
Automatic offensive language detection from Twitter data
using machine learning and feature selection of metadata

DA COSTA ABREU, Marjory <http://orcid.org/0000-0001-7461-7570> and
ARAUJO DE SOUZA, Gabriel

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/26018/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

DA COSTA ABREU, Marjory and ARAUJO DE SOUZA, Gabriel (2020). Automatic
offensive language detection from Twitter data using machine learning and feature
selection of metadata. In: IEEE World Congress on Computational Intelligence (IEEE
WCCI). IEEE.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sheffield Hallam University Research Archive

https://core.ac.uk/display/293754179?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Automatic offensive language detection from
Twitter data using machine learning and feature

selection of metadata
1st Gabriel Araujo De Souza

Federal University of Rio Grande do Norte (UFRN)
Natal, Brazil

gabriel feg@hotmail.com

2nd Márjory Da Costa-Abreu
Sheffield Hallam University

Sheffield, UK
m.da-costa-abreu@shu.ac.uk

https://orcid.org/0000-0001-7461-7570

Abstract—The popularity of social networks has only increased
in recent years. In theory, the use of social media was proposed
so we could share our views online, keep in contact with loved
ones or share good moments of life. However, the reality is
not so perfect, so you have people sharing hate speech-related
messages, or using it to bully specific individuals, for instance,
or even creating robots where their only goal is to target specific
situations or people. Identifying who wrote such text is not easy
and there are several possible ways of doing it, such as using
natural language processing or machine learning algorithms
that can investigate and perform predictions using the meta-
data associated with it. In this work, we present an initial
investigation of which are the best machine learning techniques
to detect offensive language in tweets. After an analysis of the
current trend in the literature about the recent text classification
techniques, we have selected Linear SVM and Naive Bayes
algorithms for our initial tests. For the preprocessing of data,
we have used different techniques for attribute selection that
will be justified in the literature section. After our experiments,
we have obtained 92% of accuracy and 95% of recall to detect
offensive language with Naive Bayes and 90% of accuracy and
92% of recall with Linear SVM. From our understanding, these
results overcome our related literature and are a good indicative
of the importance of the data description approach we have used.

Index Terms—Offensive Language Detection, Naive Bayes,
Linear SVM, Attribute Selection, Twitter

I. INTRODUCTION

In the face of popularisation of social media such as
Facebook, Twitter, Instagram and Tik Tok, the communica-
tion between people has become faster and easier. In these
communication mechanisms, people can express their feelings,
criticism, opinions, achievements, etc. However, many times
these networks are used to publicise the hate speech though
offensive words. The types of the offense can be directed
to most diverse aspects including Ethnicity, Economic status,
Religion, Sexual Orientation, and so on. Thus, the big problem
with this is relies in the fact that the offense is presented to
individuals or groups and this can be potentially harmful to
them [1], [2].

The challenge in automated detection of offensive language
lies in the fact that, in social networks, the used language
contains a specific format that belongs to the environment. In

this context, several word abbreviations are used and various
forms of expression intensification and word modification,
such as several letters repetitions (e.g.: loooooved, gooood)
and excessive use of punctuation (e.g.: i loved!!!!, what????).
Thus, the original text must be modified through a very
important preprocessing stage to get a form that keeps the
original sense and can somehow coincide with other similar
posts [3].

For this, a software that can be able to detect this type of
offenses in a social network is a very important advancement
to ensure the security and mental health of users [4]. Another
considered application is detecting users that commonly per-
form cyberbully acts and aggression. From this, measures must
be taken to punish and block aggressive users [5].

Thus, this paper propose an investigation to detect offensive
language in twitter data. After a review of the literature, two
techniques were chosen for this task: Linear SVM and Naive
Bayes. The main objective is to improve these algorithms when
compared with similar experiments found in the literature.
For this, some results already published are presented and a
comparison of implemented techniques will discussed.

This work is organized as: Section II presents a review of the
literature with the recent works about automatic detection of
offensive language or similar. Section III presents the database
structure and the process of data normalization. Section IV
introduces the concepts of chosen machine learning algorithms
to describe the formulas and steps of the algorithm. Section V
shows and explains the results obtained in our experiments and
Section VI reports the conclusions obtained from the work.

