomaterial before adding to the lime matrix in the mixer. 

  Moulding Method 3.3.2

The moulding methods depend upon the methods of mixing and the matrix. In this 

project, the matrix was lime binder with or without hemp (shives or fibres). As 

mentioned before, a food mixer was used in the present project and the resulting 

paste was placed in the mould according to the required test. The demoulding time 

for all moulds of lime is five days for all test specimens as specified in the British 

Standard BS EN 459-1:2015 Building lime Part 1. 

  Flexural and Compressive Strength  3.3.2.1

The mould size is 160 x 40 x 40 mm with three cavities being available in each 

mould. The flexural specimens were tested by a three point load method and the two 

portions of the broken specimen were used for compressive strength. For 

compression test, each portion is placed between two 40x40 mm plates in 

accordance with the British Standard (BSEN1015, 2000). 

  Thermal Conductivity Test  3.3.2.2

The mould size was 180 x 130 x 20 mm, it was made from "Wisaform" timber in 

accordance with the procedures explained in British Standard (BSEN12664, 2001). 

Two methods are recommended in this standard, one of them was adopted to 

perform the tests conducted in this research using the heat flow meter single 

specimen method.  
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  Water Vapour Permeability 3.3.2.3

A circular mould is made of corrosion resistant material with an open upper side 

with an area of about 0.02 m2 as given in the standard (BSEN1015-19, 1999). That 

means: 

 A=0.02 m2= πxR2       Equation  3.3 

R2=0.02/ π = 0.006366 m2      Equation  3.4 

R= 0.07978 m x 1000 =79.78 ≈ 80 mm or D = 160 mm 

A: area, R: radius, D: diameter 

The thickness of the specimen is 20 mm with 160 mm diameter. 

  Shrinkage and Water Absorption 3.3.3

 The mould as used for flexural strength was also used for shrinkage and water 

absorption samples (160 x 40 x 40 mm). Two demecs were centrally fixed by glue 

on the longitudinal centre line of the specimen, 100 mm distance between them to 

measure the contraction (shrinkage) of the materials.  

  Porosity 3.3.3.1

The fragments which were cut by a knife from the crushed flexural and compressive 

test specimens were used for porosity testing, 1.5 x 1.0 cm approximately to fit 

inside the mercury intrusion porosimetry device.  

 

  Experiments 3.4

The main experiments being conducted are outlined in the following sections. The 

most important experiments are the strength, flexural and compressive strengths are 

usually determined in accordance with BS EN 1015-11:1999 and BS EN 196-

1:2005, with size of 40x40x160 mm. The three point load method is used to test the 

specimens. The compressive strength is conducted on the broken halves of the 

flexural specimens using two square plates of dimensions 40x40 mm top and bottom 

of these halves (BSEN1015, 1999; BSI, 2005) 
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  Flexural Strength Test 3.4.1

The procedures of flexural and compression strength followed BS EN 1015-11-1999. 

As mentioned previously, the specimen sizes are 160 x 40 x 40 mm. Three point load 

method was used and the "Instron device" was used as shown Figure  3.8. Flexural 

strength is an indirect expression for the tensile strength of the material. Deflection 

rate was 1 mm/sec. The flexural test results of lime or any solid mortar are expressed 

as modulus of rupture which is denoted as MR or R in MPa or psi. The equation for 

calculation of flexural strength is: 

R= 3PL/2b3         Equation  3.5 

P: the exerted load (N) 

L: span of the prism (mm) 

 

b: dimension of the square cross section of the specimen 

R: flexural strength, MPa 

  

 

Figure ‎3.8. Instron device (3367) for three point load 

 flexural strength test 
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  Compressive Strength Test 3.4.2

 As mentioned before, it was conducted on the two portions of the broken prism in 

flexural strength. Two plates 40x40 were placed on the upper and lower faces to 

define the area under the exerted load. The test was achieved using the same device 

(Instron 3367), see Figure  3.9. The calculation was conducted in accordance with the 

basic equation: 

Compressive strength= P/A (MPa),      Equation  3.6 

P= load (N), A= cross section area of the specimen prism 
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Figure ‎3.9 Instron (3367) device with specimen under compressive 

strength test. 

  Thermal Conductivity Test 3.4.3

The thermal conductivity test was conducted following the procedures of BS EN 

12664 (ENNF, 2001). Two methods are recommended in this standard, one of them 

is the heat flow meter single specimen (180 x130 x 20 mm) method which was 

adopted in this project. The Instrument comprises a cold plate under the specimen to 

decrease the temperature to 2ºC. The specimen is placed on the cold plate and it is 

surrounded by polystyrene insulation. The upper face of the specimen is exposed to 

the room temp which is constant at around 16ºC. Four thermocouples are attached to 

the upper and lower faces of the specimen. On the upper face of the specimen, two 

heat flux sensors (Hukseflux HFP01, 80mm diameter and 5 mm thick) were placed 

for measuring the heat flux through the thickness (20 mm) of the specimen. The 

mixing of the materials is described in Section 3.3 and the timber (Wisaform) mould 

which was made in the lab was explained in Section 3.3.2. The thermocouples and 

the heat flow meter sensors are connected to data logger to record the data, see 

Figure  3.10 and Figure  3.11. 
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Figure ‎3.10 Heat flow sensor and 

thermocouple 

Figure ‎3.11 Heat flow meter device 

and data logging equipment 

Theory 3.4.3.1.1

Fourier's Law in a simplified form was used to determine the one directional thermal 

conductivity of the samples as follows in Equation 3.7: 

𝑞𝑥 =  − (𝑑𝑇 𝑑𝑥⁄ )        Equation  3.7 

where 

𝑞𝑥 is the heat flux in direction x (W/m2) 

 is the thermal conductivity of the material (W/mK) 

𝑑𝑇/𝑑𝑥 is the thermal gradient in the direction of the flow (K/m) 

From the measured heat flux at steady state conditions and the temperature 

difference between the hot and cold sides, the thermal conductivity of the samples 

was determined.  

In order to evaluate the accuracy of the apparatus, expanded polystyrene of a 25 mm 

thick sample (180 mm×130 mm) of known thermal conductivity (0.033 W/mK) was 

used. Thermal conductivity was found 0.032 W/mK of the reference polystyrene 

sample. Therefore, the apparatus can measure thermal conductivity of materials even 

with very low  with reasonable accuracy (O’Flaherty & Alam, 2018) 
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  Apparatus Accuracy 3.4.3.2

Accuracy of the apparatus has been investigated by measuring the thermal 

conductivity of a sample of expanded polystyrene (180mm × 130mm x 25 mm) of 

thermal conductivity (33 mW/mK). The reference sample was measured in the 

laboratory and the thermal conductivity was found to be 32 (mW/mK) and this 

means that the apparatus can measure even very low thermal conductivities o f 

materials with good accuracy. 

 

  Porosity Test 3.4.4

Porosity can be measured to determine the resistance of the movement of water or 

humidity through the material (biomass nanocomposite) building construction 

material. It is as a result of the pore size through the material which controls the 

quantity of discharge from one face of the material to the other side across its 

thickness. Porosity test is conducted in one of two ways: Pore size calculated by 

mercury pressure i.e. Mercury intrusion porosimetry (MIP). Further details are given 

in the following section.  

  Mercury Intrusion Porosimetry (MIP) 3.4.4.1

The relationship between the pore diameter and the pressure is the basis of this 

method for measuring porosity. The mercury is pushed into the specimen under 

gradual pressure to enter the pores inside the nanocomposite. The mercury which 

touches the solid materials in the pores is non-wetted; angle θ > 90° will be between 

the solid material and the surface of the non-wetted mercury because of the cohesion 

which is developed between the mercury and the solid material. The increments of 

pore volume are measured at each change in pressure. The behaviour of the non-

wetted mercury with materials is repeated, for that the pressure for small pores must 

be high to define the value of the increment (intrusion) of pore volume. The device 

has two parts; one is 140 Pascal and the specimen is about 1.5 x 1.0 cm, and the 

second part is 240 Pascal. The specimen is moved to the second part to complete the 

test, see Figure  3.12 and Figure  3.13.  
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Figure ‎3.12 Mercury 

intrusion porosimetry (MIP) 

140 Pascal 

Figure ‎3.13 Mercury 

intrusion porosimetry (MIP) 

240 Pascal. 

 

Porosity Calculations 3.4.4.1.1

The Washburn equation below is used to find the pore radius: 

𝒓𝒘 =
−𝟐∗𝒄𝒐𝒔𝜽∗𝜸𝒔−𝒍

𝑷𝒘
       Equation  3.8 

 Where  

rw: Pore radius (Washburn equation), m; 

γs−l: Surface tension solid liquid, N/m; 

θ: Contact angle between the liquid and the pore wall, degrees; 

Pw: Pressure applied on mercury to intrude the pore, N/m2. 

To find the bulk density of the sample equation 3.8; it is supposed that there is no 
intrusion by the pressure exerted by mercury on the sample at 0.033 MPa. 

 

Wpt

ρHg
=

Wps −Ws

ρHg
+

Ws

ρbulk
       Equation  3.9 

Where 

Wpt: Weight of penetrometer sample cell filled with mercury, g; 

Ws: Weight of dry sample, g 
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Wps: Weight of penetrometer with the sample and mercury until 0.033 MPa the 
volume, g; 

ρHg:Density of mercury, 13.5 g/ cm3; 

ρbulk: Bulk density of sample; g/ cm3; 

To calculate the volume of pores, the equation 3.9 is used: 

 

Vp = V
Hg 

ρbulk
Ws

        Equation  3.10 

Where 

Vp: Volume fraction of pores, 𝑐𝑚3  

VHg: Volume of mercury intruded,  𝑐𝑚3  

 

  Water Absorption Test 3.4.5

This test is to determine the water absorption of the specimen; it is done in 

accordance with the standard EN BS 772 Part 21, 2001. The specimen size was the 

same as that for the flexural strength test (160 x 40 x 40 mm). The specimens were 

placed in a plastic case and then glass tubes (10 mm diameter) were placed under the 

specimens. Deionized water was poured inside the plastic case to just touch the 

lower face of the specimens at time t=0. Before starting the test, the specimen must 

have a stable weight by oven drying and reweighing many times. Then, after the 

weight has stabilized, the test starts. The water will be absorbed and the specimen 

weight increases with time. 

1-The first stage of the test during the first half an hour, the specimen weight must be 

registered every five minutes 

2- The second stage during the second half hour, the specimen weight must be taken 

every 15 minutes 

3- At the third stage, during the second and third hours, the specimen weight must be 

taken every 30 minutes 
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4- At the fourth stage, four hours and beyond, the specimen weight is taken every 60 

minutes 

5- The last stage is when the sample reaches its limit of water absorption, the sample 

is left 24 hours before taking the last weight. 

 Water Absorption Calculations  3.4.5.1

% Open porosity= Volume of water absorbed/Vol. of specimen, OP%= Vop/Vsp*100 

Vsp=4x4x16= 256 cm3, Vop= volume of open pores= UO= Wmax-Wdry 

Weight of absorbed water, Ut= (wet - dry) weight 

Max absorbed water=Max. weight - dry weight, Uo= Wmax-Wdry 

Imbibition capacity, IC= Uo/ Wd, Uo= Total water content 

Absorption or (apparent porosity), ABS= IC X 100, IC= Imbibition capacity 

Capillary porosity= total water absorbed/ capillary area, Mi= Ut/ 64 cm3. 

 

  Water Vapour Permeability Test 3.4.6

The water vapour permeability was applied to study the impact of nanomaterial on 

the breathability of lime which has good breathability even without fillers. The goal 

is to keep or increase the water vapour permeability of lime. It was conducted 

according to BS EN 1015-19 1999. It is defined in this standard as the water vapour 

permeance multiplied by the thickness of the specimen. The water vapour permeance 

is the water vapour flux passing through a unit area under equilibrium conditions per 

unit difference in water vapour pressure between the two sides of the material. The 

apparatus is a circular container or cup, it must be made of material resistant to 

corrosion with area about 0.02 m2 and diameter of 160 mm as shown in Figure 3.14 

and Figure 3.15, demoulded specimen is shown in Figure  3.16 and Figure 3.17. 

The specimen curing conditions are 20°C, 60 % humidity, demoulded after 5 days 

and then stored for 23 days at 20°C and 60 % humidity. 
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Figure ‎3.14 Sketch of water vapour cup BS EN 1015-19 1999. 

Key to Figure 3.14. 

1. Specimen 

2. Sealant 

3. Circular test cup 

4. Air gap ≈ 10 mm 

5. Saturated salt solution 

6. Area ≈ 0.02 m2 

Saturated solution of potassium nitrate (KNO3) was poured under the specimen in 

the bottom of the cup with a gap between the solution and the lower face of the 

specimen of about 10 mm to provide 20ºC and relative humidity 93.2 %. 

To prepare the specimen for the test, the dry specimen was put on the mouth of the 

cup and impermeable mass sealant was used to seal the clearance between the cup 

and the specimen. 

Note: the humidity according to BS EN 1015-19 1999 in the storage chamber is 95 

% to promote hydration but at the time of testing becomes 50 % as in the mentioned 

standard to let the water vapour going out from inside the cup (high humidity, 93.2 

%) to outside the cup or to the chamber (low humidity, 50 %). In this project, the 
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humidity was 60 % for the 23 days of storage in order to match the curing of all the 

experiments (strength, porosity, shrinkage and thermal conductivity).  

  

Figure ‎3.15 Water vapour cups. Figure ‎3.16 Lime specimen (demoulded) 
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Then, the specimen and the apparatus were kept in a storage chamber at 20ºC and 

humidity 50 % as shown in Figure ‎3.17, Figure  3.18 and Figure ‎3.19.  

   

Figure ‎3.17 Specimens 

of different fillers/ lime. 

Figure ‎3.18 Climatic 

chamber with 

specimens. 

Figure ‎3.19 Climatic 

chamber used in the 

study. 

  Theory and Calculation of Water Vapour Permeability (WVP) 3.4.6.1

Water vapour flux = ∆G/∆t from the graph.    Equation  3.11 

V = water vapour permeance Kg/ m2 x S x Pa.   Equation  3.12 

∆G/∆t = water vapour flax (kg/s) 

∆P = the difference in water vapour pressure between the ambient air and the salt 

solution and is taken from appropriate tables, Pa. 

RA = water vapour resistance of the air gap between salt solution and the specimen. 

RA = 0.048 x 109 Pa m2 s/ Kg per 10 mm air gap. 

t = is the specimen thickness (m). 

Wvp = water vapour permeability = V x t.    Equation  3.13 

V water vapour permeance = 1/ (A ∆P/ (∆G/∆t))- RA in Kg/ m2.  Equation  3.14 

 

  Shrinkage Test 3.4.7

 Shrinkage test followed BS ISO (BS-ISO-1920-8, 2009). The mould and the 

specimens were the same for flexural strength test 40 x 40 x 160 mm. Strain demecs 

(two) were centrally glued on the centre line of the specimen, spaced 100 mm apart. 

The demec gauge is shown in Figure  3.20 and Figure  3.21 and the test specimens 

with demec points is shown in Figure  3.22.  
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Figure ‎3.20 Demec 

device, side view  

Figure ‎3.21 Demec 

device, top view 

Figure ‎3.22 Specimens 

with demec points 

  Theory and Calculation of Shrinkage  3.4.7.1

The strain gauge factor is 1.608 x 10-5  

If the measurement of first reading is = x 

Any reading measurement at any day = xi 

The strain at this day for a material is = (x-xi) x 1.608 x 10-5 µm Equation  3.15 

Then the curve is drawn from strain versus time. 

 Curing Methods 3.5

Three drying methods were adopted in this project; Air dry curing, Solvent exchange 

curing and Oven dry curing. Air curing means the specimens are left in the storage  

(20°C and 60 % RH) for 23 days after demoulding at 5 days (Part A-Air). In the 

solvent exchange method, the specimens were demoulded after 5 days and immersed 

7 days in isopropanol then are left in the storage under the same aforementioned 

conditions (Part B-Solvent Exchange). The last method is Oven drying, the 

specimens are left for 26 days in the same storage and conditions before being put 2 

days in an oven 50°C (Part C-Oven drying). 
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 Compressive and Flexural Strength of Lime Chapter 4 -
Nanocomposites 

  Introduction 4.1

The main project objective is to change the lime from a non- loadbearing to a 

loadbearing material. The flexural strength should be similar to the flexural strength 

of cement mortar (4.0 MPa) and the compressive strength must be more than the 

minimum value of a loadbearing construction material (5 MPa) as shown in the 

literature (de Bruijn et al., 2009). It must be lightweight in comparison to concrete as 

this is a beneficial property to optimise design by reducing section sizes and material 

used. Table 4.1 shows the objectives and their description. Error bars based on 

standard deviation as a comparison will be exhibited within the mean of strength 

tables and charts for each method of curing throughout Chapter 4.  

Table ‎4.1 The aims and objectives of Chapter 4 

No Objectives Description 

1 Lightweight 

Lime nanocomposite density is less 

than that of concrete or brick < 2.5 
g/cm3. Densities are in Chapter 8 

2 
Load bearing construction 
material 

 

Able to withstand self-weight and 
live loads such as wind loading 

2.1 

 
Improve compressive 
strength to be more 

than minimum limit of 
load bearing materials 

Compressive strength > 5 MPa 

2.2 
Improve flexural 
strength to be around 

that of cement mortar 

Flexural strength ≈ 4 MPa 

 

Many series of experiments were conducted to determine the impact of different 

nanomaterials such as nanosilica (nSiO2), nanoclay (nclay), nanofibrillated cellulose 

(nFc), and expanded graphite (EG) on the mechanical strength (flexural and 

compressive) of lime composite properties. Furthermore, hemp shives (HS), 

polyvinyl acetate (PVAc), hemp fibres (HF) and fibre glass (FG) were also used to 

determine their effects on the mechanical strength properties. The impact of these 
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components on other properties such as thermal conductivity, porosity, shrinkage, 

water absorption and water vapour permeability of lime was studied and will be 

presented in the following chapters. SEM images were taken of many specimens to 

obtain a better understanding of the composition of the fibres and lime matrix. In 

Chapter 4, the focus is on the mechanical properties (flexural and compressive 

strength) due to their importance in construction materials. 

For the flexural and compressive strength tests, the specimens were divided into 

groups, with each group focusing on a different nanomaterial such as nanosilica 

(nSiO2), nanoclay (nclay), nanofibrillated cellulose (nFc), and expanded graphite 

(EG) which were added to lime matrix. The percentage of nanomaterial was varied 

to find the optimum percentage which gave the highest flexural and compressive 

results. Further testing then followed to verify the optimum results from the initial 

tests. Fibre glass, hemp fibres and PVAc were also added to the lime 

nanocomposites to determine their influence on strength. Initially, the water lime 

binder ratio was 0.6 W/L but most of the specimens failed before testing during the 

storage time or transportation so later the ratio was decreased to 0.5 to determine its 

improvement and influence on strength. 

 Finally, a ratio of 0.4 W/L was used which gave optimum strength results, but 

workability became an issue. To overcome this, the on-site placing method was 

followed where a 'mortar-board' type tamping tool was used to compact the material. 

This technique worked quite well. The moulds were 40 x 40 x 160 mm as shown in 

Figure 4.1. Three groups (each group includes different percentages of nanofillers) 

of specimens were cured by three different methods of curing (Air, Solvent exchange 

and Oven dry curing) and were cast yielding a total of 200 specimens in total. Three 

different curing regimes were adopted and these are described in Section  4.2. Drying 

times of hemp/lime composites on site is an issue hence accelerated methods were 

also investigated to determine if other curing techniques could be used. 
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Figure ‎4.1 Moulds of 40x40x160 mm with nanocomposite specimens  

 

Fig.4.2 is an example of different series of mechanical (flexural and compressive) 

strength specimens.  
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Figure ‎4.2 Different series of mechanical strength (flexural and compressive) 

specimens 

 

  

  

  

  

  

 
 

 
 

 



Chapter 4   Compressive and flexural strength of lime nanocomposites 

68 
 

  Classification of test specimens according to their curing regime  4.2

Three different curing methods were adopted to study the different effects of curing 

on the properties (compressive and flexural strength in Chapter 4, thermal 

conductivity Chapter 7, porosity Chapter5 and shrinkage 6 later) of the composite. 

The Air curing was conducted to allow the reaction to complete as the water was 

slowly evaporated. It will be shown that air cured samples yielded the largest 

strength (Section 4.3). Solvent exchange (Section 4.4) is most likely to be beneficial 

for heat isolation since the reaction stops early as the free water is evaporated with 

the solvent evaporation. This is as a result of the density remaining low. Oven curing 

may give higher strength result than Solvent exchange but some free water of this 

method is evaporated. More tests in the future are important to define the best 

number of days for oven curing which give optimum properties (strength, heat 

isolation, porosity and shrinkage). A summary of the curing methods and nanofillers/ 

additives used are given in Table 4.2. Referring to Table 4.2, Part A, Air curing is 

adopted. This method better replicates the in-situ conditions.  

In addition, a solvent exchange method (Section 4.4 and Section  4.5) which was 

applied as soon as practically possible (five days after casting when the materials 

were sufficiently hardened, immersed 7 days in isopropanol and then 2 days in an 

oven 50ºC) was used to determine its influence on longer term strength, ca lled Part 

B-Solvent exchange method. Finally, a drying method where the specimens were put 

2 days in an oven at 50ºC at days 26 and 27 then tested at 28 day was adopted, 

named Part C- Oven drying method (Section 4.6 and Table 4.2.). 
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Table ‎4.2 Summary of tests 

Curing  

Method 

Part A Air drying 

 Stored throughout at 

 20°C/60% RH 

 Demoulded at 5 days 

 Cured for +23 days 

Part B Solvent exchange 

 Demoulded at 5 days 

 Immersed in isopropanol  

 for +7 days  

 20°C/60% RH for +14 

days 

 Oven for +2 days (26-27) 

(50°C) 

Part C1 Oven drying 

 Demoulded at 5 days 

 20°C/60% RH for +21 days  

 Oven for +2 days (50°C) 
Part C2 Oven drying 

 Demoulded at 5 days 

 Shrinkage test days (5-28) test  

 Oven for +2 days  (29-30) (50°C)  

 Water absorption test days (31-32)  

 20°C/60% RH for +51 days 

Strength (N/mm2)    

  Table W/L  Table W/L  Table W/

L 

 Part A   Part B   Part C1   

 Control 4.3 0.5 Control 4.10 0.4 Control 4.11 0.4 
 2.0%nSiO2 4.4 0.5 0.5% EG 4.10 0.4 0.5% nclay 4.11 0.4 

 4.0% nSiO2 4.4 0.5 1.0% EG 4.10 0.4 1.0% nclay 4.11 0.4 
 0.5% nclay 4.5 0.5 2.0% EG 4.10 0.4 2.0% nclay 4.11 0.4 
 1.0% nclay 4.5 0.5 2.0% nclay 4.10 0.4 3.0% nclay 4.11 0.4 

 2.0% nclay 4.5 0.5 2.0% nSiO2 4.10 0.4 1.0% nSiO2 4.11 0.4 
 5.0% nFC 4.6 0.5 10% FG 4.10 0.4 2.0% nSiO2 4.11 0.4 

 7.0% nFC 4.6 0.5 80% PVAc 4.10 0.4 3.0% nSiO2 4.11 0.4 
 5.0% FG 4.7 0.5 40% PVAc 4.10 0.4 1.0% EG 4.11 0.4 
 10% FG 4.7 0.5 20% PVAc 4.10 0.4 2.0% EG 4.11 0.4 

 15% FG 4.7 0.5 8% PVAc 4.10 0.4 5.0% nFC 4.11 0.4 
 10% HF 4 % nZnO and 12% PVAc 4.8 0.4 10% HF 4.10 0.4 10% nFC 4.11 0.4 

Nanofiller       5.0% HF 4.11 0.4 
Additive       7.0% HF 4.11 0.4 
       10% HF 4.11 0.4 

       20% HS 4.11 0.4 
       12% PVAc, 20% HS 4.11 0.4 
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Curing  

Method 

Part A Air drying 

 Stored throughout at 

 20°C/60% RH 

 Demoulded at 5 days 

 Cured for +23 days 

Part B Solvent exchange 

 Demoulded at 5 days 

 Immersed in isopropanol  

 for +7 days  

 20°C/60% RH for +14 
days 

 Oven for +2 days (26-27) 
(50°C) 

Part C1 Oven drying 

 Demoulded at 5 days 

 20°C/60% RH for +21 days  

 Oven for +2 days (50°C) 

Part C2 Oven drying 

 Demoulded at 5 days 

 Shrinkage test days (5-28) test  

 Oven for +2 days  (29-30) (50°C)  

 Water absorption test days (31-32)  

 20°C/60% RH for +51 days 

      
       8% PVAc, 10% FG 4.11 0.4 
       12% PVAc, 10% FG 4.11 0.4 

     8 % PVAc, 10% HF 4.11 0.4 
     12% PVAc, 10% HF 4.11 0.4 

       Part C2   

       Control 4.13 0.4 
Nanofiller       2.0% nclay 4.13 0.4 
additives       2.0% EG 4.13 0.4 

       2.0% nSiO2 4.13 0.4 

Key: nSiO2= nanosilica; nclay= nanoclay; nFc= nanofibrillated cellulose; FG= fibre glass; PVAc= Polyvinyl acetate;  
HF= hemp fibres; EG=expanded graphite.  
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Furthermore, the range of nanomaterials and additives for Parts B and C were 

adopted based on the results of the preceding part i.e. the better performing 

nanocomposites in the previous tests of Part A-Air curing. New additives were also 

added as appropriate to establish influence on strength characteristics. 

For Part C-Oven drying method, it was adopted due to its accelerated drying which 

gave a quick hydration reaction, because the hydration takes many years. Anyway, 

the main strength propagates at the first 28 days. This method dries the W/L 

gradually within two days which gives quick hydration at 50 ºC but still allows 

strength development. More work is required to investigate the influence of drying 

on strength. 

Part C was divided into two parts (Part C1 and Part C2). Part C2 was the same as Part 

C1 except curing was up to 60 days as opposed to 28 days at Part C1. Part C2 

specimens were also used for shrinkage testing from the age of 5 days to 28 days.  At 

29-30 days was dried in oven using 50°C. At 31-32 days, a water absorption test was 

conducted after shrinkage test for 2 days and will explain in Chapter 5. Then at the 

day 60, strength tests were conducted. It is likely that the specimens were affected by 

the changes of water content due to the water absorption test because the strength 

decreased. The low strengths were not evident at 60 days age (Part C2). 

Table 4.3 is the mean of the results of compressive and flexural strengths (Control, 

nSiO2, nclay, nFc, HF and PVAc with nZnO) as given in Table 9.2 to Table 9.7 

(Chapter 9, Appendix). Referring to Table 9.2 (Chapter 9, Appendix), the test part is 

given in Column 1, "A" being the designated letter for the curing method. The 

specimen number is given in Column 2. The percentage and type of nanofiller is 

given in Column 3. The water/lime ratio (W/L) is given in Column 4. The age at 

testing is given in Column 5. The storage conditions are given in Columns 6 and 7. 

This labelling system was repeated for all tables of results. The samples were stored 

in a controlled environment for the first five days after casting (60 % RH; 20ºC) 

before demoulding, Column 6. Following demoulding, they were stored at 60% RH; 

20ºC up to 28 days which were similar to the controlled environment (Column 7). 

The compressive strength results are given in Column 8, the flexural strength results 

are given in Column.9. 
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  Flexural and compressive strength test results Part A-Air cured.  4.3

The flexural and compression test results for all groups of specimens of Part A-Air 

cured are presented in Section 4.3.1 to 4.3.7, Tables 9.2 to 9.7 (Chapter 9, Appendix) 

and their mean is in Table 4.9.  

  Control Specimens (Pure Lime) of Part A-Air cured 4.3.1

The flexural and compressive strength results for the control specimens are given in 

Table 9.2 (Chapter 9, Appendix). A total of eight specimens were tested in flexure 

and 10 halves, using the broken flexural specimens, were tested in compression 

(some of the compression samples were damaged prior to testing so were not 

included). Referring to Table 9.2, the average compressive strength of the control 

samples was 2.9 MPa (range 1.80 - 4.2 MPa) whereas the average flexural strength 

was 1.4 MPa (range 0.2-3.0 MPa). The individual values are presented graphically in 

Figure  4.3 and Figure  4.4. 

The average compressive and flexural strength of the control specimens (as shown in 

Table 9.2) was 2.9 MPa and 1.4 MPa respectively. These results were achieved at 

0.5 W/L. They are clearly weak in flexure in comparison to the flexural strength of 

cement mortar which is about 3.0 MPa for moderate strength mortars and about 4.0  

MPa for high strength mortars (Swan & and Bonora, 2017).  
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Figure ‎4.3 Compressive strength specimens and their mean, Part A-Control 

 

 

Figure ‎4.4 Flexural strength specimens and their mean, Part A-Control 
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The mean compressive strength of 2.9 MPa is slightly lower than the minimum limit  

of load bearing materials 3-5 MPa (de Bruijn et al., 2009). Aho and Ndububa (2015) 

reported a flexural strength of 4.0 MPa for 1:2 cement: sand mix (Aho & Ndububa, 

2015) which is higher than mean flexural strength of Control specimens in this 

project (1.4 MPa) The specimens had cracking due to shrinkage and it may be that 

these cracks contributed to low failure loads, especially when the cracking was near 

the mid-span of the prisms. 

  Nanosilica (nSiO2)/lime nanocomposite specimens, Part A-Air cured 4.3.2

The compressive and flexural strength results for the nanosilica/lime nanocomposite 

specimens are given in Table 9.3 (Chapter 9, Appendix) and shown graphically in 

Figure  4.5 and Figure  4.6. Referring to Table 9.3 (Chapter 9, Appendix), two groups 

of specimens are presented, one group has 2 wt. % of nanosilica added as a 

nanofiller whereas the other has 4 wt. %. Referring to Samples 1-4 with 2 wt. % 

nanosilica in this table, the average compressive strength was 2.8 MPa but when the 

quantity of nanosilica increased to 4 wt. %, the average compressive strength 

decreased a little to 2.7 MPa. With regards to the flexural strength results, the 2 wt. 

% nSiO2 exhibited strength of 0.4 MPa whereas the 4 wt. % specimens averaged 0.8 

MPa. However, this was influenced by an unusually large flexural strength for 

Specimen A3, which yielded a flexural strength of 2.13 MPa. This value is suspect 

and if omitted, the average flexural strength would broadly be in line with the 2 wt. 

% samples. From the test results, it can be concluded that the nSiO2/lime 

nanocomposite specimens with 2 wt. % nSiO2 nanofiller yield the slightly better 

compressive strength (2.8 MPa). However, 2 wt. % nSiO2 decreases the cost 

compared to 4 wt. (2.7 MPa) with no big difference between both compressive 

results (2 and 4 %). Flexural strength of both the 2 and 4 wt. % was very low (0.4 

and 0.8 MPa respectively) which is much lower than the flexural strength of cement 

mortar (around 4 MPa). 
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Figure ‎4.5 Compressive strength of nSiO2/lime nanocomposites and their mean, 

Part A-Air cured  

 

 

Figure ‎4.6 Flexural strength of nSiO2/ lime nanocomposites and their mean, 

Part A-Air cured 
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A possible reason for the low flexural strength of nSiO2/lime nanocomposites was 

due to cracking as a result of drying shrinkage as shown in Figure  4.7 (shrinkage 

data will be presented in Chapter 6). 

 

Figure ‎4.7 Shrinkage cracking of  the nanosilica specimen 

  Nclay/Lime Nanocomposite Specimens, Part A-Air cured. 4.3.3

The flexural and compressive strength test results are given in Table 9.4 (Chapter 9, 

Appendix) for the nanoclay/lime nanocomposites. Samples dosage of 0.5 wt. % and 

1 wt. % nclay exhibited an average compressive strength of 3.0 and 2.9 MPa 

respectively. When the percentage increased to 4 wt. % nclay, the compressive 

strength increased to 3.6 MPa. The corresponding flexural strengths were 0.3, 0.6 

and 0.7 MPa respectively. Figure  4.8 and Figure  4.9 show these test results in 

graphical form. The 2 wt. % nclay gave the highest flexural strength (0.7 MPa) 

compared to flexural strength of 1 wt. % nclay 0.6 MPa (Probably, it is due to the 

effect of cracks which likely appears under flexural loads more than compressive 

loads because of the tension is at the lower half side and the compression is on the 

upper half side of the specimen cross section around the neutral axis which is 

seprates between compression and tension zone) and the compressive strength (3.6 

MPa) higher than the flexural strength of 1 wt. % nclay was 2.9 MPa. Probably, this 

2 wt. % nclay can be optimised if it was dispersed completely in the lime matrix, as 

it seemed that the particles precipitated at the bottom of the beaker.
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Figure ‎4.9 Flexural strength of nclay/ lime nanocomposites and their mean, Part 

A- Air cured 

  
Figure ‎4.8 Compressive strength of nclay/lime nanocomposites and their mean, Part 

A-Air cured 
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  Nanofibrillated cellulose nFc/lime nanocomposites, Part A-Air cured  4.3.4

A total of seven specimens containing nanofibrillated cellulose were tested for 

compressive and flexural strength as shown in Table 9.5 (Chapter 9, Appendix). 

Four specimens were dosed with 5 wt. % nFc giving an average compressive 

strength of 2.3 MPa and flexural strength of 0.35 brought up to 0.4 MPa. The 

remaining three samples had an nFc content of 7 wt. % and yielded a higher 

compressive strength of 2.3 MPa. The flexural strength increased to 0.8 MPa. These 

test results are shown graphically in Figure  4.10 and Figure  4.11. 

 

 

Figure ‎4.10 Compression strength of nFc and their mean, Part A-Air cured 
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Figure ‎4.11 Flexural strength of nFc and their mean, Part A-Air cured 

  Fibre Glass/Lime Nanocomposites 4.3.5

Table 9.6 (Chapter 9, Appendix) shows the compressive and flexural strength results 

for the fibre glass FG/lime composite specimens. The data shown graphically in 

Figure  4.12 and Figure  4.13 shows that 10 wt. % FG/L had the highest results in 

compressive strength, 10.7 MPa, and the highest result in flexural strength, 3.9 MPa. 

The 5 wt. % FG sample had an average compressive strength of 3.4 MPa and an 

average flexural strength of 2.2 MPa. For 15 wt. % FG, their compressive and 

flexural strength values were 6.7 MPa and 1.9 MPa respectively. 
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Figure ‎4.12 Compressive strength of Fibre glass composites and their mean, 

Part A- Air cured 

 

 

Figure ‎4.13 Flexural strength Fibre glass composites and their mean, Part A-

Air cured 

  Hemp Fibres/PVAc nZnO/Lime Nanocomposites 4.3.6

Mix of 10 wt. % HF, 12 wt. % PVAc, 4 wt. % nZnO/L nanocomposite were tested 

using Part A-Air cured method with W/L decreased from 0.5 W/L to 0.4 W/L using 

three specimens which is important to use in the Core of the proposed wall. Two 
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specimens of 4 wt. % nZnO/L were placed using 0.4 W/L which can be used in the 

Render of the proposed wall was also tested using Part A-Air cured method and 0.4 

W/L. Table 9.7 (Chapter 9, Appendix) shows the results of compressive and flexural 

strength of these tests. 

Referring to Table 9.7 (Chapter 9, Appendix) and Table 4.3, the highest result of 

compressive strength of 10 wt. % HF, 4 wt. % nZnO, 12 % wt. PVAc/L and 0.4 W/L 

following Part A-Air cured method was 19.7 MPa and the mean of 6 specimens was 

17.7 MPa which was about 4 times of the minimum limit of the load bearing 

material. The highest flexural strength was 7.7 MPa and the mean was 7.3 MPa 

which was more than cement mortar (4.0 MPa) and the same as the flexural strength 

of concrete (about 7 MPa). As for 4 wt. % nZnO/L, the strength was very low, the 

highest compressive strength was 0.9 MPa and the mean was 0.7 MPa. The highest 

flexural strength of 4 wt. % nZnO/L was 0.7 MPa and the mean was 0.6 MPa. 

Figure  4.14 and Figure  4.15 show these results graphically. 

 

 

Figure ‎4.14 Compressive strength of HF, nZnO and PVAc composites of 0.4 

W/L and their mean, Part A- Air cured 
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Figure ‎4.15 Flexural strength HF, nZnO and PVAc composites of 0.4 W/L and 

their mean, Part A- Air cured 

 

  Summary of the Test Results of Part A-Air Cured 4.3.7

Table 4.3 provides a summary of the average compressive and flexural strength tests 

of all the specimens from Part A-Air cured. It shows that all the materials were low 

in flexural strength except fibre glass at 10 wt. % loading to lime which gave a 

flexural strength of 3.9 MPa. The sample with 5 and 7 wt. % nFc didn’t enhance the 

compressive and flexural strength in comparison to pure lime. The effective increase 

in compressive strength was by adding FG. The compressive strengths increased to 

10.7 and 6.7 MPa by adding 10 and 15 wt. % FG respectively. The optimum percent 

of FG was 10 wt. % to lime. Figure 4.12 and Figure 4.13, show graphically the 

compressive and flexural strengths for Part A for nanofiller/lime nanocomposites. 

The highest strengths (compressive and flexural) were by mixing 10 wt. % HF, 4 wt. 

% nZnO, 30 % wt. PVAc/L and 0.4 W/L (which is a different water lime ratio from 

the W/L of the remainder of the Part A-Air cured specimens 0.5 W/L) and the results 

were 17.7 MPa and 7.3 MPa respectively. 

Referring to Figure 4.12, Figure 4.13 and Table 9.3, FG at loading of 10 wt. % gave 

the second highest results in both flexural and compression strength tests of all the 

tests (10 and 15 wt. %) of Part A-Air cured. 
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In compressive strength, it can be summarised that the mean value of compressive 

strength for pure lime (control) 0.5 W/L was about 2.9 MPa. The highest result of 

nanosilica was at the 2 wt. % in compressive strength, which was 2.8 MPa, and it 

was slightly more than the result of 4 wt. % nSiO2 to lime (2.7 MPa). Probably, 4 

wt.% needs more dispersion to increase compressive strength and work as 

nanomaterial in the matrix because the probability of dispersion decreases with the 

dose quantity of the nanofiller. Figure  4.8 and Figure  4.9 show that the percentage of 

2 wt. % nanoclay to lime has a compressive strength of 3.5 MPa, more than the 

result of 0.5 wt. % (3.0 MPa) and 1 wt. (3.0 MPa) to lime. For nFc, the percentage of 

7 wt. % to lime gave a higher result in compressive strength than 5 wt. %, it was 4.7 

MPa compared to 2.3 MPa for the 5 wt. %. Figure  4.10 and Figure  4.11 show the 

relationship between percent of nFc and their compressive and flexural strengths 

respectively. 

It was noticed that the failure of fibre glass was by the fibre pulling out under 

flexural load, which may mean that the flexural strength can be increased if the 

adhesion between fibre glass and lime increases. For the next series of tests, 

polyvinyl acetate (PVAc) was added at 8 and 12 wt. % as a percentage of the W/L 

ratio of the mixture (calculation of PVAc percent was explained in Section 3.2.5). 

