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Beyond the possibilities of linear transformations in polarization space, whose dimensionality is constrained by
limited orthogonal states, we propose a technique for implementing both unitary and nonunitary transformations
with higher dimensionality. Any high-dimensional matrix can be decomposed into a product of two processes
realizable by utilizing spatial phase modulation and free-space propagation, in a simple, fixed, and scalable setup.
Given that perfect power transmission for an arbitrary matrix may not be possible, the method is optimized to
reach the theoretical best. Projected applications of the method described here include a means of restricting the
infinite-dimensional Hilbert space to a finite-dimensional basis for information processing purposes, simultaneous
multichannel optical routing, and a method of optical orbital angular momentum sorting and generation.
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I. INTRODUCTION

Linear optics represents an outstanding platform for
information processing and communication [1]. At the single-
photon level, it gives a direct access to many quantum-
mechanical concepts such as single-qubit gates and pro-
jective measurements, and these transform smoothly to
classical wave phenomena as the intensity increases. Two-
dimensional operations can be conveniently implemented
in the polarization space, but to access higher dimen-
sionality or additional quantum bits, one has to resort
to other methods. Two main current approaches are the
spatially encoded optical information [2] and the orbital
angular momentum (OAM) degrees of freedom [3–5]. Due
to their substantial differences, each has its own benefits and
drawbacks.

Of the two methods, spatial encoding is more widely
adopted. Two limitations preventing a broader adoption
of OAM for high-dimensional operations are decreas-
ing efficiency for manipulating larger OAM values and
a nontrivial mapping of the potentially infinite range of
values to finite-dimensional basis. An existing proposal
for OAM implementation requires too many optical ele-
ments and is not fully scalable [6]. Another method has
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achieved a certain matrix transformation within a finite
range of OAM values, but is hard to expand for other
transformations [7].

The principal current method for processing spatially
encoded optical information is the beam splitter or, more
generally, an optical multiport [8,9]. These building blocks
suffer, however, from low fixed dimensionality and a narrow
parametric space. Typically, parametric behavior is introduced
by using polarization-sensitive elements or phase delays,
regulating, in either case, one of the internal continuous
parameters of the setup per added element. To achieve a
full control over the overall transformations applied to N
inputs and outputs, one has to insert O(N2) such elements,
resulting in alignment challenges and complicated mapping
between their control values and matrix elements of the desired
transformation [2].

In this work, we focus on an N-dimensional optical system,
in which an arbitrary linear mapping can be decomposed
into a product of two processes realizable by utilizing
spatial phase modulation and free-space propagation, making
a full range of both unitary and nonunitary matrices, in
a simple, fixed, and scalable setup. Using this technique,
we reach, as a special case, a natural conversion between
spatial encoding and OAM degrees of freedom, the latter
constrained to N modular equivalence classes. Our method
does not provide perfect power transmission for an arbi-
trary matrix, but we prove that within this realization, the
efficiency is optimal. It reaches unit efficiency for some
extremal cases that are of practical interest, and does not (in
theory) fall below a universal lower bound depending only
on N.
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II. PRINCIPLE

To construct the desired high-dimensional Hilbert space,
we take inspiration from the eigenstates of the conjugate pair
of OAM and angle operators [10]. It is simplest to consider
the OAM state |l〉 and the angle state |ϕ〉, which are connected
via Fourier transform [11]:

|l〉 = 1√
2π

∫ π

−π

exp(−ilϕ)|ϕ〉 dϕ

|ϕ〉 = 1√
2π

+∞∑
l=−∞

exp(ilϕ)|l〉. (1)

A more careful analysis, however, which includes an angle
operator, usually requires a finite basis of angular momentum
states together with an appropriate limiting procedure [12,13].
For all practical purposes, including those considered here,
there will be a natural cutoff at large positive and negative
values of l. So while the OAM states would, in principle,
give an infinite-dimensional basis, the conjugate “pure” angle
states are impossible to implement as unbounded OAM states
are necessarily required with nondecreasing amplitudes. Angle
states model infinitely thin angular sections of the beam, which
can only be approximated in practice.