II. RELATED WORKS

The investigation of hate speech in social media is a
relatively new research area, but, despite that, it has created
a lot of attention and have already whole events dedicated to
the subject as well as an increase of related publications. This
session will present and discuss some of the main findings of
the most recent and relevant publications.

As an example, the International Workshop on Semantic
Evaluation SemEval-20191 [6] presented tasks that focused

1http://alt.qcri.org/semeval2019

on detection and categorising of offensive language in social
media. The three main sub-task were: offensive language
identification, automatic categorisation of offense types, and
offense target identification. For the first sub-task, the mes-
sages were classified as offensive or not offensive. A twitter
post was label as offensive if it contained any offensive or
profane language. The Deep Learning BERT [7] presented
better results for this task [8]. In the second sub-task, the goal
was to predict the type of offense. For this, two classes were
used: Insult and Untargeted. A twitter post was classified as
’Insult’ when it contained an insult to an individual or group;
and, a twitter post was labeled as ’Untargeted’ when that the
post contained non-acceptable language (swearing). The best
solution found for this problem used a rule-based approach
with a keyword filter, such as hashtags, signs, emoticons, and
other features [9]. The last sub-task focused on the target of
offenses. The used classes were ’Individual’ for an offense to
a unique user, ’Group’ for an offense to a group of people,
and ’Other’ for an offense to an organisation, a situation, an
event, or an issue. The team with better results also used BERT
for this problem [10]. This Deep Learning also used to detect
offensive language in German texts [11].

In [12], a similar application was explored. They created a
new dataset using the Twitter API for twitter data classification
as hate speech, offensive language or neither. In their dataset,
they collected a set of 85.4 million twitter samples from about
33 thousand Twitter users. From there, they built a set of 24k
labeled twitter samples. Features, such as bigram, unigram,
and trigram were weighted by their TF-IDF and were used
for the classification task. Other features included binary and
count indicators for hashtags, mentions, retweets, and URLs.
They tested a large number of classifiers: logistic regression,
Naive Bayes, decision trees, random forests, and linear SVMs
(Support Vector Machine). Through their experiments, it was
found that Logistic Regression and Linear SVM tended to
perform better results. The best model obtained an overall
precision of 0.91, recall of 0.90, and F1-score of 0.9. However,
the classifier did not present good results to detect hate speech,
for this class, the precision and recall were 0.44 and 0.61,
respectively.

A Deep Learning for classification messages of social media
was proposed in [13]. The labels considered were racism,
sexism or neither. For their experiments, they joined various
Long Short-Term Memory (LSTM) models. In their classifi-
cation, the features defined a user’s tendency towards posting
messages in any used classes, the set of messages posted by a
user, and subsets that contained labeled messages. The method
used was independent of the language. The proposed methods
obtained better results to detect sexists messages (around 0.99
of precision and F1-Score). Neutral messages also presented
better results (0.94 for precision), but racist messages obtained
inferior results with about 0.75 and 0.70 of precision and F1-
Score respectively.

The problem of detecting hate speech was expanded in
[14] for vulnerable community identification. The features
extracted from the messages was performed using techniques

such as convert words to vector and n-grams. For the process
of hate speech detection, they used the Gated Recurrent Unit
(GRU) and a variety of RNNs. These classifiers provided an
accuracy of about 0.92. A Convolutional Neural Networks
(CNN) was proposed in [15] for classifying offensive tweets
written in English. The labels used in this work were offensive,
abusive or hate-inducing. The best results obtained an accuracy
of 0.83 and a precision of 0.80.

In [16], the models SVM, bidirectional Long Short-Term-
Memory (BiLSTM), and CNN were used to classify messages
as offensive or not offensive. In the experiments, the BiLSTM
obtained a better precision to detect offensive messages (0.81).
For detection of not offensive language, the precision was 0.83.
SVM and CNN model obtained a precision of 0.66 and 0.78
respectively to detect offensive messages and 0.80 and 0.87 to
detect not offensive messages.