The aim is to increase the adhesion and subsequently the strength. Figure  4.16 and 

Figure  4.17 show graphically a comparison between the mean results of compressive 

and flexural strengths of all the fillers of Part A-Air cured. Figure  4.18 and 

Figure  4.19 show the compressive and flexural strengths for different filler of Part A-

Air cured as a curve. Error bars on these two curves show that there are no high 

contrasts between the compressive and flexural strength results (which means 

repeatable results). For FG, the contrasts of the results are higher than the other filler 

specimen results. More details about Error bars based on standard deviation will be 

discussed in the Section 4.8 (Discussion of Chapter 4). 
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Table ‎4.3 Summary of Part A-Air cured for compressive and flexural strength 

No % filler 

Mean 

Compressive 

strength 

 MPa 

STD 

Mean  

flexural  

strength 

 MPa 

STD 

1 0 % pure lime 2.9 0.72 1.1 2.48 

2 2 wt. % nSiO2 2.8 0.82 0.4 0.32 

3 4 wt. % nSiO2 2.7 0.18 0.8 0.89 

4 0.5 wt.% nclay 2.9 0.34 0.3 0.4 

5 1 wt.% nclay 2.9 0.31 0.6 0.31 

6 2 wt.% nclay 3.6 0.21 0.7 0.89 

7 5 wt.% nFc 2.3 0.12 0.3 0.07 

8 7 wt.% nFc 2.3 0.15 0.8 0 

9 5 wt. % FG 3.4 1.1 2.2 0.58 

10 10 wt. % FG 10.7 0.68 3.9 1.0 

11 15 wt. % FG 6.7 0.95 1.9 0.52 

12 Core composite 17.7 2.03 7.3 0.53 

13 4 wt. % nZnO/L 0.7 0.14 0.6 0.07 

The highlighted results are the highest results of Part A-Air cured. Table A is the summary 
of the optimum results and it is expressed by the letter A referring to Part A, STD is standard 
deviation and Core composite is 10wt.% HF, 4wt.% nZnO, 12% wt. PVAc/L 
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Figure ‎4.16 Average compressive strength of Part A-Air cured, Error bar 

± < 1. 

 

 

Figure ‎4.17 Average flexural strength of Part A-Air cured Error bar ± < 1. 
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Figure ‎4.18 Compressive strength of filler/ lime at 0.5 W/L Part A-Air cured, Error 

bar ± < 1. 
 

 

 

Figure ‎4.19 Flexural strength of filler/ lime at 0.5 W/L Part A-Air cured, 

Error bar ± < 1. 
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Table 4.3.A is the important means of compressive and flexural strength results of 

Part A-Air cured. 

Table 4.3.A Summary of the highest results of Part A-Air cured of Part A-Air 

cured 

No % filler 

Compressive 

strength 

MPa 

Flexural 

strength 

MPa 

1 Control 2.9 1.0 

2 2 wt. % nSiO2 2.8 0.4 

3 2 wt.% nclay 3.6 0.7 

4 7 wt.% nFc 2.3 0.8 

5 10 wt. % FG 10.7 3.9 

6 10wt.% HF, 4wt.% nZnO, 12 % wt. PVAc/L 17.7 7.3 

 

 Flexural and Compressive Strength Test for Part B-Solvent Exchange  4.4

In the solvent exchange method, Part B, the water lime ratio was decreased from 0.5 

to 0.4 to minimise the water binder ratio but was still sufficient to produce chemical 

reactions from the hydration of the calcium silicates and calcium aluminates. 

Previous research found that the water (due to evaporation throughout drying) leaves 

micro-pores in the paste which leads to a weak mortar (Lawrence & & Walker, 

2008), hence the method adopted in this part of the project (Solvent exchange) is to 

determine by this method the influence against conventionally cured specimens in air 

(Part A-Air cured) method.  

The specimens (Part B) were demoulded after 5 days curing at 20ºC and 60% 

relative humidity. Specimens were then put in plastic cases immersed in isopropanol 

for 7 days and then by two days in an oven at 50ºC at 26-27 days as shown in Table 

4.2. Tests were conducted at 28 days. The basis for using this curing method was 

based on previous work (Alvarez, Fernández, Navarro-Blasco, Duran, & Sirera, 

2013). 

It was reported by Alvarez et al., 2013 that the results of compressive strength of 

nanosilica/lime nanocomposites at 7, 28 and 91 days was increased by using the 

solvent exchange method (excess water removal). The results in this project were 

compared to test results from ordinary air curing. The compressive strength of the 
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control specimen of pure lime at 28 days using ordinary curing (60 % RH, 20 ºC) 

was 4.3 MPa whereas the result of solvent water removal for 7 days nanosilica/lime 

was 0.9 MPa. It was reported that the weight loss percentage of cement paste  

immersed 1 hour in isopropanol was 82 % after 9 hours and that mean decrease in 

water is 18 % from 0.4 water/cement ratio. The rest of the water is  (40 % -18 % = 

22 %) which is about more than half of  the water cement ratio (Canut, 2011). For 

hydration percent, it was 65 % hydration for the samples after 48 hours took out of a 

case which were 1 hour immersed in isopropanol (Maciel, Soares, de Oliveira 

Romano, & Cincotto, 2019). These studies explained the loss in water by using 

isopropanol. 

The results of the compressive and flexural strength results for Part B-Solvent 

exchange are given in Table 4.10. They were different w/c and different drying than 

Part A and the results also were different. The test specimens of Part A consist of the 

better performing nanocomposites from Part B in compressive strength and slightly 

lower in flexural strength (except Control was decrease in flexural from 1.1 to 0.7 

MPa). Part A were Control (2.9, 1.1 MPa), 2 % nSiO2 (2.8, 0.4 MPa), 2 % nclay 

(3.6, 0.7 MPa) and 10 % FG (10.7, 3.9 MPa) respectively whereas Part B were 

Control (2.2, 0.7 MPa), 2 % nSiO2 (2.2, 0.8 MPa), nclay (3.8, 1.6 MPa) and 10 %FG 

(4.3, 4.1). In spite of the water/lime ratio was reduced to 0.4. The remaining samples 

in Part A and B introduced new additives such as polyvinyl acetate (PVAc) and 

hemp fibres (HF) to further investigate if the addition of new nanomaterials or 

fibrous additives could increase the strength properties of the lime based materials. 

Referring to Table 4.4, the Control specimens had an average compressive strength 

of 2.2 MPa and flexural strength of 0.7 MPa. The control compressive strength from 

Part A (Air cured, 0.5 W/L) was 2.9 MPa, hence the solvent exchange method has 

led to a reduced compressive strength in general except 2 % nclay which slightly was 

increased. Flexural strengths were also a little decreased from 1.1 to 0.7 MPa but in 

general were higher than Part A. The highest performing specimen in the nanofillers 

in Part B was 2 wt. % nclay at 3.8 MPa in compression. However, the compressive 

strength was similar, 3.5 MPa for air cured, Part A. Again flexural strengths were 

increased from 0.7 MPa for Part A, Air cured to 1.0 MPa for Part B solvent 

exchange. Regards to the fibrous additives tested under Part B, the fibre glass (FG) 
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and the hemp fibres (HF) exhibited compressive strengths of 4.3 MPa and 4.9 MPa 

respectively. Flexural strength was also high as would be expected for fibre 

additives, strengths tested under Part B of 4.1 MPa and 6.2 MPa being recorded. 
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Table ‎4.4 Compressive and flexural strength specimen test results, Part B-Solvent exchange 

1 2 3 4 5 6 7 8 

Part No % wt. nano- 

filler/ lime 

W/L Storage condition 

5 days 

% RH/ºC 

Curing up to 

28 days 

% RH/ºC 

Compressive 

strength 

MPa 

Flexural 

strength 

MPa 

B 1 0 % Control 0.4 60/20 60/20 2.3 0.9 

B 2 0 % Control 0.4 60/20 60/20 2.2 0.3 
B 3 0 % Control 0.4 60/20 60/20 2.2 1.0 
Av.      2.2 0.7 

B 1 0.5 wt. % EG 0.4 60/20 60/20 2.8 1.7 

B 2 0.5 wt. % EG 0.4 60/20 60/20 2.4 1.3 
B 3 0.5 wt. % EG 0.4 60/20 60/20 2.3 - 
Av.      2.5 1.5 

B 1 1 wt. % EG 0.4 60/20 60/20 3.6 1.1 
B 2 1 wt. % EG 0.4 60/20 60/20 3.8 1.2 

B 3 1 wt. % EG 0.4 60/20 60/20 3.5 1.2 
B 4 1 wt. % EG 0.4 60/20 60/20 3.1 - 

B 5 1 wt. % EG 0.4 60/20 60/20 3.3 - 
Av.      3.5 1.2 

B 1 2 wt. % EG 0.4 60/20 60/20 3.3 1.4 
B 2 2 wt. % EG 0.4 60/20 60/20 3.5 1.2 

B 3 2 wt. % EG 0.4 60/20 60/20 2.8 1.3 
B 4 2 wt. % EG 0.4 60/20 60/20 2.8 1.3 
B 5 2 wt. % EG 0.4 60/20 60/20 3.0 1.2 

Av.      3.1 1.1 
B 1 2 wt. % nclay 0.4 60/20 60/20 4.9 1.5 

B 2 2 wt. % nclay 0.4 60/20 60/20 2.9 1.6 
B 3 2 wt. % nclay 0.4 60/20 60/20 3.5  

B 4 2 wt. % nclay 0.4 60/20 60/20 3.9  
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Table ‎4.4 (Contiued) compressive and flexural strength specimen test results, Part B-Solvent exchange 

1 2 3 4 5 6 7 8 

Part No % wt. nano- 

filler/ lime 

W/L Storage condition 

5 days 

% RH/ºC 

Curing up to 

28 days 

% RH/ºC 

Compressive 

strength 

MPa 

Flexural 

strength 

MPa 

Av.      3.8 1.5 

B 1 2 wt. % nSiO2 0.4 60/20 60/20 2.21 0.7 
B 2 2 wt. % nSiO2 0.4 60/20 60/20 1.98 0.9 

B 3 2 wt. % nSiO2 0.4 60/20 60/20 2.37 - 
B 4 2 wt. % nSiO2 0.4 60/20 60/20 2.03 - 

Av.      2.2 0.8 
B 1 10 wt. % FG 0.4 60/20 60/20 4.92 3.8 

B 2 10 wt. % FG 0.4 60/20 60/20 4.06 4.3 
B 3 10 wt. % FG 0.4 60/20 60/20 4.02 - 
B 4 10 wt. % FG 0.4 60/20 60/20 4.42 - 

B 5 10 wt. % FG 0.4 60/20 60/20 4.21 - 
Av.      4.3 4.1 

B 1 80 wt. % PVAc 0.4 60/20 60/20 2.17 0.8 
B 2 80 wt. % PVAc 0.4 60/20 60/20 2.16 - 

Av.      2.2 0.8 

B 1 40 wt. % PVAc 0.4 60/20 60/20 3.89 1.7 
B 2 40 wt. % PVAc 0.4 60/20 60/20 2.88  
Av.      3.4 1.7 

B 2 20 wt. % PVAc 0.4 60/20 60/20 3.86 1.3 
B 3 20 wt. % PVAc 0.4 60/20 60/20 4.61  

Av.      4.2 1.3 

B 1 8 wt. % PVAc 0.4 60/20 60/20 4.92 2.4 
B 2 8 wt. % PVAc 0.4 60/20 60/20 4.92  
Av.      4.9 2.4 



Chapter           Compressive and flexural strength of lime nanocomposites 

93 
 

Table ‎4.4 (Contiued) Compressive and flexural strength specimen test results, Part B-Solvent exchange 

1 2 3 4 5 6 7 8 

Part No % wt. nano- 

filler/ lime 

W/L Storage condition 

5 days 

% RH/ºC 

Curing up to 

28 days 

% RH/ºC 

Compressive 

strength 

MPa 

Flexural 

strength 

MPa 

B 1 10 wt. % HF/L 0.4 60/20 60/20 4.9 6.2 

Av.      4.9 6.2 
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The failure of the 10 wt. % FG/lime and 10 wt. % HF specimens in flexure mode 

appeared to be pulling out of the fibres. The failure wasn’t by hemp fibre breakage as 

shown in Figure  4.20 and Figure  4.21. That means if the adhesion is increased 

between the hemp fibres and the lime binder, the flexural strength in particular will 

be increased. Therefore, in Part B, polyvinyl acetate (PVAc) adhesive was added at 

different percentages of water lime binder to determine the optimum percentage. The 

addition of PVAc generally showed that a lower quantity, 8 % - 12 % of lime, had a 

higher influence on compressive strength (4.9 MPa) and tensile strength (2.4 MPa). 

The next aim is to use PVAc with fibres to improve their bond. The optimum results 

of all fillers from Part A-Air cured were tested again in Part B using 0.4 W/L (as 

opposed to 0.5 W/L) and the solvent exchange method to evaluate their strength. 

In addition, a new nanofiller called expanded graphite to improve the strength was 

also added in Part B. Mean compressive strength of 1 wt. % EG (3.5 MPa) was the 

highest results a mong 0.5 and 2 wt. % EG (2.5 and 3.1 MPa respectively). 

  

Figure ‎4.20 Hemp fibres with fibres 

pull-out failure mode 

Figure ‎4.21 Hemp fibres lime composite 

ductility failure mode 
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  Comparison of Part A-Air cured and Part B-Solvent exchange 4.5

From Table 9.2 (Chapter 9, Appendix), Table 4.3 and Figure  4.3, Section  4.3.1, it 

can be concluded that the compressive strength of Control specimens decreased by 

24 % from Part A, 0.5 W/L, Air-curing to Part B solvent exchange drying, 0.4 W/L 

(2.9 MPa to 2.2 MPa). As for the flexural strength of the Control specimens, it 

decreased by approximately 36% from Part A to Part B (1.1 MPa-0.7 MPa). With 

regards to expanded graphite which wasn't used in Part A, adding 1 wt. % EG/L gave 

the optimum result, but it may be that if the dispersion of EG in lime at 2 wt. % was 

improved, the compressive and flexural strength will also be improved. Therefore, 

the specimens of 2 wt. % EG need further research. The EG particles can be seen in 

the bottom of the beaker when stopping the stirring which means the dispersion is 

not complete. As shown in Figure  4.22 and Figure  4.23, the compressive strength of 

EG/L was optimised at 1 wt. % but the flexural strength decreased with the further 

increase of EG percentages. 

The compressive strength of 2 wt. % nSiO2 slightly decreased from Part A to Part B 

from 2.8 MPa to 2.2 MPa. Regarding FG/L percentage (10 wt. %), compressive 

strength decreased from Part A to Part B from 10.7 MPa to 4.3 MPa, which means 

stopping the hydration affected the lime matrix but the adhesion between the FG and 

lime matrix became better probably by using the solvent exchange method since the 

flexural strength increased from 3.5 MPa to 4.1 MPa. It is shown that all results of 

compressive strength, except nanoclay, decreased from Part A ordinary curing, to 

Part B, solvent exchange. The flexural strength wasn’t highly affected, but the 

compressive results were probably decreased due to stopping of hydration by the 

effect of solvent removing the free water. These effects were as a result of the 

change between the effect of changing the W/L from 0.5 to 0.4 and / or the effect of 

Solvent-exchange method.  

The best percentage of PVAc was 8 wt. % of lime binder as shown in Figure  4.24 

and Figure  4.25. However, based on the shape of the curve given in Figure ‎4.24 the 

optimum percentage is likely to be between 8 and 12 %. Hence both of these 

percentages will be considered and tested in future designs e.g. Part C1 Oven drying, 

where fibres (hemp) will be added to the mix and these percentages (8 and 12 wt. % 

PVAc/L) will be tested as it was tested (12 %) in Part A-Air cured. Regarding the 
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adhesion property of PVAc, it was reported that polyvinyl acetate latex is good 

adhesives for paper, plastics, metal foil, leather, and cloth (Ebnesajjad, 2012). 

Adding 30 wt. PVAc (replacement) to melamine formaldehyde increased the 

bonding from 0 for PVAc pure to 2.5 MPa for composite (S. Kim & Kim, 2005). 

Adding 30% of fibre glass (E-glass) to PVAc, the product was many layers of 

fibreglass mat and polyvinyl acetate were combined on a mould. The material is 

flexible, translucent, and strong (Roth, 2014). These studies showed the capability of 

PVAc to increase bonding for many material other than wood, one of them is FG. 

 

Figure ‎4.22 Compressive strength for different % wt. EG/L, Part B-Solvent exchange 

 

Figure ‎4.23 Flexural strength for different % wt. EG/L, Part B-Solvent exchange 
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Figure ‎4.24 Compressive strength for different % PVAc/L Part B-Solvent 

exchange 

 

Figure ‎4.25 Flexural strength for different % PVAc/L, Part B-Solvent exchange 
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Table 4.5 provides a summary of mean values of compressive and flexural strength 

of Part B-Solvent exchange tests. The results are also shown graphically in 

Figure  4.26 and Figure  4.27. Table 4.5 B, shows the important results of Part B. 
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Table ‎4.5 Mean value of compressive and flexural strength, Part B Solvent 

exchange. 

No % wt. of filler Mean 

Compressive 

strength 

MPa 

STD 

Mean Flexural 

strength  

MPa 
STD 

1 0 wt. % control 2.2 0.06 1.0 0.37 

2 0.5 wt. % EG 2.5 
0.30 

1.5 
0.28 

3 1 wt. % EG 3.5 
0.30 

1.2 
0.06 

4 2 wt. % EG 3.1 
0.31 

1.1 
0.08 

5 2 wt. % nclay 3.8 
0.84 

1.6 
0.07 

6 2 wt.% nSiO2 2.1 
0.20 

0.8 
0.14 

7 10 wt. % FG 4.3 
0.36 

4.1 
0.35 

8 80 wt. % PVAc/L 2.2 0.01 0.8 0 

9 40 wt. % PVAc/L 3.4 
0.71 

1.7 
0 

10 20 wt. % PVAc/L 4.2 
0.53 

1.4 
0 

11 8 wt. % PVAc/L 4.9 
0 

2.4 
0 

12 10 wt.% HF/L 4.9 
0 

6.2 
0 

STD: standard deviation 
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Figure ‎4.26 Mean compressive strength specimen results for Part B-Solvent 

exchange, Error bar ± < 1. 

 
Figure ‎4.27 Mean flexural strength specimen results for Part B-Solvent 

exchange, Error bar ± < 1. 

Table 4.5 B Summary of the optimum results of Part B-Solvent exchange  
No % Filler Compressive 

strength 

MPa 

Flexural 

strength 

MPa 

1 1 wt. % EG 3.5 1.2 

2 10 wt. % FG 4.3 4.1 
3 8 wt. % PVAc/L 4.9 2.4 

4 10 wt.% HF/L 4.9 6.2 
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 Compressive and flexural strength specimen results for Part C-Oven dry 4.6

cured. 

In Part C, the compressive and flexural strength tests were conducted for the 

optimum results from Part A and Part B and new specimens of hemp fibres (HF), 

and hemp shives (HS), mixed with PVAc, were added to study their strength and the 

effect of the PVAc adhesive on their bonding. All tests in Part C1 and C2 were oven 

cured after demoulding at 5 days, 60 % humidity, 20 ºC until 26 days and 2 days 

50°C in an oven. The water of mixture was 0.4 W/L. The difference between Parts 

C1 and C2 was the age of the specimens. The total age was 28 days in Part C1 and 60 

days in Part C2, all stored under similar curing conditions (60 %RH, 20 ºC). 

 It was found that 86 % weight loss of cement paste (0.4 w/c) was completed at 9 

hours using the Oven drying method for 1 day in an oven at 105°C (Canut, 2011). 

According to this loss (100 - 86= 14 %) and (water/cement (0.4 in this project) or 40 

% - 14 % = 26 %) of the water cement ratio which is slightly lower than half of the 

water cement ratio by using Oven drying method remains. 

  Part C1 Compressive and Flexural Strength Results 4.6.1

This part many tests were conducted for some specimens with fillers in previous Part 

B and new fillers for other specimens. The following is a summary of the tests: 

1- Nclay/L (0.5, 1, and 2 wt. %). 

2- FG/L (5 and 10 wt. %). 

3- New tests for HF/L (5, 7 and 10) wt. %. 

4- Repeat for nFc/L (5 wt. %) and new test for nFc (10 wt. %). 

5- New tests for PVAc/L (8 and 12 wt. %) with 10 wt. % FG, PVAc /L. 

6- New tests for 8 and 12 wt. % PVAc/L with 10 wt. % HF/L.   

This part was done with many aims, to verify the nclay percentages (0.5, 1 and 2 wt. 

%) and its optimum percentage result which was found in the previous Parts A and 

B. Furthermore, nFc (5 and 10 wt. %) of lime, HF/L (5, 7 and 10 wt. %), 10 wt. % 

FG/L with 8 and 12 wt. % PVAc/L which was added to the mixture and 10 wt. HF % 
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/L with 8 and 12 wt. % PVAc/L were tested to find their optimum results of each 

material. PVAc was added here to enhance the adhesion between the fibres (hemp or 

glass). 

In Part C1 (Table 4.6) the compressive strength was increased in 1 wt. % and 3 wt. % 

nclay specimens (6.8 and 6.7 MPa) compared to 2 wt. % (5.2 MPa), 5 wt. % nFc (6.4 

MPa) and 1 and 2 wt. % nSiO2 (8.5 and 9.7 respectively) in comparison to neat lime 

(5.6 MPa). In contrast, the compressive strength decreased by adding 0.5 wt. % nclay 

(2.2 MPa), 3 wt. % nSiO2 (4.5 MPa) compared to 2 wt. % (9.7 MPa), 1 and 2 wt. % 

EG (3.5 and 1.4 MPa respectively) and 10 wt. % nFc (4 MPa). The flexural strengths 

were still very low for all nanomaterial specimens. As for compressive strength with 

10 wt. % FG, both 8 and 12 wt. % PVAc, FG, was 9.9 and 11.7 MPa respectively. 

For 10 wt. % HF mixed with both 8 and 12 wt. % PVAc 10 wt. % HF compressive 

strengths were 4.11 and 10.3 MPa respectively. The compressive strengths, therefore 

were highly improved along with the flexural strength (4.9, 4.7, 3.0 and 4.4 MPa 

respectively whereas neat lime was 0.9 MPa). Figure ‎4.28 and Figure  4.29 show the 

flexural loads vs deflection, the failure was graduated not sudden and this is highly  

wanted property in construction as it is safer. Figure  4.30 and Figure  4.31 show the 

effect of HF, FG and PVAc improvement in strength under the mean compressive 

and flexural loads in comparison to nanoclay, nanocellulose and pure lime. 
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Figure ‎4.28 Comparison of flexural loads versus deflection of different 

percentages of FG/L with 12 wt. % PVAc/L (30 vol. % PVAc 0f water) and 

control specimens, Part C1-Oven cured  
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Figure ‎4.29 Comparison of flexural loads versus deflection of different 

percentages of HF/L with 12 wt. % of PVAc/L (30 vol. % PVAc of water) to 

control specimens, Part C1-Oven cured  

 

Figure ‎4.30 Mean compressive strength of Part C1-Oven cured test specimens   
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Figure ‎4.31 Mean flexural strength of Part C1-Oven cured test specimens 

Table 4.6 shows that the flexural strength of nanoclay was a little enhanced (0.4, 0.6, 

0.7 and 1.5 MPa) with the increase of nanoclay percentages of 0.5, 1, 2 and 3 wt. %. 

With regard the low loading of nFc, 5 wt. %, the flexural strength was 2.4 MPa, 

higher than the 10 wt. % nFc (1.4 MPa) 

In contrast, both compressive and flexural strengths were greatly improved by using 

fibres (HF and FG). Referring to Table 4.6, there is an increase in flexural strength 

with the use of 12 wt. % PVAc in comparison to using only HF. Compressive 

strengths at 5, 7 and 10 wt. % of HF/ L were 9.6, 7.4 and 8.7 MPa respectively and 

flexural strengths were 3.4, 3.5 and 4.7 MPa respectively. Figure  4.30 and 

Figure  4.31 show the mean compressive strengths of all specimen results of Part C1-

Oven cured. Figure  4.32, Figure  4.33 confirm the mean results of flexural and 

compressive strength for Part C1-Oven cured. Figure  4.34 Figure  4.35 show not only 

the mean compressive strength and flexural strength but all specimen results with 

their means.  

It can be said that the optimum results for both compressive and flexural strength of 

12 wt. % PVAc as percentage of the mixture's water with 10 wt. % of FG or HF, 

were 11.7 and 10.3 MPa in compression, 4.7 and 4.4 MPa in flexure respectively. 

The 10 wt. % HF was consider better because although it has results very close to 

FG, it is compatible with the environment and is available as a renewable organic 

material from hemp plant. 
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Table ‎4.6 Compressive and flexural results, Part C1-Oven cured 

Part No % wt. nano- 

filler/ lime 

W/L Age at test 

 days 

Storage  

to 5 days 

%RH/ºC 

Curing up 

 to 28 days 

%RH/ºC 

Compressive 

strength 

MPa 

Flexural strength 

MPa 

1 2 3 4 5 6 7 8 9 

C1 1 Control 0.4 28 60/20 60/20 5.4 1.3 

C1 2 Control 0.4 28 60/20 60/20 5.6 0.8 
C1 3 Control 0.4 28 60/20 60/20 5.9 1.2 

C1 4 Control 0.4 28 60/20 60/20 5.5 0.2 
Av.       5.6 0.9 
C1 1 1wt. % nSiO2/L 0.4 28 60/20 60/20 7.9 2.6 

C1 2 1wt. % nSiO2/L 0.4 28 60/20 60/20 8.2 2.4 
C1 3 1wt. % nSiO2/L 0.4 28 60/20 60/20 8.5 2.3 

C1 4 1 wt. % nSiO2/L 0.4 28 60/20 60/20 9.1 - 
C1 5 1 wt. % nSiO2/L 0.4 28 60/20 60/20 8.9 - 

C1 6 1 wt. % nSiO2/L 0.4 28 60/20 60/20 8.3 - 

Av.       8.5 2.4 
C1 1 2 wt.% nSiO2/L 0.4 28 60/20 60/20 10.2 0.2 

C1 2 2 wt. % nSiO2/L 0.4 28 60/20 60/20 9.5 0.3 
C1 3 2 wt. % nSiO2/L 0.4 28 60/20 60/20 9.1 0.2 
C1 4 2 wt. % nSiO2/L 0.4 28 60/20 60/20 9.1 0.2 

C1 5 2 wt. % nSiO2/L 0.4 28 60/20 60/20 10.7  
C1 6 2 wt. % nSiO2/L 0.4 28 60/20 60/20 9.4  

Av.       9.7 0.2 
C1 1 3 wt. % nSiO2/L 0.4 28 60/20 60/20 4.5 0.1 

C1 2 3 wt. % nSiO2/L 0.4 28 60/20 60/20 4.7 0.4 

C1 3 3 wt. % nSiO2/L 0.4 28 60/20 60/20 4.6 0.4 
C1 4 3 wt. % nSiO2/L 0.4 28 60/20 60/20 4.1 - 

C1 5 3 wt. % nSiO2/L 0.4 28 60/20 60/20 4.6 - 
C1 6 3 wt. % nSiO2/L 0.4 28 60/20 60/20 4.35 - 
Av.       4.5 0.3 
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Table ‎4.6 Compressive and flexural results, Part C1-Oven cured 

Part No % wt. nano- 

filler/ lime 

W/L Age at test 

 days 

Storage  

to 5 days 

%RH/ºC 

Curing up 

 to 28 days 

%RH/ºC 

Compressive 

strength 

MPa 

Flexural strength 

MPa 

1 2 3 4 5 6 7 8 9 

C1 1 0.5 wt.% nclay/L 0.4 28 60/20 60/20 2.1 0.4 
C1 2 0.5 wt.% nclay/L 0.4 28 60/20 60/20 2.5 0.3 

C1 3 0.5 wt.% nclay/L 0.4 28 60/20 60/20 2.1 - 
Av.       2.2 0.4 

C1 1 1 wt.% nclay/L 0.4 28 60/20 60/20 6.5 0.5 
C1 2 1 wt.% nclay/L 0.4 28 60/20 60/20 6.8 0.7 
Av.       6.7 0.6 

C1 1 2 wt. % nclay/L 0.4 28 60/20 60/20 5.5 0.6 
C1 2 2 wt. % nclay/L 0.4 28 60/20 60/20 5.9 0.7 

C1 3 2 wt. % nclay/L 0.4 28 60/20 60/20 4.7 - 
C1 4 2 wt. % nclay/L 0.4 28 60/20 60/20 4.9 - 
C1 5 2 wt. % nclay/L 0.4 28 60/20 60/20 5.2 - 

C1 6 2 wt. % nclay/L 0.4 28 60/20 60/20 4.6 - 
Av.       5.1 0.7 

C1 1 3 wt.% nclay/L 0.4 28 60/20 60/20 6.5 1.5 
C1 2 3 wt. % nclay/L 0.4 28 60/20 60/20 6.7 1.7 
C1 3 3 wt. % nclay/L 0.4 28 60/20 60/20 6.7 1.3 

C1 4 3 wt. % nclay/L 0.4 28 60/20 60/20 6.8 - 
Av.       6.7 1.5 

C1 1 1 wt. % EG/L 0.4 28 60/20 60/20 3.6 1.9 
C1 2 1 wt. % EG/L 0.4 28 60/20 60/20 3.8 1.9 
C1 3 1 wt. % EG/L 0.4 28 60/20 60/20 3.5 1.1 

C1 4 1 wt. % EG/L 0.4 28 60/20 60/20 3.1 1.4 
Av.       3.5 1.6 

C1 1 2 wt. % EG/L 0.4 28 60/20 60/20 1.4 1.6 
C1 2 2 wt. % EG/L 0.4 28 60/20 60/20 1.2 1.9 
C1 3 2 wt. % EG/L 0.4 28 60/20 60/20 1.3 1.6 



Chapter 4         Compressive and flexural strength of lime nanocomposites 

 

108 
 

Table ‎4.6 Compressive and flexural results, Part C1-Oven cured 

Part No % wt. nano- 

filler/ lime 

W/L Age at test 

 days 

Storage  

to 5 days 

%RH/ºC 

Curing up 

 to 28 days 

%RH/ºC 

Compressive 

strength 

MPa 

Flexural strength 

MPa 

1 2 3 4 5 6 7 8 9 

Av.       1.3 1.7 
C1 1 5 wt. % nFc/L 0.4 28 60/20 60/20 6.4 2.4 

C1 2 5 wt. % nFc/L 0.4 28 60/20 60/20 5.7 2.5 
C1 3 5 wt. % nFc/L 0.4 28 60/20 60/20 7.2 2.3 

C1 4 5 wt. % nFc/L 0.4 28 60/20 60/20 6.4  
C1 5 5 wt. % nFc/L 0.4 28 60/20 60/20 6.4  
Av.       6.4 2.4 

C1 1 10 wt. % nFc/L 0.4 28 60/20 60/20 4.4 1.3 
C1 2 10 wt. % nFc/L 0.4 28 60/20 60/20 4.1 1.8 

C1 3 10 wt. % nFc/ 0.4 28 60/20 60/20 4.3 1.1 
C1 4 10 wt. % nFc/L 0.4 28 60/20 60/20 3.8  
C1 5 10 wt. % nFc/L 0.4 28 60/20 60/20 3.5  

C1 6 10 wt. % nFc/L 0.4 28 60/20 60/20 3.9  
Av.       4.0 1.4 

C1 1 5 wt. % HF/L 0.4 28 60/20 60/20 9.5 3.2 
C1 2 5 wt. % HF/L 0.4 28 60/20 60/20 9.3 3.6 
C1 3 5 wt. % HF/L 0.4 28 60/20 60/20 9.7 3.4 

C1 4 5 wt. % HF/L 0.4 28 60/20 60/20 9.9  
C1 5 5 wt. % HF/L 0.4 28 60/20 60/20 9.8  

C1 6 5 wt. % HF/L 0.4 28 60/20 60/20 9.2  
Av.       9.6 3.4 
C1 1 7 wt. % HF/L 0.4 28 60/20 60/20 7.5 3.6 

C1 2 7 wt. % HF/L 0.4 28 60/20 60/20 6.7 3.3 
C1 3 7 wt. % HF/L 0.4 28 60/20 60/20 7.4 3.5 

C1 4 7 wt. % HF/L 0.4 28 60/20 60/20 7.8 - 
C1 5 7 wt. % HF/L 0.4 28 60/20 60/20 7.1 - 

C1 6 7 wt. % HF/L 0.4 28 60/20 60/20 7.7 - 
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Table ‎4.6 Compressive and flexural results, Part C1-Oven cured 

Part No % wt. nano- 

filler/ lime 

W/L Age at test 

 days 

Storage  

to 5 days 

%RH/ºC 

Curing up 

 to 28 days 

%RH/ºC 

Compressive 

strength 

MPa 

Flexural strength 

MPa 

1 2 3 4 5 6 7 8 9 

Av.       7.4 3.5 
C1 1 10 wt. % HF/L 0.4 28 60/20 60/20 8.7 4.7 

C1 2 10 wt. % HF/L 0.4 28 60/20 60/20 9.1 4.9 
C1 3 10 wt. % HF/L 0.4 28 60/20 60/20 8.0 4.5 

C1 4 10 wt. % HF/L 0.4 28 60/20 60/20 8.8 - 
C1 5 10 wt. % HF/L 0.4 28 60/20 60/20 8.9 - 
Av.       8.7 4.7 

C1 1 
8 wt. % PVAc,10 wt. % 

FG/L 
0.4 28 60/20 60/20 9.1 5.3 

C1 
2 

8 wt. % PVAc,10 wt. % 
FG/L 

0.4 28 60/20 60/20 10.9 4.4 

C1 
3 

8 wt. % PVAc,10 wt. % 

FG/L 
0.4 28 60/20 60/20 10.1 5.0 

C1 
4 

8 wt. % PVAc,10 wt. % 

FG/L 
0.4 28 60/20 60/20 9.9 - 

C1 5 
8 wt. % PVAc,10 wt. % 

FG/L 
0.4 28 60/20 60/20 9.5 - 

C1 
6 

8 wt. % PVAc,10 wt. % 
FG/L 

0.4 28 60/20 60/20 10.4 - 

Av. .      9.9 4.9 

C1 1 
12 wt. % PVAc,10 wt. % 

FG/L 
0.4 28 60/20 60/20 12.1 4.0 

C1 
2 

12 wt. % PVAc,10 wt. % 
FG/L 

0.4 28 60/20 60/20 11.1 4.4 

C1 
3 

12 wt. % PVAc,10 wt. % 
FG/L 

0.4 28 60/20 60/20 10.1 5.5 

C1 4 12 wt. % PVAc,10 wt. % 0.4 28 60/20 60/20 12.3 - 
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Table ‎4.6 Compressive and flexural results, Part C1-Oven cured 

Part No % wt. nano- 

filler/ lime 

W/L Age at test 

 days 

Storage  

to 5 days 

%RH/ºC 

Curing up 

 to 28 days 

%RH/ºC 

Compressive 

strength 

MPa 

Flexural strength 

MPa 

1 2 3 4 5 6 7 8 9 

FG/L 

C1 5 
12 wt. % PVAc,10 wt. % 

FG/L 
0.4 28 60/20 60/20 12.7 - 

Av.       11.7 4.6 

C1 1 
8 wt. % PVAc,10 wt. % 

HF/L 
0.4 28 60/20 60/20 8.1 2.6 

C1 
2 

8 wt. % PVAc,10 wt. % 

HF/L 
0.4 28 60/20 60/20 8.7 2.6 

C1 
3 

8 wt. % PVAc,10 wt. % 

HF/L 
0.4 28 60/20 60/20 7.4 3.7 

Table 4.12 (Continued) Compressive and flexural results, Part C1-Oven cured 

Part No % wt. nano- 

filler/ lime 

W/L Age at test  

day 

Storage  

to 5 days 

%RH/ºC 

Curing up  

to 28 days 

%RH/ºC 

Compressive 

strength 

MPa 

Flexural 

strength 

MPa 

1 2 3 4 5 6 7 8 9 

C1 4 8 wt. % PVAc,10 wt. % HF/L 0.4 28 60/20 60/20 7.4 - 
C1 5 8 wt. % PVAc,10 wt. % HF/L 0.4 28 60/20 60/20 8.3 - 

C1 6 8 wt. % PVAc,10 wt. % HF/L 0.4 28 60/20 60/20 7.6 - 
Av.       7.9 3.0 

C1 1 12 wt. % PVAc,10 wt. % HF/L 0.4 28 60/20 60/20 8.2 4.2 
C1 2 12 wt. % PVAc,10 wt. % HF/L 0.4 28 60/20 60/20 8.8 6.6 
C1 3 12 wt. % PVAc,10 wt. % HF/L 0.4 28 60/20 60/20 11.3 3.2 

C1 4 12 wt. % PVAc,10 wt. % HF/L 0.4 28 60/20 60/20 12.2 3.7 
C1 5 12 wt. % PVAc,10 wt. % HF/L 0.4 28 60/20 60/20 10.4 - 

C1 6 12 wt. % PVAc,10 wt. % HF/L 0.4 28 60/20 60/20 12.8 - 
C1 7 12 wt. % PVAc,10 wt. % HF/L 0.4 28 60/20 60/20 9.4 - 
C1 8 12 wt. % PVAc,10 wt. % HF/L 0.4 28 60/20 60/20 9.2 - 
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Table ‎4.6 Compressive and flexural results, Part C1-Oven cured 

Part No % wt. nano- 

filler/ lime 

W/L Age at test 

 days 

Storage  

to 5 days 

%RH/ºC 

Curing up 

 to 28 days 

%RH/ºC 

Compressive 

strength 

MPa 

Flexural strength 

MPa 

1 2 3 4 5 6 7 8 9 

Av.       10.3 4.4 

C1 1 20 wt. % HS/L 0.4 28 60/20 60/20 0.6 0.2 

C1 2 20 wt. % HS/L 0.4 28 60/20 60/20 0.6 0.2 

C1 3 20 wt. % HS/L 0.4 28 60/20 60/20 0.5  
C1 4 20 wt. % HS/L 0.4 28 60/20 60/20 0.5  

C1 5 20 wt. % HS/L 0.4 28 60/20 60/20 0.4  
C1 6 20 wt. % HS/L 0.4 28 60/20 60/20 0.8  
Av.       0.6 0.2 

C1 1 12 wt. % PVAc 20 wt. % HS/L 0.4 28 60/20 60/20 0.9 0.9 
C1 2 12 wt. % PVAc 20 wt. % HS/L 0.4 28 60/20 60/20 0.9 0.9 

C1 3 12 wt. % PVAc 20 wt. % HS/L 0.4 28 60/20 60/20 0.8 0.8 
C1 4 12 wt. % PVAc 20 wt. % HS/L 0.4 28 60/20 60/20 0.8 0.8 
C1 5 12 wt. % PVAc 20 wt. % HS/L 0.4 28 60/20 60/20 0.8 0.8 

C1 6 12 wt. % PVAc 20 wt. % HS/L 0.4 28 60/20 60/20 0.9 0.9 
Av.       0.9 0.9 
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Referring to Table 4.6, the optimum result in compressive strength of nanoclay/L 

was 6.7 MPa at 1 wt. % in comparison to 2.2 MPa of 0.5 wt. %. The highest flexural 

strength result was 0.6 MPa at 1 wt. % nclay. It can be said the 2 wt. % nclay, which 

gave a lower compressive strength (5.2 MPa), wasn't dispersed very well. 