To overcome these limitations, we work with the experi-
mentally realizable “quasi”-angle states, in exchange for low-
ering the dimensionality from infinite to finite. A quasiangle
state is considered as a Gaussian beam spot radially dislocated
from the center with certain azimuthal angle. Here we will
consider

|ϕn〉 = u(r − rn), n = 1,2, . . . ,N, (2)

where r = (x,y), rn = (r0cosϕn,r0sinϕn), with r0 being the
constant dislocation from the center, ϕn = 2π (n − 1)/N the
azimuthal angle, and u the complex amplitude for Gaussian
beam at its waist,

u(r)|z=0 = u0exp

(
−|r2|

w2
0

)
, (3)

where w0 � r0 is the size of the beam waist. The corre-
sponding conjugate basis of quasi-OAM states is found via
the discrete Fourier transform (DFT),

|lm〉 = 1√
N

N∑
n=1

exp(−ilmϕn)|ϕn〉, m = 1,2, . . . ,N

|ϕm〉 = 1√
N

N∑
n=1

exp(ilnϕm)|ln〉, m = 1,2, . . . ,N, (4)

where lm = m − 1.
Here, N is arbitrary but limited by the condition on

separation of the Gaussian spots, and gives the dimension to
both quasi-OAM and quasiangle bases. We provide an intuitive
comparison of angle and OAM states as well as the quasiangle
and quasi-OAM states with N = 6 in Fig. 1. For a given N ,
we can then represent an arbitrary N -dimensional state vector
α = (αn) using the quasiangle states for the basis as a ket,

|α〉 =
N∑

n=1

αn|ϕn〉. (5)

r0

π

-π

φn

(a) (b)

(c) (d)

FIG. 1. The typical amplitude patterns of (a) angle and (b) OAM
states, and (c) quasiangle and (d) quasi-OAM states with N = 6. The
angle state is approximately illustrated by the superposition of ∼200
OAM states.

Let us consider a generic state of this form that is to be
transformed by a fixed matrix T to another state,

|β〉 =
N∑

n=1

βn|ϕn〉, (6)

such that β = T α. In an operational formalism, it can be
denoted by |β〉 = T |α〉. In particular when T †T = T T † = I ,
the matrix is unitary, preserving the total intensity of the
pattern.

It is important to emphasize that the set of Gaussian
spots depicted in Fig. 1 are each a superposition of a large
number of true OAM states [14], but these are close to being
orthogonal and can be thought of as a set of quasiangle states.
Considering, in this way, |ϕn〉 to be the dislocated Gaussian
beam spot, the transformation could be simply implemented
by splitting all the original Gaussian beams, which form
the pattern of the state |α〉, into several unequal beams and
recombining the latter to form the new pattern as the state
|β〉. Thanks to the modulation convenience provided by the
spatial light modulator (SLM), the aforementioned process can
be implemented with a programmable hologram technique.
We will discuss the details of such implementation in the
following.

A. Splitting and recombining

Figure 2 shows the implementation principle with the
simplest case of N = 2, allowing a planar projection for
clarity. As the first step, by applying an appropriate diffraction
hologram on SLM1, the Gaussian beam spots forming the
state |α〉 can be split into designated directions with distinct
complex weights. These beams are then recombined as a
physical implementation of a linear transformation.
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FIG. 2. Implementation principle of matrix transformation by
two transmissive SLMs (SLM1/SLM2), a 2f focusing lens system
(L1/L2), and a pinhole, of the simplest case of N = 2 for clarity.

A diffraction pattern of exp(−ikxx) on a SLM mimics the
behavior of a blazed grating. Specifically, the diffracted beam
would be tilted with respect to the incident by a small angle
of tan−1(kx/k) (provided kx � k in paraxial approximation)
in the x direction. In order to split any Gaussian beam spot
of state |α〉 into several directions with certain complex
weights, a superposition of gratinglike diffraction patterns as
the hologram on SLM1 is required,

Fdiff1(r) =
N∑

m,n=1

amnexp[−ikmn · (r − rn) + iφmn]

·Flens(r − rn)χ (r − rn), (7)

where amn stands for the transition amplitudes from the
nth spot in state |α〉 to the mth spot in state |β〉, and
kmn = (kmn

x ,kmn
y ) represents tilting the beams with angles

of tan−1(kmn
x /k) in x and tan−1(kmn

y /k) in y. With paraxial
approximation, the components of kmn are calculated as

kmn = k(Rm − rn)

2f
, (8)

where Rm = [r0cos(ϕm + π ),r0sin(ϕm + π )]. It is important
to notice that due to the 2f system adopted in the subsequent
process, as shown in Fig. 2, the Gaussian beam spots on SLM2
are positioned in a centrally reversed orientation, which the
extra rotation angle of π represents.