Based on what was presented in the previously listed works,
we have identified a lack of investigation regarding the type
of features used in order to investigate offensive language.
Also, a better fine tuning approach to the standard classical
classification techniques was not fully explored, which can
lead to poorer results. Thus, we reinstate that our main goal
with this work is to investigate the quality of used features for
this problem as well as the fine tuning approach of classical
classification techniques.

III. HATE SPEECH ON TWITTER POSTS: DATABASE

The used dataset was collected by [12] and contains 24783
tweets. From these, 1430 are classified as hate speech, 19190
as offensive language, and 4163 as normal language. Due
to the low amount of messages classified as hate speech in
comparison with the other labels and the low performance to
detect hate speech with this dataset describe in [12], for this
work, we have chosen to use only the labels of offensive and
normal language.

The first reason for the choice of this dataset is due to the
variety of examples of offensive twitters. The organization of
data in this dataset was another important reason for your
choice because it facilitated data processing and manipulation.
The good results obtained with machine learning algorithms
present in [12] for offensive language detection was the final
reason for us to decide to use it.

In order to select a larger number of messages tagged as an
offensive language than normal, it is necessary to balance the
dataset [19]. For this, we have chosen randomly a subset of
messages marked as offensive with the same size as the set
of normal messages. Thus, we selected a set of 4163 normal
and 4163 offensive tweets, creating a dataset with a total
size of 8326 messages. We have selected randomly offensive
messages to provide more diversity in the dataset. A variety
of seeds can be used to test different datasets configurations.
Based on related work [8], [13], [15], [16], we have decided to
divide the dataset with more messages in the training dataset.
Thus, we have allocated 60% of data to train and 40% to test.
The choice of training and test dataset was made at random as

TABLE I
RESUME OF RELATED WORKS

Reference Database Objective Feature Extraction Classification Results
[8] Offensive Language

Identification Dataset
(OLID)

Categorisation of of-
fensive language in
social media

Emoji substitution,
HashTag
segmentation and
convert all the text
into lowercase (Misc)

Logistic Regression
(LR), LSTM and
BERT

LR: 72% Acc
LSTM: 76% Acc
BERT: 84% Acc

[9] Offensive Language
Identification Dataset
(OLID)

Automatic categorisa-
tion of offense types

Rule-based approach
with a keyword fil-
ter based on a Twitter
language

Modified sentence
offensiveness
calculation (MSOC)
and RNN

RNN: 86% Acc
MSOC: 92% Acc

[10] Offensive Language
Identification Dataset
(OLID)

Offense target identi-
fication

Pre-processing and
pre-trained word
embedding based on
GloVe.

BERT-Base,
Multilayer Perceptron
Network (MLP) and
Soft Voting Classifier
(SVC)

BERT-Base: 72% Acc
MLP: 68% Acc
SVC: 69% Acc

[11] Dataset of German-
language tweets pro-
vided in context of
the GermEval Shared
Task 2 (2019)

Offensive language
identification for
German-language
texts

Replace all user men-
tions to a token Name

BERT 76% F1-Score

[12] They created their
own dataset described
in [12]

Automatic hate-
speech detection on
social media is the
separation of hate
speech from other
instances of offensive
language.

Lower case, create bi-
gram, unigram, and
trigram features, TF-
iDF and others

LR e SVM Precision of 0.91 and
Recall of 0.90 for of-
fensive language de-
tection and precision
of 0.44 and recall for
hate speech

[13] A dataset of approxi-
mately 16k short mes-
sages from Twitter,
that was made avail-
able by [17]

Detecting Offensive
Language

Define the three fea-
tures representing a
user’s tendency to-
wards posting Neu-
tral, Racist and Sexist
content

An ensemble of Re-
current Neural Net-
work (RNN) classi-
fiers

Precision: 94% and
Recall: 96%

[14] Public hate speech
datasets available in
[18]

Vulnerable
community
identification using
hate speech detection
on social media

Convert words to vec-
tor and n-grams

Gated Recurrent Unit
(GRU) and a variety
of RNNs

RNN-GRU: 92% Acc
GBT: 92% Acc
RNN-LSTM: 91%
Acc

[15] Hinglish dataset
HEOT and [12]

Detecting Offensive
Tweets in Hindi-
English

Removal of punctua-
tions, URLs and user
mentions; lower case;
remove stop words
and others

CNN Accuracy of 83% and
recall of 71%

[16] Offensive Language
Identi-fication Dataset
(OLID)

Predicting the Type
and Target of Offen-
sive Posts in Social
Media

Pre-processing of text SVM, bidirectional
Long Short-Term-
Memory (BiLSTM),
and CNN

SVM: 76% precision
and 78% recall
BiLSTM: 82% preci-
sion and 82% recall
CNN: 82% precision
and 82% recall

well. Both sets contained the same number of offensive and
normal messages.