The compressive strength for 5 wt. % nFc was 6.4 MPa, which was higher than 10 

wt. % which gave 4.0 MPa. 5 wt. %, therefore, was the optimum percent of nFc in 

this research. 

The optimum result of HF/L was 10 wt. %, giving the highest compressive and 

flexural strength, 8.7 MPa and 4.7 MPa respectively. In contrast, flexural strength of 

5 and 7 wt. % HF/L were lower, relatively, being 3.4 and 3.5 MPa respectively, in 

spite of them having relatively high compressive strengths (9.5 and 7.4 MPa 

respectively). 

Adding PVAc to the mixture was done to increase the adhesion between the fibres 

and the lime matrix, 12 wt. % of PVAc to the weight of water was the optimum ratio 

which improved the compressive strength from 10.0 MPa at 8 wt. % PVAc to W/L 

to 11.7 MPa at 12 wt. % PVAc to W/L. The flexural strengths were almost equal 

(4.9 and 4.7 MPa respectively). In contrast, flexural strength of 5 and 7 wt. % HF/L 

were lower than 10 wt. % HF/L, they were 3.4 and 3.5 MPa respectively, compared 

to 9.5 and 7.4 MPa respectively. 

When the HF was used in place of FG, the optimum percentage was 12 wt. % of 

PVAc/L, which improved both flexural and compressive strength by more than 8 %. 

The compressive strength increased from 7.9 to 10.3 MPa and the flexural strength 

increased from 3.0 to 4.4 MPa. 

The flexural strength of cement mortar is about 4.0 MPa for cement: sand at a ratio 

of 1:2 (Aho & Ndububa, 2015). Using the flexural strength of cement mortar as a 

guide, it was shown that the flexural strength of 10 wt. % HF/L mixed with 12 wt. % 

PVAc to the weight of water of the mixture was very good (4.4 MPa). The 

compressive strength of 10.3 MPa was well more than the load bearing material limit  

(3-5 MPa) as mentioned before (de Bruijn et al., 2009). 
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This percentage of HF, PVAc/L to lime (10 wt. % HF/L and 12 wt. % PVAc/L and 

0.4 W/L) is the optimum result. It is environmentally friendly in comparison to FG. 

The sustainability of HF cannot be compared with industrial fibres like fibre glass. 

Figure  4.28 and Figure  4.29 show a graphical display of flexural loads (N) versus 

deflection (mm). They show the enhanced performance by adding nanomaterials 

(nclay, EG, nSiO2), a good improvement using FG and an even better performance 

by using FG or HF mixed with PVAc (8 and 12 %)/L. The highest result was by 

adding 12 wt. % PVAc/L to the HF/L or to the FG/L as it mentioned previously. 

Referring to Table 4.7, Figure  4.32 and Figure  4.33 show a comparison between the 

mean compressive and flexural strength specimen results of all percentage 

nanofillers of Part C1-Oven cured. Figure  4.34 and Figure  4.35 show graphically the 

compressive and flexural strength for each specimen and for Part C1-Oven cured 

which includes 20 % hemp shives blended with or without 12 % PVAc of water to 

lime binder. They were very weak in both compressive and flexural strength, for 20 

wt. % HS/L the mean were 0.6 and 0.2 MPa respectively and for 20 wt. % HS/L 

blended with 12 wt. % PVAc of water, the compressive and flexural strength were 

0.9 and 0.5 MPa respectively. This low results because HS which have large volume 

aren't distributed as HF which are very thin chopped and more strong than HS. 
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Figure ‎4.32 Mean compressive strength of Part C1- Oven cured specimens, 

Error bar ± < 1. 

 
Figure ‎4.33 Mean flexural strength of Part C1- Oven cured specimens, Error 

bar ± < 1. 
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Figure ‎4.34 Compressive strength of specimens and their means Part C1- Oven cured 
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Figure ‎4.35 Flexural strength of specimens and their means Part C1-Oven dry cured 
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Table ‎4.7 Mean compressive and flexural strength specimen results, Part C1- Oven cured 

No % wt. filler Mean 

compressive 

strength  

MPa 

STD 

Mean flexural 

strength  

MPa 
STD 

1  Control 5.6 0.22 0.9 0.54 

2  1wt. % nSiO2 8.5 0.45 2.4 0.15 

3  2 wt. % nSiO2 9.7 0.65 0.2 0.05 

4  3 wt. % nSiO3 4.5 0.21 0.3 0.17 

5  0.5 wt. % nclay 2.2 0.23 0.4 0.07 

6  1 wt. % nclay 6.7 0.21 0.6 0.14 

7  2 wt. % nclay 5.1 0.50 0.7 0.07 

8  3 wt. % nclay 6.7 0.94 1.5 1.5 

9  1 wt. % EG 3.5 0.29 1.6 0.39 

10  2 wt. % EG 1.4 0.10 1.7 0.17 

11  5 wt. % nFc 6.4 0.53 2.4 0.10 

12  10 wt. % nFc 4.0 0.33 1.4 0.36 

13  5 wt. % HF/ L 9.6 0.28 3.4 0.20 

14  7 wt. %HF/ L 7.4 0.41 3.5 0.15 

15  10 wt. % HF/ L 8.7 0.42 4.7 0.20 

16  
8 wt. % PVAc + 
10 wt. % FG/L 

9.9 0.64 4.9 0.46 

17  
12 wt. % PVAc + 

10 wt. % FG/L 
11.7 1.00 4.6 0.77 

18  
8 wt. % PVAc + 

10 wt. % HF/L 
7.9 0.53 3.0 0.64 

19  
12 wt. % PVAc + 

10 wt. %HF/L 
10.3 1.67 4.4 1.51 

20  20 wt. %HS/L 0.6 0.14 0.2 0 

21  
20 wt. % HS/L + 

12 wt. %PVAc 
0.9 0.05 0.9 0.055161,  
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The important results in Part C1were summarised in Table 4.7 C as outcome of this part in 

developing strength. 

Table 4.7 C Summary of the optimum results of Part B-Solvent exchange 

No % Filler Compressive 

strength 

MPa 

Flexural 

strength 

MPa 

1 1wt. % nSiO2 8.5 2.4 

2 3 wt. % nclay 6.7 1.5 
3 1 wt. % EG 3.5 1.6 
4 5 wt. % nFc 6.4 2.4 

5 10 wt. % HF/ L 8.7 4.7 
6 20 wt. % HS/L + 12 wt. %PVAc 0.9 0.9 

7 12 wt. % PVAc + 10 wt. % FG/L 11.7 4.6 
8 12 wt. % PVAc + 10 wt. %HF/L 10.3 4.4 
 

  Compressive and Flexural Strength Part C2-Oven cured 4.6.2

Part C2-Oven cured also used the oven dry method, similar to Part C1, but the curing 

time was 60 days as opposed to 28 days. The specimens were Control, 2 wt. % nclay 

and 2 wt. nSiO2 and 2 wt. % EG specimens. Part C2 was conducted to reconfirm the 

optimum percentage of nanofiller obtained from previous tests Part C1-Oven cured. 

These specimens were also used for studying shrinkage after demoulding at 5 days 

and drying 2 days in an oven at 28 days. Following shrinkage tests, their 

compressive and flexural strength were tested, after 5 days demoulding, put in 

storage at 60 % RH, 20ºC curing and 0.4 W/ L and tested for shrinkage up 28 days, 

then tested for strength (compressive and flexural) at 60 days. The results are shown 

in Table 4.8 and presented graphically in Figure  4.36 and Figure  4.37. 

The compressive strength results from Part A and Part C2 were almost equal or 

increased slightly. For example, compressive strength of control specimens was 3.1 

MPa in Part A but increased to 4.9 MPa in Part C2. The difference is likely to have 

come from the decrease in the water lime ratio which affected the pore sizes 

(decreased) and from the age of the specimens (60 days) as the strength has probably 

increased with time. The flexural strength increase, for example, at 0 wt. % it was 

1.1 MPa in Part A and 3.1 MPa in Part C2 for the same reason, but here, the effect of 

water decrease was higher due to the flexural strength being very sensitive to pore 

sizes which decreased by decreasing the water.  
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There was a slight increase in compressive strength of 2 wt. % nclay from 3.5 MPa 

in Part A to 3.9 MPa in Part C2. The flexural strength increased from 0.7 MPa in Part 

A to 1.8 MPa in Part C2. There was also an increase in compressive strength for 2 

wt. % nSiO2 between Part A and Part C2. It increased from 2.8 to 4.0 MPa. There 

was also a slight increase in flexural strength from 0.3 to 0.9 MPa. 
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Table ‎4.8 Part C2-Oven cured compressive and flexural strength 

Part No % wt. nano- 

filler/ lime 

W/L Age at 

test 

days 

Storage 

condition 

to 5 days 

%RH/ ºC 

Curing up 

to 60 days 

%RH/ ºC 

Mean 

Compressive 

strength 

MPa 

Mean 

flexural 

strength 

MPa 

C2 1 0 wt. % control 0.4 60 60/20 60/20 4.9 3.1 
C2 2 2 wt. % nclay 0.4 60 60/20 60/20 3.9 1.8 

C2 3 2 wt. % EG 0.4 60 60/20 60/20 2.9 3.7 
C2 4 2 wt. % nSiO2 0.4 60 60/20 60/20 4.0 0.9 
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Figure ‎4.36 Mean compressive strength of Part C2-Oven cured  

 

Figure ‎4.37 Mean flexural strength of Part C2-Oven cured 
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  Summary of Results 4.7

A summary of the mean compressive and flexural strengths from Chap ter 4 for all 

parts (Part A-Air curing, Part B-Solvent exchange, and Part C-Oven drying) are 

shown in T 4.9, 

  Part A-Air Cured 4.7.1

 Referring to Table 4.9, Part A-Air cured, it can be seen that: 

 Flexural strengths of nanomaterials Control, 2.0% nSiO2, 4.0% nSiO2, 0.5 

% nClay, 1.0% nClay, 2.0% nClay, 5.0% nFC and 7.0% nFC were 0.3, 0.9, 

0.3, 0.6, 0.7, 0.3 and 0.9 MPa respectively and were all lower than pure lime 

(1.1 MPa) except FG at 5, 15 and 10 wt. % which gave 2.2, 1.9 and 3.6 MPa 

respectively. The optimum percentage of FG was 10 wt. % giving 3.6 MPa 

in flexural strength and it was the highest result of all added fillers in Part A. 

 The compressive strength results range of all materials except HF and PVAc 

with nZnO in Part A (4.3-4.5 MPa) is slightly enhanced but still around the 

value of the control specimens (4.2 MPa). This weakness was possibly due 

to the W/L  ratio which was 0.5.  

 The highest result was 17.7 MPa and 7.3 MPA of compressive and flexural 

strength respectively which was 4 wt.% nZnO, 10 wt. HF and 12 wt. % 

PVAc of water. This results was the highest result of the whole project of all 

parts (A-Air cured, B-Solvent exchange and  C1 and C2 - Oven cured ). 

 There was a small increase in compressive strength by adding nanomaterials 

such as 1 wt. % EG and 2 wt. % nclay (3.4 and 3.8 MPa) but was still lower 

than pure lime in Part A (4.3 MPa)  

 However, 10 wt. % FG and 10 wt. % HF gave the highest results in both 

compressive and flexural strength (4.3, 4.9 MPa in compressive strength 

repectively and 4.1, 6.2 MPa in flexural strength respectively)  
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 The hemp fibre lime composite HF/L was cosidered the best composite, it 

gave the second highest results after the fibre glass in compressive and 

flexural strength of all fillers.  

 Part B-Solvent Exchange 4.7.2

Referring to Table 4.9, Part B-Solvent exchange, the water binder ratio was reduced 

to 0.4 W/ L.  

The average compressive strength of control specimens was 2.2 MPa which was 

about half of its value in Part A control specimens (4.3 MPa). The compressive 

strength for 7 days by solvent water removal as reported and 28 days test therefore 

was higher than 28 days under ordinary air curing by 0.2 MPa. Also, for 91 days of 

ordinary air curing, compressive strength was 1.1 MPa lower than 28 days by using 

solvent exchange at 1.8 MPa (Alvarez et al., 2013). 
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Table ‎4.9 Summary of test results 

Curing 

Method 

Part A Air drying 

 Stored throughout 

at 20°C/60% RH 

 Demoulded at 5 days 

Cured for +23 days 

 
 

Part B Solvent exchange 

 Demoulded at 5 days 

 Immersed in isopropanol  

for +7 days  

 20°C/60% RH for +14 days 

 Oven for +2 days (26-27) 
(50°C) 

 
 

Part C1 Oven drying 

 Demoulded at 5 days 

 20°C/60% RH for +21 days  

 Oven for +2 days 50°C 
Part C2 Oven drying 

  Shrinkage test days (5-28) test  

 Oven for +2 days (29-30) (50°C)  

 Water absorption test days (31-32)  

 20°C/60% RH for +51 days 

 

  

Strength (N/mm2) C F  C F   C F 

  Table W/L    Table W/L    Table W/L   

 Part A     Part B     Part C1     

 Control 4.3 0.5 2.9 1.1 Control 4.9 0.4 2.2 0.7 Control 4.11 0.4 5.6 0.9 
 2.0% nSiO2 4.4 0.5 2.8 0.4 0.5% EG 4.9 0.4 2.5 1.5 0.5% nClay 4.11 0.4 2.2 0.4 
 4.0% nSiO2 4.4 0.5 2.7 0.8 1.0% EG 4.9 0.4 3.4 1.2 1.0% nClay 4.11 0.4 6.8 0.6 

 0.5% nClay 4.5 0.5 2.9 0.3 2.0% EG 4.9 0.4 2.6 1.1 2.0% nClay 4.11 0.4 5.2 0.7 
 1.0% nClay 4.5 0.5 2.9 0.6 2.0% nClay 4.9 0.4 3.8 1.6 3.0% nClay 4.11 0.4 6.7 1.5 

 2.0% nClay 4.5 0.5 3.6 0.7 2.0% nSiO2 4.9 0.4 2.2 0.8 1.0% nSiO2 4.11 0.4 8.5 2.4 
 5.0% nFC 4.6 0.5 2.3 0.3 10% FG 4.9 0.4 4.3 4.1 2.0% nSiO2 4.11 0.4 9.7 0.2 
 7.0% nFC 4.6 0.5 2.3 0.8 80% PVAc 4.9 0.4 2.2 0.8 3.0% nSiO2 4.11 0.4 4.5 0.3 

 5.0% FG 4.7 0.5 3.4 2.2 40% PVAc 4.9 0.4 2.9 1.7 1.0% EG 4.11 0.4 3.5 1.6 
 10% FG 4.7 0.5 10.7 3.6 20% PVAc 4.9 0.4 4.2 1.3 2.0% EG 4.11 0.4 1.4 1.7 

 15% FG 4.7 0.5 6.7 1.9 8% PVAc 4.9 0.4 4.9 2.4 5.0% nFC 4.11 0.4 6.4 2.4 
 (4% nZnO) 4.8 0.4 0.7 0.6 10% HF 4.9 0.4 4.9 6.2 10% nFC 4.11 0.4 4.0 1.4 
Nanofiller/L 12%PVAc, 

10% HF, 4% 
nZnO) 

4.8 0.4 17.7 7.3      5.0% HF 4.11 0.4 9.6 3.4 

           7.0% HF 4.11 0.4 7.4 3.5 
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Table ‎4.9 Summary of test results 

Curing 

Method 

Part A Air drying 

 Stored throughout 

at 20°C/60% RH 

 Demoulded at 5 days 

Cured for +23 days 

 
 

Part B Solvent exchange 

 Demoulded at 5 days 

 Immersed in isopropanol  

for +7 days  

 20°C/60% RH for +14 days 

 Oven for +2 days (26-27) 
(50°C) 

 
 

Part C1 Oven drying 

 Demoulded at 5 days 

 20°C/60% RH for +21 days  

 Oven for +2 days 50°C 
Part C2 Oven drying 

  Shrinkage test days (5-28) test  

 Oven for +2 days (29-30) (50°C)  

 Water absorption test days (31-32)  

 20°C/60% RH for +51 days 

 

  

Strength (N/mm2) C F  C F   C F 

  Table W/L    Table W/L    Table W/L   

           10% HF 4.11 0.4 8.7 4.7 

           20% HS 4.11 0.4 0.6 0.2 
           12% PVAc,20% HS 4.11 0.4 0.9 0.5 
           8% PVAc / 10% FG 4.11 0.4 9.9 4.9 

           12% PVAc / 10% FG 4.11 0.4 11.7 4.7 
         8% PVAc / 10% HF 4.11 0.4 4.11 3.0 

           12% PVAc / 10% HF 4.11 0.4 10.3 4.4 

                
                
           Part C2     

           Control 4.13 0.4 4.9 3.1 
Nanofille           2.0% nClay 4.13 0.4 3.9 1.8 

           2.0% EG 4.13 0.4 2.9 3.7 
           2.0% nSiO2 4.13 0.4 4.0 0.9 
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 Part C-Oven Drying 4.7.3

The last method, Part C-Oven dried results were adopted for strength improvement 

because it was different from Part B-Solvent exchange. The hydration doesn't stop 

but the water dries slowly at 50ºC for two days in the oven which is a period long 

enough for hydration and quick maturing. It gave higher results than both Part A and 

Part B except 4 wt. % nZnO and 12 wt. % PVAc of water with 10 wt. % HF in Part 

A which gave 17.7 and 7.3 MPA (compressive and flexural strength respectively). 

Part C2 results were lower than the results in Part C1. This has probably come from 

the effect of water content changes from the water absorption (the specimens were 

firstly tested for water absorption). The water was under the surface of the specimens 

(in touch with the lower side). The water level was gradually raised by capillary 

action within two days. The water absorption specimens were dried to prepare the 

specimens for the strength tests. The gradually saturation and drying might cause 

some reactions and components dissolved. 

 The flexural strength in Part C1-Oven dried curing compared with the cement 

mortar strength, was lower than the flexural strength of cement mortar which 

was about 4 MPa for cement: sand at a 0.5 water cement ratio (Aho & 

Ndububa, 2015), The values of flexural strength from Part C1 were in the 

range 0.2-0.9 MPa for nanomaterials nSiO2, nclay and HS and from 1.4-2.4 

MPa for nanomaterials EG and nFc. All nanomaterial flexural strengths were 

lower than the flexural strength of cement mortar. 

 The FG and HF raised to the value of cement mortar in flexural strength. 

They were 4.7 and 4.4 MPa respectively 

 The compressive strengths ranged from 3.5-11.7 MPa which were greater 

than the minimum strength for load bearing materials (3-5 MPa) (de Bruijn 

et al., 2009) 

  Optimised results 4.7.4

 The optimum results in compressive strength for all project specimens were 

12 wt. % PVAc of water, 10 wt. % HF in Part A-Air cured which were 17.7 

MPa and 7.3 MPa compressive and flexural strength respectively. They also 
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gave the highest flexural strength 7.3 MPa, highest than the value obtained 

in literature of cement mortar around 4.0 MPa and very close to flexural 

strength of concrete at around 7.0 MPa. 

 Hemp fibres (HF) with the PVAc adhesive was selected as the preferred 

choice compared to FG because it is renewable, available, environmentally 

friendly, lightweight, and compatible with lime and human circumstances. It 

will form the central core (C) of the proposed wall panel as shown in 

Figure  4.38. The insulator (I) of the same wall panel will be selected based 

on thermal conductivity values as described in Chapter 7. The render (R) 

lime/nanocomposite will be chosen in Chapter 6 and will be based on 

porosity characteristics. 

Table 4.9 D was a brief for the important result of strength in all parts. 

 

Table 4.9 D Summary of the optimum results of all parts 

No Part % Filler Compressive 

strength 

MPa 

Flexural 

strength 

MPa 

1 A 12%PVAc, 10% HF, 4% nZnO 17.7 7.3 

2 B 8 wt. % PVAc 4.9 2.4 
3 B 10 wt. % FG 4.3 4.1 

4 B 10 wt. % HF 4.9 6.2 

5 C1 3 wt. % Nclay 6.7 1.5 

6 C1 1 wt. % nSiO2 8.5 2.4 

7 C1 5 wt.% nFc 6.4 2.4 

8 C1 10 wt. % HF 8.7 4.7 

9 C1 12% PVAc / 10% FG 11.7 4.7 

10 C1 12% PVAc / 10% HF 10.4 4.4 

 

 

Figure 4.38, The Core (C) of the proposed wall in this research will be designed 

from (12%PVAc, 10% HF, 4% nZnO) Part A-Air cured which gave 17.7 and 7.3 

MPa compressive and flexural strength respectively.  
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Figure ‎4.38 Cross section through the proposed wall. 

 

Figure 4.39 and Figure 4.40 show a comparison between compressive and flexural 

strength results of filler percentages of Part A, Part B and Part C. Error bar exhibits 

low spread around the mean of points and there are no high variation between the 

results. 

 

Figure ‎4.39 Comparison between compressive strength results of Part A-Air 

cured, Part B-Solvent exchange and Part C1-Oven cured, Error bar ± < 1 
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Figure ‎4.39 Comparison between flexural strength results of Part A-Air cured, 

Part B-Solvent exchange and Part C1-Oven cured, Error bar ± < 1. 

 

  Discussion 4.8

It can be seen in Table 4.9 that flexural strengths were generally low in Part A and 

Part C (excluding the fibres, glass and hemp) but they were a little higher in Part B. 

It may be that the enhancement was due to stopping the hydration in Part B and from 

permitting evaporation of the water from the mixture by using the isopropanol 

solvent. When the moisture content becomes low, the pores decrease too (Collier, 

Sharp, Milestone, Hill, & Godfrey, 2008; Konecny & Naqvi, 1993), which leads to 

enhanced flexural strength because the flexural area of the specimens is very 

sensitive to the pore volume more so than the compressive area due the type of stress 

applied. The hydration in this project was stopped by using the solvent exchange 

method and this was probably why the compressive strength decreased in Part B. In 

the present project, decreasing water lime ratio helped in develop ing the strength in 

both compression and flexure. Water lime ratio was originally 0.6 but the strength 

results were very poor and, therefore, it would be difficult to achieve high strengths 
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as a result. W/L decreased to 0.5 and the results improved but not remarkably. At 0.4 

W/L, the highest results were achieved, especially when using 12 wt. % PVAc, 10 

wt. % HF and 4 wt. % nZnO as was shown in Table 4.9 A. 

There were two variables between Part A-Air cured and Part C-Oven cured, they 

were the water cement ratio, which was decreased from 0.5 to 0.4 W/L and, of 

course, the method of curing. Clearly, the W/L ratio has an effect on the compressive 

strength of the solid specimens, it was reported elsewhere that the compressive 

strength of cement and lime mixture increased as the water cement ratio decreased, 

the w/c ratios for 14 groups decreased from 0.55-0.27 w/c and the compressive 

strength were increased from 39.9-66.6 MPa (Sarika, Rao S., Sekhar, & Apparao.G, 

2013). The lime and cement require a minimum quantity of water to produce the 

chemical compounds from hydration (Lawrence & & Walker, 2008). 

Part A-Air cured was used to replicate the typical way of placing the materials. 

Referring to Table 4.9 Part A, the optimum percentages of the nano and natural 

materials for the highest compressive strength was 2 wt. % nSiO2/L, 2 wt. % 

nclay/L, 5 wt. % nFc/L and 10 wt. % FG/L. For flexural strength, all the results of 

nanomaterials (nSiO2, nclay and nFc were in the range, 0.3-0.9 MPa lower than the 

pure lime specimens (1.1 MPa). Compressive and flexural strength for 10 wt. % 

FG/L were the highest value of both compressive and flexural strength of all 

specimen results (11.7, 4.7 MPa respectively) except 10 wt. HF, 12 wt. % PVAc of 

water with 4 wt. % nZnO which were both compressive and flexural strength (17.8 

and 7.4 MPa respectively at 0.4 W/L) the highest results among all results of the 

project.. 

Part B-solvent exchange was used in the literature for many reasons; it was the best 

way for measuring the development of porosity at certain ages by stopping the 

hydration process by evaporating the excess water using solvent exchange. It was 

used in the project as an accelerated method for curing the materials since drying on 

site is an issue. The method had an influence on the quantity of pores (reduced). 

Further work is required to optimise the technique which could have wide ranging 

benefits for on-site placing. The results at 14 days curing by solvent exchange in Part 

B tests are compared with 28 days of ordinary air curing. Also, it was reported that 

the solvent exchange method is the best method to keep pores in the finest pore size 
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range (Alvarez et al., 2013). Referring to the literature, the solvent exchange method 

was found to be the best method to examine and evaluate the properties of shrinkage, 

permeability and strength which have a relation to pore size distribution, Shrinkage 

is related to finer pore size range whereas permeability and strength are related to 

larger pore size range (Konecny & Naqvi, 1993). The solvent exchange method 

cannot remove all the free water (it is non reacted and found free in the pores of the 

specimen) so the combined water content (it is reacted and linked with the materials 

of the specimen), which is considered as the indicator of the extent of hydration, is 

the highest water removal in comparison to the other methods (Saraya, 2010). From 

this literature, it can be summarised, the effect of larger pore size on strength was 

decreased by removing the free water using a solvent exchange method. This is not 

without limits, it depends on the hydration and if there is enough water for reaction. 

The balance between removing free water and having enough water for the hydration 

process needs more studying to find the optimum case. On the other hand, it was 

reported the percentage increase in compressive strength from 7 days testing to 28 

days for air cured specimens was 86 %, the percentage increase for the same period 

by solvent exchange was 112 % (Alvarez et al., 2013).  

This means the increase from 7 days to 28 days is almost the same, but the difference 

from 86% to 112% came from the adding of nanosilica and not due to the solvent 

exchange technique. Pores and shrinkage are important to be discussed within 

compressive and flexural strength results because they are related to decreasing 

strength and studying the factors affecting on decreasing them is important. 

In addition,  

 The results of the compressive strength specimens in Part B decreased by 

about 50 % in comparison to Part A. The mean compressive strength 

decreased for control specimens (4.3 to 2.9 MPa), 2 wt. nSiO2 (4.9 to 2.8 

MPa), 10 wt. % FG (7.3 to 4.3 MPa). The compressive strength of nanoclay 

decreased slightly from 4.0 to 3.8 MPa. 

 New materials that were tested in Part B which differed from Part A (EG, HF 

and PVAc/L) were studied to determine the optimum percentage o f each. The 
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optimum percentage of EG was 1 wt. % to lime. Its compressive strength was 

3.4 MPa, higher than 0.5 wt. % EG (2.5 MPa) and 2 wt. % EG (2.6 MPa).  

 The compressive strength of 80, 40, 20 and 8 wt. % of PVAc/L were 2.2, 2.9, 

4.2 and 4.9 MPa respectively. For EG, 1 wt. % was the optimum percent of 

EG for compressive strength.  

 10 wt. % HF/L was tested in Part B, and gave 4.9 and 6.2 MPa compressive 

and flexural strengths respectively which were the highest values in all Part B 

tests. 

 The optimum PVAc was 8 wt. % of water/Lime without fibres, it gave 4.9 

and 2.4 MPa of compressive and flexural strength respectively and they were 

higher than the results of the percentages 80, 40 and 20 wt. % of lime which 

gave compressive strengths of 2.2, 2.9 and 4.2 MPa respectively and flexural 

strengths of 0.8, 1.7 ad 1.3 MPa respectively.  

 This optimum result (8 wt. % PVAc/L both flexural and compressive 

strengths for PVAc/L blended with 10 wt. % HF/ L) was tested with another 

ratio of PVAc/L of 12 wt. % in Part C1-Oven cured to determine the optimum 

ratio when PVAc is mixed with HF or FG. It was found that the optimum 

ratio of PVAc for blending with 10 wt. % of (FG or HF) was 12 wt. % 

PVAc/L. 

It has been found from Part A-Air cured and Part B-Solvent exchange that there was 

commondity between the optimum performance of materials in both parts e.g. 

 For nanomaterials, 2 wt. % nSiO2/ L, 2 wt. % nclay/ L, 5 wt. % nFc/ L, 8 wt. 

% PVAc to the W/ L, 1 wt. % EG/ L 

 For fibres, 10 wt. % FG/ L and the percent of 10 wt. HF/L was very close to 

10 wt. % FG/ L by using Part C-Oven dry cured  

 The optimum percentage of HF blended with PVAc was later investigated in 

Part C1 and the optimum was found 10 wt. % HF/L with 12 wt. % PVAc/l 

which gave compressive and flexural strength 10.3 and 4.4 MPa respectively, 
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and by using Part A-Air cured method 17.8 MPa and 7.3 MPa respectively 

which is the highest results amongst all parts  

Regard to Part C1, research elsewhere reported the substantial effects on compressive 

strength of lime concrete specimens due to the capillary of the degree of water 

saturation. When the degree of saturation of specimens increased from 0 % to 100%, 

the bond between soil and lime completely disappeared, and the compressive 

strength of the lime concrete decreased to zero. Moreover, it was remarked that the 

bond between soil and lime became weakened when the capillary water absorbed. It 

was increased by up to 20 % or more; the strength was substantially reduced 

(Saberian, Jahandari, Li, & Zivari, 2017) This means oven drying is necessary to 

decrease the capillary water which is produced from excess water in the matrix and 

may help to enhance the strength. 

The results of the strength tests in Part C2 were: 

 For compressive strength, it was 4.9 MPa for the Control (pure lime), 3.9 

MPa for 2 wt. % nclay/L, 2.9 MPa for 2 wt. % EG/L and 4.0 MPa for 2 wt. % 

nSiO2/L.  

 For flexural strength, it was 3.1, 1.8, 3.7 and 0.9 MPa respectively. 

Part C1-Oven dry cured was the same curing procedure of Part C2 except the age of 

the test specimens were 28 days not 60 days. It used the optimum percentages of the 

specimens from Parts A and B 

 The mean compressive strength was 5.6 MPa for the Control, more than its 

value in Part A (4.3 MPa)  

 The optimum percentage result for nanoclay for compressive strength 

(6.8MPa) was 2 wt. % nanoclay/ L, better than 0.5 wt. % (2.2 MPa), 1 wt. % 

(6.7 MPa) and 3 wt. % (6.7 MPa), which were in general higher than the 

compressive strengths of Part A-Air cured, Part B-Solvent exchange and Part 

C2  

 The optimum percentage result of compressive strengths for nSiO2 (9.7 MPa) 

were 2 wt. %, better than 1 wt. % (8.5 MPa) and 3 wt. % (4.5 MPa) 
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 The optimum percentage result of compressive strength for EG (3.5 MPa) 

was 1 wt. %,  more than the 2 wt. % (1.4 MPa)  

 The optimum percentage result specimen for compressive strength of nFc 

(6.4 MPa) was 5 wt. % nFc, more than the of 10 wt. % (4.0 MPa).  

 The optimum percentage result in terms of compressive strength for HF was 

both 10 wt. % and 5 wt. %, both gives 9.6 MPa. The 10 wt. % had a higher 

flexural strength of 4.7 MPa compared to the 5 wt. % (3.4 MPa). In addition,  

increasing the HF percent led to difficult mixing and distribution which 

probably affected its compressive strength 

 The highest percentage result in terms of compressive strength was 10 wt. % 

FG mixed with 12 wt. % PVAc of the mixing water (11.7 MPa)  

 The optimum percentage result for compressive strength in Part C was 10 wt. 

% HF mixed with 12 wt. % PVAc of the mixing water (10.3 MPa)  

 These two optimum results of FG and HF were the highest compressive 

strength results among the parts (Part A-Air cured, Part B-Solvent exchange, 

Part C1 and C2 - Oven dry cured) and they had highest results in flexural 

strength too. The result of these two optimum results were 11.7 and 4.7 MPa 

compressive and flexural strength respectively using Part A-Air cured and 

10.3 and 4.0 MPa respectively using Part C1-Oven cured for 10 wt. % HF and 

4 wt. % nZnO with 12 wt. % PVAc 

 The 10 wt. % HF, 4 wt. % nZnO and 12 wt. % PVAc was considered the best 

material because it was environmentally friendly and similar in performance 

to the FG. Hemp is sustainable, available, environmentally friendly and 

compatible with lime paste. Furthermore, it is lightweight in comparison to 

concrete construction as will be calculated in Chapter 8 when the densities of 

materials are determined from the porosity test. This material was chosen as 

the core (C) of the proposed wall in this project as explained in Section  4.7 

and Figure  4.38 and the compressive strength (10.3 MPa) was significantly 

more than the minimum limit of a load bearing material (3-5 MPa) 
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 The compressive and flexural strengths for 20 wt. % HS/L were 0.6 and 0.2 

MPa respectively but when mixed with 12 wt. % PVAc they were 0.9 and 0.5 

MPa respectively. These compressive strengths were very weak and is non-

load bearing, but because of the relative high percentage of shives, it has high 

heat isolation due to low thermal conductivity. It was adopted to be the 

insulation layers either side of the core, see Figure  4.38  

 Chopped fibres (FG and HF) were used for the first time with lime and the 

compressive and flexural strengths were very encouraging. Hemp fibres were 

better than fibre glass because they are environmentally friendly and are 

available as a renewable agricultural plant which can grow quickly to 4-6 m 

within 3 months  

 In addition, PVAc (or wood glue) was used for the first time with lime and 

fibres as an adhesive to increase the bond between the fibres (FG and HF) 

and the results showed that the strength obtained were comparable to those 

required for load bearing materials 

 Referring to load deflection curves Figure  4.28 and Figure  4.29, the shape of 

the curves for the nanomaterial specimens was linear and the failure was 

sudden i.e. brittle whereas with the FG and HF mixed with PVAc, the failure 

was gradual. This property,  called ductility, is beneficial in construction 

materials  

 In the literature it was reported that hemp/lime composite had a ductile 

behaviour in its stress/strain profile which started as a linear increase but 

changed to ductile behaviour due to the transfer of stresses to the interface of 

lime/hemp (Muphy, Pavia, & Walker, 2010).  

 As for ductility, it can be seen in Figure  4.40 under compressive loadings; the 

specimen was compressed up to failure without cracking except the thickness 

reduced. Hemp fibre lime composites exhibited higher ductility. Ductility 

emerged at the compressive strength failure tests. Also in flexural strength 

(Figure  4.28 and Figure  4.29), the mode of failure curve is not sudden but 

from the maximum point is gradually decreased which is a behaviour of a 
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ductile, not brittle material. Ductility is an important factor for human safety 

and durability of the material which makes the lime a good candidate under 

vibration loads. 

 

 

Figure ‎4.40 Compressed specimen of 12 %PVAc 10 % 

HF/ L without complete crushing 

 

In another study, many percentages of hemp to concrete were studied in a mix, the 

flexural strength increased and provided a ductility case for a post cracking situation 

of the fibre reinforced concrete mix and this was similar to the compression test. It 

just added 1% HF and the outcome was 20 % reduction in coarse aggregates 

(Awwad, Hamad, Mabsout, & Khatib, 2010). In the present project, the specimens 

reinforced by hemp fibres were void of cracks and no cracks. Under load the 

specimens compressed but without showing signs of cracking. 

 

  Summary of Findings and the Relationship to project Objectives 4.9

Table 4.1 in the Introduction highlighted the project objectives and their description. 

This table has been updated with the project findings and summarised in Table 4.10. 



 Chapter 4  Compressive and flexural strength of lime nanocomposites 

 

137 
 

The research in this project showed that although the procedure adopted a solvent 

exchange or a water removal technique which stops the hydration process from the 

age of 26 days, the tested materials still possessed the required characteristics of 

strength and thermal performance. More research is required to assess the influence 

of accelerated drying on the durability of renders and to investigate the best drying 

method for site use and the optimum time for implementation due to thickness of the 

material and possible adverse weather conditions.  

Part A-Air cured was adopted for the central Core of the proposed wall (12%PVAc, 

10% HF, 4% nZnO). The latter two curing regimes were adopted according their 

high improvement of strength in Part C and decreasing thermal conductivity in Part 

B. Part B-Solvent exchange led to stopping hydration which meant no more reaction, 

no more generated materials like calcium hydroxide gel, and there are enough pores 

to increase the heat isolation (decrease thermal conductivity). Part B was adopted for 

decreasing thermal conductivity. It can be used in the application of isolator panels 

of the proposed wall in this project (Figure  4.38, Section  4.7). 
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Table ‎4.10 Summary of findings and achieved objectives 
No Objectives Objectives Description Outcomes 

A 
1.Environmentally friendly 
2. Sustainable 

Compatible with the: 
1. Environment (human, animals and 
plants) 
2. Available and renewable 
 

1. Environmentally friendly was achieved by 
1.1. Choosing biomass materials such as fibres and shives of hemp 
and lime for the matrix. 
2. Sustainable property was achieved by selecting sustainable 
materials. 
2.1. Hemp which grows quickly is considered due to its low CO2 
footprint in its life cycle.  
Note: a comparison between the quantity of CO2 emission for 1m

3 

from proposed wall in this project and 1m
3
 concrete wall 

depending on the densities (to calculate the weights) of material 
from porosity test will be conducted in Chapter 8 

B Lightweight 

1. Density of proposed wall layers is  
less than concrete density of concrete 
< 2500 kg/m

3
 

1- For lightweight goal by using: hemp fibres or hemp/Lime 
nanocomposite which is lighter than concrete, their bulk densities:  
1.1. Lime density= 1500 kg/m

3
  

1.2. 10 % HF/L+12 % PVAc/L=1260 kg/m
3
 

1.3. 10 % HS/L+12 % PVAc/L=540 kg/m
3
  

Densities above will be found by porosity testing in Chapter 7  

C 

1. Load bearing construction 
material, ability to withstand 
1.1. Wind load and 
1.2. Eccentricity of its load 
Increase compressive strength  
2. Flexural strength must be 
increased 
 
 
 
3. The resulted composite must 
be:  
Safe against 
Sudden collapse 
Durable material 

1. Its compressive strength could be 
> 5 MPa, which is the minimum limit 
of load bearing material. 
2. To bear flexural loads, It must be 
around the flexural strength of cement 
mortar ≈ 4 MPa to increase flexural 
strength  
 
 
 
3. For safety and durability must be 
behaved as gradual failure in both 
flexural and compressive strength 

1.Compressive strength (MPa) achieved by: 
1.1. 10 % HF/L + 12 % PVAc/L=  17.7 MPa Part A-Air cured 
1.2. 10 % FGL+12 % PVAc/L= 11.7 MPa Part C1- Oven dry cured 
1.3. By adding 2 % nSiO2= 8.5 > 3-5 
1.4. By adding 3 % nSiO2= 9.7 > 3-5 
2-Flexural strength (MPa) achieved by: 
2.1. 10 % HF/L+12 %PVAc/L= 7.3 > 4 MPa Part A-Air cured 
2.2. 10 % FG/L+12 % PVAc/L= 4.4 > 4 MPa Part C 
3. For ductility the mixture of 10 % HF/L+ 12 %PVAc/L showed 
high ductility in compression and tension according to failure 
mode: 
It was noticed from: 
3.1. Failed specimens 3.2. From the Load-deflection curve 
3.3. From Load-compression curve 
3.4 Ductility is important factor of durability in construction 
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 Porosity and Water Absorption Chapter 5 -

  Introduction 5.1

Porosity is an important property in building construction materials. Low porosity is 

required to protect the building materials from water ingress. Porosity is perhaps the 

third most significant property for construction materials after strength and thermal 

conductivity and can be more important than strength in certain cases such as plaster. 