The more the beam is tilted, the longer optical path it has
during propagation from SLM1 to SLM2. Therefore, different
phase compensation is necessary in each split direction,

φmn = k|Rm − rn|2
4f

. (9)

To prevent the crosstalk between different Gaussian beam
spots on SLM2 as a result of natural divergence during
propagation, a phase pattern encoding one thin lens per spot
is superimposed on SLM1. In the paraxial approximation
scheme, neglecting the constant phase shift, the transmission
function of a focusing lens with a focal length of f is

Flens(r) = exp

(
ik|r|2

2f

)
. (10)

The binary function χ (r), valued one when |r| is smaller
than a certain threshold and zero elsewhere, is present, in
Eq. (7), to avoid the spatial coincidences of the grating patterns

for different n. The threshold is determined by the size and
separation of Gaussian beam spots on the SLM.

Due to the superposition of different gratings being taken,
the hologram Fdiff1(r) requires in general modulations in
both amplitude and phase. Fortunately, there have been many
experimentally verified methods to achieve both amplitude
and phase modulation on a phase-only SLM [15]. Some are
implemented with two cascading SLMs, while others only
depend on one SLM. In this work, only one phase-only SLM
is adopted to mimic the amplitude and phase modulation, as
discussed in Sec. III.

An amplitude-modulating hologram will inevitably be
lossy, as the inequality

|Fdiff1(r)| � 1 (11)

must be satisfied for all (x,y). As soon as more than one term is
present in the rightmost sum in Eq. (7), amplitude modulation
is required, which inevitably comes with energy losses. The
summation is upper bounded by∣∣∣∣∣

N∑
m=1

amnexp[−ikmn · (r − rn) + iφmn]Flens(r − rn)

∣∣∣∣∣

�
N∑

m=1

|amn|, (12)

for ∀n ∈ {1,2, . . . ,N}, and we consider the slightly stronger
inequality

N∑
m=1

|amn| � 1, ∀n ∈ {1,2, . . . ,N} (13)

as the condition for a physically realizable hologram.

B. Realigning and spatial filtering

After splitting and recombining, any reformed Gaussian
beam spot is actually a superposition of tilted beams from
different directions. However, when considering cascaded
matrix transformations, it is essential that the incoming
beams from different directions are realigned to the original
longitudinal direction z. Once again, this realignment can be
ensured by applying a corresponding diffraction hologram on
SLM2. But any such realignment will inevitably result in
several unwanted diffractions as a by-product. These could
be cut off in the near field, requiring N carefully positioned
apertures, or in the far field using a 2f focusing lens
system with a central pinhole in the Fourier plane, which
is employed in this work and shown in Fig. 2. Note that
the latter reverses the image but this is compensated by
the reversed design of SLM1 and the corresponding SLM2
appropriately.

In the simplistic example of Fig. 2, the lower Gaussian spot
formed right before SLM2 is composed of two beams with
a relative phase. In order to realign the upper of these two
beams (green dashed line) to the z direction, a gratinglike
diffraction pattern that tilts the beam in the +x direction
is required. However, this pattern would also unselectively
tilt the lower incoming beam (red solid line) to the +x

direction as an unwanted side effect. Meanwhile, a flat
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pattern that simply transmits without changing direction is
also required, as the lower incoming beam could be kept
in its propagation direction. Once again, this flat pattern
would keep the upper incoming beam in its direction as
well, and would introduce another unwanted diffraction.
Thus any incoming beam would be partially realigned, but
also partially diffracted in some unwanted directions. The
pinhole filtering in the 2f system is designed to block any
components of this resulting field propagating in directions
except for the z axis by transferring to the Fourier plane and
back.

In a real application, it makes sense to integrate the trans-
mission function of the lens L1 into SLM2 for convenience.
Generally, the hologram on SLM2 is then described by

Fdiff2(r) =
N∑

m,n=1

bmnexp[ikmn · (r − Rm)]

·χ (r − Rm)Flens(r), (14)

where bmn stands for the complex weights for the partial phase
ramp realigning a beam from the nth spot in state |α〉 to the
mth spot in state |β〉. Again the hologram will involve both
amplitude and phase modulation and will be constrained by
the condition

N∑
n=1

|bmn| � 1, ∀m ∈ {1,2, . . . ,N}. (15)

Consequently, both the hologram itself and the spatial filtering
can introduce additional loss at this stage.

Finally, to ensure the Gaussian beam spots in state |β〉 at
their waists a focal length behind lens L2, an additional phase
pattern encoding several thin lenses is also necessary, which
is similar with those on SLM1. Therefore, we implement the
pattern together with the transmission function of lens L2 on
SLM3,

Fdiff3(r) =
N∑

n=1

Flens(r − rn)χ (r − rn)Flens(r). (16)

As the lenses shown in Fig. 2 are encoded in the hologram
patterns on SLM2 and SLM3, the whole setup to implement
unitary and nonunitary transformations is finally shown in
Fig. 3 (we take N = 5 for this illustration).