A. Data processing
A tweet contains a diversity of elements that can confuse a

text classifier, for example, user names, hashtags, URLs and
emojis. This occurs because there exists a variety of different
shapes in these texts which can be very complex to find
patterns. Grammar errors and excessive use of repeat letters
are other problems because these end up generating several
different forms of the same term or word. Thus, before the

data can be analysed by any model, it is necessary to perform
a preprocessing in the text to remove or reduce the mentioned
problems without losing the semantic meaning of the message.
It is possible to find in the literature techniques to perform
normalisation [10], [15], convert to lower case [10], [15] and
removal of stop words [10], [15] with the propose to generate
a new text with the same sense, but in a way that provides
better performance to the text classification algorithms.

1) Data Normalisation: This process consists of mapping
divergent text that belongs to the same class in a label. In

this work, we have converted all the hashtags, user names,
emojis, URLs and retweets to a tag that represents each
information. Thus, every time that a hashtag is found in the
text, it is replaced to tag < hashtag >, emojis are replaced
to < emojis > and so on [10]. Other important point in the
normalisation processing is the removal of all text punctuation.
This is a very common process and contributed for a clean text
with focus in the words [10], [15].

For an algorithm, the word ”Car” is different from ”car”.
In a tweet, the words can be written with different uses of
upper case and lower case, The words can also be written
completely in lower case or completely in upper case or even
contain upper and lower case occurrences simultaneously. For
reducing this divergence, we have converted all text to lower
case.

In a text, words such as articles, pronouns, connectors, etc
are considered irrelevant to the process of classification [20].
This type of text appears frequently and so can hamper the
training process. Thus, these words are known as stop words.
A common method in a preprocessing of text stands is to
remove all stop words to create a clean text with just what is
relevant. For this work, we have created a list of words that
are considered stop words, and we have removed all the words
in a tweet that were present in the list.

Two forms of preprocessing were used, the first, considering
the tags in a process of data normalisation which we called
’Data Type A’. The second form which removed all the
hashtags, emojis, URLs, Retweets, User names and stop words
leaving a very clean text, which we called ’Data Type B’. All
forms will be used in each proposed technique.

IV. METHODOLOGY

In this section, we will present the techniques that were
used in our experiments. After a review of the literature, we
have found many techniques to detect and classify offensive
language. Some deep learning and neural networks are used
for this purpose and each paper presents different results
regarding performance. SVM-based solution has not appeared,
nevertheless, the authors of the used dataset obtained good
results [12], [16]. The Naive Bayes classifier was also not
mentioned in the recent literature, but it has presented good
results with similar problems [21], for this, we have decided to
implement these techniques and evaluate their results. A brief
description of these techniques will be presented in Sections
IV-A and IV-B.

A. Naive Bayes Classifier

In this classifier, a table of words occurrences, also named
bag of words, is created in the training process. This table
contains words and a number of occurrences for this word in
each class. Another information expressed in the table is the
total of words for each class and the total words on the training
set. The stop words are not considered [21]. An example of
this table is presented in Table II.

After the training step, the mentioned table is ready to
be used by the classifier. For this, the classifier receives a

TABLE II
TABLE OF WORDS OCCURRENCES

class/word x y
employees 5 1
protesting 0 4
shutdown 2 3

melancholy 1 5
total 8 13

preprocessing twitter and a list of words is created, thus, for
each class is calculated a score for this message that informs
how pertinent this message is for this class. The class that
obtained the biggest score is returned by the classifier. The
score is calculated by the following equation:

score(yi,W) = log
yti
t
+

n∑
i=1

log
wyi

i +mp

yti +m
(1)

Where,
• yi is the ith class represents in the model.
• W is a set of words.
• yti is a total of words classified as yi class in the training

data.
• t is the total of words in the training data.
• wy

i is the amount of times that the ith word in the W set
is classified as yi class in the training data.