Both of these properties were discussed in Chapter 4 and Chapter 7, respectively. 

The aim is reducing porosity whilst still maintaining breathability. It is beneficial to 

have porosity as low as possible, perhaps in the range of concrete porosity which is 

about 12-21 % as shown in the literature (Y. Y. Kim, Lee, Bang, & Kwon, 2014; H. 

Zhao, Xiao, Huang, & Zhang, 2014) to keep and conserve the breathability (water 

vapour permeability WVP) of lime, which increases and decreases as porosity 

increases or decreases. 

As shown in the literature (Demo, 2017; IAQ, 2013), moisture content has a negative 

effect on construction building materials. Differing moisture content leads to 

expansion and contraction at dry state when the moisture content evaporates and this 

causes cracks and weakness in flexural and compressive strength of the lime. 

Moisture content increases thermal conductivity and has a negative effect on the heat 

insulation property of the material. Porosity therefore, is a very important indicator 

for the influence of moisture content. Reduced porosity means reduced moisture 

content. 

Tests were conducted to check the porosity of lime with nanofillers (expanded 

graphite, nanoclay, nanosilica, nanozinc oxide) and also with fibre glass and/or 

polyvinyl acetate as a percentage of water. 

The porosity tests were generally conducted for the optimum percentage of fillers 

which were adopted in strength tests in Chapter 4 and gave the best mechanical 

properties. A comparison was made between porosity for each kind of filler to that of 

pure lime. The first group of tests was for the render of the proposed wall in this 

study (Figure 5.1). The group focused on using nanomaterials with lime; however 

fibre glass was added to the mixtures to help in reducing shrinkage and provide 
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additional strength. Nanozinc oxide was included in the tests because it was good for 

decreasing thermal conductivity and this is important in the study. Other tests related 

to the Core of the proposed wall and the Insulator panels of the wall (Figure 5.1). 

These were hemp fibres (HF) with polyvinyl acetate and HF with PVAc. Air curing 

was used for all samples. The samples were cut by a knife from the specimens which 

were tested for strength (compressive and flexural strength). These specimens were 

demoulded after 5 days and then stored for 23 days in a temperature and humidity 

control room (20°C and RH, 60 %). Porosity samples were cut from the tested 

strength specimens and they were put in an oven 24 hours at 50°C. 

 

Figure ‎5.1 Cross section through wall: (R) Lime nanocomposite render; (I) 

lime/hemp shiv nanocomposite insulator (C); lime/hemp fibres nanocomposite. 

 

  Porosity Results and Pore Size Distribution 5.2

Two groups P1 and P2 of specimens were tested for Render (R) and Core (C) 

respectively as shown in Figure 5.1. 

  Porosity Tests for Render (R) Materials P1  5.2.1

The Render (R) materials were tested for porosity (2 wt. % nSiO2, 2 wt. % nClay, 

0.5 wt. % EG, 2 wt. % EG, 4 wt. % nZnO) compared to the pure lime porosity. The 

results are given in Table 5.1. 

Referring to Table 5.1, the Group ID is given in column 1, P1 standing for 'Porosity' 

and 'Group 1'. The specimen number is given in column 2. The filler used are in 

column 3 and include control, nSiO2, nanoclay, expanded graphite (EG) and nZnO. 
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For example, P1 2 wt. % nSiO2 means; porosity test of Group1, specimen of 

nanosilica of 2 % by weight of lime binder. 

The water/lime ratio in the porosity tests was 0.4 for all these tests. The porosity as a 

percentage is given in column 4, Table 5.1. Referring to Table 5.1 and Figure  5.2, 

EG at 0.5 wt. % of lime exhibited the highest porosity (40.9 %). 

Table ‎5.1 Porosity test results for Render (R) materials (P1) 

Group No  Filler % Porosity 

1 2 3 4 

P1 1.  Control 36.4 

P1 2.  2 wt. % nSiO2 34.3 

P1 3.  0.5 wt. % EG 40.9 

P1 4.  2 wt. % EG 28.4 

P1 5.  2 wt. % nclay 31.5 

P1 6.  4 wt. % nZnO 18.1 

 

The porosity of the Control was 36.4 %. Nanosilica added to lime at 2 wt. % gave a 

porosity of 34.3 %. The lowest porosity result was 18.1 % by mixing 4 wt. % nZnO 

with lime. Surprisingly, the nZnO to lime decreased the porosity from 36.4 % to 18.1 

% and this is the best result for render. The nanozinc oxide was lastly included in the 

tests because it showed high effect (decrease) on the thermal conductivity. This 

nanofiller, nZnO can be used in render, core and insulator of the proposed wall of 

this study. That means, it is very important and its effect on porosity must be studied 

and for that it was included in this group P1. The second lowest porosity was 28.4 % 

by mixing 2 wt. % EG with lime. This can also be used as a filler for the lime 

nanocomposite render or fibre reinforced lime nanocomposite. Unfortunately, the 

black colour of EG gave a dark appearance to the render which can be aesthetically 

unpleasing. The MIP device normally measures pore sizes at a pressure up to (200 

MPa) within the range (0.01- 100 µm). Due a fault of the instrument the pressure of 

MIP did not reach 200 MPa, therefore the smaller pore size were not measured for 2 
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wt. % EG (0.01- 0.4 ± 0.03 µm). So that, the results were not precised but the error is 

not high because the cumulative intrusion volume was very low at these pore sizes 

(less than 0.4 µm). That means this error in the percentage of porosity is not 

significant. 

 

 

Figure ‎5.2 Porosity of P1 specimens 

 

These results were for the materials which can be used in the Render (R) of proposed 

wall in this project (Figure 5.1) and then, the materials which can be used for the 

core of the proposed wall must also be checked in P2 group. These materials are 

FG/L, hemp fibres HF and PVAc which was added to HF to increase its bond with 

lime which gave higher strength (flexural and compressive) than HF lime 

composites. The insulator (I) panel materials of the proposed wall as shown in 

Figure 5.1 were not tested because they contain an effective percentage of hemp 

shives (20 wt. %) and their pore size are outside (larger) the measuring range of 

MIP. 

 Porosity Tests for Core (C) Materials P2 5.2.2

The materials which were tested for porosity in group P2 were 10 wt. % HF with 30 

wt. % PVAc and 4 wt. % nZnO, 10 wt. % HF with 30 wt. % PVAc and FG/L. The 

results are given in Table 5.2 and Figure ‎5.3. This table is formulated in a similar 

way to Table 5.1. Table 5.1, see Section  5.2.1 for a description of its content. 
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Table ‎5.2 Group P2 porosity tests for core materials  

Group No Filler % Porosity 

P2 1 10 % HF+30 % PVAc + 4 % nZnO 20.7 

P2 2 10 % HF + 30 % PVAc 16.6 

P2 3 10 wt. % FG 40.0 

 

Table 5.2 shows the porosity results of Group P2 which is the Core (C) and 

Figure ‎5.3 shows a comparison between P1 and P2 groups; nanozinc oxide is 

significantly decreased the porosity from 36.4 % for pure lime to 18.1 %. This is 

very good to use in the (R) render and in the core of proposed wall as well. 

Furthermore, the nanozinc oxide can be used for decreasing thermal conductivity and 

porosity which is cheap and readily available on the market. Nanozinc oxide has a 

potential to absorb the heat and slowly release it. Nanozinc oxide decreases the pore 

size diameters by lining the pores (Handoko et al., 2018) as a nanomaterial which is 

small particles and has hexagonal structure close to sphere shape (Bouzourâa et al., 

2016; Mala et al., 2016). Hemp fibres of 10 wt. % with 30 wt. % PVAc of water 

gave the high decrease in porosity, 16.6 %, but when mixed with nZnO, the porosity 

increased marginally to (20.7 %). The last porosity 20.7 % can be used for the Core 

(C) due to the presence of nZnO which works as anti-bacteria and anti- fungus which 

is preferred more than HF with just PVAc. The porosity of hemp fibres with PVAc 

was 16.6 %. Porosity became a little higher (20.7 %) by using hemp fibres with 

PVAc and nZnO due to the nanozinc oxide. In the lab usually when the nZnO is 

added at the mixing time, the workability was decreased and extra water was added 

(0.4 wt. % of 4 wt. % nZnO or the total water of mixture became 0.4 water to solid 

content). Possibly, the additional water increases the pore size volume a little more 

than just PVAc and this leads the hemp fibres to absorb more water by capillary 

action which evaporates and leaves pores of higher size which increases porosity as 

well. 
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Figure  5.3 Comparison % porosity of all materials of groups P1 and P2 

 

  Pore Size Distribution 5.2.3

The pore size distribution for nine specimens are given in Figure  5.4 to Figure  5.12, 

Figure  5.4 control, Figure  5.5, 0.5 wt.% EG/L; Figure  5.6, 2 wt. % EG/L; Figure  5.7, 

2 wt. % nSiO2/L; Figure  5.8, 2 wt. % nclay/L, Figure  5.9, 10 wt. % FG/L with 20 wt. 

% PVAc to water; Figure  5.10, 10 wt. HF/L and 30 wt. % PVAc of water and 

Figure  5.11, 10 wt. HF/L and 30 wt. % PVAc of water with 4 wt. % nanozinc 

oxide/L and Figure  5.12; 4 wt. % nZnO/L. The pressure of MIP device for the 

specimens; 2 wt. % EG, 10 wt. HF and 30 % PVAc of water, 10 wt. % HF and 30 % 

PVAc of water with 4 wt. % nZnO wasn't reached the maximum value (200 MPa). 

Therefore, the small pore sizes are not shown in the charts  

Referring to Figure  5.4 to Figure  5.12, the modal pore size diameter (critical radius) 

for Control Figure  5.4, 0.5 wt. % EG Figure  5.5, 2 wt. % EG Figure  5.6, 2 wt. nSiO2 

Figure  5.7 and Figure  5.8, 2 wt. nclay were (1.2, 1.1, 1.8, 0.9 and 1 µm), they were  

around 1.0 µm but their range of pore sizes are different, for Control, it was between 

0.01- 1.8 µm and cumulative intrusion volume was 0.27 cm3/g, its porosity was 

36.35 %, but for nSiO2 Figure  5.7, it was a little less in the range 0.01-1.1 µm. Its 

cumulative intrusion volume was 0.26 cm3/g, the porosity was a little lower at 34.34 

%.   
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Specimens of 20 and 30 wt. % HS/L were not tested because porosity of this kind of 

mixtures (as reported) is very high and more than that of pure lime (36.4 %). It was 

found that the porosity of 16 wt. % hemp, 32 wt. % of lime and 0.5 W/L was 75 % 

(Glé, Gourdon, & Arnaud, 2011). This porosity is much higher than the normal 

porosity of concrete (12-20 %) (Y. Y. Kim et al., 2014; H. Zhao et al., 2014). The 

main usage of hemp shives (which has high porosity and porous structure) is to 

increase efficiency of envelopes and reduces production cost as a best heat insulator 

(Balčiūnas, Vėjelis, Vaitkus, & Kairyte, 2013). More tests should be conducted on 

controlling the porosity of shives. 

 

Figure ‎5.4 Pore size distribution for control specimen 
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Figure  5.5 Pore size distribution for 0.5 wt. % EG specimen 

 

 

Figure  5.6 Pore size distribution for 2 wt.% EG specimen 
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Figure  5.7 Pore size distribution for nSiO2 specimen 

 

As for nanoclay Figure  5.8, the pore size range was 0.01-2 µm, similar to the control 

specimen (0.01-1.8 µm) but the cumulative intrusion volume was about 0.14 cm3/g 

lower than for control (0.27 cm3/g), The porosity  of nanoclay (31.5 %) was less than 

the control specimen porosity (36.4 %). 

 

 

Figure  5.8 Pore size distribution for nclay specimen 

 



Chapter 5      Porosity and water absorption 

148 
 

The specimens of 10 wt. % FG had a critical pore diameter of 1.0 µm but their 

intrusion volume was 0.09 cm3/g lower than control (0.27 cm3/g) but the range of 

pores was 0.01-100 µm and gave higher porosity for higher range of pore size 

diameter. As for nSiO2 Figure  5.7 and nclay Figure  5.8 decreased the critical size 

radius for both is around 0.9 (less than 1 µm) in comparison to the critical size 

diameter of control (1.2 µm) Figure  5.4. 
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Figure  5.9 Pore size distribution for FG specimen  

 

For HF with PVAc Figure ‎5.10, HF with PVAc + nZnO Figure  5.11 and nZnO, 

Figure ‎5.12, the pore size range was 0.1-100 µm, 0.4-100 µm and 0.45-50 µm 

respectively. Their critical pore radius were 0.35 and 15 µm for HF with PVAc, two 

critical diameters. Also, there are two critical diameters 0.7 and 15 µm for HF with 

PVAc blended with nZnO. As for nZnO/L (nanozinc oxide to lime) was 1.1 µm, but 

the cumulative intrusion volume of these pore sizes was about 0.02 0.04 and 0.09 

cm3/g respectively. It can be said that the pore size ranges were larger than of the 

group mentioned above but the cumulative intrusion volumes were lower, they were 

0.02-0.09 cm3/g which was the lowest and yielded the lowest porosity. The lowest 

cumulative intrusion volume was 0.02cm3/g for (HF with PVAc) and yielded the 

lowest porosity (16.6 %), The second highest cumulative intrusion volume was 0.09 

cm3/g for % (nZnO/L) which gave a second lowest porosity 18.1% and cumulative 

intrusion volume 0.04 cm3/g for (HF with PVAc + nZnO) which gave a porosity of 

20.7 %. Figure 5.10, 5.11 and 5.12; show the range of pore size is not completed for 

the same reason of Figure 5.6; the pressure of the MIP device didn’t reach 200 MPa 

due to a fault. The mistake in the percentage of their porosity is low because the 

cumulative intrusion volume versus the non-accessed pore size is low.   
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Figure  5.10 Pore size distribution for HF PVAc/w specimen. 

 

 

Figure  5.11 Pore size distribution for 10 wt.% HF 30 wt. %PVAc/w  4 wt. % 

nZnO specimen 
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Figure  5.12 Pore size distribution for 4 wt. % nZnO specimen 

 

In the literature, it was shown that is impossible in concrete to have a total porosity 

of less than 10 %. The porosity of concrete for a young age is about 20-25 % and 10-

15 % at a mature age (Aligizaki, 2014). This is a good guide for porosity since the 

main material in this project is lime which is porous material and as in group P1 tests, 

its porosity was 36.4 % (Control specimen). It will be beneficial to decrease the 

porosity of these materials to ideally a little higher than 10-15 % of a mature 

concrete porosity. Or it can be decreased to the highest side of the range 12-21 % 

which is the range of concrete porosity as reported (Y. Y. Kim et al., 2014; H. Zhao 

et al., 2014). Some studies mentioned other range for example; porosity of hardened 

cement paste range is 25-50 %. (Jennings, Thomas, Rothstein, & Chen, 2008). It 

means the porosity of lime is preferred to be slightly higher than the lower limit of 

cement porosity range. The required porosity in lime is to be a little higher than 

cement porosity range (10-15 %) or a little less than the higher side of concrete 

porosity range (12-21 %) in order to keep the required breathability (WVP) of lime 

higher than cement or from the higher side porosity range of concrete breathability. 

The breathability of concrete is lower than lime due to its lower porosity. Porosity of 

lime in this project was decreased from 36.4 % to 16.6 by using 10 wt. % HF and 12 

wt. % PVAc/L, 18.1 % using 4 wt. % nZnO to lime and 20.7 % using 10 wt.% HF 

12 wt. % PVAc + 4 wt. % nZnO.  
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All these porosity result values 16.6, 18.1 and 20.7 % were an exceptional  

achievement because they were at least half that of the pure lime porosity and at the 

higher side range of concrete porosity. This is the first time, according to the 

available knowledge that nZnO is added to lime and the first time PVAc, HF and 

nZnO were added to lime to decrease porosity. Nanozinc oxide was beneficial in 

decreasing both thermal conductivity and porosity meaning it will have a do uble 

benefit in term of decreasing thermal conductivity and porosity.  

  Critical Pore Size 5.2.4

Critical radius or modal pore size is the most frequent pore radius, and an 

explanation is given in Figure ‎5.13. It relates to the transmissivity of the material, it 

is used to examine the effects of the factors such as water content ratio, material 

temperature etc.., and it is corresponding to the steepest portion of the cumulative 

porosity curve (Aligizaki, 2014). 

That means the critical pore radius of the Control specimen; it was about 1.00 µm 

which is in the change point of the steep slope. For nSiO2 specimen, was about 0.9 

µm and 1.0 µm, for nanoclay. For 0.5 and 2 wt. % EG, they were 1.1 and 1.8 µm 

respectively. For FG, it was 1.00 µm, and there were two critical pore dimeters 0.35 

and 14 µm for HF with PVAc , 0.7 and 15 µm for HF with PVAc and nZnO and 1.1 

µm for nZnO/L. The critical pore diameter for the materials which included PVAc is 

high but their porosity is low (16.6 and 20.7 % respectively) due to the lowering of 

their cumulative intrusion volume as shown in Figure  5.4 to Figure ‎5.12. 

Threshold radius is the limit between majority and minority of intrusion pore 

volume, or it is the diameter of which the mercury intrusion, if it is above the 

threshold size, is little, and if it is below of its size, is great portion of intrusion. The 

threshold diameter can be defined that is the largest pore diameter at which great 

intruded pore volume is happened (Aligizaki, 2014). 
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Threshold diameter decreases with the decrease of water binder ratio and with an 

increase of age. It starts from the change point of the curve, see Figure  5.13 

Definition of critical and threshold pore radius (X. Chen, Wu, & Zhou, 2014). 

Threshold diameter is a good guide for permeability because it is related to the 

connective pores which has a high effect on permeability (Aligizaki, 2014). 

For pure lime (Figure  5.4), the threshold diameter is about 1.7 µm, for nSiO2 

(Figure ‎5.7), it is 1.10 µm, nclay is 1.5 µm (Figure  5.8), 1.7 and 2.5 µm for 0.5 and 2 

wt. % EG respectively (Figure  5.5 and Figure  5.6), 90.0 µm for FG (Figure  5.9), 60.0 

µm for HF with PVAc (Figure  5.10), 60.0 for HF with PVAc and nZnO 

(Figure  5.11), 2.0 µm (Figure  5.12) for nanozinc oxide. 

 

Figure  5.13 Definition of critical and threshold pore radius (X. Chen, Wu, & 

Zhou, 2014) 

  Comparison of Pore Size Distribution vs Volume Density for Specimen 5.2.5

Groups P1 and P2 

It was mentioned previously that the pore size ranges and critical pore size for all 

specimens of groups P1 and P2 varied and the critical pore sizes are different too but 

they were very close to each other's in P1 and their porosity as well. Group 

specimens P2 results were different from group p1, but their critical pore sizes and 
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their ranges of pore sizes in group P2 were also close to each other and they gave 

porosities close to each other too.  

A balance between the cumulative intrusion volume and the critical pore size is 

required. The porosity cannot be assessed solely on one of them; both must be taken 

in consideration. Figure  5.14 shows the critical pore size for all specimens of groups 

P1 and P2 and the pore size ranges. The critical pore size and the range of pore size as 

appears in the graph below are not enough indicators for porosity, it also depends on 

the cumulative intrusion volume of the pores in cm3/g (Volume Density) which was 

discussed in advanced in this Section  5.2.4. The cumulative volume represents the 

whole volume in one gram and this is more accurate. Figure 5.14 shows that adding 

nSiO2 and nclay to lime was decreased pore diameter of lime nanocomposites. 

 

 

Figure ‎5.14 Comparison chart of pore diameter versus volume density for all 

specimens of different fillers 

  Porosity and Compressive Strength 5.2.6

Usually, higher compressive strength means lower porosity, but this is not always a 

constant rule (Bu & Tian, 2016; Erniati, Tjaronge, Zulharnah, & Irfan, 2015). For 

example, in porous composite materials which were reinforced by lightweight fibres 

(natural, like hemp fibres, or industrial, like fibre glass), higher porosity may not 

necessarily mean lower strength due to fibres effect which increases the compressive 
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strength in spite of them having a high porosity as it was appeared from the results of 

the porosity and strength of this project. 

The effect of fibres is to increase the strength of the material and hold the porous 

materials by the friction between the fibres and lime matrix under loads such as the 

lime mixed with hemp fibres or fibre glass in this project. 

Table 5.3 shows the results of porosity for Control, 0.5 wt. % EG, 2 wt. % EG, 2wt. 

% nclay, 2 wt. % nSiO2and 4 wt. % nZnO and their compressive strength.  

Table ‎5.3 Porosity and compressive strength for Render materials  

No % Filler % Porosity Compressive 

strength 

MPa 

1 Control 36.4 4.2 

2 0.5 wt. % EG 40.9 2.5 
3 2 wt. % EG 28.4 3.4 
4 2 wt. % nclay 31.5 4.5 

5 2 wt. % nSiO2 34.3 6.3 
6 4 wt. % nZnO 18.1 0.7 

 

Referring to Table 5.3, the highest compression strength (6.3 MPa) was obtained 

from material 5 2wt. % nSiO2, conversely, when 4 wt. % nZnO was added, the 

compressive strength was only 0.7 MPa. The porosity for these specimens was 34.3 

% and 18.1 % respectively. This result is unusual, the compressive strength 

decreases compared to pure lime (from 4.2 to 0.7 MPa) with the decrease of porosity 

(from 36.4 to 18.1 %). The effect of nanozinc oxide as small particles in lining and 

decreasing the pore diameters and as a result was led to decreasing porosity. Table 

5.4 shows the porosity versus compressive strength of the Core (C) materials which 

include fibres (HF and FG). 

Table ‎5.4 Porosity and compressive strength for Core (C) materials  

No % Filler % Porosity Compressive 

strength 

MPa 

1 10 wt. % HF 30 wt. % PVAc 16.6 10.3 
2 10 wt. % FG 40 7.2 
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Referring to Table 5.4, material 1 with a compressive strength of 10.3 MPa yielded a 

porosity of 16.6 %, whereas material 2 had a lower compressive strength of 7.2 MPa 

but higher porosity of 40 %. These two materials followed standard convention 

where a lower porosity led to a higher compressive strength despite the use of 

fibrous additives. 

In Summary, by using Air-cured drying method the best core was 10 wt. % HF/L 

with 12 wt. % PVAc/L and 4 wt. % nZnO gave 17.8 and 7.3 MPa compressive and 

flexural strength respectively which can be used in Core material. In contrast, by 

using Oven-cured drying method and the same mixture of 10 wt. % HF/L with 12 

wt. % PVAc and nZnO was considered the second best Core material in the 

proposed wall of this project because it has a high compressive and flexural strength 

(10.3 MPa and 4.4 MPa respectively) in comparison to pure lime (3.4 and 2.1 MPa 

respectively), and has low porosity (16.6 %) much lower than that of pure lime (36.3 

%), and it is low porosity in comparison to concrete walls.  

 SEM Images 5.3

The samples for SEM were cut by a sharp knife from tested specimens for strength and 

prepared to be tested by SEM. Due to the samples were from lime and they were considered 

as porous material, the images of porous material usually are not obvious in spite of they 

were coated by carbon or by gold layer.  

Nanosilica (SEM image) in Figure ‎5.15 (50 µm and magnification 4000, the image 

deforms when it magnificates more because the lime is porous material) shows that 

most of the nanosilica particles were assembled in clusters or microscale groups 

which propably the dispersion was low and their effect as nanomaterial was low too. 

The maximum pores as it was measured by the device of SEM and were about 7-8 

µm and the most of pores were very small size as it was obtained by MIP pore size 

distribution which the critical diameter of pores of nanosilica was around 1 µm 

Figure  5.7 Figure  5.14. That means the porosity must be lower than its value of neat 

lime which was decreased from 36.4 to 34.3 % or the difference was about 2.1 % 

lower due the effect of nanosilica on decreasing the pore diameters. The white 

agglomerates are nSiO2 (lime matrix is dark) and nanosilica agglomerates are larger 

or around the size of the measured pores in the image (7-8 µm) and it can be said 

that they are in micro not in nanosize.   
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Figure  5.15 SEM image of 2 wt. % nSiO2/L  

 

Referring to Figure ‎5.16 nanoclay/L, the surface of the image appears as it is covered 

by nanoclay agglomerates and covered all the particles of lime which means the 

porosity was decreased and this was confirmed by MIP test. The porosity of the lime 

nanoclay composite by MIP test was 31.54 % which was decreased about 4.8 % to 

the neat lime. But the dispersion wasn't good as in the image a little of nanoclay 

agglomerates seems in singular case, the majority were in micro-groups not as 

nanoscale. The pores can be seen but they were very small compared to nanosilca  

image, the image of nclay/L is 2 µm scale and magnificated to 100000.  
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Figure  5.16 SEM image of 2 wt. % nclay/ L  

Fibre glass as it appears in Figure  5.17 there are cavities between the lime paste and 

the fibre which permit to the water to move between the fibres and the paste. This 

case was led to more pores where the fibres are found in the paste which increased 

the porosity of FG/ L more than the pure lime as it was obtained by MIP test (40 %). 

 

Figure ‎5.17 SEM image of FG/ L 
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Figure ‎5.18 represent SEM image of nZnO/L. Referring to Figure ‎5.18 of nZnO/ L, 

it can be seen a small agglomerates are dispersed in the paste cavities but it is not 

well dispersed. Possibly, the hexagonal structure of the shape of nZnO which is 

almost spherical shape disperses regularly in the pores and decreases the pore 

diameters; the porosity as a result was significantly decreases, its porosity was 18 %. 

It was reported that ZnO2 nanoparticles 2.0 weight percent could improve the 

strength of concrete and water permeability by curing the specimens in saturated 

limewater in tap water. Curing the specimens adding ZnO2 nanoparticles in saturated 

limewater led to form gel around nanoparticles improving permeability and giving 

high strength. Furthermore, ZnO2 nanoparticles are act as nanofillers recovering the 

pore structure of the specimens and decreasing harmful pores (Nazari & Riahi, 

2011). Probably, the white structure is the gel which formed around nanozinc oxide 

agglomerates. 

. 

Figure  5.18 SEM image of nZnO/ L 

 

  Water Absorption Test 5.4

A water absorption test was conducted on a number of the specimens. These 

specimens were 2 wt. % Nanoclay, 2 wt. % nSiO2, 2 wt. % EG, 10 wt. % FG and 
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pure lime. Table 9.8(Chapter 9, Appendix), shows the increasing weight (due to the 

continuing of water absorption ) of the nanofillers at the times which is explained in 

column 2. The water absorption methodology is described in Chapter 3. Referring to  

Table 5.5, the specimen number is given in column 1. Column 2, identify the hour at 

which the reading were taken and column 3 is the time in minutes. Columns 4-8 are 

the wet weights which absorbed water with time for (control, 2% nclay, 10% FG, 2% 

nSiO2 and 2% EG). Column 9 contains the root square of time in second.  

Table5.5 shows the calculation of the water absorbed according to the equations 5.3-

5.6 

 Ut= (wet - dry) weight      Equation  5.1 

Uo= Wmax-Wdry       Equation  5.2 

IC= Uo/ Wd        Equation  5.3 

ABS= IC X 100       Equation  5.4 

OP%= Vop/Vsp*100       Equation  5.5 

Such that: Vsp= 4x4x16= 64 cm3, Vop= volume of open pores= Wmax- Wdry. 

Mi= Ut/ 64 cm3        Equation  5.6  

Table ‎5.5 Comparison between water absorption and porosity shows that as 

percentages, all porosity results of MIP test for Group P1 were higher than the 

absorption test. The porosity by absorption and MIP tests for Control, nclay, nSiO2 

don’t have a big difference and they were close to each others. 

In contrast, the porosity by these two methods in the FG and EG samples yielded a 

higher difference. It may be the mercury, which was exerted by the MIP between the 

cavities of fibre glass and lime lead to an apparently higher porosity as a result.  

For EG may the carbon origin was not encourage the absorption through absorption 

test. Probably, the Mercury under MIP method could enter between the EG platelets. 

So, for these reasons the porosity by MIP of EG was higher. MIP test may be more 

accurate because a standard device, standard steps were used. The water absorption 
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mainly depends on the practical case and on the human which is lower accuracy than 

standard devices. 

In both the MIP and water absorption methods, the lowest porosity was for EG/ L at 

2 wt. % was 18.9 % for water absorb and 28.4% for MIP. The other results were: 10 

wt. % FG gave a water absorption porosity of 25.3%, 40 %  for MIP, 2 wt. % nclay 

25.9% water absorption, 31.5 MIP, 2 wt. % nSiO2 28.7% water absorption, 34.3 % 

MIP and control, 33.68% water absorption, 36.4 MIP. 4% wt. nZnO to lime gave the 

lowest porosity (18 % by using MIP) but it wasn't measured by using water 

absorption test. The rate of absorption is important because the capillary absorption 

represents the main and normal way of water and water vapour transport in a matrix 

(lime). The capillary water absorption defines the rate of change of matrix structure 

(J. Zhang et al., 2019). A number of water absorption characteristics are calculated in 

Table 9.8 (Chapter 9, Appendix). The data of this test relatively were relatively 

accurate, the test was conducted twice (repeatable). 

The capillary porosity calculated and compared to MIP porosity in the table below is 

a comparison between capillary and MIP porosity results which they are higher in 

MIP than capillary porosity. The Table 5.5 below is a comparison between capillary 

and MIP porosity results. 

Table ‎5.5 Comparison between water absorption and porosity 

No % Filler % Capillary porosity from 

water absorption test 

% Porosity by MIP group P1 

1 control 33.9 36.4 

2 2 wt. % nclay 25.9 31.5 

3 10 wt. %FG 25.3 40.0 

4 2 wt. % nSiO2 28.7 34.3 

5 2 wt. % EG 18.9 28.4 

6 4 wt. %nZnO  18.1 
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Figure ‎5.19 Water absorbed vs root square of time for lime with different fillers  

Capillary test was conducted for group P1 only, and didn’t conduct for group P2 

which contains hemp fibres and shives because the absorption of cellulosic material 

is very high as mentioned for porosity (materials which contain hemp) in Sec. 5.2.3. 

More studies are needed about P2 (10 wt. % HF 12 wt. % PVAc and 10 wt. % HF 12 

wt. % PVAc with 4 wt. % nZnO) materials to check the effect (positive or negative) 

of PVAc and nZnO on water absorption of cellulose in hemp fibres. 

Figure  5.19 shows also these results graphically that the lowest water absorption for 

capillary unit surface area g/cm2 as a guide for porosity was ascending 2 wt.% EG, 

10 wt. % FG, 2 wt.% nclay, 2 wt. % nSiO2 and control and the values were (18.8, 

28.7, 25.3, 25.9 and 33.6 % respectively). The capillary porosity of these fillers  

exhibited resemble result such as the EG (2 wt.%) was the lowest in this group as it 

was the lowest in MIP test. but is not the same sequence (Table 5.5) such that FG/L 

is higher  than pure lime in MIP porosity (40 %) but it came the second lowest 

capillary porosity (25.3). 

The lowest specimen results of porosity were obtained by MIP test in P2 which didn't 

replicate by water absorption test and as they were mentioned, 10 wt. % HF/L 30 wt. 

% PVAc of water, 16.6 %, 4 wt. % nZnO, 18.1 % and 10 wt. % HF + 30 wt. % 

PVAc of water  mixed with + 4 wt. %  nZnO, 20.7 %. These results are near each 
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other and they can properly be used in the proper part of the proposed wall in this 

project. 4 wt. % Nanozinc oxide ( 18 % porosity can be used as a Render (R), 10 wt. 

% HF, 30 wt. % PVAc of water, 4 wt. % nZnO, 20.66 % can be used as Core (C) 

which is the highest compressive strength (10.3 MPa), high flexural strength (4.4 

MPa) and low porosity by using oven dried method but the isolator panels can be 

used from 20 wt. % HS blended with 30 wt. % PVAc of the water (0.9 MPa) low 

compressive strength and has a high heat isolation (lowest thermal conductivity, 0.06 

W/mK). 

  Discussion 5.5

Referring to Table 5.5, is a comparison between capillary and MIP porosity results 

which they were higher in MIP porosity than capillary porosity. The porosity 

obtained from water absorption test results were lower than porosity obtained by 

MIP. Possibly, by the impact of the intrusion pressure of mercury which increases 

the pore size and as a result increases the porosity in comparison to water absorption 

method. This case was agreed with the literature, which was reported, that the 

obtained porosity results by water absorption were lower by 2 % than by MIP 

(Arandigoyen & Alvarez, 2006). In this study the difference was more than 2 wt. % 

due to the pressure of MIP method possibly, increases the pore volume of lime and 

high porous materials higher than concrete for their variation in bond particles 

connection between concrete and lime. 

The lowest porosity which was obtained by water absorption test (capillary porosity) 

2 wt. % of EG (18.8 %) was different from MIP porosity but still the lowest (28.4 %) 

by using MIP 

method). The highest result by using water absorption test was control (33.6 %) and 

it was different but still the highest in MIP test too (36.4 %). 

The lowest specimen results of MIP porosity were that 10 wt. % HF, wt. 30 % 

PVAc, 16.6 %, 4 wt. % nZnO/L, 18.1 % and 10 wt. % HF/L, 12 wt. % PVAc/l and 4 

wt. % nZnO, 20.7 %. These results are near each other's and they can be 

recommended for using in the proper layer (Lowest porosity will be in render layer, 

highest strength (compressive and flexural) in core layer even if it is higher porosity 

than render materials ) of the proposed wall in this project. 4 wt. % (nZnO)/L of 18 
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% porosity can be used as a Render (R), 10 wt. % HF/L, 30 wt. % PVAc of water 4 

wt. % nZnO, 20.66 % can be used as core which is high compressive strength (10.3 

MPa), high flexural strength(4.4 MPa) and low porosity.  

Referring to Table 5.3 and Table 5.4, the compressive strength was increased with 

the decreasing of the porosity except nSiO2. Possibly, the effect of nanosilica is high 

on the compressive strength of lime nanocomposite which leads to increase the 

compressive strength regardless the porosity is high or low. For EG, the porosity was 

decreased by adding EG without increase in compressive strength because the 

particles were behaved as microscale groups not as nano-separated particle to 

strengthen the solid paste of lime and the particles were participated in the beaker 

directly after stirring was stopped and it can be seen by free eye. 

In contrast, the fibres composite in Table 5.4 was different, the compressive strength 

significantly was increased, regardless the decreasing or increasing much or less the 

percentage of porosity. For example, the compressive strength of FG/L was high (7.3 

MPa) in spite of its highest porosity (40 %) which was more than the neat lime but 

for 10 wt. % HF and 30 wt. % PVAc, the compressive strength (10.3 MPa) was 

higher than FG/L (7.3 MPa) and its porosity was the lowest (16.6 %) and that means 

the strength depends on the fibres effect out of the limit of porosity effect. 

It can be said, nanozinc oxide was the first time used with lime, PVAc was the first 

time used with lime too and the results of porosity were the lowest results (18 and 16 

% by MIP). These results were about half of the porosity value of pure lime (36 %). 

This is beside of the benefits of nanozinc oxide which was mentioned in literature 

review Chapter 2, it was antibacterial material and healthy for human.  

The goal of decreasing the porosity of lime nanocomposite to be a little higher than 

cement mortar limit of porosity (10-15 %) was achieved it was 18.1 % for render (R) 

and (16.6-20.7 %) for Core (C) in comparison to the porosity of pure lime (36.4 %). 
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 Shrinkage and Water Vapour Permeability Chapter 6 -

  Shrinkage  6.1

Reducing shrinkage is very important for strength and durability of construction 

materials. Durability is affected by shrinkage due to the cracks which allow moisture 

an easy path into the material. This chapter investigates the shrinkage properties of a 

number of nanomaterials as fillers added to lime. 

  Introduction 6.1.1

Shrinkage, physically and chemically is a reduction of volume due to loss of water, 

free shrinkage is a change in size but not deterioration in the shape. Shrinkage is 

calculated as the change in length relative to the original length. The strain is 

normally given in parts per million 1.0 * 10-6, but is more frequently referred to as 

microstrain (µs). About 20-30 % of shrinkage happens in the first 7 days and about 

80 percent occurs by water evaporation effect. The volume shrinkage is about 3.2 % 

for neat cement and 9.0 % for neat lime paste which leads to cracks (JOHNSON, 

1926). The percentage change limit in length (shrinkage) of prism of cement was less 

than 0.04 at 28 days (Mokarem, Weyers, & Lane, 2005). Furthermore, another 

standard reported that the percentage change limit in the length of a prism of cement 

should be less than 0.05 % or 500 microns at 28 days of drying (ASTM, 2017; 

MasterKureER50, 2014). The studies on lime shrinkage are very limited. It was 

reported that the drying shrinkage was studied for two lime mortars, the first mortar 

was lime and sand 1 to 3 by weight and the second was lime and fine aggregate 

called Albero, 1 to 3 ratio also. The first mortar with fine aggregates, granular 

diameter size more than 0.08 mm, gave 1200 µs or 0.12 % shrinkage. The second 

mortar exhibited 12500 µs or 1.25 % shrinkage with granular diameter size less than 

0.08 mm. Sanchez et. al (1997) commented in the conclusion on the first mortar 

shrinkage (1200 µs) that it was almost negligible shrinkage (A. Sánchez, Barrios, 

Barrios Padura, & De Arellano Agudo, 1997). 

The goal in this research is to decrease the shrinkage in the lime binder to ensure a 

durable lime based construction material is produced. The aim is to get the shrinkage 
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of the lime based materials as low as possible to ensure the materials are strong and 

durable. 

  Shrinkage Specimen Curing and Results 6.1.2

A group of specimens were tested in the present project with dimensions 40 x 40 x 

160 mm. They were demoulded after five days and stored at 60 % humidity at 20ºC. 

Two strain demec points, 100 mm apart, were centrally placed on the centre line of 

the specimen and fixed by epoxy. This was repeated on the opposite side of the 

specimen. 

The shrinkage was measured by a demec strain gauge with a gauge cons tant of 1.608 

x10-5. The specimens were Control of pure lime, 2 wt. % nclay, 2 wt. % nSiO2, 2 wt. 

% EG and 10 wt. % FG and 4 wt. % nZnO. Measuring of shrinkage continued up to 

28 days after which the specimens were used for flexural and compressive strength 

(Chapter 4). 