C. Efficiency

Taking the two above steps together, in order to obtain a
generic transformation between N -dimensional states |α〉 and
|β〉 described by the matrix T = (tmn), we need to find matrices
(amn) and (bmn) such that

amnbmn = ηtmn, ∀m,n ∈ {1,2, . . . ,N}, (17)

where η is the efficiency, with conditions of

N∑
m=1

|amn| � 1, ∀n ∈ {1,2, . . . ,N} (18)

State |α SLM1 SLM2 SLM3 State |β
Pinhole

z

2f 2ff f
Splitting

and recombining
Realigning

and spatial filtering

f
xy

FIG. 3. Proposed schematic setup for implementing unitary and
nonunitary transformations of N = 5.

and

N∑
n=1

|bmn| � 1, ∀m ∈ {1,2, . . . ,N}. (19)

Let us first assume for now that T only has nonzero
elements. We note that starting with any solution to the
problem, the inequalities holding for amn and bmn can always
be leveraged so that one set of the inequalities becomes
equalities. Without loss of generality, we assume that

N∑
m=1

|amn| = 1, ∀n ∈ {1,2, . . . ,N}. (20)

This is trivial since an increase in magnitude of amn can always
be accompanied by a corresponding decrease in magnitude
of bmn without compromising the validity of Eq. (19), up to
the point an equality in the corresponding line of Eq. (18).
Similarly, we are free to assume that amn is real and positive
for all indices as bmn can always absorb the necessary phase
information. Under these assumptions, we can express

bmn = η
tmn

amn

, ∀m,n ∈ {1,2, . . . ,N}. (21)

Finding the most efficient realization of the matrix T corre-
sponds to determining the maximum value of the parameter η

without violating Eq. (19) or, equivalently, finding the lowest
value of the right-hand side of

N∑
n=1

|tmn|
amn

� 1

η
, ∀m ∈ {1,2, . . . ,N}. (22)

Interestingly, these inequalities can also be converted to
equalities while further decreasing the upper bound. Using
pairwise modification of amplitudes of amn such that Eq. (20)
stays satisfied in an iterative algorithm, the optimum is reached
exactly when all the left-hand sides of Eq. (22) are equal.

The remaining problem is to minimize

U =
N∑

m,n=1

|tmn|
amn

(23)
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(equal to N/η, sum over m taken for the sake of symmetry)
under the constraints

N∑
m=1

|amn| = const, ∀n ∈ {1,2, . . . ,N}

N∑
n=1

|tmn|
amn

= const, ∀m ∈ {1,2, . . . ,N}. (24)

This can easily be done using Lagrange’s method, resulting in

amn = um

vn

√
|tmn|

bmn = η
vn

um

√
|tmn|exp[iarg(tmn)], (25)

where um and vn satisfy

N∑
m=1

√
|tmn|um = vn

η

N∑
n=1

√
|tmn|vn = um. (26)

Or, donating S = (
√|tmn|),

ST u = v

ηSv = u, (27)

which is actually an eigenvalue equation for the vector v:

ST Sv = 1

η
v. (28)

The particular choice of the largest eigenvalue can
guarantee the existence of an eigenvector with all positive
elements, and in turn the positivity of values of amn, due
to the Perron-Frobenius theorem [16]. Choosing the largest
eigenvalue goes against the goal of maximizing η, but no
other choice is guaranteed to comply with the prescribed
constraints, and in fact cannot, due to the orthogonality of
eigenvectors corresponding to different eigenspaces of the
symmetric matrix ST S.

It follows that by identifying κ as the largest eigenvalue of
ST S with a corresponding eigenvector v of positive elements,
we can decompose the matrix T into an elementwise product
of amn and bmn as given in Eq. (17), with an efficiency factor
of 1/κ . (We note that κ is equivalently the squared largest
singular value of S and v is a corresponding right-singular
vector.) By arguments of continuity, this result can be extended
to matrices containing vanishing elements as well, and can be
easily generalized even to rectangular matrices when mapping
between unequally dimensional states.

As a special case that ST S is the identity, the matrices T

can, in principle, be realized with unit efficiency. One might
expect, based on arguments of energy conservation, that this
should cover all unitary matrices. However, this condition is
independent of unitarity (indeed, it states that a matrix formed
of square roots of magnitudes of elements of T is unitary, rather
than T itself) and for most unitary matrices the statement is not
true. This is due to the limitations of what amplitude and phase

modulation alone can achieve in splitting and recombining a
beam, in particular due to the inevitable presence of unwanted
diffractions, as illustrated in Fig. 2. Indeed, the only unitary
matrices with η = 1 are generalized permutation matrices with
arbitrary complex units, which correspond to mapping each
input to exactly one output spot. The worst case is for the
matrices in which all elements have the same magnitude, e.g.,
the DFT. For matrices of order N satisfying this criterion, the
efficiency according to the above theory reaches a universal
lower bound of η = N−3/2.