• m and p are parameters: p = 0.5 and m = 1

B. Support Vector Machine

The objective of this classifier is to find a hyper-plane in
a space with n dimensions, where n is a number of features
that distinctly classifies the data points. In the training process,
the principal goal is to find limitation points that can separate
objects of distinct classes. In order to maximise the margin of
the classifier, support vectors are used. These are data points
that are closer to the hyperplane and influence the orientation
of the hyperplane [22].

The first step to run the SVM is to prepare the data by
transforming each message in a numerical feature vector. A
common technique in the literature is to use TF-IDF (Term
Frequency - Inverse Document Frequency) [23]. These metrics
inform how interesting a word is for a type of document.
However, in our experiments, we noticed a better result
using the technique ’bag of words’, also used for the Naive
Bayers classifier and describe in IV-A. After a construction
of table with examples of offensive and normal texts, each
phase is associate with a score for a offensive message and
other score to normal language, thus, each phase receive two
features demarcating how much belongs to the set of offensive
language and the set of normal language respectively. With
the data, a default gradient for each class is generated and
in the process of the train they are updated for each wrong
classification or correct classification by the equations:

ω = ω − α · (2λω) (2)

when a correct classification is realised and

ω = ω + α · (yi · xi − 2λω) (3)

when an incorrect classification is realised.
In the equations 2 and 3, the ω is a gradient, α is the learning

rate and λ is a regularisation parameter defined as 1/epochs.
After the training process, the product is to have the weights
w1 and w2 and these are used in the classification process. For
this step, the same process of converting text into two numeric
features is realised. By applying the weights in the values the
next step, we can verify if the result is great than 1, so the
text is classified as offensive, otherwise, it is normal.

V. RESULTS

In this section, we will present the results of our experi-
ments. The two algorithms (Linear Support Vector Machine
and Naive Bayes) presented previously were fully imple-
mented. For each algorithm, we tested the two configurations
of data describes in section III-A: Data Type A and Data
Type B. For the Data Type A, the Naive Bayes achieved
a gain of performance of around 1.5% when compared
with Data Type B. For the Data Type A, the Linear SVM
demonstrated a greater difficulty in parameter setting to find
satisfactory results. We tested to change the configuration
of the alpha parameter with the values 0.1, 0.01 and 0.001
besides configuring the max epochs to 100 and 500, but in
all possible combinations of theses parameters, the algorithm
always classified any text as offensive. However, with the Data
Type B, it was possible to find good results configuring the
parameter values to alpha equals 0.01 and epochs equals 100.

Regarding the dataset, it was previously mentioned that the
number of examples of offensive messages is greater than the
number of normal messages and that to create the dataset,
we have selected randomly a subset of offensive messages
with the same size as the set of normal messages. For the
Linear SVM, this process was generated a unique time because
another process of randomisation is performed to define the
order of messages evaluation in the training process. However,
due to the process of classification with Naive Bayes being
simpler, we tested different seeds to the process of selecting
the set of offensive messages. In the LSVM classifier, we also
tested different seeds for randomising the evaluation order of
messages. Thus, we have tested 50 seeds ranging from 0 to
49 to each random describe process.

Table III shows the results to tests using Linear SVM
Classifier. During each of 50 seeds, we have collected values
of accuracy, precision, recall, and F1-Score. Three values are
calculated to each mentioned metric based on all executions:
The best value found to all executions that can be visualised
in the second column, the average value of executions (third
column), and the standard derivation of executions (fourth
column). The seed with the best value of accuracy and
precision simultaneously is highlighted soon after.

The seed with the best result went to the seed 6 and the
results for this are 90% of accuracy, 88% of precision, 92%
of recall and an F1-score of 90%.