The shrinkage strain values are shown in Table 6.1. The days of the test are given in 

column 1, columns 2-6 are the calculated shrinkage values of the Control and 

nanocomposite samples. The results from Table 6.1 are presented graphically in 

Figure 6.1. 
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Table ‎6.1 Shrinkage of different specimens 

  

Shrinkage x10-6  

1 2 3 4 5 6 7 

Days Control 
2 % 

EG 

2 % 

nclay 

2 % 

nSiO2 

10 % 

FG 

4 % 

nZnO 

1 00.0 00.0 00.0 00.0 00.0 00.0 
2 112.5 48.2 128.6 192.9 32.2 32.2 

3 321.6 257.3 514.6 321.6 160.8 117.9 
4 562.8 498.5 1000.8 514.6 289.4 278.7 

5 836.2 739.7 1300.9 804.0 418.1 375.2 
6 1125.6 996.9 1700.4 1350.7 530.6 471.7 
7 1366.8 1238.2 2100.0 1527.6 659.3 525.3 

8 1543.6 1447.2 2350.5 1929.6 755.8 573.5 
9 1768.8 1559.7 2540.6 2219.0 836.2 605.7 

10 1929.6 1688.4 2765.7 2492.4 900.5 675.4 
11 2074.3 1784.9 2894.4 2669.3 980.9 728.9 
12 2154.7 1833.1 3006.9 2814.0 1013.0 739.7 

13 2219.0 1881.4 3087.4 2878.3 1061.3 739.7 
14 2267.3 1929.6 3151.7 2942.6 1093.4 739.7 

15 2299.4 1929.6 3232.1 2974.8 1109.5 734.3 
16 2331.6 1945.7 3264.2 2990.9 1125.6 728.9 
17 2379.8 1977.8 3296.4 2998.9 1141.7 723.6 

18 2428.1 1993.9 3328.6 3006.9 1157.8 723.6 
19 2428.1 2042.2 3376.8 3039.1 1173.8 745.0 

20 2428.1 2042.2 3392.9 3055.2 1189.9 745.0 
21 2428.1 2042.2 3392.9 3071.3 12221 745.0 
22 2428.1 2042.2 3392.9 3071.3 1222.1 771.8 

23 2428.1 2042.2 3392.9 3071.3 1222.1 771.8 
24 2428.1 2042.2 3392.9 3071.3 1222.1 771.8 

25 2428.1 2042.2 3392.9 3071.3 1222.1 771.8 
26 2428.1 2042.2 3392.9 3071.3 1222.1 761.1 
27 2428.1 2042.2 3392.9 3071.3 1222.1 750.4 

28 2428.1 2042.2 3392.9 3071.3 1222.1 750.4 
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Table 6.1 and Figure 6.1 show that the lowest shrinkage was obtained by adding 4 

wt. % nZnO/L which was about 750.4 x 10-6 at 28 days. The second lowest result 

was achieved by mixing FG/L at 10 wt. % of lime and the shrinkage was about 1222 

x 10-6 at 28 days. The next lowest shrinkage was achieved by adding 2 wt. % EG 

which was 2042 x 10-6 at 28 days. Control specimen had the fourth lowest shrinkage 

of 2428 x 10-6 and the final two were 2 wt. % nSiO2 and 2 wt. % nclay with 

shrinkages of 3071.3 and 3392 x 10-6 respectively. The lowest shrinkage was 

achieved by adding 4 wt. % nZnO; it was 750.8 x 10-6 at 28 days which is a little 

higher than the shrinkage of a cement mortar referred to earlier in this chapter which 

was 500 µs (Mokarem et al., 2005). However, comparing to the shrinkage study of 

lime/sand with the particle size of the sand less than 0.08 mm (the lowest shrinkage 

in the mentioned study=1200 µs), the addition of 4 wt. % nZnO resulted in a lower 

shrinkage (̴750 µs) (A. Sánchez et al., 1997). Shrinkage cracks can be seen by the 

naked eye, this was particularly the case for the pure lime and the nanosilica lime 

samples. The fibre reinforced samples were completely void of cracks but for the 

other lime nanocomposite samples, the cracks were very small (micro-cracks). It is 

theoretically assessed elsewhere that contraction due to long time drying shrinkage could be 

 

 

 

Figure ‎6.1 Shrinkage of lime nanocomposite and fibre glass lime composite  
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of the order of 10,000 microns, but values up to 4,000 microns have been actually observed 

and led to obvious cracks (Ahmad, Ibrahim, & Tahir, 2010; Passuello, Moriconi, & Shah, 

2009; Shrinkage of concrete, 2018). In this project, the specimens which were mixed 

from 12 wt. % PVAc, 10 wt. % HF/L and 4 wt. % nZnO didn’t show any crack. It 

can be concluded that the shrinkage was very low and the differential contraction 

was stopped by fibres. 

  Water Vapour Permeability (WVP) 6.2

  Introduction 6.2.1

This test was conducted according to standard procedures (BSEN1015-19, 1999). 

Lime is a breathable material which is a healthy property; it permits humidity and 

gas to move through the wall of the building better than concrete which can 

eliminate bacteria and fungal growth, moisture trapping, surfaces breaking down, 

colour change, damp patches appearing and rot and beetle infestation occurring. This 

can be harmful to the wellbeing of the building and the residents. Sometimes, there is 

a misunderstanding about breathability. It is confused with air permeability but they 

are different things. The water vapour transmission rate or the vapour speed at which 

it passes through a particular construction material is the meaning of the breathability 

term. The uncontrolled movement of air through joints and gaps means air 

permeability (air leakage).  

In comparison to industrial insulators (especially from plastic, it seals the wall 

preventing vapour movement), natural insulators are better due to their higher 

breathability and they are like moisture buffers, they absorb and release water as the 

relative humidity through the building becomes high or low (Hunt, 2018).  

Water vapour permeance is considered the quantity of water vapour passed across a 

unit area which will pass through a unit thickness while it is under a unit vapour 

pressure difference, whereas the water vapour permeability is the water vapour 

permeance multiplied by the thickness of the specimen. In a study about lime, river 

sand, crushed brick (which had the same particle size as the sand), cement and sand, 

it was found that water vapour permeability for a 1: 3 cement : sand mix (cement 

mortar) was 0.98 x10-11 kg/m s Pa, lime : sand mix (lime mortar), also with 1 : 3 was 

1.76 x 10-11 kg/m s Pa and for lime : sand : brick dust : crushed brick grains ratios 
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mix 1 : 0.5 : 1 : 2 was 1.99 x10-11 kg/m s Pa (Matias, Faria, & Torres, 2008). Water 

permeability means interconnected opened pores, and these pores already are opened 

for water vapour permeability (breathability). Higher permeability to water and 

water vapour are found in mortars especially with higher percentage of aggregate. 

The behaviour to water and water vapour as well as the drying shrinkage of mortars 

is affected by the differences in microstructure and pore system between mortars. 

Water vapour transmission rates are preferred to be higher to activate drying through 

the mortar. There are two drying stages of porous material surfaces, one is related to 

the temperature, relative humidity and ventilation, and the another is obtained by the 

water transfer properties of the material, which depend on the pore system (pore size 

and interconnection among pores) (Anna Arizzi & Cultrone, 2013; Nokken, 2003). 

  Water Vapour Permeability Specimen Curing and Results  6.2.2

The procedures adopted for water vapour permeability testing followed British 

Standard BS EN 1015-19, 1999. According to the test standard, the area of the open 

mouth of the cup is 0.025 m2 which translates to a diameter of about 160 mm. The 

cup is designed with a lip to support the disc specimen meaning the overall diameter 

of the specimen is 185 mm. The thickness is about 20 mm. At 5 days after casting, 

the specimens were demoulded, put 2 days in an oven at 50ºC and were then stored 

for  up to 28 days at 60 % RH and 20 ºC. Figure  6.2 shows the mould and the control 

specimen inside. It was cured as Part C1- Oven cured which was the preconditioning 

of samples before test. 

After curing, one specimen at a time was placed in the cup containing saturated 

solution of potassium nitrate (KNO3). A gap was maintained between the top of the 

KNO3 and the bottom of the specimen. The specimen was then sealed by adhesive 

around the circumference to prevent water vapour escaping. The weight of the 

specimens and the cups which contained KNO3 were taken daily for a week to 

calculate the weight loss of the whole specimen and the cup with KNO3. 

The humidity inside the cup is 93.2% and the outer humidity in the storage chamber 

at the start of the test is 50 % at 20°C. 
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Figure ‎6.2 Water vapour permeability mould and specimen 

 

  Theory 6.2.3

A= Area of the open mouth of the specimen = 0.025 m2, 

 Sample thickness = 0.02 m, Ra (given from standard tables) = 86400000 Pa m2/ kg 

per 18 mm air gap,  

Po= 2.3393 KPa, P= (RH/ 100) Po=50/100 (2339.3)= 1170 Pa; if RH = 50 %,  

Psalt= (93.2/ 100) Po= 2180 Pa; if RH= 93.2 % and then 

 ∆P or Dp = Pambient - Psalt= -1010 Pa. 

WVP (water vapour permeability) =∆ (water vapour permeance). t (thickness) 

WVP= ∆ t        Equation  6.1 

∆ = 1/ [A.Dp/ (∆g/∆t)-Ra]      Equation  6.2 

∆g/∆t (Water vapour flux Kg/s) = the tangent of the last three weight loss vs the last 

three measured weights. The tangent is only calculated for the last three measured 
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weights at stable case of low weight loss as in the standard reference BS EN 1015-

19, 1999. 

Table 6.2 shows the original weight of the specimens (Control, 1.5 wt. % EG, 2 wt. 

% nclay and 2 wt. % nSiO2) and their daily weights up to 7 days.  

Referring to Table 6.2, Col 1 is the sample id number, Col 2 shows the day, time and 

details of the specimens (Control 1, Control 2, 1.5 % EG, 2 % nClay and 2 % 

nSiO2), Columns 3-9 are the weights in grams at the date and time for each specimen 

throughout the eight day test period. 

Table ‎6.2 Weights of fillers/ lime nanocomposite specimens with time for water 

absorption 

1 2 3 4 5 6 7 8 9 10 

No 

Day 

Wt.1  

(g) 

Wt.2  

(g) 

Wt.3  

(g) 

Wt.3  

(g) 

Wt.4  

(g) 

Wt.5  

(g) 

Wt.6  

(g) 

Wt.7  

(g) 

1 2 3 4 5 6 7 8 

Time 11:30 11:30 11:30 18:37 11:30 11:45 11:50 11:30 
% nFiller  

1 Control 1 1472.2 1467.2 1464.4 1461.7 1460.5 1458.5 1456.9 1455.2 
2 Control 2 1492.6 1487.9 1485.6 1482.9 1481.8 1479.9 1479.4 1476.8 
3 1.5% EG 1351.6 1345.9 1342.4 1338.9 1337.3 1334.6 1332.5 1330.6 

4 2%nClay 1456 1450.4 1447.3 1444.3 1442.6 1440 1437.9 1335.7 
5 2%nSiO2 1398.6 1391.7 1388 1384.3 1382.6 1379.9 1377.7 1375.4 

  Example WVP Calculations 6.2.4

Calculation examples for the Control specimens are given in Table 6.3 and the 

details of these calculations are: 

∆wt/∆t (g/ hr) = mean weigh loss difference/mean time difference (for the last three 

stable measurements) 

= [(17-15.3) + (15.3-13.7)]/2/[(168-144.33)+(144.33-120.25)]/2 

= [(1.7) + (1.6)]/2/[(23.67) +(24.08)]/2=[(3.3/2)/ (47.75/2)] 

= 16.5/ 23.875=0.0691 g/ hrs or =.0691/ 1000 x 3600  

= 1.1944 x 10-8 Kg/ s  

Dp or ∆P= -1010 Pa as calculated above 
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Permeance (∆) = 1/ [A (Dp)/(∆wt. / ∆t) - Ra] 

Permeance (∆) = 1/[025 (-1010)/ (-1.65./23.875) - 86400000] = -7.13325 x 10 -10  

(kg·s-1·Pa-1) 

WVP = ∆ x t or (water vapour permeance x thickness) = -7.13325E-10 x 0.002  

=-1.42665 x 10-11 (kg·m-1·s-1·Pa-1) 
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Table ‎6.3 Weights and time of weighing two control specimens and the calculations  

  

Wt.  

(g) 

Wt. loss 

(g) 

Wt. 

(g) 

Wt. loss 

(g) 

Av. 

(g) 

WVP 

calculations  

Day  

and 

Time 

Time 

 in  

hours 

Square 

root of 

time 

(t1/2) 

1 
 

2 
  

∆wt/∆t=0.0691 g/hr 1 

  

1472.2 

 

1492.6 

  =1.91944E-08 Kg/s 2 24.00 4.9 1467.2 -5 1487.9 -4.7 -5 

0.025 A 3 48.00 6.9 1464.4 -7.8 1485.6 -7 -7.8 

86400000 Ra 4 79.12 8.9 1461.7 -10.5 1482.9 -9.7 -10.5 

-1010 Dp 5 96.00 9.8 1460.5 -11.7 1481.8 -10.8 -11.7 

-7.13325E-10 Permeance 6 120.25 11.0 1458.5 -13.7 1479.9 -12.7 -13.7 

-1.42665E-11 WVP 7 144.33 12.0 1456.9 -15.3 1479.4 -13.2 -15.3 

  

8 168.00 13.0 1455.2 -17 1476.8 -15.8 -17 

-7.60176E-10 Perm w/o Ra 

       -1.42E-11 WVP w/o 
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  WVP of Selected nanomaterials  6.2.5

Figure  6.3 shows the average weight loss in grams of the Control specimen vs time 

in hours. Referring to Figure  6.3, it shows a very strong correlation factor between 

evaporation (weight loss) and time. The average weight loss can be determined for 

the Control sample using the equation: 

y= -0.0691 x- 5.3692        Equation  6.3 

 

Figure ‎6.3 Average weight loss vs time for WVP for control specimens.  

The value (-0.0691) in the Equation 6.3 is the slope of ∆ wt./∆t and it is used to 

calculate the WVP as described in Section 6.2.4. The specimens WVP for 2 wt. % 

nclay/L, 2 wt. % nSiO2/L and 1.5 wt. % EG/L were calculated in the same way and 

the results are given in Table 6.4. The results were ended by 10-11, they were 

different from the results of shrinkage which usually ends by 10-6. 

Table ‎6.4 Results of calculation of WVP for different lime nanocomposite and 

control specimen 

No % Fillers Water Vapour Permeability (kg·m-1·s-1·Pa-1) 

1  Control 1.43E-11 
2  1.5% EG 1.71E-11 

3  2% nClay 1.96E-11 
4  2% nSiO2 1.90E-11 

 

Figure  6.4 graphically shows that the breathability was enhanced for all fillers of 

nanomaterial in spite of the pure lime having good water vapour permeability. The 
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best performing material was 2 % nclay with a WVP of 1.96 E-11 kg·m-1·s-1·Pa-1 and 

this result is very close to the highest result of WVP in the study of Matias et al, 

2008 which was 1.99 E-11 kg·m-1·s-1·Pa-1 for lime mixed with sand, crushed brick 

and brick dust. Overall, the addition of nanomaterials has generally enhanced the 

breathability of the lime nanocomposites. Nanozinc oxide was not tested due to an 

issue with the supply of KNO3 

 

Figure ‎6.4 Comparison of water vapour permeability for different lime  

nanocomposites and pure lime 

 Discussion 6.3

The lowest result for shrinkage was, 4 wt. % nZnO 10wt./lime composite which was 

750.4 x10-6 The second best was 1222 x10-6.for 10 wt. % FG and the third best was 

2042 x 10-6 for 2 wt. % EG. The nanoclay filler was the highest value followed by 

nanosilica value, they were more than pure lime which was 2428 x10-6. The platelets 

of EG have a high effect on shrinkage due to its structure. The chopped fibres which 

were dispersed in lime matrix in different directions were beneficial in decreasing 

the shrinkage but the shrinkage of hemp fibre wasn't tested in this project except FG 

was tested. The positive effect on decreasing shrinkage is agreed with the literature, 

for example, polyvinyl alcohol mixed with recycled tyre polymer fibres added to 

concrete, using three fibre diameters of 10, 20 and 30 µm and mean length of 12 mm 

indicating that there was a good chance of using recyc led tyre polymer fibres in 

concrete products as the results were similar to these obtained using polypropylene 

fibres in preventing micro-cracking developed by shrinkage. The polypropylene 
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fibres at 0.5 % were added to the concrete mix, the shrinkage reduction was 31%, 40 

% and 46 % at 20ºC, 35ºC and 50ºC in comparison to plain concrete (Bouziadi, 

Boulekbache, & Hamrat, 2016). Mix of hemp lime NHL3.5 and water at ratios 3: 5: 

2.5 showed low shrinkage and the shrinkage tension was reduced to zero, low 

thermal conductivity and high acoustic insulating behaviour (A. Arizzi, Brummer, 

Martin-Sanchez, Cultrone, & Viles, 2015). The fibres are adopted to reduce 

shrinkage due to its availability as a sustainable material especially natural fibres, as 

hemp fibres are environmentally friendly, sustainable, durable, proved to improve 

mechanical strength and now as a way to decrease shrinkage. The shrinkage for FG 

was about 0.12 % as it is known that fibre glass doesn't bond well with lime, but the 

hemp fibres have a higher bond with lime than fibre glass and will help reduce 

shrinkage more so than fibre glass. Simply, the surfaces of hemp fibres are rougher 

than the surfaces of fibre glass. In the literature, it was reported that hemp shives 

mixed with lime led to low shrinkage (A. Arizzi et al., 2015). Possibly, the hemp 

fibres can reduce shrinkage more than hemp shives due the network of fibres inside 

the lime matrix. There are multiple benefits of using fibres for the "core" material 

(see Figure 5.1, Chapter 5). Not only does it help strengthen the lime and PVAc 

mixture, it is also helps to reduce shrinkage of the material. However, for the finer 

materials such as the lime render ("Render", Figure 5.1, Chapter 5), the shrinkage 

can be reduced by adding fine aggregate such as sand. The addition of fine aggregate 

was not considered in the project but could be investigated in future work. In the 

literature it was reported that an increase in the quantity of sand leads to a decrease 

in compressive strength and workability but using fibres helps exceed the strength 

decrease or a combination of the fibres and the sand (Zeng, Li, Fen-chong, & 

Dangla, 2012). The platelets of EG have a high effect on shrinkage due to its 

structure. The expanded graphite has only one dimension in nanosize and the others 

are in microns, hence the reason why their components are called platelets. The se 

three dimensions probably help in confirming the lime matrix and decreasing the 

shrinkage. 

As for water vapour permeability of pure lime, the literature reports on the 

breathability being better for pure lime rather than cement mixed with lime 

(Hatherngton, 2014; Rhydwen, 2015). Fortunately, using nanomaterials as additives 

enhanced the WVP of lime nanocomposites in comparison to pure lime by adding 2 
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wt. % nclay, 1.5 wt. % EG and 2 wt. % nSiO2. Nanomaterials in general organise the 

pore size, decrease porosity but leave pore size open and less than 10 µm as it was 

seen in Chapter 5. Improving porosity and pores led to an increased WVP. Porosity 

was tuned by annealing the membranes at different temperatures by using 

nanomaterials (Marchetti, Mechelhoff, & Livingston, 2015). Cement mixed with 0.5 

wt. % multiwall carbon nanotubes improved its porosity by 64 % and its pores with 

size more than 50 nm by 82 % in comparison to cement with microscale carbon 

fibres which had high porosity (Parveen, Rana, & Fangueiro, 2013). WVP increases 

with the decrease of porosity and pores which is a benefit of using nanomaterials. 

The optimum result of porosity was by adding 4 wt. % nZnO in this project Chapter 

5, and is likely be the optimum in WVP but this property was not tested for nZnO 

which will be a future work. The mixture of lime, HF, PVAc and nZnO which 

represents the Core layer of the proposed wall in this project was tested for flexural 

and compressive strength, porosity and shrinkage. Testing for WVP of lime, HF, 

PVAc and nZnO was not done due to issues with the supply of KNO3 as mentioned 

in Section 6.2.5. 

Adding nZnO to lime achieved many benefits, such as decreasing porosity to 18 %, 

shrinkage to 750 µs and thermal conductivity to 0.13 compared to pure lime (36.4 %, 

2428 µs, 0.16 W/mK respectively). This is as a result of its many properties (high 

heat absorption capacity, it is hexagonal structural shape as a small spherical 

particles to lining pores and phonon phenomenon). The small spherical structural 

particles of nZnO in nanosize help in filling and lining the pores and decreasing the 

diameter size of the pores which leads to a decrease in porosity. High absorption 

capacity of nanozinc oxide helps to reduce thermal conductivity. Phonon improves 

heat absorption because it is the vibration of the lattice of its particle structure with 

heat transfer and this property improved heat isolation and reduced shrinkage by 

decreasing heat transfer which led to a reduction in differential drying which 

prevented cracking and decreased shrinkage (Bhagat & Khanna, 2015; Mohandas et 

al., 2015; Nazari & Riahi, 2011; Y. Zhao et al., 2012). 



 

179 
 

 Factors Affecting Thermal Properties of Lime Chapter 7 -
nanocomposites 

  Introduction 7.1

Factors affecting pore structure of construction materials has become very important 

due to their direct effect on the energy efficiency of buildings. The aim of this work, 

therefore, is to design an energy efficient wall for use in domestic buildings, consisting 

of five layers (2 Renders, 2 Insulators, 1 Core) as outlined in Chapter 1. Different 

percentages of nanomaterials to enhance performance (nSiO2, nClay and nZnO) were 

added. The porosity of a number of specimens was determined (Chapter 5) and related 

to thermal conductivity and density properties in this Chapter. Renders were designed 

from materials consisted of lime nanocomposites (properties determined were thermal 

conductivity () and porosity). Insulators used for thermal isolation () consisted of 

lime/hemp shiv nanocomposites. A lime/hemp fibre nanocomposite, with polyvinyl 

acetate (PVAc) glue for strength, was developed as a load bearing material (Core, its 

important properties are  and strength). A solvent exchange method for drying the 

specimens was applied as soon as practically possible to investigate if rapid drying 

could be considered without adverse effects. This chapter concludes by comparing the 

U value of a wall utilising these findings to those from an existing lime/hemp design.  

  Recent Statistics in Energy Consumption in the Domestic Sector 7.1.1

Recent statistics show that 30 per cent of all energy consumed was for domestic energy 

in the United Kingdom (UK) in 2017 (BEIS, 2018). Space heating accounted for 19 % 

of this energy. It is clear that a major contributor of greenhouse gas emissions is 

domestic energy use in the UK, especially carbon dioxide (CO2), not least due to the age 

of properties, they are very energy inefficient (BRE, 2015). The UK Government’s 

legally binding commitment to reducing greenhouse gas emissions was by at least 80% 

(relative to 1990 levels) by 2050 (CommitteeOnClimateChange, 2008; Henderson, 

Reinert, Dekhtyar, & Migdal, 2015; Scheer & Hoppner, 2010). The traditional 

construction of buildings in the UK is by 203using relevant building materials such as 

concrete blocks, bricks and less so, timber. Although timber is a sustainable product, 

fabrication of concrete blocks and bricks require a lot of energy input, a large producer 

of CO2 during its manufacture especially is concrete. However, other materials of low 

embodied energy are being developed and used, some are new innovations, such as 
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alkali activated such as fly ash (Mangat & Ojedokun, 2018), others are a mixture of old 

and new such as lime and hemp composites (Collet & Prétot, 2014; Walker & Pavía, 

2014)  

With regard to the materials used in the construction of buildings, a very important 

property is thermal conductivity. A low value will help and keep the living environment 

at a comfortable temperature. Nowadays, greater effort is spent in making buildings 

more eco-friendly. For a long time, lime render has been used as a finish to walls, but 

the use of lime has gone through a renaissance due to its low embodied energy in 

production. It is used as a binder for hemp shiv and hemp fibres to create lime/hemp 

composites. Hemp stem straw contains two products for building materials: hemp fibres 

are strong and can be used to make lime/hemp fibre panels and hemp shiv is used as a 

bio aggregate in hemp composites (also known as hemp concrete) (Collet & Prétot, 

2014). The lime/hemp shiv composite, in particular, has advantageous insulative 

characteristics as it has a low thermal conductivity, about 100 mW/mK (Bederina et al., 

2007) and is lightweight, density is 200-400 kg/m3 (Amziane & Arnaud, 2013).  

  Significance of Thermal Conductivity  7.1.2

Although hemp concrete has a low thermal conductivity of about 100 mW/mK as stated 

in Section  7.1.1, this is still much higher than current state-of-the art insulants such as 

vacuum insulation which has a thermal conductivity of only about 4 mW/mK (Alam & 

O'Flaherty, 2017). It is normally used with timber studding to enhance the structural 

performance because it does not possess great strength characteristics. The research will 

investigate ways of improving the thermal conductivity of lime render and lime/hemp 

composites with nanomaterials to create a high performing lime nanorender and hemp 

fibre/shiv nanocomposite. Since strength is an issue for lime/hemp fibre composites (it 

was reported elsewhere that future research could focus on the use of additives to 

eliminate the wooden frame as the load-bearing structure of a wall (Barnat-Hunek, 

Smarzewski, & Fic, 2015), the influence of adding an environmentally friendly PVAc to 

the nanocomposite on compressive strength will also be investigated. The newly 

developed nanocomposite materials will be used to design a high performance, load 

bearing eco-friendly wall. This will consist of a central Core, Figure 7.1, comprising 

lime/hemp fibre/nanomaterial/PVAc to provide the strength element, thereby reducing 

reliance on timber studding, two layers of lime/hemp shiv/nanomaterials for enhanced 

insulative purposes (Insulator on both faces of the Core, Figure 7.1) and a 
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lime/nanomaterial nanocomposite render to provide an aesthetically pleasing 

appearance inside and out (Figure 7.1). 

 

 

 

 

 

Figure ‎7.1 Cross section through wall: (R) Lime nanocomposite render; (I) 

lime/hemp shiv nanocomposite insulator (C); lime/hemp fibres nanocomposite.   

 

An extra-obstacle to using lime and hemp as building materials is that a large thickness 

of wall, roof or any panel  made of this material is required to meet thermal 

transmission requirements (U Values) as required by the Building Regulations (H.M. 

Government, 2010). A large thickness not only has negative impacts on the appearance 

of the building, but it also effects the drying time and that means shuttering has to 

remain in place for a longer period of time and, therefore, extends the construction time. 

Damp and cold weather periods increase the drying time. The research used rapid 

drying of the samples as soon as was practically possible to determine if accelerated 

water removal can be considered as a technique for on-site construction. A number of 

accelerated drying techniques were investigated elsewhere (Alvarez et al., 2013) and 

among these was a solvent exchange method and freeze-drying which performed well. 

Due to the size of the samples in this work, the solvent exchange method was chosen as 

the accelerated drying method. This was implemented five days after casting when the 

samples were considered strong enough for demoulding to take place.  

 Short Review of the Methods to Improve Thermal Conductivity 7.1.3

The following sections investigate the influence of various factors on the thermal and/or 

mechanical properties of lime/hemp composites in addition to the literature in Chapter 

2. A summary is provided at the end giving a description of the optimised selection of 

nanomaterials to improve the performance of the lime/hemp composites. 

   

  
Central core (C) 

Insulator (I) 

Render (R) 
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 Methods to Improve Thermal Conductivity 7.1.3.1

Thermal conductivity of lime/hemp composites is a property which has attracted a lot of 

recent interest in the literature. It is possible to use hemp in precast insulation panels 

(hemp fibres alone) or as a construction material (hemp bast and concrete mix) 

(Benfratello et al., 2013). Their research found good heat isolation characteristics 

(values between 0.0899 and 0.1408 W/mK were obtained). They also found that the size 

of hemp shiv is important, shives with a granulometry higher than 4 mm are too brittle. 

The maximum quantity must be no more than 30% and 40% for shiv size 2 and 4 mm 

respectively. 

 Influence of Density on Thermal Conductivity  7.1.3.2

Thermal conductivity of hemp composites is affected by its density (Collet & Prétot, 

2014). It was reported that variations to the density of an industrially produced spray 

applied hemp shiv concrete (0.5 hemp: binder ratio) had a larger impact on thermal 

conductivity compared to changes in the moisture content. It was found that when the 

density increased by two-thirds, the thermal conductivity increased by about 54%. 

However, the same material  showed an increase of only 15%-20% in thermal 

conductivity when the moisture content increased from a dry condition to 90% relative 

humidity (Collet & Prétot, 2014). 

Lime and hemp for construction usage, as reported in another study (Elfordy, Lucas, 

Tancret, Scudeller, & Goudet, 2008) also used a spray applied technique to deposit the 

material. The mechanical properties increased as a result of better compaction, as did 

density, leading to a higher thermal conductivity. Densities of 417, 475, 496 and 551 

kg/m3 gave thermal conductivities of 0.179, 0.421, 0.542 and 0.485 W/mK respectively. 

A compromise must be found between thermal conductivity and mechanical properties 

for designing load bearing walls. 

A direct relationship between thermal conductivity and density was also found 

elsewhere (Kiran, Nandanwar, Naidu, & Rajulu, 2012). The thermal conductivity of 

bamboo mat board was conducted at constant fixed temperatures of 30°C and 50°C and 

bulk densities of 0.75 to 1.65 g/cm3. From a starting point of 0.121W/mK for bulk 

density of 0.765 g/cm3, thermal conductivity increased to 0.384W/mK for a bulk density 

of 1.61 g/cm3. Density and thermal conductivity showed a linear relationship between 

them. From the results, the thermal conductivity of bamboo mat board increased with 

increasing bulk density.  
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An increase in density was also observed due to aluminium nanoparticles comprising 

different bulk density pellets, the thermal conductivity increased from 0.2 W/mK up to 

1 W/mK as densities increased from 1.1 to 2.3 g/cm3 as a result of more contact 

between particles by consolidation (Stacy, Zhang, Pantoya, & Weeks, 2014).  

In other studies, it was found that the thermal conductivity decreased for hemp-lime to 

give comfortable thermal indoor conditions (23-25°C and humidity ≤ 55 %) and low 

energy requirements (Kinnane et al., 2015; Ponni & Baskar, 2015). Adding 70 % of 

cork granulate to hydraulic lime with cement, the thermal conductivity decreased by 75 

% for conventional cement mortar and 50 % for NHL5 compared to the reference value 

(Brás, Gonçalves, & Faustino, 2014). Adding cork to a cement mortar was also 

beneficial as it led to an elimination of temperature variation (higher thermal delay) and 

permeability decrease for the same starting temperature (Brás et al., 2014). 

  Influence of Nanomaterials on Thermal Conductivity from Previous 7.1.4

Studies 

Some work has been done on studying and investigating the impact of nanomaterials on 

properties of hemp based materials. nZnO and nClay mixed in a wood polymer 

composite can increase the mechanical properties, thermal stability and ultraviolet 

resistance of the composites due to its behaviour as an ideal UV blocker and UV 

inorganic absorber (Ankita Hazarika, Baishya, & Maji, 2015). The temperature 

transportation was largely reduced in a sono-chemically heated system by adding ZnO 

nanofluid. The nanofluid zinc oxide at 4% dosage increased heat absorption capacity by 

about 30-40% (Bhagat & Khanna, 2015). 

Furthermore, it was reported that the 28 day, the cement paste mixed with 1-5% wt. 

nSiO2, thermal conductivity reduced by 38% (range: 0.42 - 0.57 W/mK) after a cement 

paste was heated to 350ºC and 900ºC for six hours and then after heating to 900 °C 

compared to the paste at ambient temperature (Jittabut, 2015). The results after heating 

to 350ºC were very close to those obtained at ambient temperature.  

It was found that an aerogel based plaster (nanotechnology coating) has a higher 

capability of heat isolation. That means the required thickness of plaster can be reduced 

to yield the same thermal performance (Barbero, Dutto, Ferrua, & Pereno, 2014). 

Research reported that replacing ordinary Portland cement by 1 wt.% of nClay 

increased thermal stability, decreased porosity and water absorption as it increased 
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density, flexural strength, fracture toughness and impact strength of the hemp fabric-

reinforced cement nanocomposite (A. Hakamy et al., 2014). However, adding more than 

1 wt. % adversely affected thermal, physical and mechanical properties. 

  Thermal Conductivity Test Scenarios 7.2

A summary of the test scenarios is given in Table 7.1. Referring to Table 7.1and Figure 

7.1, the samples investigated in the first series of tests (Render) consist of lime as the 

base material with different nanomaterials added to determine their influence on thermal 

conductivity, . Nanofillers used were None (i.e. control), nSiO2, nZnO and nClay. The 

'R' series of tests were conducted first and the findings were used to formulate test series 

'I' (Insulator) and 'C' (Core). The second series (Table 7.1) investigated the influence of 

selected nanomaterials on the thermal conductivity of lime/hemp shiv, with and without 

PVAc since hemp shiv is known to have very good insulative properties. Nanofillers 

used in this series were None (control), nZnO and nClay along with PVAc. The third 

series ('C', Table 7.1) was devised to offer strength to the wall hence hemp fibre and 

PVAc was used with lime and one nanomaterial for this purpose. 
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Table ‎7.1 Test Schedule for thermal conductivity 

Part* No Base material W/L  Age at 

test 

(days)** 

Nanofillers  

(% by wt lime) 

     a b c d e 

     Contr

ol 

nSiO2 nClay nZnO nZnO + 

nClay 

R 1 Lime 0.4 14 None 2% 2% 4% 4%+2% 
2 Lime 0.4 150 None 2% 2% 4% - 
3 Lime 0.4 300 None 2% 2% 4% 4%+2% 

 

I 

4 30% Hemp 
shiv/lime 

0.75 14 None - - 4% 4%+2% 

5 20% Hemp 

shiv/lime/12% 
PVAc 

0.75 14 None - - - - 

C 6 10% Hemp 

fibre/lime/12% 
PVAc 

0.75 14 - - - 4% - 

*R = Render; I = Insulator; C = Core, see Figure 7.1, **Specimens demoulded at 5 days, 
immersed in isopropanol for 7 days, oven dried at 60°C for 2 days (14 days total). Stored 

beyond 14 days at 20°C/60% RH 
 

Compressive strength testing for the 'C' specimen, Figure 7.1, was done in accordance 

with the relevant British Standard (BSEN1015, 1999). For compressive strengths, the 

average of eight specimens was taken. As for thermal conductivity specimens, one 

sample was tested for thermal conductivity and porosity as is genera lly the case for 

these test methods. 

  Porosity and Bulk Density 7.2.1

Render samples ('R') were tested using the mercury intrusion porosimetry to investigate 

the porous structure in a quantitative way. The specimens containing hemp shiv ('I') 

were not tested for porosity due to their highly porous composition meaning porosity 

data may not be very useful. Porosity of the 'R' samples was conducted at 60 days age 

i.e. 46 days stored at 20°C/60%RH upon completion of the solvent exchange drying 

technique at 14 days. It was necessary to conduct the porosity test of the hemp fibre 

('C') which was made from 10 wt. % HF/L, 12 wt. % PVAc and 4 wt. % nZnO/L, to 

determine the porosity of core, due to the significance of core which was designed as 

load bearing. The porosity specimens of HF/L and PVAc of the same percentages 

without nZnO were tested too.  
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The function of pressure is recorded as the volume of mercury that penetrates the 

specimens (Aligizaki, 2014). Particularly, information on the pore size/volume 

distribution & specific surface can be provided and bulk density as these properties 

impact on aspects of material performance such as moisture movement, heat transfer 

and durability. 

PASCAL 140/240 device, a mercury intrusion porosimeter was used which is capable 

of measuring pore size in the range of 116 µm to 0.0074 µm pore diameter. British 

Standard BS ISO 15901-1 procedures were followed (BSISO, 2016). Specimen 

fragments measuring approximately 5 x 5 x 10 mm were used in the porosity test, which 

were dried in a fan-assisted oven at 60 ºC until constant weight prior to testing. The 

mercury contact angle was taken to be 140°. 

  Results and Discussion 7.3

  Thermal Conductivity 7.3.1

The thermal conductivity and mean temperature profiles versus time for the specimens 

of control, nclay, nSiO2 and 4% nZnO are given in Figure 7.2 to Figure 7.5. The 

thermal conductivity was obtained from the steady state portion of the graph 

(approximately from 30 mins onwards). This group of graphs is a representative sample 

and other specimens were also tested for thermal conductivity in the same way. The 

results of the thermal conductivities are given in Table 7.2. Referring to Table 7.2, the 

thermal conductivity increased with time (14, 150 and 300 days) but its increase 

reduced when 4 wt. % nZnO was used. Increasing thermal conductivity is as a result of 

the hydration process, new materials emerged which partially filled the pores. This may 

lead to an increase in density which leads to an increase in compressive and flexural 

strength and shrinkage but may also decrease porosity by decreasing the pore size. 
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Table ‎7.2 Thermal conductivity test results 

1 2 3 4 5 6 

Part* ID W/L 

%  

Age at 

test 

(days)*

* 

% Nanofiller/Lime Thermal 

conductivity  

(W/mK) 

 1a 0.4 14 0% (control) 0.159 

 1b 0.4 14 2% nSiO2 0.154 

 1c 0.4 14 2% nClay 0.147 

 1d 0.4 14 4% nZnO 0.131 

 1e 0.4 14 4% nZnO + 2% nClay 0.151 

 2a 0.4 150 0% (control) 0.173 

R 2b 0.4 150 2% nSiO2 0.160 

 2c 0.4 150 2% nClay 0.182 

 2d 0.4 150 4% nZnO 0.132 

 3a 0.4 300 0% (control) 0.179 

 3b 0.4 300 2% nSiO2 0.152 

 3c 0.4 300 2% nClay 0.201 

 3d 0.4 300 4% nZnO 0.147 

 4a 0.75 14 30 % hemp shiv/lime 
(control) 

0.098 

 4d 0.9 14 12 % hemp 

shiv/lime/4% nZnO 

0.068 

I 4e 0.75 14 12 % hemp 
shiv/lime/4% nZnO/2% 

nClay 

0.101 

 5a 0.75 14 20% Hemp 

shiv/lime/12% PVAc 

0.069 

C 6d 0.75 14 10% Hemp 

fibre/lime/12% 
PVAc/4% nZnO 

0.122 

*R = Render; I = Insulator; C = Core, see Figure 7.1, ** Specimens demoulded at 5 days, immersed 
in isopropanol for 7 days, oven dried at 60°C for 2 days (14 days total). Stored beyond 14 days at 

20°C/60% RH 
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Referring to Figure 7.2, the wall layers (see Figure 7.1) are given in col. 1. The 

specimen ID is determined from Figure 7.1 where the Test number (1-6) and nanofiller 

identifier (a-e) are combined to produce the identity (col. 2). The free water:lime ratio is 

given in col. 3 and is 0.4 for specimens in Test 1-3 but is either 0.75 or 0.9 for Test IDs 

4-6 as hemp shiv or fibre is included in the mixture. The different ages at testing is 

given in col. 4 and varies between 14 and 300 days. The quantity of nanofiller included 

as a percentage of the mass of lime is given in col. 5. The thermal conductivities, 

determined as described in Section  3.4.3 and is given in col. 6, Table 7.2. From the data 

given in Table 7.2, a number of variables will be considered such as influence of 

nanofiller on thermal conductivity and porosity. 