TABLE III
RESULTS OF LINEAR SVM CLASSIFIER WITH AVERAGE (AV) AND

STANDARD DEVIATIONS (SD)

Metric Best Value AV SD
Accuracy 0.900 0.523 0.136
Precision 0.883 0.272 0.260

Recall 1.0 0.300 0.442
F1-Score 0.902 0.242 0.345

TABLE IV
RESULTS OF NAIVE BAYES CLASSIFIER WITH AVERAGE (AV) AND

STANDARD DEVIATIONS (SD)

Metric Best Value AV SD
Accuracy 0.922 0.912 0.004
Precision 0.899 0.882 0.006

Recall 0.964 0.950 0.005
F1-Score 0.924 0.915 0.004

Table IV presents the results to the tests using the Naive
Bayes classifier. Such asthe Linear SVM classifier, we have
presented the best and average values of accuracy, precision,
recall, and F1-Score to all executions, besides the standard
derivation. The table distribution is similar to the SVM table.
The seed with the best result went to the 8 and the values
are 92% of accuracy, 89% of precision, 95% of recall and an
F1-score of 92%.

We initially performed a statistic test (t-test) to decide if
the generated values for each algorithm have had a significant
statistical difference between them. For each metric, we would
use all the generated values by both algorithms and apply
the t-test with the one-tailed hypothesis and a significance
level of 0.05. The results of the t-test can be seen in Table
V. Based on the results, all calculated metrics have values
with significant statistical differences between the algorithms.
Therefore, it is concluded that the Naive Bayes classifier has
a better performance to detect offensive language with an
accuracy of 92% and a recall of 95% for the best dataset
configuration.

TABLE V
T-TEST BETWEEN NAIVE BAYES AND SVM CLASSIFIERS

Metric T-Value P-Value Result
Accuracy 19.901 < 0.00001 Significant
Precision 16.383 < 0.00001 Significant

Recall 10.298 < 0.00001 Significant
F1-Score 13.652 < 0.00001 Significant

Comparing the Naive Bayes performance with the re-
searched literature, our results are better than or equal to
all works except an RNN configuration presented in [13]
that obtained 94% of precision and recall of 96% to detect
offensive language. Thus, we have a simpler and cheaper
implementation of Linear SVM and Naive Bayes that obtained
better results than a related work that used the same dataset
to the same goal.

For future works, we aim to implement other text classifi-
cation algorithms and evaluate the performance in comparison
with our Linear SVM and Naive Bayes. An architecture to
real-time tweet classification can be developed with these
algorithms, mainly the Naive Bayes which obtained good
results and is very fast as well as it has the simplicity of
probabilistic-based analysis for classification. And finally, we
are already planning to explore the use of these algorithms for
classifying other types of text.

VI. CONCLUSION

In this work, we implement a Linear SVM and Naive Bayes
classifiers to detect the offensive language in tweets. During
the test was noted that the Linear SVM is very sensitive to
data type used in the training process. It was detected that the
data normalisation with tags made it difficult for the process of
parameter regulation. The tests also showed that the evaluation
order of messages strongly influences the final result of the
classifier, this is noted due to the high standard derivation for
the tests with different seeds. This is a normal process because
if big sequences of messages with the same label are given
as input, for example, the weight regulation and the learning
coefficient (alpha) make the learning arranged by the other
inputs causing an imbalance of the weights. Thus, the Linear
SVM needs a balanced input to obtained good results. The
setting of the parameters for this algorithm proved to be a bit
tricky task.

In contrast, the Naive Bayes classifier proved to be a good
text classifier. One of your positive points is your simplicity
and easiness of implementation that makes this algorithm very
fast. The performance of this algorithm is really good, where
showed be better of many techniques demonstrated in the
literature. The problem found with the SVM was not present
in this classifier, the standard derivation obtained in the tests
is relatively low and the average value is very close to the best
result.

REFERENCES

[1] F. Del-Vigna, A. Cimino, F. Dell-Orletta, M. Petrocchi, and M. Tesconi,
“Hate me, hate me not: Hate speech detection on facebook,” in First
Italian Conference on Cybersecurity, 2017.

[2] J. Jacobs and K. Potter, Hate crimes: Criminal law & identity politics.
Oxford University Press on Demand, 1998.

[3] M. Bouazizi and T. Ohtsuki, “Multi-class sentiment analysis on twit-
ter: Classification performance and challenges,” Big Data Mining and
Analytics, vol. 2, no. 3, pp. 181–194, Sep. 2019.

[4] G. Jalaja and C. Kavitha, Sentiment Analysis for Text Extracted from
Twitter. Singapore: Springer Singapore, 2019, pp. 693–700.

[5] S. Sharma and A. Jain, “Cyber social media analytics and issues:
A pragmatic approach for twitter sentiment analysis,” in Advances in
Computer Communication and Computational Sciences, S. K. Bhatia,
S. Tiwari, K. K. Mishra, and M. C. Trivedi, Eds. Singapore: Springer
Singapore, 2019, pp. 473–484.

[6] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, and
R. Kumar, “Identifying and categorizing offensive language in social
media (offenseval),” arXiv preprint arXiv:1903.08983, 2019.

[7] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[8] P. Liu, W. Li, and L. Zou, “Transfer learning for offensive language
detection using bidirectional transformers,” in Proceedings of the 13th
International Workshop on Semantic Evaluation, 2019, pp. 87–91.

[9] J. Han, S. Wu, and X. Liu, “Identifying and categorizing offensive
language in social media,” in Proceedings of the 13th International
Workshop on Semantic Evaluation, 2019, pp. 652–656.

[10] A. Nikolov and V. Radivchev, “Offensive tweet classification with bert
and ensembles,” in Proceedings of the 13th International Workshop on
Semantic Evaluation, 2019, pp. 691–695.

[11] J. Risch, A. Stoll, M. Ziegele, and R. Krestel, “Offensive language
identification using a german bert model.”

[12] T. Davidson, D. Warmsley, M. Macy, and I. Weber, “Automated hate
speech detection and the problem of offensive language,” in Proceedings
of the 11th International AAAI Conference on Weblogs and Social
Media, ser. ICWSM ’17, 2017.

[13] G. Pitsilis, H. Ramampiaro, and H. Langseth, “Detecting offensive lan-
guage in tweets using deep learning,” arXiv preprint arXiv:1801.04433,
2018.

[14] Z. Mossie and J.-H. Wang, “Vulnerable community identification using
hate speech detection on social media,” Information Processing &
Management, p. 102087, 2019.

[15] P. Mathur, R. Shah, R. Sawhney, and D. Mahata, “Detecting offensive
tweets in hindi-english code-switched language,” in Proceedings of
the Sixth International Workshop on Natural Language Processing for
Social Media, 2018, pp. 18–26.

[16] M. Zampieri, S. Malmasi, P. Nakov, S. Rosenthal, N. Farra, and
R. Kumar, “Predicting the type and target of offensive posts in social
media,” arXiv preprint arXiv:1902.09666, 2019.

[17] Z. Waseem and D. Hovy, “Hateful symbols or hateful people? predictive
features for hate speech detection on twitter,” in Proceedings of the
NAACL student research workshop, 2016, pp. 88–93.

[18] H. Watanabe, M. Bouazizi, and T. Ohtsuki, “Hate speech on twitter:
A pragmatic approach to collect hateful and offensive expressions and
perform hate speech detection,” IEEE Access, vol. 6, pp. 13 825–13 835,
2018.

[19] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas, “Handling imbalanced
datasets: A review,” GESTS International Transactions on Computer
Science and Engineering, vol. 30, no. 1, pp. 25–36, 2006.

[20] J. Wilbur and K. Sirotkin, “The automatic identification of stop words,”
Journal of information science, vol. 18, no. 1, pp. 45–55, 1992.

[21] I. Rish, “An empirical study of the naive bayes classifier,” in IJCAI 2001
workshop on empirical methods in artificial intelligence, vol. 3, no. 22,
2001, pp. 41–46.

[22] Y.-W. Chang and C.-J. Lin, “Feature ranking using linear svm,” in
Causation and Prediction Challenge, 2008, pp. 53–64.

[23] G. Forman, “Bns feature scaling: an improved representation over tf-idf
for svm text classification,” in Proceedings of the 17th ACM conference
on Information and knowledge management. ACM, 2008, pp. 263–270.