The thermal conductivity results of 4 wt. % nZnO at 14, 150 and 300 days were 0.131, 

0.132 and 0.147 W/mK respectively. These minor increase with time show consistency 

and repeatability.  

 

 

Figure ‎7.2 Determination of thermal conductivity for a Render specimen (Control, 

Thermal Conductivity= 0.159 W/ mK)  
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Figure ‎7.3 Determination of thermal conductivity for a Render specimen (2 % 

nclay/L, Thermal Conducivity= 0.147 W/ mK) 

 

Figure ‎7.4 Determination of thermal conductivity for a Render specime (2 wt.% 

nSiO2 Thermal Conductivity= 0.154 W/ mK) 
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Figure ‎7.5 Determination of thermal conductivity for a Render specimen (4 % 

nZnO, Thermal Conductivity= 0.131 W/ mK) 

  Influence of Nanofiller on Thermal Conductivity 7.3.2

For the 'R' specimens (Table 7.2), the thermal conductivities () are given in Figure 7.6. 

At 14, 150 and 300 days age, thermal conductivities were determined for the different  

specimens. The best performing specimen at 14 days age, was Specimen 1d consisting 

of 4% nZnO,  being 0.131 W/mK. The Control averaged 0.159 W/mK, hence a 

reduction of 18%. The performance of the specimens 1b (2% nSiO2), 1c (2% nClay) 

and 1e (2% nClay+4% nZnO) were performed better than the control (0.154, 0.147 and 

0.151 W/mK respectively). High heat absorption capacity property is by nanomaterial 

nZnO as shown elsewhere (Bhagat & Khanna, 2015) and this was the primary reason 

for Specimen 1b exhibiting the best performance. However, blending 2% nClay with 

4% nZnO,  was increased to 0.151 W/mK, higher than either Specimens c (2% nClay) 

and d (4% nZnO). This is likely to be as a result of the higher bulk density due to the 

addition of nClay (see Section  7.2.1) as previous research (Barbero et al., 2014; Ankita 

Hazarika et al., 2015; Stacy et al., 2014) linked an increase in thermal conductivity to an 

increase in density.   

At 150 days, the thermal conductivities show an increase for Specimens 2a (Control), 

2b (2% nSiO2) and 2c (2% nClay) but Specimen d (4% nZnO) maintains its low , now 

very marginally higher at 0.132 W/mK compared to the 14 days value. A thermal 

conductivity test at 150 days for Specimen 2e was not conducted as the specimen got 

damaged prior to the test. 
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Specimen 3d (4% nZnO) at 300 days exhibited a slight increase in  to 0.147 W/mK but 

still the lowest of all specimens. The best thermal stability was exhibited by Specimen b 

(2% nSiO2) between 14 and 300 days with a relatively low thermal conductivity ranging 

between 0.152 to 0.160 W/mK. nClay exhibited the highest value at 300 days,  being 

0.201 W/mK.  increased over time, despite an accelerated drying method being 

employed for all nanomaterials, the highest increases were evident at 300 days. Further 

research is required to establish the reason behind this. It is likely that the storage 

conditions beyond the 14 days solvent exchange procedure had an influence. Specimens 

were stored under controlled conditions (20 C/60% RH) meaning the moisture content 

would have increased and likely leading to a higher . Furthermore, it possibly is the 

hydration/carbonation process restarted. It could be due to reactions occurring as a 

result of certain nanomaterials. For example, a possible reason why the best performing 

nanorender (nZnO) increased its thermal conductivity is given elsewhere (Venkatesan, 

Ngo, Khatiwada, Zhang, & Qiao, 2015). Although the research in question investigated 

the surface passivation of metal oxide for polymer solar cells, surface oxidation over 

time led to the nanomaterial becoming Zn metal which is higher in thermal conductivity 

than its oxide. Further research is needed to determine if oxidation is responsible for an 

increase in thermal conductivity in the lime/ZnO nanorender and establish ways to 

prevent it. The previous research suggested that surface oxidation can be suppressed by 

using a surface modifier like polyethyleneimine ethoxylated (PEIE) (Venkatesan et al., 

2015). 
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Figure ‎7.6 Influence on nanofiller and age on thermal conductivity for lime 

renders 

 

The thermal conductivities for the hemp shiv/lime nanocomposites ('Insulator') and 

hemp fibre/lime nanocomposite ('Core') are given in Table 7.2. Specimen 4a is a 

Control sample and yields a  of 0.098 W/mK. 4% nZnO (Specimen 4d, 0.068 W/mK) 

again was the best performing sample but as in the case of the renders. Table 7.2, the 

blended nanofiller of 2% nClay and 4% nZnO produces a higher thermal cond uctivity 

(0.101 W/mK), which is marginally higher than the control specimen. Specimen 5a 

which includes PVAc (30% wt. water) has a very similar  to specimen 4d which 

includes the 4% nZnO (0.069 W/mK). Since specimen 4d and 5a both possess similar   

values, other parameters such as strength and cost can be taken into account to establish 

which material best suits a particular purpose and this is briefly discussed in 

Section  7.3.5. Thermal conductivity was 0.122 W/mK for the hemp fibre/lime 

nanocomposite ('Core'), it was higher than the hemp shiv insulators but this is likely to 

be as a result of hemp fibres being used which have a greater influence on thermal 

conductivity than hemp shiv (Collet & Prétot, 2014). Samples of insulators for strength 

testing were not made since the hemp shiv insulators were primarily designed as an 

insulator, not for strength. It is shown in Table 7.2, Part I that composites containing 

hemp shiv do not meet minimum strength requirements for load bearing walls (0.6 and 

0.4 MPA compressive and flexural strength respectively). 

 

Figure ‎7.7 Influence on nanofiller on thermal conductivity for hemp shiv/fibre/lime 

nanocomposite 
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  Influence of Nanofiller on Porosity 7.3.3

A summary of the pore structure properties of the nano modified and Control renders 

are given in Table 7.3 and Figure 7.9. It is evident that all three nanomaterials affect the 

pore structure of the mortar by reducing the modal pore diameter dcr and the porosity 

(Figure 7.8 and Table 7.3). The highest porosity decrease was observed for the mortar 

modified with 4% nZnO (50.2 % decrease compared to the Control), followed by those 

modified with 2% nClay (13.2 %) and 2% nSiO2 (5.5%). The use of nSiO2 yielded an 

increase in the total pore surface area of the mortar (Figure 7.6), which can be attributed 

to a reduction in the population of pores with diameters between 1 µm and 2 µm and an 

increase in the population of pores with diameters between 1 µm and 0.01 µm 

Figure  7.9). A similar pore size distribution can be observed for the mortar modified 

with 2 % nClay, however, this is characterised by a lower peak in the region of the 

modal pore diameter (≈ 0.9 µm) and by a smaller number of pores with diameters 

between 0.1 µm and 0.01 µm (Figure  7.9). This results in the mortar having a lower 

total pore surface area, close to that of the control. Whilst it yielded the biggest porosity 

decrease, the use of 4 % nZnO had the lowest impact on the pore size distribution of the 

mortar, leading to a slight decrease in the modal pore diameter (Figure  7.8 and 

Figure  7.9). The observed porosity decrease is due to a reduction in the population of 

pores with diameters between 0.5 µm and 2 µm (Figure  7.9). 

  

Figure ‎7.8 Comparison of total porosity and total pore surface area 
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Figure ‎7.9 Differential volume of intruded mercury versus pore diameter of 

modified and control nanorender samples 

 

Table ‎7.3 Pore structure properties 

Part 

 

Specimen Porosity 

(%) 

Porosity 

decrease (%) 

dcr (µm) Total pore 

surface 

area (m2/g) 

 a Control 36.35 - 1.301 6.647 

R b 2% nSiO2  34.34 5.5 0.8958 11.482 

 c 2% nClay 31.54 13.2 0.8645 6.451 

 d 4% nZnO 18.09 50.2 1.088 0.592 
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  Influence of Nanofiller on Density 7.3.4

Bulk densities, 𝜌 , of four of the lime renders are given in Figure  7.10 and were 

determined during the porosity testing (60 days age). The render with the lowest bulk 

density is Specimen d (4% nZnO) at 1.232 g/cm3. Next best in the renders is Specimen 

b (2% nSiO2) at 1.261 g/cm3 followed by the Control (1.339 g/cm3) and Specimen c 

(2% nClay, 1.409 g/cm3).  

The longer term  values (300 days age) are also given in Figure 7.9. Specimen d (4% 

nZnO) exhibits both the lowest density and lowest thermal conductivity. Specimens a 

and b also follow a similar trend but yield a higher 𝜌  and higher  compared to 

Specimen d. The nanorender specimen with the highest density also exhibits the highest 

 and this was generally the case with other research findings as described in 

Section  7.1.3.2 The relationship between both properties for the lime nanocomposite 

renders in this research is shown in Figure 7.11. Referring to Figure 7.11, a linear 

relationship exists between  and 𝜌 which yield the equation 

 = 0.31𝜌 − 0.24       Equation  7.1 

Therefore, it is clearly beneficial to design renders with lower bulk densities which will 

yield lower thermal conductivities. 

 

Figure ‎7.10 Bulk density and thermal conductivity of specimens 
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Figure ‎7.11 Relationship between bulk density and thermal conductivity for lime 

nanocomposite renders 

 

  Compressive Strength 7.3.5

In this research, the compressive strength of the Insulator (No's. 4, 5, Table 7.1) was not 

obtained as its main purpose is to provide insulative properties for the wall. However, 

previous research has shown that the compressive strength of lime hemp shiv varied 

across a number of researchers. The highest compressive strength was 2.78 MPa (de 

Bruijn et al., 2009) whereas other researchers obtained strengths of 0.4-1.2 MPa 

(Arnaud et al., 2006) and 0.2-0.5 MPa (Evrard, 2003). A load bearing lime/hemp 

material would require a compressive strength comparable to that of load-bearing 

lightweight expanded clay aggregate, i.e. 3-5 MPa (de Bruijn et al., 2009). This is 

difficult to achieve with lime and hemp shiv alone, hence the reason for adding PVAc to 

the Core material containing lime and hemp fibres.  

The average compressive strength of the Core material was 10.29 N/mm2, 2-3 times 

stronger than the required strength to make it load bearing. There is, therefore, room to 

optimise the quantity of PVAc and other constituents in this ma terial to make it more 

cost and thermally effective. 

  Curing Method 7.3.6

The research reported in this thesis showed that although the procedure adopted a water 

removal technique which stops the hydration process from the age of only 5 days, the 

tested materials still possessed the required characteristics of strength and thermal 

performance. More research is required to assess the influence of accelerated drying on 
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the durability of renders and to investigate the best drying method for site use and the 

optimum time for implementation due to thickness of the material and possible adverse 

weather conditions. A possible candidate for site use would be microwave curing, a 

technique which has recently been developed at Sheffield Hallam University for 

accelerated curing of concrete patch repairs (Grigoriadis, Mangat, & Abubakri, 2017; 

Mangat, Abubakri, & Grigoriadis, 2017; P. S. Mangat, Grigoriadis, & Abubakri, 2016)  

and has the potential to be used for site based accelerated drying.  

  Applications of Findings to Wall Design 7.4

Figure 7.12 provided a section through the proposed high performance wall to be 

designed with enhanced material properties from the findings presented in this project. 

The new design consists of the five material layers as shown in (numbered 2, 3, 4, 3, 2). 

For the purpose of U value calculations, Layer 1 is the external and internal air 

resistance. The design of the new eco-friendly wall will be compared to an existing 

design where conventional lime/hemp based materials are used, Figure 7.12 (right). 

Referring to Figure 7.12 (right), the wall consists of a lime/hemp mixture as the core of 

the wall with two layers of render on each face. Therefore, comparing Figure 7.12 

(right) with Figure 7.12 (left), the lime/hemp core is extended to compensate for the 

insulator layers which have been omitted. Overall thickness remains the same. 

Additionally, the influence of the timber studding in Figure 7.12 (right) has been 

omitted for simplicity.  
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Figure ‎7.12 Cross section through: (left) eco-friendly wall; (right) lime/hemp wall 

(right) (timber studding omitted for clarity) 

Table 7.4 shows the U value calculation for the new proposed design in Figure 7.12 

(left). The Building Regulations (H.M. Government, 2010) state that a U value of 0.18 

W/m2K is required for external walls to meet design requirements. Hence, the wall has 

been designed to comply with this requirement. It was assumed that the Render is 20 

mm thick and the insulator layer is 100 mm thick. The thickness of the central core is 

then selected to achieve an overall U value of 0.18 W/m2K, which for this design is 253 

mm. The overall thickness, therefore, is 493 mm. For the purpose of calculations, the 

long term thermal conductivity for the Render was taken as the 300 day value, Table 

7.2. The lowest thermal conductivity for the Insulator was 0.068 W/mK (Materials 4d, 

Table 7.2) whereas the thermal conductivity of the Core nanomaterial was taken as 

material 6d in, Table 7.2. Referring to Table 7.4, the total thermal resistance of this wall 

is 5.55 m2K/W giving the U value of 0.18 W/m2K. 

Table ‎7.4 Design of new wall with nanocomposite materials 

 Layer Materials   

[W/mK] 

Thickness 

(m) 

R 

[m2K/W] 

U 

[W/m2K] 

1 External Resistance - - 0.13  

2 Render (lime nanocomposite) 0.147 0.02 0.14  
3 Insulator (lime/hemp shiv 

PVAc) 
0.068 0.1 1.47  

4 Core (lime/hemp fibres)  0.122 0.253 2.07  
5 Insulator (lime/hemp shiv 

PVAc) 

0.068 0.1 1.47  

6 Render (lime nanocomposite) 0.147 0.02 0.14  
7 Internal surface resistance - - 0.13   

  
 0.493 5.55 0.180 
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If material 6d (=0.122 W/mK) was replaced with the PVAc modified insulator 

containing hemp shiv as is commonly used in eco-friendly design (material 5a, Table 

7.2, =0.069, assuming the minimum strength has been obtained through the addition of 

the PVAc), then the thickness of the core could reduce to 144 mm and still achieve a U 

value of 0.18 W/m2K. However, structural calculations would be required to ensure the 

wall is adequate to carry the applied loads. 

A similar calculation was conducted on an existing lime/hemp wall as shown in Table 

7.5. The overall wall thickness is assumed as 493 mm to match the thickness of the wall 

design in Table 7.4. Again, two outer layers of render at 20 mm thickness is assumed, 

the remaining 453 mm consists of a lime/hemp shiv material (giving the total thickness 

of 493 mm). For the purpose of calculation,  is taken as 0.098 as obtained from the 

control material 4a in Figure 7.2 (30% hemp shiv/lime). A slightly higher U value of 

0.196 W/m2K results (the thickness of this core would have to increase to 497 mm to 

comply with the Building Regulations U value of 0.18 W/m2K).  Although there is not a 

great deal of difference between the new and existing wall design in terms of thermal 

conductivity and overall thickness, the major difference is the ability of the new wall 

design to be load bearing, hence eliminating the need to timber framing. However, 

research is required on the optimum constituents of the core material, either using hemp 

shiv or hemp fibre, to optimise the strength and thermal conductivities for enhanced 

performance. In addition, further research is also required on the most efficient method 

of application, the options being site cast (leading to formwork requirements and drying 

issues as mentioned earlier) or as prefabricated blocks or panels installed using 

conventional techniques. 
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Table ‎7.5 Design of lime/hemp wall without nanocomposites 

 Layer Materials   

[W/(mK)] 

Thickness 

(m) 

R 

[m2K/W] 

U 

[W/m2K] 

1 External 

Resistance 

- - 0.13  

2 Lime render 0.179 0.02 0.11  

 -     
3 Lime/hemp shiv  0.098 0.453 4.62  
 -     

4 Lime render 0.179 0.02 0.11  
5  Internal 

Resistance 

- - 0.13   

  
 0.493 5.08 0.196 

  Conclusions 7.5

This study is conducted to investigate the influence of nanomaterials on the thermal 

characteristics of lime and hemp/lime composites for optimal wall design. An 

accelerated drying process was also trialled to assess its suitability in quickening drying 

times but without negatively influencing material properties. Based on the results from 

this experimental research, the following conclusions have been drawn: 

 application of 4% nZnO to the lime render led to the lowest thermal 

conductivity.  reduced by 18% to 0.131 WmK at 14 days compared to the 

Control sample (0.159 W/mK).  increased to 0.147 W/mK at 300 days for this 

nanomaterial. Application of 2% nSiO2 also helps reduce  but not to the same 

extent as nZnO. The storage condition (60% RH) beyond the end of the solvent 

exchange procedure is likely to have influenced the longer term thermal 

conductivity.  

 application of 4% nZnO to a 30 % wt. hemp shiv/lime nanocomposite reduced 

the thermal conductivity by 31% compared to the control sample. 

 the addition of the nanomaterials to the lime render had an impact on the density 

and thermal conductivity. Nanomaterial such as nClay led to a higher density 

than the control but nZnO and nSiO2 both exhibited lower densities and lower 

thermal conductivities. A linear relationship between thermal conductivity () 

and bulk density (ρ) was determined where : = 0.31ρ - 0.24 



Chapter 7 Factors Affecting Thermal Properties of Lime nanocomposites 

201 
 

 the render with 4% nZnO exhibited the lowest porosity (18.09%) whereas 

the renders with 2% nClay and 2% nSiO2 both had porosities at 31.54% and 

34.34% respectively. The Control specimen had a porosity of 36.35%. The 

4% nZnO render specimen also exhibited the lowest total pore surface area 

of 0.592 m2/g. 

 Two insulators exhibited similar thermal conductivity values hence selection 

of the optimum material should be based on not only thermal characteristics 

but also on cost and whether or not a stronger insulator is required to either 

share the load carrying the hemp fibre core material or even replace it due to 

its lower thermal conductivity characteristics  

 the core material consisting of 10 % Hemp fibre/lime/12 % PVAc/w and 4% 

nZnO exhibited an average compressive strength of 10.3 N/mm2 so further 

optimisation is required for efficient structural and thermal performance.  

 despite the application of the solvent exchange method at five days after 

casting, all nanocomposites still exhibited usable properties from the point of 

view of wall design. Further research is required to optimise an accelerated 

drying technique for site use. 

 The present study is based on investigating the influence of nanomaterials on 

the relevant properties required for hemp/lime construction. The study 

focused on improving the properties responsible for energy efficiency. The 

impact of the stronger core nanocomposite and insulator on the quantity of 

timber studding for strength is beyond the scope of this research and will be 

considered in the future publication. 

 Results showed that the maximum 28 day decrease in  for the Render was 

by using 4% nZnO,  being 18 % compared to the control sample. The same 

render also exhibited the lowest density. For the Insulator, λ was decreased 

31 % when also using 4% nZnO in comparison to the nano-free specimen. 

Strength of the Core exceeded 10 MPa, much greater than the minimum load 

bearing requirement. 
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 Conclusions and Future Work Chapter 8 -

 208 Introduction 8.1

In this thesis, the aim was to develop load bearing, lightweight, high performance 

construction materials. The material should be durable, have low porosity, low 

shrinkage, low thermal conductivity and high water vapour permeability. The 

materials included biomass natural fibres for reinforcement and nanomaterials to 

give a nanocomposite construction material. Table 8.1, is a comparison of CO2 

emissions between concrete and the proposed lime based wall. Table 8.2 shows a 

summary of the objectives of the thesis and how these goals were achieved. 

 Selection of Optimum Materials  8.1.1

Hemp fibres and fibre glass were used for the first time as chopped fibres mixed with 

lime. Hemp fibres were chosen for their properties, hemp was environmentally 

friendly, a speedily grown agriculture renewable plant, 4-6 m high within a period of 

3-4 months, abundant, durable, biodegradable, energy modest (no need for more 

energy in its life production). Lime is cheap and lightweight as a construction binder 

material in comparison to cement concrete mix. It is compatible with the biomass 

from hemp shives and hemp fibres which were used in the present project. Lime 

carbonation continues as the lime absorbs CO2 from the atmosphere and reduces 

pollution in the environment. This is done through its raw materials releasing CO2 

but absorbing it through its lifetime in use. Table 8.1 show calculations and a 

comparison between CO2 emission from 1 m3 of concrete and 1 m3 of proposed wall 

built from Polyvinyl acetate (12 wt. % PVAc), nanozinc oxide (4 wt. % nZnO), 

Hemp (20 wt. % shives or 10 wt. % fibres)/Lime. Wall emission under self-weight is 

354 (585) kg CO2/m3 Lime if combustion emission is considered and 934.56 kg 

CO2/m3.Concrete. 

Table 8.2, is a summary of the findings from this project.  
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Table 8.1 A comparison of CO2 emissions between concrete and the proposed lime based wall 

No 

CO2-Emissions 

Item 
Hemp/lime nanocomposites (1m3) Concrete (1m3) 

Quantities Notes Quantities and notes 

1 Volume 

 
V = t*w*d = 1m3 

V = 0.493*1*d= 1m3 

d= 2.03 m 

1m3 of material is assumed.  
 

The thickness (t) is 0.493 as 
calculated in Table 7.4 and 

Figure 8.1. A width (w) of 1 
m is assumed, thereby, the 
depth (d) is calculated to give 

a volume of 1 m3 

1m3 of concrete 

2 
Density 

kg/m3 

'R' layers x 2 : ρ1= 1231 kg/m3 
Mixture (4 % nZnO+12 % PVAc) 

 
'I' layers x 2 : ρ2= 540 kg/m3 
Mixture (4 % nZnO+12 % PVAc+20 % HS)  

 
'C' layer x 1 : ρ3= 1260 kg/m3 

Mixture (4 % nZnO+12 PVAc+10 % HF) 

See Fig. 8.1 for definition of 
layers (R, I, C) 

 
Density obtained from 
porosity test, Section 7.3.4 

Density assumed as 2,500 kg/m3 in 
general 

3 Weight kg 

Total weight of lime (W) = 2*(ρ1*v1) + 2*(ρ2)(v2) + 
(ρ3)(v3) 
 

W1 of 'R' layers x 2: 
ρ1 = 1231 kg/m3; v1 = (0.02*1.0*2.03) = 0.04 m3  

2*(ρ1)(v1) - 2*(4+12)%*(ρ1)(v1) = 

Weight of individual layers in 
the wall calculated 
 i.e. 2 x 'R', 2 x 'I', 2 x 'C', Fig. 

8.1 

2541 kg in 1 m3 in the reference 
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No 

CO2-Emissions 

Item 
Hemp/lime nanocomposites (1m3) Concrete (1m3) 

Quantities Notes Quantities and notes 

2*1231*(0.02*1.0*2.03) - 2*0.16*1231*0.04 = 84 kg 

 
W2 of 'I' layers x 2: 
ρ2 == 540, kg/m3; v2 = (0.1*1.0*2.03) = 0.203 m3 

2*(ρ2)(v2) - 2*(4+12+20)%*(ρ2)(v2) 

2*540* (0.1*1.0*2.03) - 2* 0.36*540*0.203= W2=140 

kg 

 
W3 of 'C' layer x 1: 

ρ3 == 1260, kg/m3; v3 = (0.253*1.0*2.03)= 0.51 m3 
(ρ3)(v3) - (4+12+10)%*(ρ2)(v2) = 

1260*0.51 - 0.26*1260*0.51 
W3= 476 kg 
Weight of lime= W1+W2+W3 

Wt= 84 + 140 + 476=  
Weight of lime in 1m3 = 700 kg 

4 
Emission

kg 

Lime emission = 0.77 kg CO2/kg Lime (EuLA, 2014) 

[Lime emissions = Process + Electricity + 
Combustion] 
= 0.751+0.019+ 0.322 (neglected) 

 

Combustion emission 

neglected as lime absorbs 
CO2 during its strength gain 
 

328 kg/m3: weight of cement 

Average concrete weight (kg/m3): 

(cement + fine aggregates + coarse 
aggregates + water) 
+ 328 +781 + 1242 + 190 = 2541 

kg/m3  
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No 

CO2-Emissions 

Item 
Hemp/lime nanocomposites (1m3) Concrete (1m3) 

Quantities Notes Quantities and notes 

Water emission = 0.00026 kg CO2/kg  

(Florentin, Pearlmutter, Givoni, & Gal, 2017) 
 
Hemp emission = 0.085 (intial) - (1.8) sequestered 

 = -1.715 kg CO2/kg hemp  
(Florentin, Pearlmutter, Givoni, & Gal, 2017) 

269 Kg/m3 emission of 

cement 
If the combustion emission of 
If lime emission is considered 

completely not absorbed: 
Lime emission = 

0.751+0.019+ 0.322 =1.092 
or ≈ 1.1 kg CO2/kg Lime 

W/C (water cement ratio) = 0.58 

(Turner & Collins, 2013; R. Zhao & 
Sanjayan, 2009) 

5 
Emission 

kg/m3 

CO2 emission from 1 m3 lime: 
= 700*0.77= 539 kg CO2  

 
Emission of  additives (other than hemp) are < 1 kg 

CO2/m3 (Turner & Collins, 2013) 
 
CO2 emissions of  additives - all layers 

 ('R' layers x 2 + 'I' layers *2 + 'C' layer x 1 = 1 kg CO2 
 

Negative CO2 emissions of hemp fibres (HF) and 
hemp shiv (HS) - 'I' layers 

'I' layers x 2 HS x CO2 = 540*2*0.1*1.0*2.03*20%*-
1.715 = - 75 kg CO2 
Negative CO2 emissions of hemp fibres (HF) - 'C' 

CO2 emission from 1 m3 
lime: 

= 700*1.1 = 770 kg CO2  
Total emission = [770 (lime) 

+ 1 (additives) - 75 (shives) - 
111 (hemp fibres)] = 585 kg 
CO2/m3 

 

Weight. of CO2 emission (kg/m3): 
(cement + coarse aggregates + fine 

aggregates + admixtures + batching + 
curing + transport + placement) =269 

+51 + 11 + 1 +3 + 1 + 9 +9 = 354 
kg/m3 (as derived by a following study 
below which took into consideration 

many factories) 
(Turner & Collins, 2013) 
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No 

CO2-Emissions 

Item 
Hemp/lime nanocomposites (1m3) Concrete (1m3) 

Quantities Notes Quantities and notes 

layers 

'C' layer x 1= ρ3*v3 * 0.1*-1.715 
= 1260*0.253*1*2.03*0.1*- 1.715 = - 111 kg CO2 
 

Water CO2 emission 
= 0.00026*0.4*703.2 = 0.073 kg CO2 (very low, 

therefore neglect) 
 

Total emission = [539 (lime) + 1 (additives) - 75 
(shives) - 111 (hemp fibres)] 
= 354 kg CO2/m3 

6 

Wall 

Emission 

under 

self-

weight 

WL = weight of lime in 1 m3 =  weight of ('R' layers * 

2 + 'I' layers * 2 + 'C' layer * 1)  
WL= (2*0.02*1231 + 2*0.1*540 + 1260*0.253)* 

2.03=966 kg  
Force = 966*10 = 9,660 N 
 

Weight ratio concrete/lime = 2541/966= 2.63 
Weight of lime = Weight of concrete/2.63 

 

 = compressive stress in lime wall under self-weight,  

A = cross sectional area of lime wall = 0.493*1= 0.493 

Explanation: The cross 

section of the wall should be 
larger for concrete than lime 

under their self-weight to 
withstand the access load of 
concrete in comparison to  

lime 
 

 
 
 

WC = weight of concrete in  

1 m3= 2541 kg, A = cross section area 
of concrete wall 

 = compressive stress in concrete 
wall, t = thickness of concrete wall, m 

 of concrete wall must =  of lime 
wall 

 =  WC/A=  2.63 WL/A 

 = WC/A= 2.63 WL/A 

 = 2.63*966/A 
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No 

CO2-Emissions 

Item 
Hemp/lime nanocomposites (1m3) Concrete (1m3) 

Quantities Notes Quantities and notes 

m2 (0.493*106 mm2) 

 = 9660/(0.493*106)= 0.02 N/mm2 
 

Emission of lime wall constant=  354 kg CO2/m3 

 

 
 
Emission of lime wall 

constant (if emission of lime 
combustion is considered)=  

585 kg CO2/m3 
Anyway, that means emission 
of lime is 345-585 kg CO2/m3 

and it is less than wall 
emission of concrete (934.56 

kg CO2/m3) 

A = 2.63*966/1959= 1.29  ≈ 1.3 m2 

 
A = 1.3= 1* t 
 

t= 1.3/1= 1.3 m 
 

Concrete wall dimensions, t= 1.3 m, 
w= 1 m and d= 2.03m 
 

V = volume of concrete wall 
=1.3*1*2.03= 2.64 m3 

V= 2,64 
 
Emission of new volume of concrete 

wall= 354 kg/m3*2.64 m3 
= 934.56 kg CO2/m3 
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It can be said, many notes in this project are remarkable: 

1. There was minor enhancement (in relative to construction object) in strength 

(flexural and compressive) by adding different nano-fillers (nanoclay, nanosilica, 

nanocellulose fibres, expanded graphite) to lime but the highest improvement was by 

blending natural and industrial fibres (fibre glass and hemp fibres) to lime which 

increased the compressive strength of the resulting composite material from non-

loadbearing (3-4 MPa compressive strength) to loadbearing by adding 10 wt. % 

HF/L (compressive and flexural strength were 8.9 MPa and 4.7 MPa respectively). 

The flexural strength is comparable to the flexural strength of cement mortar which 

was around 4 MPa in the literature.  

2. PVAc adhesive (polyvinyl acetate) was added as a new way to improve the bond 

between lime mortar and fibres (FG and HF). The specimen 12 % PVAc/L and 10 % 

HF/L with 4 wt. % nZnO gave compressive and flexural strengths of 10.3 MPa and 

4.4 MPa respectively. These were the highest strength for the hemp fibres composite 

by the oven drying method. In contrast, the same mix by air drying gave 17.7 MPa 

and 7.3 MPa respectively. The result of 10 % FG and 12 % PVAc by oven drying 

was a little higher (11.7 and 4.5 MPa compressive and flexural strength respectively) 

but because FG is not as friendly to the environment as hemp it was not the preferred 

choice. The compressive strength can be designed to meet the required strength by 

changing the percentages of HF, the length of fibres and quantity of PVAc to 

optimise the cost. 
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Table ‎8.2 Summary of the results and findings. 

No Objective What and how the objectives were achieved? 

1 Environmentally friendly, 
lightweight material 

Biomass lime nanocomposite from HF, HS and lime were 
chosen as environmentally friendly materials.  

Carbon emission for 1m3 of the proposed wall of lime 
(416.9 Kg) is less than 1m3 of concrete wall (1850 Kg), 
Table 8.1.  

2 High CS and FS Oven drying method, 10 % HF/L and 12 % PVAc/L and 
4 wt. % nZnO which gave more than 10 MPa and 4.4 

MPa, CS and FS respectively 
3 Highest CS ad FS Air curing method, using 10 % HF/L and 12 % PVAc/L 

and 4 wt. % nZnO which gave 17.8 and 7.3 MPa 

3 Low λ for insulator panels SE method and 20 % HS/L, 12 % PVAc /L and 

4% nZnO/L, λ= 0.06 W/ mK 

4 Low λ for the core of 

proposed wall 

SE method and 10 % HF/L, 12 % PVAc/L and 

4 % nZnO/L, λ= 0.12 W/ mK 

5 Low λ for the render SE method, 12 % PVAc/L and 4 % nZnO/L, λ=0.13 W/ 

mK 

6 Low Porosity for the 
render 

Air curing method, using 4 % nZnO/L, P %= 18.1 % 

7 Low Porosity for the core 
of proposed wall 

Air curing method, using 10 % HF/L, 12 % PVAc, 4 %  
nZnO, P %=20.7 % 

8 Low Shrinkage for the 
Render of proposed wall 

Air curing method, 4 wt. % nZnO gave SR = 750.4 µs  

9 High WVP for 
breathability 

All nanomaterials used enhanced WVP (breathability), 
the highest WVP= 1.96 x10-11 (kg·m-1·s-1·Pa-1) 

was by adding 2 % nclay in comparison to pure lime 
where WVP = 1.43 x10-11 (kg·m-1·s-1·Pa-1) 

Key of Table 8.2 symbols: HF= hemp fibres, HS= hemp shives, CS= Compressive 

strength, FS= flexural strength, SE = Solvent exchange method, nZnO= nanozinc 
oxide, PVAc= Polyvinyl acetate, λ= thermal conductivity, P %= porosity %, FG= 
fibre glass, SR= shrinkage and WVP= water vapour permeability (breathability). 

 

 

3. The hemp fibre lime composite exhibited high ductility in which the failure was 

not sudden but gradual. The specimens compressed up to failure without cracking 

but exhibited a large reduction in the thickness under loading.  
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4. The porosity decreased when different nanomaterials were mixed with lime e.g. 2 

% nSiO2/L; 2 % EG/L; 2 %  nclay/L; 4 %  nZnO with 12 % PVAc /L with 10 % 

HF/L; 4 % nZnO/L and 30 % PVAc of W/L, 10 % HF/L. The porosities were 34.3, 

28.4, 31.5, 20.7, 18.0 and 16.6 % respectively in comparison pure lime which had a 

porosity of 36.3 %. The optimum porosity was from the nanozinc oxide/lime 

nanocomposite (18 %) which can be used as a render. There are two low porosity 

results from the samples containing 10 % HF/L + 12 % PVAc/L, with and without 4 

% nZnO and the porosities were 20.6 % and 16.6 % but 16.6 % was considered the 

best option, not only for decreasing porosity and thermal conductivity but due the 

impact of nanozinc oxide which acts as an anti- fungal and anti-bacteria agent. The 

pore size was limited to 0.01-10 µm and the volume of pores was decreased in 

comparison to pure lime. 

5. 4 wt. % nanozinc oxide and lime was cured using a Solvent exchange drying 

method. This led to a decrease in thermal conductivity, ƛ being 0.13. W/mK. This 

will be used as a render for the proposed wall. The optimum ƛ for the insulator panel 

was 0.06 W/mK by blending 20 % HS/L + 4 % nZnO/L + 12 % PVAc/L. The best ƛ 

for the core was from the specimen containing 10 wt. % HF/L (0.122 W/mK). This 

material again included 4 wt. % nZnO/L and Solvent exchange drying method was 

used. 

6. The shrinkage decreased by using the nanomaterials 2 wt. % EG/L and 10 wt. % 

FG/L giving a shrinkage value of 0.025 % (2500 µs ) and 0.012 % (1200 µs) 

respectively. The result of FG was similar to the shrinkage of lime/ sand (good 

granulated) according the standard CEN EN 196-1 (its shrinkage was 1200 µs). The 

lowest value of shrinkage was of 771.8 µs by using 4 wt. % nZnO/L using air dry 

curing. The goal of decreasing the shrinkage was achieved to levels lower to the 

lowest shrinkage of lime/sand found in previous studies.  

7. The WVP in lime is already good but by using nanomaterials (Control, 1.5 % 

EG/L, 2 % nclay/L and 2 % nSiO2/L), it was improved (1.43 x 10-11, 1.71 x 10-11, 

1.96 x 10-11 and 1.902 x 10-11 kg·m-1·s-1·Pa-1 respectively). The highest WVP was 

(1.96 x 10-11 kg·m-1·s-1·Pa-1) which was by adding 2 wt. % nclay. The goal of 

keeping the WVP value of lime or increasing it by using nanocomposite was 

achieved.  
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8. The optimum design of the proposed wall, Figure 8.1, is (from left to right): 

1- Outdoor render layer, 4 % nZnO/L, 2 cm thick. 

2- External insulator layer or panel, 4 % nZnO/L + 20 % HS/L + 12 % 

PVAc /L, 10 cm thick. 

3- Central core panel of the wall, 4 % nZnO/L + 10 % HF/L + 12 % 

PVAc /L, 25 cm thick. 

4- Internal insulator layer or panel, 4 % nZnO/L + 20 % HS/L + 12. % 
PVAc /L, 10 cm thick. 

5- Indoor render layer, 4 % nZnO/L, 2 cm thick. 

 

 

 

 

 

 

Figure ‎8.1 Cross section through wall: (R) Lime nanocomposite render; (I) 

lime/hemp shiv nanocomposite insulator (C); lime/hemp fibres nanocomposite. 

  

   

  
Central core (C= 0.253 m) 

Insulator (I= 0.1m) 

Render (R= 0.02 m) 
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 Future Work 8.2

The following is a summary of further work which can be considered in the future 

1. The length of hemp fibres which have an important impact on the strength of 

the lime composite could be tested to find the optimised length for enhanced 

compressive and flexural strength. 

2. Study the impact of more than one nanomaterial with hemp fibres in a 

specimen and investigate their impact on the properties of the fibre reinforced 

lime nanocomposites. For example, nanoclay with nanosilica or both with 

expanded graphite. 

3. Try other kinds of organic adhesives such as water based acrylic adhes ive to 

increase the strength. Furthermore, add nanoclay or others nanomaterials to 

PVAc and determine their effect on the properties of the material.  

4. Examine further the dry curing method and compare its result to other 

methods. For example, a microwave curing technique has been developed at 

Sheffield Hallam University and this has potential benefits as an accelerated 

curing method on site.  

5. Solvent exchange method decreased thermal conductivity and porosity, but 

due to its effect of stopping hydration, the strength decreased. Further 

research is required to find a balance between optimum strength, thermal 

conductivity and porosity. 

6. Mix different percentages of gypsum with the main matrix (lime) to study 

their effect on the setting time, quicker drying and the mechanical properties 

of the nanocomposite specimens. 

7. Investigate ways of controlling the shrinkage of the render, for example by 

using fine aggregate in the mix or by adding hemp fibres. 

8. Determine the effect of removing the timber studding and replacing with load 

bearing lime nanocomposite materials. 
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 Appendix Chapter 9 -

 Introduction 9.1

This Appendix is for definitions, terms and tables which are no necessary to be in the 

context of the research.  

 Terminology 9.2

Many terms are encountered in the literature studies and the following is an attempt 

to give a simple definition for the terms that may be repeated in the literature review. 

  Composite 9.2.1

Two or more materials that can be considered as composite materials that have 

beneficial chemical and physical properties when connected together, an example is 

cement with fillers such as the fibre glass or carbon fibres, silica fly ash etc. 

(Schuster, Becker, & Coelho, 2015; Zaman et al., 2013). The fibres (woven and non-

woven) reinforced polymer composites (FRPC) are used in advanced applications 

such as automotive, civil structure, aeroplanes and military applications. These 

advanced applications use fibres such as carbon or glass fibres, which are added to 

reinforce polymers to achieve the required polymer fibre reinforcement composite 

(OkenWa O. I. Okoli, Tallahassee, Myungsoo Kim, & Tallahassee, 2010).  

 

 Biomass Composite 9.2.2

The main materials are called the matrix and biomass blended with fillers. It is bio-

based consisting of one or more material or fibre (H. Assaedi, F. U. A. Shaikh, & 

Low, 2015a; A. Hakamy, F. U. A. Shaikh, & I. M. Low, 2015; Peponi, Puglia, Torre, 

Valentini, & Kenny, 2014).  

 Nanomaterials 9.2.3

Materials at the nanosize level are made by applying one of two main methods: top-

down or bottom-up which decompose or divide the original materials to make small 

pieces in the nanoscale, one dimension or more, or assemble the materials at the 
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atom scale to nanostructure. There is another new definition that depends on the 

volume or the specific surface area (VSSA). Nanomaterial is defined as a material 

that has VSSA value 60 m2/ cm3 or more (Kreyling, Semmler-Behnke, & Chaudhry, 

2010). 

 Nanomaterials are used for enhancing mechanical properties like flexural, 

compressive or tensile strength in some matrices like cement or polymers. Another 

choice involves nanozinc oxide which is mainly used for Ultra Violet resistance and 

at the same time as a heat isolator when used as a coating, but it was found from lab 

tests in the present project that it decreased the porosity more than any other 

nanomaterial used. 

 Bio-nano-Composite 9.2.4

The main matrix is a biomass or a natural material such as lime and the fillers 

(natural fibres and shives or nanocellulose) are biomass  blended with one or more 

nanomaterials like nSiO2, nClay, nZnO, etc. (Fernandes, Pires, Mano, & Reis, 2013; 

Ojijo & Sinha Ray, 2013).  

 Dispersion 9.2.5

Dispersion means a homogeneous distribution of the nanoparticles in the matrix but 

it can be called bad dispersion when the particles are assembled as conglomerates, or 

in other words, in microscale not in nanoscale and the factors affecting the dispersion 

are the aspect volume ratios of particles; the ratio between the shortest dimension 

and the longest dimension of the particles. The second factor involves the interaction 

of the large surface area of the particle between the particles themselves and in the 

other direction between the nanoparticles and the polymer (Gauvin & Robert, 2015; 

Jancar et al., 2010; Nguyen, Rouxel, & Vincent, 2014; Ojijo & Sinha Ray, 2013)   
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 Method of Dispersion 9.2.5.1

There are many methods to achieve dispersion for the nanofiller in the matrix, then 

are summarised as follows. 

 Melt Mixing 9.2.5.2

Melt mixing is done by a compounding extruder especially for polymer matrices. 

This has a single or two screws that are rotated in any required revolution/min within 

certain limits and with different heat degrees as the matrix melting point of the 

polymer and the nanofillers are fed through the extruding process (Rauwendaal, 

2002).  

 Solution Mixing 9.2.5.3

The second method is solution mixing by a solvent to dissolve the matrix; the 

nanofillers are suspended in the solvent and mixed with the polymer by various 

methods such as stirring of the polymer using a magnetic heating plate with different 

heat degrees and different revolution / minute and a PTEF stirrer is put inside the 

mixture to circulate the components according to the need of the polymer and fillers 

for heating and circulating to gain homogeneous dispersion. 

 Dispersion by Mixer  9.2.5.4

Dispersion is achieved for some matrices by using a mixer for lime or cement matrix 

with water solvent (Jancar et al., 2010; Z. Ji et al., 2010; Sen, Suresh, Vinoth Kumar, 

Kumar, & Pugazhenthi, 2016).  

 Dispersion of Nanomaterials  9.2.5.5

 In the Cement Matrix, a study on cement blended with carbon nanotube and 

nanofibres mentioned that the major factors that strongly influence the properties of 

nanocomposites is the dispersion of nanomaterials such as CNTs and CNFs. Due to 

presence of attractive forces (Van der Waals) of these nanomaterials, they have a 

strong tendency to agglomerate and this belongs to the polarizable of their electron 



Appendix A 

 

240 
 

systems. It is very difficult to disperse or infiltrate the agglomerates with matrices, 

and it represents the source of probable defects in nanocomposites. Dispersion is the 

method of decomposition of the agglomerates and distribution of nanomaterials 

within matrices or solvents (Parveen et al., 2013).  

 Compatibility 9.3

Compatibility is the ability of the matrix material to mix with another one or more 

matrices, fillers or nanofillers without the separation or segregation of some of the 

components (Alemán et al., 2007). Compatibility is mostly related to the reaction 

routes like the acyl chloride route which shows compatibility with certain polymers. 

Adding a coupling agent is a good method to achieve compatibility in addition to the 

physical and chemical methods. For example wood fibre surfaces are usually treated 

by physical or chemical methods to improve the quality of surfaces, or by adding a 

coupling agent to improve interfacial compatibility (Dang, Song, Wang, & Wang, 

2008; Tran, Fuentes, Dupont-Gillain, Van Vuure, & Verpoest, 2013). 
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Table ‎9.1 Summary of Matrices, Filler processing and Property Enhancement. 

No Matrix Filler Improved property Processing Ref 

1 
PVA 

polyvinyl 

alcohol 

< wt.1% CNT 
3.7, 4.3 and 1.7 times modulus of 

elasticity, tensile strength and 

toughness was improved 

Solution in water 
 

(J.  N Coleman et 
al., 2004) 

2 
PP poly- 
propylene 

< wt. 1% CNT 
3.1, 3.9 and 4.4 times modulus of 

elasticity, tensile strength and 
toughness improved 

Chlorinated solution 
 

(J.  N Coleman et 
al., 2004) 

3 

Film or 
aramid and 

CNT layer by 
layer 

CNT+ ANF Aramid 
nanofibers (the nanoscale 

version of 

polyparaphenylene  
terephthal amide) 

Tensile strength =361.2 MPa 
increased 101.7% E=34.4GPa 

increased 170.8% 

Solution DMSO / KOH 
layer by layer assembly 

 

[(Jiaqi Zhu, 2015) 

4 PC 5wt% CNT 
Tensile strength 43 MPa for neat PC 

and 63.9 for nanocomposite 

Melt extrusion and by 

solution 
 

(Fornes, Baur, 

Sabba, & Thomas, 
2006) 

5 PC 1-2 wt. % CNT 10% increase in tensile strength. 

Solution by chloroform 
and the CNT modified by 

stirring in vacuum with 
plasma 

 

(Y. Gao et al., 2006) 

6 
Polylactic 
acid PLA 

5wt% MCC 
Microcrystalline cellulose 

12% tensile strength  increase  
(Bandy opadh yay- Gho sh 

et al., 2015b) 

7 
Wood pulp-

based 

5wt% MFC micro-

fibrillated cellulose degree 
of fibrillation 30 passes 

300 MPa tensile strength 
Solution 

 
(Saxen a, 2013) 

8 
PP 

Polypropylen

e 

30wt% MFC 
60% tensile strength higher than neat 

PP 

Twin screw extruder 

 
(Suzu ki et al., 2013) 

9 Xylan from Aqueous suspension of 141% tensile strength increase Solution + Deionized (Saxen a, 2013) 
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Table ‎9.1 Summary of Matrices, Filler processing and Property Enhancement. 

No Matrix Filler Improved property Processing Ref 

Oat spelt sulfonated whisker water and stirring 95ºC 

15 min. and dried in 
room temp. 

 

 
10 

PVA 

polyvinyl 
alcohol 

5wt%MCC ultrasonic 
treated 

50% tensile strength increase 

Aqueous solution stirring 

500/min 80ºC 3hrs 
 

(Denis Mihae la 
Panaite scu et al., 2011) 

11 

Hydroxy-

propyl 
cellulose 

HPC as a 
matrix 

5wt% Micro-cellulose fibres 
20µm to prepare nano-

fibrillated cellulose 

57.4% tensile strength of comp. film 
higher than 1wt% loading and 

52.2%higher than neat HPC film 

Solution aqueous and 
high pressure 
homogenizer 

 

(S.-Y . Lee, Chun, Kang , 
& Park, 2009) 

12 PF 
2.2wt% BC Bacterial 

cellulose 

Tensile strength. improved to 370 

MPa 

Solution by methanol 
several layers 

 

(A. N. Nakagaito et al., 
2004; Oksm an et al., 

2016) 

13 
PCL 

polycaprolact

one 

5wt% CNC Cellulose 
nanocrystal 

Tensile strength improved from 185 
MPa to 220 MPa 

Melt mix by twin screw 
extruder 

 

(Mi et al., 2014) 

14 
Amylopectin 

Glycerol 

70WT% MFC 
 

micro-fibrillated cellulose 

Tensile strength improved from 2MPa 
to 130 MPa 

Solution in deionized 
water and stirring 

 

(Anna J. Svagan, My A. 
S. Azizi Samir, & 
Berglu nd , 2007) 

15 PC 4vol.% nSiO2 
Stiffness and toughness were 

improved 

Direct melt compounding 
Brabender mixer and 

then compression 

moulded 
 

(Zhou & Burkh art , 

2009) 

16 Epoxy 
49vol% BC bacterial 

cellulose 
Tensile strength improved to 102 MPa Solution 

(K.-Y. Lee, Aitom äki, 

Berglu nd , Oksm an , & 
Bismarck, 2014) 

17 HPE high MWNT Multi wall carbon Tensile strength from <50 MPa to Hot drawing 60-70 ratio (Jonath an N. Colem an , 
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Table ‎9.1 Summary of Matrices, Filler processing and Property Enhancement. 

No Matrix Filler Improved property Processing Ref 

density 

polyethylene 

nanotubes 150MPa  Khan , Blau, & Gun’ko , 

2006) 

18 PVA 
0.8wt% SWNT hydroxyl 

functionalize 
Tensile strength improved 70MPa to 

107MPa 
Solution 

 
(L. Liu, Barber, Nuriel , 

& Wagn er , 2005) 

19 PC 0.11wt% MWNT Thermal conductivity increased 

Melt mixing and hot 

press moulded 
 

(Khatu a, Maiti , 

Shrivastava , & Suin, 
2013) 

20 PC 0.5wt%nZnO 
0.5% Highly improved in tensile 
strength and decrease at 1wt% 

By miller the dry mix 
18000rpm 

injection moulded at 
280°C 

 

(Carrion et al., 2007) 

21 PC 

5wt% AL2O3 mixed by 

hand with PC pellets  
alumina before grafted with 

coupling agent 

Transparency at (1-2)wt. %alumina 

Compounding with 
alumina 5000 rpm 249ºC 

for 30-45 s the molten 

press into plates before 
mix alumina sonicated 

with THF 
 

(Chand ra , Turng, 

Gopalan, Rowell , & 
Gong, 2008) 

22 PC 
Functionalize Alumina 

nano-whisker with PC 

Tensile strength enhanced  from 
32MPa to 66MPa and E. Good 

transparency no effect decrease 

Polymerization in situ 

 

(Hakim elahi , Hu, Rupp, 

& Colem an, 2010) 

23 PC 0.5WT%TiO2 
Impact 85 on Izod test 91.4% 

whiteness 

Solution resin in situ 
polymerization 

 

(Umed a, Hashim oto , 
Satou, Furukawa , & 

Nishi , 1994) 

24 PC 2vol% nSiO2 

Hardness shore D improved from 

521N neat PC to 1330 N 
nanocomposite 

Melt processing by mixer 
60rpm, 240°C for 30 

min. compress moulding 
sheets 

 

(Luyt et al., 2010) 
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Table ‎9.1 Summary of Matrices, Filler processing and Property Enhancement. 

No Matrix Filler Improved property Processing Ref 

25 PC nSiO2 sol gel 

270% increase E, 25% hardness, 20% 

fracture toughness 
excellent barrier 

Sol gel processing 

 

(Asuka & Sigmu nd, 

2009) 

26 PC 10% MFC 

Modulus of elasticity enhanced 100% 

tensile strength 24% by layers on PC 
and layers of MFC 

Solving of MFC and 
making film layer of 

MFC then by hot press 
on pc 

 

(Panthapulakk al & Sain, 
2012a) 

27 PC 4wt% nSiO2 aerogel 

Tensile strength from neat PC 63.41 
MPa to 66.14 comp. Stiffness and 

toughness 43% improved, 
transmission didn’t change 

Melt mix compounding 

 

(R. J. Zhou & T. 

Burkhart , 2010) 

28 PC 

5wt% nSiO2 modified MPS 

methacryloxyr-opyl  tri-
metho-xysilane 

Hardness neat PC= B pencil hardness 

PC/5wt% 
nSiO2/ MPS=HB 

Solution method by THF 
solvent separately and 

mixed, dried and then by 
melt extruder 

 

(Chau, Hsu, Chen, 
Yang , & Hsu, 2010) 

29 PC 13% Hemp or Flax 

Tensile strength  PC/ Hemp fibres 

increase  1.7% and 2.7% PC/n Flax 
nano-cellulose to neat PC 

Hot press film of nano-
cellulose on sheet of 

polycarbonate between 

two steel plates 210ºC 
800lb load 

 

(Suhara Panthapulakk al 

& Sain, 2013) 

30 PC TiO2, TiO2 modified 

5wt %TiO2, 5wt% TiO2 modified 
good clearance, adhesion 100% 

modified, 80% unmodified. 

Hardness pencil unmodified 5H, 
modified 6H 

UV protector 20 week test under 
radiation without losing their 

By sol gel technique and 

spray coating dried at 
130°C 

 

(D.K. HWANG et al., 
2003) 
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Table ‎9.1 Summary of Matrices, Filler processing and Property Enhancement. 

No Matrix Filler Improved property Processing Ref 

properties 

31 PC CNT 

1wt% tensile strength increased 20%,E 

20% 0.5wt% MWNT/P3HT-G-PcL 
compatibilist and by solution blending 

tensile strength and modulus of 

elasticity (47, 46) % respectively. 

By three methods: melt, 

solution and in situ + 
melt mixing 

 

(Spitalsky , Tasis, 
Papagelis, & Galiotis, 

2010) 

32 

PC/15wt% 
SMA styrene 

co-maleic 
anhydride 

nClay( SFH ) flurohectorite 
or C185 SFH 

[Optimimum mixing is 
82wt%PC 

10wt%SMA 
0wt%SFH 

8wt%C185 SFH or 5% after 

burning] 
 

Thermal stability; HDT PC= 129ºC 

nClay=136ºC 
HDTPC/ 

nClay=116°C 
Tensile  strength.PC = 91MPa for PC/ 

nClay = 

111MPa 

Melt mixing 

 

(Mitsun ag a, Ito, Ray, 

Okam oto , & Hironaka , 
2003) 

33 PC 
nSiO2 or 

(PU+0.5wt%nClay 40) 

Tensile strength.=36.5 MPa PC/nSiO2 

 50.9MPa 
(PU+0.5wt%nClay40) 

Synthesis in situ 

 

(Rafał Poręba1, Milena 

Špírkov á, & Hrdličk a, 
2011) 

34 PC 

0.02-0.03 wt. % 
(Na+  MMT) with difference 

amine. 
Better improvement is for 

high Mw PC 

Tensile strength PC neat= 50.9 MPa, 
PC/MMT 

(4.4-4.5) wt. %= 70.5MPa and 
83.9MPa 

for PC/ 2.4wt. % MMT 

Melt mixing twin screw 

extruder 
 

(Yoon , Hunter , & Paul , 
2003) 

35 
PC/PS 

polystyrene 
Organoclay 

Tensile strength neat PC=59.5 MPa, 
PS neat=36.5 MPa, PC/PS=61.5 MPa 

PC=PS=3wt%nClay=66.8 MPa , 

tensile strength decreased more than 
3wt% 

Melt mixing technique 

 

(A. K. Singh & Prakash, 

2014) 

36 PU MMT Montmorillonite 
Tensile strength physical, thermal 

stability properties were improved 

Melt processing 

 

(Dan , Lee, Kim, Min, & 

Kim, 2006) 
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Table ‎9.1 Summary of Matrices, Filler processing and Property Enhancement. 

No Matrix Filler Improved property Processing Ref 

37 
PU water 

borne 

nSiO2+3 aminpropyl-

triethox-silane + HCl 
(for good compatibility with 

PU) 

Thermal insulation is 0.05 w/ mK and 
light transmission is above 80% 

Solution in methanol 

solvent 
 

(Liao et al., 2012) 

38 PU 3wt%nClay 

110% modulus of elasticity increased  

170% tensile strength increased and 
110% tear strength increased 

if nClay is fully exfoliated 

Solution method 
 

(Jeon & Baek, 2010b; 
Pattanayak & Jana, 

2005) 

39 PU 5wt%nClay 
Tensile strength increased and good 

thermal stability 
Solution method 

 
(Pattanayak & Jana, 

2005) 

41 PVC nClay 
Good for fire retardancy and thermal 

stability 

Melt mixing by 

Brabender device 
 

(Awad et al., 2009) 

43 
Polypropylen

e 
nClay 

Enhanced fire retardant and thermal 

stability by 20ºC 

Melt mixing by Twin 
screw extruder 

 

(Naren der Kumar & 

Dahiya , 2013) 

44 
HDPE 

High density 
poly-ethyl 

1wt% CNT+ 3wt%MMT 

Tensile strength and flexural strength 
increased thermal stability, improved 

decomposition temp. increased from 
382-431 at 20wt loss% 

dispersion of CNT due to MMT was 

very well and its larger aggregates 
were disappeared 

Melt mix rotating Twin 
screw extruder 

 

(M. E. Ali Mohsin , 
Agus Arsad , & 

Alothm an, 2014) 

45 

TPU 

thermoplastic 
polyurethane 

nClay (Cloisite®30B) 

TPU3WT5nClay was the best 

improvement  in tensile strength 28% 
increase and increase in tear strengths 

Twin screw extruder and 

bulk polymerization of 
polysterpolyol and 

diphenylmethanedi- 
isosyanate with 1,4-

butanediol 

 

(Pizza tto et al., 2009) 
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Table ‎9.1 Summary of Matrices, Filler processing and Property Enhancement. 

No Matrix Filler Improved property Processing Ref 

46 
PU WATER 

BORNE 

Silica hollow spheres 

treated by 
3-amino-propyl-triethoxy-

silane (KH55) and 
hydro- 

chloric acid 

excellent thermal isolation 0.05 w/mk 

and light transmission above 80% 

Solution mix ethanol 

solvent 1:1 with WPU 
emulsion. Then dried  on 
glass sheet as a film after 

evaporation of ethanol 
and water 

 

(Liao et al., 2012) 

48 
PC 1/8 
pyridine 

3wt%CNC1/4 PC 

Mechanical properties was improved 

thermal stability was improved for PC 
coated CNC  but decreasing in thermal 

stability due to degradation 

Firstly, by dissolving 
with pyridine and water 
with magnetic stirring 

and precipitating and 
then diluted by melt 

extrusion 
 

(Mariano , El Kissi , & 
Dufresne , 2015) 

49 PC 18wt%CNC 
T. modulus increased 100% tensile 

strength increased 30%  Good thermal 
stability at high temp. 

Fibre CNC press 

moulding 205°C sheets 
in between polycarbonate 

sheets 

 

(Panthapulakk al & Sain, 
2012a) 

50 PC nClay 

Thermal stability controlled by 
surfactants and remarkable 

improvements of mechanical 
properties tensile strength from (91-

116)MPa 

Melt method 

 
(Mitsun ag a et al., 2003) 

51 PU 2wt%nClay 

Modulus of elasticity was improved 

but dimension stability was 
deteriorated 

Solution mix foam 
 

(Jahanm ardi , Kangarlou , 
& Dibazar , 2013) 

52 

 

Geopolymer 
(cement) 

 

3wt%very fine nano-silica 
20nm and W/C 0.6 

 

Porosity and permeability declined 
33.3% and 99% respectively and 

 

Cement with nanosilica 
dry mixed and then the 

 

(Ersh adi et al., 2011) 
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compressive strength jumped from 

10.24 MPa to 26.21 MPa 

water and admixture 

were added at propeller 
4000 rpm 

 

53 
Bis-GMA 

and 

TEGDMA 

nSiO2 porous thermally  
sintered 12nm 

Improvement in flexural modulus and 
fracture toughness. 

 

The fume silica was 

sintered at different 
temperatures of 

1200◦C, 1300◦C, and 
1400◦C using an electric 
furnace 20ºC/min. and 

then ground by ball mill 
passed 500 mesh ASTM 

sieve. The micro-filler 
and sintered nano-filler 

silanised with 1 and 

3wt% 𝛾-MPS 

prehydrolyzed 1hr in an 
aquious solution of 
70wt% ethanol and 

30wt% deionized water 
3-4 PH adjusted by 

droplets of acetic acid 
 

(Atai et al., 2012) 

54 
Geopolymer 

cement 
nSiO2 

Enhance resistance of chloride 

strength and durability 

4wt% with water and 
mix with high speed 

 

(Aggarwal et al., 2015) 

55 

Gepolymer 
cement and 

porous 
concrete 

nSiO2 

Strength enhancement, reduce Ca 
leaching, refine pore structure increase 

durability and accelerate hydration 
rate 

Mixed by a propeller 

mixer 
 

(Yusak et al., 2014) 
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pavement 

[(15-30)% of 
fine 

aggregates 

are removed] 
high 

permeability 
and weak 
strength 

56 

Acrylonitrile 
butadiene 

rubber(NBR) 
 

Nano-silica 
Greatly increased in modulus of 

elasticity, tensile strength  and thermal 

resistance also was increased 

Solution by using liquid 
NBR polymer 

 

(K.Rajk um ar, Prem 
Ranjan, P.Thavam ani, 

P.Jeyanthi , & 
P.Pazhanisam y , 2013) 

57 

Concrete 

substrates 
and plain 

resin 

separately 

4wt% 
n Clay 

1-Barrier as coating and sealer film on 
the surface of concrete such as 

polyurethane, acrylic and epoxy resin. 

2-Pore liners that line concrete surface 
pores like silane, siloxane and 

fluorinated polymers 
3-Pore blockers which penetrate 
concrete and block pores as liquid 

silicates and liquid silico-fluorides. 
These nanomaterials enhanced 

mechanical and barrier properties, 

thermal stability, fire retarding ability, 
wear resistance and others 

By solution with solution 

polymers and solvents 
and water 

 

(Scarfato et al., 2012) 

58 Geopolymer CNT, nTiO2,  nAl2O3, CNT, nSiO2, and copolymers reduced Solution method (Feldm an, 2014) 
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cement nSiO2and nClay with 

different copolymers based 
on acrylic acid, acrylic 
amide incorporating 

colloidal nano-silica 
PVA with MMT 

porosity increased mechanical 

properties pollutant resisted and self-
cleaning property (TiO2). Resistance 

to fungal effect Ca(OH)2 and 

ZnO/TiO2 

 

59 

Starch and 

calcium 
carbonate 

CNF50/50 
The result of fracture of toughness ten 

time more the plain board 

Solution method 

 

(Bilod eau & Bousfield , 

2015) 

60 
Fly ash based 

geopolymer 
1wt% nSiO2 with or not 
with alkaline solutions 

27% Flexural and 28% compression 
strength of geopolymer were enhanced 

Dry mix and wet mixing 

but dry mix give better  
results 

 

(H. Assaedi , F. U. A. 
Shaikh , & Low, 2015b ) 

61 

Slag 

geopolymeric 
mortar with 

6% NaOH as 
alkaline 

activation 

0.1wt% MWCNT 
superplasticizer Gelenium 

Ace-30 was used (1.4-2.2)% 
 at 40°C 

Compression strength was enhanced 
and the water absorption value  and 

drying shrinkage decreased 

Solution mix (0.34-
0.39)% w/binder 

 

(Khate r & Abd el 

Gawaad, 2016) 

62 
Geopolymer 
incinator fly 

ash 20wt% 

Si/Al 1:3 ratio (1.8-1.9) and 

1.0<Na/Al <1.29 ratio it can 
be(1.0) with Alkali 

activation it is available 
commercially as kaolinite 
for ceramic tiles industry 

Compressive strength increases only 
for Si/Al ratio (1.15-1.9) the chemical 

stability is very high and low release 
of heavy metals 

Alkaline solution  by 

dissolving  Sodium 
Hydroxide pellets in a 

Sodium silicate 
solution(SiO2/Na2O3:1) 

Gepolymer IFA was 

added to alkaline solution 
 separately from meta-

kaolin and the meta-
kaolin was added with 
stirring and the paste 

(Lancellott i et al., 2010) 
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poured into mould and 

the cast stays for 24 hrs 
at room temp and 24hrs 

at 50ºC 

 
 

63 
Geopolymer 

(fly ash) 
2wt%nClay 

(Cloisite30B) platelets 

Mechanical properties were improved. 
The highest flexural increased 20% 
and compressive strength 23% also 

high flexural modulus and hardness at 
2wt% and better thermal stability not 

only these but the porosity decreased 
and the resistance to water absorption 
was increased at last lower moisture 

content 

Adding alkaline solution 

to fly ash Geopolymer 
ratio 0.75 Sodium 
silicate/Sodium 

Hydroxide =2.5. The 
materials were mixed in 

a Hobart mixer 10 min., 
low speed 10 min. high 
speed and adding nano-

clay. 
The mix was poured in 

wooden mould under 
vibration 2 min. and 

covered by plastic film 

and 80°C in oven24 hrs 
 

(Assaedi , Shaikh , & 
Low, 2016) 

64 Geopolymer 

rGO reduction of graphene 

oxide with alkaline solution. 
GO powder/ Geopolymeric 

slurry ratio was tested. 

 
rGO/ geopolymeric 

composite was prepared by 
adding meta-kaolin powders 

Fracture toughness was increased 
61.5% at 0.5wt% of  rGO 

Maximum value is 17.9 MPa at rGO 
0.3wt%. Flexural strength was 

improved 

Silica solution with KOH 

3days BY magnetic 
stirring to make 

Geopolymeric solution. 

GO powder dispersed by 
ultrasonic in distilled 

water 3hrs at the end 100 
ml of GO solution was 

(Yan et al., 2016) 
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and mixing 45 min using a 

high shear mixer and ultra-
sonication 

added to mol 

Geopolymeric solution 
and stirring 15 min. and 

obtain Rgo/ 

Geopolymeric mixture at 
25º and meta-kaolin was 

added and mixed and 
casted in plastic mould 
cured at 60°C 7 days 

 

65 Cement 
Polyethylene woven fabric 
5,7, or 10 fills/cm and 22 

warps /cm 

Flexural strength was improved from 
about 9 MPa to 18MPa for fabrics and 

20 for crimped yarns. 

w/c=.3 of paste matrix 
with 8 layers of fabrics 

moulded at intensive 
vibration 21 days in 
water to test after 

demoulding for 1 day 
 

(Peled , Bentu r, & 
Yank elevsky , 1999) 

67 Cement GO Graphene Oxide 

Accelerate the hydration rate of 

cement as a catalyst behaviour  and 
enhance the intensity due to the 

oxygen containing which provides 

adsorption sites for water and cement 
and the water on GO constitute water 

reservoir and water transport channels 
for further hydration of cement. This 
means novel factor to promote the 

hydration of cement. 

40g cement 120g sand 

12g water and 4g 
polycarboxylate super 

plasticizer solution. GO 

was suspended in 
distilled water and 

sonicated 3hrs at last, the 
cement and sand were 

added 

 

(Lin, Wei, & Hu, 2016) 

68 
Portland 

cement 

(0.03wt %) Graphene (GO) 
Graphene:  Is a one-atom 

thick, honeycomb like sheet 

- Tensile strength 50% and comp. 
strength 46% was increased. 

-Porosity decreased from 32.8% plain 

1-GO synthesized by 
modified Hummer's 

method (chemical 

(Gong et al., 2014) 
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3-D conjugated system cement to 28.2%. 

- Degree of Hydration increased: 
a- Non-evaporable water by 9%. 

b- Calcium hydroxide 6%. 

 

oxidation) was diluted in 

distilled water 30min. 
using Branson digital 
sonicator (VCX 750, 

750W, 30%Amplitude). 
ASTM TYPE1 (ASTM C 

150) (ASTM 2012) were 
used. 

2- The resultant stable 

GO (0.002) g/mol was 
diluted in further tap 

water to produce 
GO/cement composite 

w/c 0.5(GO/water) 

included and a high 
speed shear mixer (CTE 

7000) used within ASTM 
C1738-11a,) (ASTM 

2011). 

3- The steps are the go 
solution in mixer at low 

speed (100-200) rpm 15 
min. cement powder 

added 30 s then 4000rpm 

for 60 s. 
4 - The mixer was 

stopped and the collected 
cement paste on the sides 
was scraped down. The 

mixer was operated 
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12000 rpm for 30 s, and 

stopped 15 s, then 
operated 30 s. 

 

69 Cement 

1.5wt% GO 
0.5wt%Polycarboxylate as a 

superplasticiser  for 
dispersion 

Tensile strength 48% increase at 

1.5wt% SEM Field emission scanning 
electron microscopy showed well 

dispersion and no aggregates 

observed. 
-Also showed growth of the 

(C-S-H) gel 

1-G powder were 

oxidized to graphite 
oxide by modified 

Hummers method 
1g G powder, 0.5g 

sodium nitrate, added 

to70 ml H2SO4 in an ice 
bath 

3g KMnO4 added 
gradually and stirred 2h 
then diluted in deionized 

water and re-dispersed in 
(DI) water and sonication 

(S450D, 35% amplitude). 
The mixture was filtered 
and washed with diluted 

HCl to remove metal 
ions. Finally washed with 

(DI) to remove the acid. 
2-[1:3] C/S and w/c 0.4 

c=146.86 g water=59.62g 

GO=2.2g sand=440.58 g 
additive=.73g 

Total=650g 
GO gradually added to 

water containing 

(Babak et al., 2014; 
Leila Shahraiari & 

Athawale, 2014) 
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polycarboxylate ether 

PCE as super plasticizer 
in sonicated mixer 5 min 
after each addition to be 

40 min. sonication total 
time, cement powder. 

Sonication 
(amplitude=50%, 
frequency=20Hz, 

power=500W, titanium 
alloy probe width 13 mm 

and constant applied 
energy=1900J/min.). 

cement added to 

dispersion GO and w/c 
0.4 mixed 30s(rotary 

mixer) 
 

70 Cement 3wt%GO 

Mechanical properties strongly 
increased, for example modulus of 

elasticity increased from 10 to 29 GPa. 

GO is enlarge microstructure of CSH. 

reference is Portland 
cement water and sand in 

contrast cement with 
3wt% GO. 

The steps are GO 
suspended in distilled 

water and sonicated 3h 

then cement was added 
w/c ratio still 0.6 at the 

end the sand was added, 
The mortar was placed 
on glass plate and the 

(Horszczaruk, 

Mijowska, 
Kalenczuk, 

Aleksandrzak, & 
Mijowska, 2015) 
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ripening samples after 

they  were stored in a 
humidity chamber at 

constant temperature of 

20ºC. 
 

71 Cement GO 0.05wt% 

Increases comp. 
str. 15-33% and 

Flexural strength. 
41-59% 

Dispersion by stirring, or 

lime saturated water 
followed by sonication is 
the best way than stirring 

and sometimes needs 
surface modification with 

sonication or stirring 
 

(Chuah et al., 

2014) 

72 Geopolymer rGO 

Fracture toughness increased 61.5% 

rGO 0.5wt% and the flexural strength 
of Rgo/GP Geopolymer increased to 

17.9MPa at 0.3wt% 

The geopolymeric 

solutions were prepared 
by mixing silica 

sol with KOH for 3 d 

with the help of magnetic 
stirring. Dispersions were 

prepared ultrasonically 

dispersing GO powders 
in distilled   water for 3 

h. GO dispersion 100 mL 
was added to 1 mol 

geopolymeric solution 

and stir for 15 min to 
accomplish the simple in 

situ reduced process and 
obtain rGO/geopolymeric 

(Yan et al., 2016) 
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mixture at 25°C. rGO/ 

geopolymer composite 
slurry was prepared by 
adding the meta-kaolin 

powders and mixing for 
45min using a high-shear 

mixer and ultra-
sonication. Finally, the 
slurry was cast into a 

plastic container and 
cured at 60 1C for 7 d. 

 

73 
Fly ash based 

geopolymer 
1%GNP-Graphene nano 

Platelets 
Compressive and flexural stress were 

increased 44% and 116% 

Alkali activator solution 
was prepared by mixing 

16 M NaOH with 

theNa2SiO3 solution at a 
NaOH ratio of 2.5. The 

activator to binder 
ratio of 0.5 and 

additional water to fly 

ash ratio of 
0.1weremaintained 

for all mixes. GNP fly 
ash based geopolymer 

composites were 

produced in two separate 
stages of preparation of 

the geo- polymer matrix 
and sonicated GNPs, 
which were ultimately 

(Ranjbar, Mehrali, 

Mehrali, 
Alengaram, & 

Jumaat, 2015) 
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mixed together. The 

GNPs were sonicated in 
the mixing water with a 

geo-polymer using a 

Branson B3210 
Ultrasonic for 5 mins to 

separate the bundles into 
individual flakes, 

producing a uniform 

suspension. Alkali 
activators were gradually 

added to the fly ash and 
mixed for 7 mins. The 

graphene suspension was 

added to the fresh 
geopolymer and mixed 

for 3 mins to produce a 
homogenous and 

workable mixture. The 

material was poured into 
moulds and vibrated for 

30 s 
and maintained outside 
for 1 h. Afterward, the 

samples were maintained 
in a 65 °C oven for 24 h. 

 

74 Geopolymer 1wt% rGO Fracture toughness improved 17% 
The geopolymeric 

solution was prepared by 
mixing silica sol With 

(Yan et al., 2015) 
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KOH for 3 days with 

magnetic stirring. GO 
powders (1000 mg) were 
ultrasonically dispersed 

in 60 mL of distilled 
water for 6 h. Then, the 

obtained GO solution 
was divided into 4 parts. 
Each part was added into 

0.1 mol geopolymeric 
solution and stirred for 

15 min to obtain the 
mixed solution, the 

mixture was cured at 

60ºC (according to the 
best cured temperature of 

geopolymers) for 0.25, 3, 
6 and 72 h. In this step, 
GO is reduced in situ. 

The obtained metakaolin 
powders were added to 

the GO/geopolymeric 
solutions and using both 

ultrasonic and 

mechanical stirrer mixed 
for 45 mins to get rGO 

/geopolymer slurry. The 
slurry was poured in a 

plastic container, 

removed pores in 
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vacuum oven and cured 

at 60 1C for 7 days to 
realize the in situ 
synthesis of rGO/ 

geopolymer composites. 
 

75 

Graphene-
like(G- 

sepiolite)  

clay mineral 
sepolite is 

white rocks 
(Mg4Si6O15 

(OH)2 

6(H2O)) or 
Si12O30Mg8 

(OH,F)4(H2
O)4·8H2O 

This product grafted with 

Organo-alcoxy- 
silane 

It is new approach preparing  carbon 
clay nanocomposite 

Sepiolite Si12O30Mg8 

(OH,F)4(H2O)4·8H2O 
from Vallecas-Vicálvaro 
clay deposits (Madrid, 

Spain) commercially 
named Pangel S9. The 

present results show a 
new approach for the 

preparation of carbon–

clay nanocomposites 
from natural and cheap 

resources such as sucrose 
and sepiolite. The 
process implied 

formation of intermediate 
caramel sepiolite 

nanocomposites. 
Resulting carbon 
sepiolite materials 

showed good electrical 
conductivity (around 

10−2 Scm−1 
at room temperature) and 

were directly used as 

(Gómez-Avilés, 

Darder, Aranda, & 
Ruiz-Hitzky, 2010) 
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electrode of rechargeable 

lithium batteries without 
addition of conducting 

carbons The presence of 

sepiolite fibers in the 
nanocomposites instead 

of montmorillonite, also 
had the advantage to 

functionalize the 

nanocomposite by 
reaction with 

different organosilanes. 
In this way, new 

properties associated to 

the functional groups of 
the silanes can be 

designed. 
 

76 

Diposide (Di) 
as scffolds 
(Ca-SiO2-

MgO). It was 
candidated as 

bone repair 
as perfect 

biocompatib-

ile 

1wt% GPN's graphene 
nanoplatelet 

Compressive and fracture strength 
improved 102% and 34% respectively. 

 

GNP's and Di powder 
were separately  added to 

DMF and their solutions 
sonicated using 

Ultrasonic cleaning 
instrument (Kudos, 

SK3300H,59 kHz) for 

1h. The dispersion 
solutions were combined 

and sonicated 30 min 
more before ball milling. 

The composite drying  

(Shuai et al., 2016) 
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100°C 1 day 

 

77 Bitumen (0.3-0.4) wt% GO 
Strength, consistency, deformation and 

softening point of bitumen were 
improved 

80/100 pen  virgin 
bitumen in oven 160ºC 

2h, 500g of virgin 

bitumen was blended 
20mins at 2000rpm high 

shear mixer. 
GO is blended with 

virgin bitumen or sheared 

in the same rate and time 
[3.5G g +80 ml 

Phosphoric acid +18g K 
Permanganate slowly 

added +100ml hydrogen 

peroxide(10%)+100 ml 
distilled water. Vacuum 

filtered 0.2 Micro 
cellulose acetate 

membrane. Wash the 

residual cake by 5% HCl, 
then centrifuge 

10000rpm for 29 min. 
Centrifuge was continued 

until PH is within 4-5 

then dry in 70°C if PH is 
not within this range 

repeat centrifuge. 
 
 

(Lam, 2015) 
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78 Cement 
2.5wt% Graphene 

naoplatelets GNP'S 

Water penetration depth, chloride 
diffusion coefficient and chloride 

migration coefficient were 
significantly decreased 64%, 70% and 

31% respectively, GNP work as a 
barrier. 

Water/cement/sand were 

0.485:1:2.75 by weight 
(ASTM C109). GNP was 

added to naphthalene 

sulfonate based 
superplasticizer ( SP) in 

aqueous solution. The 
uniformly dispersed 

aqueous solution of GNP 

and SP was added and 
mixed with cement and 

sand. SP is 50% of GNP. 
Here in this study 1500 
ml SP added for every 

2.5% GNP. 
GNP+SP+WATER hand 

stirred 1 min. then ultra-
sonicated 1 h in a water 
bath to cool down. Then 

added to the mixer of 
cement and sand in a 

Hobart mixer. 
Specimens: 3 of 

50*50*50 mm cubes,8 of 

40*40*160 mm prisms,3 
of diam. 100*50 disk and 

3of d 100*200mm 
cylinders at 28 days 

tested for ASTM C109 

compressive strength and 

(Du & Pang, 2015) 



Appendix A 

 

264 
 

Table ‎9.1 Summary of Matrices, Filler processing and Property Enhancement. 

No Matrix Filler Improved property Processing Ref 

ASTM C348 for flexural 

strength and two 
cylinders were tested for 

water permeability 

according BS EN 12390-
8 

 

79 
Cement 

 

0.05wt% 
GO 

 

Improved flexural strength of cement 
(41-59)%, compressive strength (15-

33)% patent mentioned that 46% 

higher than neat cement, decrease total 
porosity from (32.6)% to(28.2)%, 

improve the ductility and degree of 
hydration 

By solution method 

 
(Chuah et al., 2014; 

Z. Pan, DUAN, Li, 
& Collins, 2013) 

80 Cement 0.01wt% GO 

0.01wt% GO Hinder effectively the 

ingress of chloride ions, 0.03wt% GO 
significantly enhanced the asorbtivity 

to resist permeability 

Water dispersion solution 

(Mohammed, 

Sanjayan, Duan, & 
Nazari, 2015) 

81 Cement G platelets 

Enhanced thermal properties or 

reduction in early age thermal 
cracking and durability improvement 

of the concrete structures 

Solution mix by 
commercial mixer w/c 

0.5 

(Sedaghat, Ram, 
Zayed, Kamal, & 
Shanahan, 2014) 

82 Cement 
0.1, 0.3, 0.5wt% 

G platelets 

No significant improvement in 
compressive and flexural strength 
happened due to the difficulty in 

dispersion of GP in mortar mix 

Direct mix of GP in 
cement mortar 

(Radhika Pavgi, 
Dr. Osman 
Ozbulut, & 

Daghash, 2015) 

83 Cement 0, 0.5, 1.5. 2.5wt%GO 
Remarkably was accelerated the 

hydration rate of cement due to its 

catalytic behaviour. 

Cement/ sand 1:3 and 
w/c= 0.3 super plasticizer 

solution (polycarboxylate 
PC) 0.1wt% for cement. 

(Lin et al., 2016) 
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GO was suspended and 

sonicated 3h in distilled 
water, then PC solution 
was added, cement and 

sand were added. 

84 
Fly-ash 

(geopolymer) 
0.5, 1, 2, 3wt% Nano-silica 

Enhanced microstructure, improved 

compressive and flexural strength 

Alkaline solution to 
fly ash ratio of 0.75 was 

used and the ratio of 
sodium silicate solution 

to sodium hydroxide 

solution was fixed at 2.5. 
The concentration of 

sodium hydroxide 
solution was 8 M, and 

was prepared and 

combined with the 
sodium silicate solution 

one day dry before 
mixing. A dry and wet 
process. For dry-mix 

process, the nanosilica 
was added first to the fly-

ash at the dosages of 0%, 
0.5%, 1.0%, 2.0% and 

3.0% by weight. The fly-

ash and nanosilica were 
dry-mixed for 5 min in a 

covered mixer at a low 
speed and then mixed for 

another 10 min at high 

(H. Assaedi et al., 

2015b) 
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speed until homogeneity 

was achieved. The 
alkaline solution was 

then added slowly to the 

fly-ash/nanosilica 
powders in the Hobart 

mixer at a low speed 
until the mixes became 

homogeneous, then 

further mixed for another 
10 min on high speed. 

85 

Concrete 
(cement and 

fly ash + fine 
agg. + coarse 

agg.) 

Nano-silica 
Nano-SiO2 can improve the resistance 

of water penetration of concrete. 

The superplasticizer TW-

7 is naphthalene-type 
with a solid content of 

40%. The coarse 

aggregates used are the 
continuous grading 

crushed gravels, with the 
maximum 2 mins. 

Though nano-SiO2 

cannot be dissolved in 
water, a smaller amount 

of nano-SiO2 can be 
dispersed evenly by the 
superplasticizer TW-7. 

The cement, fine 
aggregates, coarse 

aggregates and fly ash 
were mixed in a rotary 

mixer for 30 s. The 

(T. Ji, 2005) 



Appendix A 

 

267 
 

Table ‎9.1 Summary of Matrices, Filler processing and Property Enhancement. 

No Matrix Filler Improved property Processing Ref 

ready-mixed liquid 

including water, TW-7 
and nano-SiO2 was 

poured into the rotary 

mixer slowly. The 
concrete mixture was 

mixed for another 1.5 
min. 
 

86 Geopolymer 
1wt% nano-silica and 1.5 

silica/Na2O 

Compressive strength of nano-silica 

increased more with 1.5 SiO2/Na2O , 
microstructure early become dense, 

less porosity 

Na2SiO3solution mixed  

with NaOH in distilled 
water, stirring and nano-

silica was added to the 
alkali activator. 

Mechanical mixer was 

used to mix 1000 g meta-
kaolin solution few min. 

(K. Gao et al., 
2014) 

87 

Cement 
(ordinary 

Portland 
cement OPC) 

nano-clay (NC) and 
calcined nano-clay(CNC). 

Calcined nclay is prepared 
by heating nclay (cloisite 
30B) platelets 900ºC 2h 

1wt% calcined nclay was reduced 
31.2% porosity and 34% water 

absorption, increased 9.7% density, 
40% compressive strength, 42.9% 

flexural strength, 40% fracture 
toughness and 33.6% impact strength, 
31.1% Rockwell hardness and 3.3% 

thermal stability of cement 
nanocomposite 

Ordinary Portland 

cement (OPC) is partially 
substituted by nano-clay 
(NC) or calcined nano-

clay (CNC) of 1, 2 and 
3% by weight of OPC. 

The OPC and NC or 
CNC were first dry 

mixed for 5 min in a 

Hobart mixer at a low 
speed and then mixed for 

another 10 min at high 
speed until homogeneity 

(A. Hakamy et al., 

2015) 



Appendix A 

 

268 
 

Table ‎9.1 Summary of Matrices, Filler processing and Property Enhancement. 

No Matrix Filler Improved property Processing Ref 

was achieved. The binder 

is either nano-clay-
cement dry powder or 

calcined nano-clay-

cement dry powder. The 
cement nanocomposite 

paste was prepared 
through adding water 

with a water/binder ratio 

of 0.485. The cement 
nanocomposite 

containing 1, 2 and 3 wt. 
% NC is termed as 
NCC1, NCC2 and 

NCC3, respectively. And 
also the cement 

nanocomposite 
containing 1, 2 and 3 wt. 

% CNC is termed as 

CNCC1, CNCC2 and 
CNCC3, respectively. 

The cement paste (C) 
was considered as a 

control. 

88 

Geopolymer 

(solid 
aluminosilica

te + alkaline 
solution from 

sodium 

2wt%nClay 

2.0 wt. % of  nano-clay decreases the 

porosity and increases the nano 
composite’s resistance to water 

absorption significantly. The optimum 
2.0 wt. % nano-clay addition exhibited 
the highest flexural  and compressive 

Alkaline solution to fly 

ash ratio of 0.75 was 
used and the ratio of 

sodium silicate solution 
to sodium hydroxide 

solution was fixed at 2.5. 

(Assaedi et al., 

2016) 
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hydroxide s 

and sodium 
silicate grade 

D solution) 

and fly ash 

strengths, flexural modulus and 

hardness. Nano-clay behaves not only 
as a filler to improve the 

microstructure, but also as an activator 

to facilitate the geopolymeric reaction, 
also better thermal stability than its 

counterpart pure geopolymer. 

The concentration of 

sodium hydroxide 
solution was 8 M, which 

is prepared and combined 

with the sodium silicate 
solution one day before 

mixing.The nano-clay 
was added to the fly-ash 
at the loadings of 1.0%, 

2.0% and 3.0% by 
weight. The fly-ash and 

nano-clay were first dry 
mixed for 5 min in a 
Hobart mixer at a low 

speed and then mixed for 
another 10 min at high 

speed until a uniform 
mixture was achieved. 

89 Cement fly ash 

(i) w/b ratios=water/binder have 
determinant impact on all 

characteristics of pore structure; (ii) 
fly-ash replacement ratio can influence 

the pore 
structure significantly at early age but 
this influence becomes less important 

with sample age by fly-ash hydration 
process; (iii) the total porosity and 

specific surface area are well 
correlated with the chemical kinetics 

of hydration through hydration degree 

Cement paste samples 
were prepared with two 

water to binder (w/b) 
ratios (0.3, 0.5), and four 

fly-ash contents. The fly-
ash content, ff, is noted 

as the mass ratio between 

fly-ash and binder (fly-
ash and cement). After 

mixing, cement pastes of 
different mixtures were 
cast into cylinder tubes 

(Zeng et al., 2012) 
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or the formed gel/space ratio but the 

critical pore size is rather independent 
on the chemical kinetics. 

of 10mm diameter and 

placed in room condition 
with temperature 

controlled at 20 °C. After 

that, the hardened 
specimens were 

demoulded from the 
tubes at the age of 3 d, 

then immersed into 

water. To avoid the 
possible leaching, the 

ratio of specimen to 
water is kept at roughly 
1:1 in volume or 2:1 in 

weight. At the ages of 7 
d, 28 d and 90 d, 

specimens were taken out 
of water and crushed to 
particle samples of size 

1mm–2mm for later 
experiments. The crushed 

particles were selected 
deliberately from the 
middle part of cylinder 

specimens to avoid the in 
homogeneity of material. 

The crushed samples 
were then vacuum dried 
immediately to stop the 

hydration and control the 
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possible carbonation 

extent as low as possible. 

90 Cement 0.2vol%Nanocellulose 
30% increase flexural strength , the 
degree of hydration was increased 

Mixing CNC 
suspensions, water and 

cement powder to obtain 

mixtures with different 
concentrations of CNC. 

After preparing the 
CNC–cement paste 
mixture, three main 

aspects of the resulting 
material were 

investigated: (1) the 
curing process, (2) the 
mechanical properties 

and (3) the 
microstructure. While 

isothermal calorimetry 
(IC) and 

thermogravimetric 

analysis (TGA) were 
used to determine the 

DOH of cement pastes; 
zeta potential, water 

adsorption and 

rheological 
measurements were used 

to investigate the 
interaction and affinity of 

CNCs with cement 

(Cao, Zavaterri, 

Youngblood, 
Moon, & Weiss, 

2015) 
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particles. 

Additionally, ball-on-
three-ball (B3B) flexural 
testing was performed to 

measure the flexural 
strength of the cement 

pastes at four different 
age 

91 Cement 
6wt% 

bacterial nano-cellulose 

Bacterial nano-cellulose (BNC) as 
powder (P), gel (G), and coated onto 
the fibres (C) on the mechanical and 

micro-structural properties of bagasse 
fibre cement composites(FCCs) was 

explored. Results indicated that FCCs 
containing 6 wt.% fibre content 

manufactured with 

BNC-coated fibres and BNC gel 
enhanced mechanical properties and 

maximum hydration temperature 
(MHT). However, P FCCs exhibited 

inferior properties compared to C and 

G FCCs. 

Unbleached Bagasse 
pulp fibres were provided 

by a papermaking 
factory.  The average 

length, diameter, and 
lignin content of fibres 
were 1.13 mm, 29.5 lm 

and 2.7%, respectively. 
Type II Portland cement 

(PC) used had a specific 
surface area of 2600 cm2 
g1 and specific gravity of 

3–3.25 ton m3. Calcium 
chloride (5% by dry 

weight of cement) and 
polycarboxylate based 

superplasticizer (0.5% by 

dry weight of cement) 
were also used. For BNC 

production, the bacterial 
strain Gluconacetobacter 
xylinus was cultured in a 

(Mohammadkazem
i, Doosthoseini, 

Ganjian, & Azin, 

2015) 
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selected medium. The 

harvested gel-like BNC 
was washed with 1% 

NaOH solution at 80°C 

for 1 h and then washed 
with distilled water 

repeatedly until a neutral 
pH was reached. BNC 
was prepared in two 

forms of gel and powder. 
For the preparation of the 

gel, BNC was blended 
using a blender to 
produce a uniform 

dispersion. To prepare 
BNC powder, BNC was 

freeze-dried using a 
freeze-drier (SCANVAC, 

cool safe) at 92 C and 

0.02 hPa for 2 days. 
Next, it was milled to the 

same size of BNC gel 
using a rotary mill. A 
dispersion of 0.1 wt.% 

BNC was prepared in 
deionized water in which 

bagasse fibres were 
added and left at 30ºC 
overnight. In this study, 

50 wt. % of fibres was 
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coated with BNC. 

Thereafter, coated fibres 
were vacuum filtered to 
remove additional water. 

Superplasticizer as a 
water reducer was used. 

CaCl2 as a catalyst agent 
was dissolved in water 

and added to the 

composition. The mortar 
was mixed using an 

electric mixer for 5 min 
(3 min mixing with two 
one-minute pauses). The 

target density and 
thickness of FCCs were 

1.2 g Cm3 and 12 mm, 
respectively. The mixture 

was uniformly poured 

and distributed on a 
metal plate inside a 

frame-like mould (100, 
250, 40, mm3); next, 

another plate was placed 

on the top of the mat. 
Two sides of the mat 

were covered with 
cellophane in order to 

prevent sticking. 

Thereafter, the mat was 
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cold pressed until it 

reached to the required 
thickness after 24 h 

curing time. Afterward, 

the composite was 
released from the mould 

and conditioned at 95% 
relative humidity (RH) 

for 28 days at room 

temperature (20 ± 1ºC). 
The cured FCCs were 

then conditioned and 
dried at 65 ± 2% RH and 

20 ± 1 °C for 1 month 

 

92 Cement 
NFC nano-fibrillated 

cellulose 
Flexural strength increased 

Direct mix with cement 
matrix.  My opinion of 

the results was not very 
good due to the direct 

mix which was no good 

for better dispersion. 
NFC must be stirred in 

DI water or sonicated. 

(Mònica Ardanuy 
et al., 2012) 

93 
Paste of 
cellulose 

wood 

20wt.% NCC 

2 times fracture toughness or (10-20) 
times of any conversion and wood 

particles board. tensile strength more 

than ¼ times other ordinary wood 
particles board. 

solution method 
(Bilodeau & 

Bousfield, 2015) 

94 
Thermoplasti

c starch TPS 
10wt. % MFC Tensile strength increased 60% 

Melt mixing by single 

screw extruder 

(Ferreira & 

Carvalho, 2014) 
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95 

Starch and 

poly-vinyl-
pyrrolidone 

nZnO 
(19-30)nm 

Reduced effectively the temp. 

propagation, the heat absorption 
capacity was increased (30-40) % and 

good optical properties. 

Solution method with 

solvents for starch with 
sodium hydroxide at 

PH8. 

(Pourrahimi et al., 
2015) 

96 

Wood 

polymer 
nanocomposi

te WPNC 
composed[H
DPE,LDPE, 

PP,PVC, PE-
CO-Glycidyl 

methacrylate 
+ Wood flour 

WF] 

[nCla,nSiO2, nZnO] 

UV resistance was improved; bacterial 
degradation of WPC was increased 

with nClay increased and 
nanoparticles. 

Flame retarding, chemical resistance 
and water vapour resistance were 

become max with 3phr each of clay , 

SiO2and ZnO 

Solution by methanol and 

water 1:1 for SiO2 and 
ZnO and stirred each 

separately and dried 
homogeneous solution of 
HDPE, LDPE, PP (1:1:1) 

and 5phr PE-CO-GMA, 
also PVC in THF and 

PVC IN 70:30 Xylene 
and THF and stirred at 

120ºC then oven dry WF 

40 phr was added the 
composite sheets were 

done by hot press 
moulding at 150°C 80 

MPa. 

(Biplab K Deka et 

al., 2012) 

97 Potato starch MMT 

Thermal resistance was improved the 
water absorbed at 75% humidity was 

reduced and E improved 500% at 
5wt% MMT, it raised to 170MPa. 

Solution method starch in 

water and 30wt% 
glycerol at 70ºC and 

MMT was dispersed in 
distilled water and 

sonicated the film was 

casted in mould at 45°C. 

(Cyras et al., 2008) 

98 
Wood pulp-

based 

5wt% MFC micro-
fibrillated cellulose degree 

of fibrillation 30 passes 

300 MPa tensile strength Solution (Saxena, 2013) 
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99 
Xylan from 

Oat spel 
Aqueous suspension of 

sulfonated whisker 
141% tensile strength increased 

Solution + Deionized 

water and stirring 95ºC 
15 min. and dried in 

room temp. 

(Saxena, 2013) 

100 

Hydroxy-

propyl 
cellulose 

HPC as a 
matrix 

5wt% Micro-cellulose fibres 
20µm to prepare nano-

fibrillated cellulose 

57.4% tensile strength of comp. Film 
higher than 1wt% loading and 

52.2%higher than neat HPC film 

Solution aqueous and 
high pressure 

homogenizer 

(S.-Y. Lee et al., 
2009) 

101 

Starch and 

calcium 
carbonate 

CNF50/50 
The result of fracture of toughness ten 

time more the plain board 
Solution method 

(Bilodeau & 

Bousfield, 2015) 

102 
Thermoplasti

c Starch 

Bacterial Cellulose (BC) 
15wt% 

 

Strong interfacial adhesion, thermal 
behaviour was improved, mechanical 

properties enhanced. 

In situ polymerization 
(Osorio et al., 

2014) 

103 
Soluble 
Starch 

NCT's with clay 
Palygorskite and catalysts 

The nanomaterial NCT's prepared in 
this way 17 times greater specific area 

to the same ordinary NCT's and the 
starch nanocomposite resulted is 

environmental remediation used in situ 

immobilisation of organic pollutants in 
soil. 

Solution starch and 
NCT's grafted with 

polypropylene. 

(Osorio et al., 
2014) 

104 

Wood flour 

(WF)+PE 
-co-glycidyl 
methacrylate 

+ 
HDPE+LDP

E+PP+ PVC 

3vol% 

nClay + nTiO2 

Improvement in thermal stability, 
mechanical, UV resistance and flame 

retarding properties. 

Decrease in water vapour and water 
absorption 

Solution blending 

method 

(Biplab K. Deka & 

Maji, 2011) 
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105 

Hemp and 
sisal fibres 
with PLLA 

poly lactic 
acid 

5WT %BC Increase tensile strength about 14% Solution method solvents 
(K. Y. Lee, et al., 

2009) 

106 
cellulose 

fibre 

nano-cellulose 

nano-silver 

Antibacterial efficacy after laundering 

many times 

Cotton fabric wt. 109 
g/m2, Polyester fabric 

wt. 89 g/m2, 
polyester/cotton blended 

fabric (ratio of 65/35) 

weighting 80 g/m2, and 
polyester/spandex mixed 

fabric (ratio of 92/8) wt 
85 g/m2 were bleached. 

Experiments were 

performed on samples 
with maximum 

dimensions 97cm×97 cm. 
The ethanol based nano-

silver colloids was 

supplied from Nano EnC. 
Co. Ltd., at the 

concentration of 2,000 
ppm. This colloidal 

solution was diluted with 

distilled water by 50 ppm 
and 25 ppm at RT for our 

experimentation. Padding 
was performed at the 

(H. J. Lee, Yeo, & 

Jeong) 
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constant pressure for all 

samples after wet pickup 
of 83% through of 

colloids bath. Cotton and 

polyester. Cotton and 
polyester fabrics were 

padded through 25 ppm 
and 50 ppm silver 
colloids. First eight 

pieces of cotton and 
polyester samples were 

padded before dying, 
respectively. Thereafter, 

other eight pieces of 

cotton and polyester 
fabrics were padded after 

dyeing, respectively. 
Some samples were 
rinsed in water after 

padding at 25◦C and the 
others were not. 

107 
Cotton 
fabrics 

Colloidal silver nanoparticle 
Anti-microbial efficiency after 

laundering many times 

AgNO3 (Kemika) and 

reducing agent NaBH4 
(Fluka) of p.a. grade 

were used for the 

synthesis of colloidal Ag 
NPs. 1.7 mg of 

AgNO3 was dissolved in 
100 mL of water purged 

by argon for 30 min. 

(Ilić et al., 2009) 
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Under vigorous stirring, 

10 mg of NaBH4 was 
added to the solution and 

left for 1 h in argon 

atmosphere. The 
concentration of silver 

colloid was 10 ppm. The 
silver colloids of higher 
concentration (50 ppm) 

were synthesized in the 
same manner. One gram 

of cotton fabric was 
immersed in 45 mL of 

colloid of Ag NPs for 5 

min and dried at room 
temperature. 

108 
Cotton 
fabrics 

TiO2 (anatase)/ SiO2 
prepared by sol-gel. TiO2 

nanoparticles were 
deposited on the surface of 

SiO2 spheres. 

Better self-cleaning 

The SiO2 powder was 

added to TiO2 sol and 
dispersed in an ultrasonic 

bath for 15 min. The 

TiO2/SiO2 mixture was 
kept for 12 h to form 

SiO2 supported TiO2 
spherical nanocomposites 

with a core–shell 

structure (pH = 3–5). The 
suspension was used to 

prepare TiO2/SiO2 
nanocomposites on 
woven white cotton 

(Qi et al., 2007) 
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fabrics. 

109 
Cotton 

fabrics 
3wt% nZnO Significant advance in UV protect 

Solution method by 

solvent 

(R. H. Wang, Xin, 

& Tao, 2005) 

110 
Cotton Fabric 
as a substrate 

nSiO2 + perfluorooctylated 
quaternary ammonium 
silane coupling agent 

( PFSC) 

Excellent water repellent property and 

the oil repellency was improved, the 
contact angle to oil (CH2I2) was 125 
degree for  cotton with (PFSC) only 

and become 131 degree by adding 
SiO2 with them 

By sol gel method for 
silica via alkaline 

hydrolysis of 

tetraethoxysilane ( 
TEOS) 11.5 ml in a 

mixture of ethanol and 
water and stirring with 

25 ml ethanol ( 

C2H5OH), water 3.6 ml 
and NH3. Fabric samples 

were first immersed in 
the silica sol, then 

padded with two dips and 

two nips to reach a wet 

(Yu, Gu, Meng, & 
Qing, 2007) 
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pickup of 70%. The 

samples were dried at 
808ºC for 3 min, and 
then immersed in the 

methanol solution of 
PFSC (3 wt.%), padded 

with two dips and two 
nips to reach a 

wet pickup of 70% and 

dried at 80 8C for 3 min, 
cured at 160 8C for 3 

min 

111 Cotton fabric 

Water  vapour permeable 

coating containing MWNT 
with solution polymer of 

hydrophilic polyurethane 

Excellent protection to UV solution method 
(Mondal & Hu, 

2007)] 

112 
Hemp fibre 

with cement 
1wt% Calcined nano-clay 

Reduced Porosity and increased 

fracture toughness 

The ordinary Portland 

cement (OPC) is partially 
substituted by calcined 

nano-clay (CNC) of 1, 2 

and 3 % by weight of 
OPC. The OPC and CNC 

were first dry mixed for 
15 minutes in Hobart 
mixer. The binder is 

CNC -cement powder. 
The cement 

nanocomposite matrix 

(A. Hakamy et al., 

2015) 
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was prepared with a 

water / binder ratio of 
0.485. 

113 
Cement and 

2.5wt% hemp 

fabric 

1wt% Nanoclay platelets 

( cloisite 30 B) 

Mechanical properties generally 

increased; Porosity decreased, 
significantly flexural strength and 

fracture toughness increased. Also, the 
hemp fabric-matrix adhesion was 

improved 

Cement is partially 
substituted by nano-clay. 

Cement and nano-clay 
were first dry mixed for 5 
min in Hobart mixer at a 

low speed and then 
mixed for another 10 min 

at high speed until 
homogeneity was 

achieved. The cement–

nano-composite paste 
was prepared through 

adding water with a 
water/binder (nano-clay–

cement) ratio of 0.48. 

The cement 
paste without nano-clay 

was considered as a 
control. 

(Hakamy, Shaikh, 

& Low, 2013) 
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114 

Wood flour + 
PLA 

(polylactic 
acid) 

5WT% Nano-clay 
30% flexural and tensile moduli was 

increased 
Twin screw extruder (Q. Meng, 2010) 
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Table ‎9.2 Flexural and compressive strength test results for pure lime, Part A- Air cured. 

1 2 3 4 5 6 7 8 9 

Part No  % wt. nano-filler/ 

lime 

W/L Age at 

 test 

days 

Storage condition 

to 5 days 

% RH/ºC 

Curing up to 

28 days 

% RH/ºC  

Compressive 

strength 

MPa 

Flexural 

strength 

MPa 

A 1 0 wt. % control 0.5 28 60 /20 60/20 2.7 2.9 

A 2 0 wt. % control 0.5 28 60/20 60/20 2.8 3.0 
A 3 0 wt. % control 0.5 28 60/20 60/ 20 2.8 0.8 
A 4 0 wt. % control 0.5 28 60/20 60/20 2.6 0.7 

A 5 0 wt. % control 0.5 28 60/20 60/20 3.9 0.2 
A 6 0 wt. % control 0.5 28 60/20 60/20 4.2 0.2 

A 7 0 wt. % control 0.5 28 60/20 60/20 1.8 2.0 
A 8 0 wt. % control 0.5 28 60/20 60/20 2.1 1.5 
A 9 0 wt. % control 0.5 28 60/20 60/20 2.8 - 

A 10 0 wt. % control 0.5 28 60/20 60/20 2.9 - 
Av.  - - - - - 2.9  1.4 
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‎Table  9.3 Flexural and compressive strength test results for nSiO2/ lime nanocomposite, Part A-Air-cured 

 

1 2 3 4 5 6 7 8 9 

Part No % wt.  

nano-filler/ 

lime 

W/L Age at 

 test  

days 

Storage 

condition to 5 

days 

% RH/ºC 

Curing up to 

28 days 

% RH/ºC 

Compressive 

strength 

 MPa 

Flexural 

strength  

MPa 

A 1 2 wt. % nSiO2 0.5 28 60/20 60/20 1.9 0.2 

A 2 2 wt. % nSiO2 0.5 28 60/20 60/20 2.3 0.3 

A 3 2 wt. % nSiO2 0.5 28 60/20 60/20 3.2 0.8 

A 4 2 wt. % nSiO2 0.5 28 60/20 60/20 3.7  

Av.       2.8 0.4 

A 1 4 wt. % nSiO2 0.5 28 60/20 60/20 2.6 0.2 

A 2 4 wt. % nSiO2 0.5 28 60/20 60/20 2.5 0.2 

A 3 4 wt. % nSiO2 0.5 28 60/20 60/20 2.8 2.1 

A 4 4 wt. % nSiO2 0.5 28 60/20 60/20 2.9  

Av.       2.7 0.8 
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Table ‎9.4 Flexural and compressive strength test results for nclay/ lime nanocomposite, Part A-Air cured 

1 2 3 4 5 6 7 8 9 

Part No % wt. nano- 

filler/ lime 

W/L Age at 

test 

days 

Storage 

condition 

to 5 days 

% RH/ ºC 

Curing 

up to 

28 days 

Compressive 

strength 

MPa 

Flexural 

strength 

MPa 

A 1 
0.5 wt. % 

nclay 
0.5 28 60/20 60/20 2.8 0.3 

A 2 
0.5 wt. % 

nclay 
0.5 28 60/20 60/20 2.6 0.3 

A 3 
0.5 wt. % 

nclay 
0.5 28 60/20 60/20 3.4 - 

A 4 
0.5 wt. % 

nclay 
0.5 28 60/20 60/20 3.0 - 

Av.       3.0 0.3 
A 1 1 wt. % nclay 0.5 28 60/20 60/20 2.8 0.5 

A 2 1 wt. % nclay 0.5 28 60/20 60/20 2.7 0.7 
A 3 1 wt. % nclay 0.5 28 60/20 60/20 2.6 - 

A 4 1 wt. % nclay 0.5 28 60/20 60/20 3.3 - 
Av.       2.9 0.6 

A 1 2 wt. % nclay 0.5 28 60/20 60/20 3.3 0.6 
A 2 2 wt. % nclay 0.5 28 60/20 60/20 3.8 0.7 

A 3 2 wt. % nclay 0.5 28 60/20 60/20 3.5 - 
A 4 2 wt. % nclay 0.5 28 60/20 60/20 3.6 - 
Av.       3.6 0.7 
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Table ‎9.5 Nanofibrillated cellulose nFc/ lime nanocomposites, Part A-Air cured 

1 2 3 4 5 6 7 8 9 

Part No % wt. nano- 

filler/ lime 

W/L Age at 

 test  

days 

Storage condition 

to 5 days 

% RH/ºC 

Curing up to 

28 days 

% RH/ºC 

Compressive 

strength 

MPa 

Flexural 

strength 

MPa 

A 1 5 wt. % nFc 0.5 28 60/20 60/20 2.2 0.3 

A 2 5 wt. % nFc 0.5 28 60/20 60/20 2.3 0.4 
A 3 5 wt. % nFc 0.5 28 60/20 60/20 2.5 - 

A 4 5 wt. % nFc 0.5 28 60/20 60/20 2.3 - 
Av.       2.3 0.4 

A 1 7 wt. % nFc 0.5 28 60/20 60/20 2.2 0.8 
A 2 7 wt. % nFc 0.5 28 60/20 60/20 2.3 0.8 

A 3 7 wt. % nFc 0.5 28 60/20 60/20 2.5 0.8 
Av.        2.3 0.8 
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Table  9.6 Fibre glass (FG)/Lime composite specimens, Part A-Air-cured  

1 2 3 4 5 6 7 8 9 

Part No % wt. nano-

filler/ lime 

W/L  Age at 

 test 

 days 

Storage condition 

to 5 days  

% RH/ºC 

Curing up to 

28 days 

% RH/ºC 

Compressive 

strength 

 MPa 

Flexural 

strength  

MPa 

A 1 5 wt.% FG 0.5 28 60/20 60/20 4.4 2.2 
A 2 5 wt.% FG 0.5 28 60/20 60/20 3.3 1.9 

A 3 5 wt.% FG 0.5 28 60/20 60/20 3.1 2.2 
A 4 5 wt.% FG 0.5 28 60/20 60/20 4.9 1.5 
A 5 5 wt.% FG 0.5  60/20 60/20 1.9 3.1 

A 6 5 wt.% FG 0.5 28 60/20 60/20 2.9 - 

Av. - - - -   3.4 2.2 
A 1 10 wt.% FG 0.5 28 60/20 60/20 10.5 3.1 

A 2 10 wt.% FG 0.5 28 60/20 60/20 11.5 4.6 
A 3 10 wt.% FG 0.5 28 60/20 60/20 10.2 - 
Av. - - - - -  10.7 3.9 

A 1 15 wt.% FG 0.5 28 60/20 60/20 5.6 1.6 

A 2 15 wt.% FG 0.5 28 60/20 60/20 7.3 1.6 
A 3 15 wt.% FG 0.5 28 60/20 60/20 7.2 2.5 
Av.       6.7 1.9 
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Table ‎9.7 Hemp fibres (HF), PVAc and nZnO/Lime nanocomposite specimens, Part A-Air- cured 

1 2 3 4 5 6 7 8 9 

Part No % wt. nano-filler/ lime W/L  Age 

 test 

 day 

Storage condition 

to 5 days  

% RH/ºC 

Curing up to 

28 days 

% RH/ºC 

Compressive 

strength 

 MPa 

Flexural 

strength  

MPa 

A 
1 

10 wt.% HF, 4wt.% 
nZnO, 12 % wt. PVAc/L 

0.4 28 60/20 60/20 19.7 7.5 

A 
2 

10 wt.% HF, 4wt.% 
nZnO, 12 % wt. PVAc/L 

0.4 
28 

60/20 60/20 
16.6 6.7 

A 
3 

10wt.% HF, 4wt.% 

nZnO, 12 % wt. PVAc/L 

0.4 
28 60/20 60/20 17.6 7.7 

A 
4 

10wt.% HF, 4wt.% 

nZnO, 12 % wt. PVAc/L 
0.4 28 

60/20 60/20 
19.7 - 

A 
5 

10wt.% HF, 4wt.% 
nZnO, 12 % wt. PVAc/L 

0.4 28 60/20 60/20 18.4 - 

A 
6 

10wt.% HF, 4wt.% 
nZnO, 12 % wt. PVAc/L 

0.4 28 
60/20 60/20 

14.4 - 

Av. - - - -   17.7 7.3 

A 1 4 wt. % nZnO/L 0.4 28 60/20 60/20 0.9 0.7 
A 2 4 wt. % nZnO/L 0.4 28 60/20 60/20 0.6 0.6 
A 3 4 wt. % nZnO/L 0.4 28 60/20 60/20 0.6  

A 4 4 wt. % nZnO/L 0.4 28 60/20 60/20 0.7  

Av. - - - - -  0.7 0.6 
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Table ‎9.8 Water absorption test and capillary porosity calculation 

No Item Time 

(min.) 

Control 

(g) 

2% nclay 

(g) 

10% FG 

(g) 

2% nSiO2 

(g) 

2% EG 

(g) 

Sec^0.5 

1 2 3 4 5 6 7 8 9 

1 Dry weight 0 396.96 367.5 377.8 323 301.1  

2 1st hour wet weight 5 409.8 398.4 417.7 339.2 318.3 2.23607 

3 1st hour wet weight 10 426.7 410 436.3 344.4 325.6 3.16228 

4 1st hour wet weight 15 444.2 420.2 442.7 349.2 330.9 3.87298 

5 1st hour wet weight 20 457 428 442.7 352.3 334.3 4.47214 

6 1st hour wet weight 25 467.3 434.6 442.4 355.7 337.7 5.00000 

7 1st hour wet weight 30 470.7 434.7 442.5 358.5 340.4 5.47723 

8 1st hour wet weight 45 478.6 434.6 442.2 366.2 341.4 6.7082 

9 1st hour wet weight 60 481.2 434.3 442.5 373.5 342.4 7.74597 

10 2nd hour wet weight 90 482.1 434.1 442.7 379.2 343.1 9.48683 

11 2nd hour wet weight 120 482.3 434 443 383.4 345.2 10.9545 

12 3rd hour wet weight 150 482.7 434.3 442.8 388.2 345.4 12.2474 

13 3rd hour wet weight 180 482.8 434.1 442.8 394.07 348.3 13.4164 

14 4th hour wet weight 240 483.2 433.9 442.6 396.6 349.4 15.4919 

15 5th hour wet weight 300 483.2 433.9 442.6 396.6 349.4 17.3205 

16 24 hours wet weight 1440 483.2 433.9 442.6 396.6 349.4 37.9473 
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Table  9.8 (Continued) water absorption test and capillary porosity calculation 

No Item Time (min.) Control (g) 2% nclay (g) 10% FG (g) 2% nSiO2 (g) 2% EG (g) Sec^0.5 

1 2 3 4 5 6 7 8 9 

1.  Ut= (wet - dry) weight - 12.84 30.9 39.9 16.2 17.2 - 

2. 1 Ut= (wet - dry) weight - 29.74 42.5 58.5 21.4 24.5 - 

3. 1 Ut= (wet - dry) weight - 47.24 52.7 64.9 26.2 29.8 - 

4. 2 Ut= (wet - dry) weight - 60.04 60.5 64.9 29.3 33.2 - 

5. 2 Ut= (wet - dry) weight - 70.34 67.1 64.6 32.7 36.6 - 

6. 2 Ut= (wet - dry) weight - 73.74 67.2 64.7 35.5 39.3 - 

7. 2 Ut= (wet - dry) weight - 81.64 67.1 64.4 43.2 40.3 - 

8. 2 Ut= (wet - dry) weight - 84.24 66.8 64.7 50.5 41.3 - 

9. 2 Ut= (wet - dry) weight - 85.14 66.6 64.9 56.2 42 - 

10. 2 Ut= (wet - dry) weight - 85.34 66.5 65.2 60.4 44.1 - 

11. 2 Ut= (wet - dry) weight - 85.74 66.8 65 65.2 44.3 - 

12. 2 Ut= (wet - dry) weight - 85.84 66.6 65 71.07 47.2 - 

13. 2 Ut= (wet - dry) weight - 86.24 66.4 64.8 73.6 48.3 - 

14. 3 Ut= (wet - dry) weight - 86.24 66.4 64.8 73.6 48.3 - 

15. 3 Ut= (wet - dry) weight - 86.24 66.4 64.8 73.6 48.3 - 
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Table ‎9.8 (Continued) water absorption test and capillary porosity calculation 

No Item Time (min.) Control (g) 2% nclay (g) 10% FG (g) 2% nSiO2 (g) 2% EG (g) Sec^0.5 

1 2 3 4 5 6 7 8 9 

1.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 

2.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 
3.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 
4.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 

5.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 
6.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 

7.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 
8.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 
9.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 

10.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 
11.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 

12.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 
13.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 
14.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 

15.  Uo= Wmax-Wdry - 86.24 66.4 64.8 73.6 48.3 - 
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Table ‎9.8 (Continued) water absorption test and capillary porosity calculation 

No Item Time (min.) Control (g) 2% nclay (g) 10% FG (g) 2% nSiO2 (g) 2% EG (g) Sec^0.5 

1 2 3 4 5 6 7 8 9 

1.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 

2.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 
3.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 
4.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 

5.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 
6.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 

7.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 
8.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 
9.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 

10.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 
11.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 

12.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 
13.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 
14.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 

15.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 
16.  IC= Uo/ Wd - 0.217251 0.1806803 0.171519 0.2278638 0.160412 - 
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Table ‎9.8 (Continued) water absorption test and capillary porosity calculation 

No Item Time (min.) Control (g) 2% nclay (g) 10% FG (g) 2% nSiO2 (g) 2% EG (g) Sec^0.5 

1 2 3 4 5 6 7 8 9 

1.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

2.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

3.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

4.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

5.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

6.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

7.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

8.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

9.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

10.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

11.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

12.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

13.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

14.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

15.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 

16.  ABS= IC X 100 - 21.72511084 18.06802721 17.15193224 22.78637771 16.04118233 - 
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Table ‎9.8 (Continued) water absorption test and capillary porosity calculation 

No Item Time (min.) Control (g) 2% nclay (g) 10% FG (g) 2% nSiO2 (g) 2% EG (g) Sec^0.5 

1 2 3 4 5 6 7 8 9 

1.  OP%= Vop/Vsp* 100 - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

2.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

3.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

4.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

5.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

6.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

7.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

8.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

9.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

10.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

11.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

12.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

13.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

14.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

15.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 

16.  OP%= Vop/Vsp - 33.6875 25.9375 25.3125 28.75 18.8671875 - 
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Table ‎9.8 (Continued) water absorption test and capillary porosity calculation 

No Item Time (min.) Control (g) 2% nclay (g) 10% FG (g) 2% nSiO2 (g) 2% EG (g) Sec^0.5 

1 2 3 4 5 6 7 8 9 

1 Mi= Ut/ 64 cm3 - 0.200625 0.482813 0.623438 0.253125 0.26875 - 

2 Mi= Ut/ 64 cm3 - 0.4646875 0.664063 0.914063 0.334375 0.382813 - 

3 Mi= Ut/ 64 cm3 - 0.7381250 0.823438 1.014063 0.409375 0.465625 - 

4 Mi= Ut/ 64 cm3 - 0.9381250 0.945313 1.014063 0.457813 0.518750 - 

5 Mi= Ut/ 64 cm3 - 1.0990625 1.048438 1.009375 0.510938 0.571875 - 

6 Mi= Ut/ 64 cm3 - 1.1521875 1.050000 1.010938 0.554688 0.614062 - 

7 Mi= Ut/ 64 cm3 - 1.2756250 1.048438 1.00625 0.675000 0.629687 - 

8 Mi= Ut/ 64 cm3 - 1.3162500 1.043750 1.010938 0.789063 0.645312 - 

9 Mi= Ut/ 64 cm3 - 1.3303125 1.040625 1.014063 0.878125 0.65625 - 

10 Mi= Ut/ 64 cm3 - 1.3334375 1.039063 1.018750 0.94375 0.689062 - 

11 Mi= Ut/ 64 cm3 - 1.3396875 1.04375 1.015625 1.01875 0.692187 - 

12 Mi= Ut/ 64 cm3 - 1.3412500 1.040625 1.015625 1.110469 0.737500 - 

13 Mi= Ut/ 64 cm3 - 1.3475000 1.037500 1.012500 1.150000 0.754687 - 

14 Mi= Ut/ 64 cm3 - 1.3475000 1.037500 1.012500 1.150000 0.754687 - 

15 Mi= Ut/ 64 cm3 - 1.3475000 1.037500 1.012500 1.15000 0.754687 - 

16 Mi= Ut/ 64 cm3 - 1.4115625 1.612500 1.745313 1.592188 1.382813 - 
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