Finally, in this discussion, we should note that while our
scheme allows sequential applications of matrices, decompos-
ing a matrix into a product can never make the total efficiency
better. This is a direct consequence of an inequality valid for
the largest singular values of two factors and of their product
shown in [17].

III. SIMULATION OF EXAMPLE MATRIX
TRANSFORMATIONS

The implementation of both amplitude and phase modula-
tion is crucial for this work. In this simulation, we have adopted
the checkerboard approach investigated by [18], which only
relies on one SLM for simplicity, in exchange for lowering
spatial modulation resolution. In this approach, two pixels
on a SLM are paired to act as a superpixel. This principle
is illustrated in Fig. 4. For any complex variable within the
unit circle on the complex plane, one could always find two
variables on the circle edge to represent it via its arithmetic
average,

ρexp(iθ ) = 1
2 [exp(iθ1) + exp(iθ2)], 0 � ρ � 1. (29)

Then, for any amplitude and phase modulation hologram,
whose maximum magnitude would never exceed one, we can
find a phase-only hologram to mimic it approximately. Without
loss of generality, adjacent pixels on the SLM are paired in the
x direction (horizontal) to be the superpixels, marked by red
outlines in Fig. 4(b). Intuitively, the resolution of modulation
in the x direction would be reduced by half, while that in the
y direction (vertical) is unchanged.

All the electromagnetic fields in this work are considered
in a paraxial approximation regime. The field propagation
is described by utilizing the Fresnel-Huygens integral, with
free-space wavelength of 1.55 μm and focal length f of
0.15 m. The size of beam waist w0 is 150 μm. The SLM

Re

Im exp(iθ1)

exp(iθ2)

ρexp(iθ)

)b()a(

...

...

FIG. 4. (a) Principle of the checkerboard approach and (b) the
paired adjacent pixels as superpixels on phase-only SLM.

033827-5
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pixel size is 8 μm (referring to the PLUTO phase-only SLM
by Holoeye Photonics, though transmissive SLM is assumed
in this work for simplicity, instead of the actual reflective
one). Note that an additional constant phase delay is applied
on SLM3 to illustrate the simulation results more clearly. The
dimension in the following examples is N = 5, which could be
extended without difficulty to other integers. In what follows,
we discuss the results of our simulation for several important
cases.

A. Pauli shift and clock matrices

Ubiquitous in quantum physics, Pauli matrices are three
2 × 2 matrices that are complex, unitary, and Hermitian.
Pauli matrices are extremely useful in quantum information
and computation, doubling as a base for decomposing qubit
states and a set of generators for describing operations
on them. In discrete phase-space formulation, the matrix
σ1 acts as a displacement in position and σ3 in momen-
tum. Inspired by these properties, a possible extension of
these two Pauli matrices to higher dimensions (also known
as Weyl and Schwinger matrices) [19–21] is the shift
matrix,


1 =

⎡
⎢⎢⎢⎢⎣

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

⎤
⎥⎥⎥⎥⎦ (30)

and the clock matrix


3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 ω 0 · · · 0

0 0 ω2
...

...
...

...
...

. . .
...

0 0 0 · · · ωN−1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (31)

where ω = exp(i2π/N ). Only some properties of Pauli ma-
trices σ1 and σ3 are retained, and we note, in particular, that

1 and 
3 are not Hermitian for N > 2 and there is no direct
analog of σ2 to form a representation of su(N ).

It is not hard to conclude that for any quasiangle state,


1|ϕn〉 = |ϕn+1〉,1 � n < N


1|ϕN 〉 = |ϕ1〉 (32)

and


3|ϕn〉 = ωn−1|ϕn〉, ∀n ∈ {1,2, . . . ,N}. (33)

Thus, the shift matrix 
1 corresponds to a translation opera-
tion, while the clock matrix corresponds to a delay operation,
both in a quasiangle state basis. A concrete example is shown
in Fig. 5(a) with n = 5.

The principal action of the two operators can be understood
quite differently in the quasi-OAM state basis. The transfor-
mations for any quasi-OAM state are given, with Eq. (4), as


1|ln〉 = ωn−1|ln〉, ∀n ∈ {1,2, . . . ,N} (34)

2mm

π

-π

|α〉 |β〉 = Σ1|α〉 |β〉 = Σ3|α〉
(a)

(b)

FIG. 5. Shift matrix and clock matrix transformations with (a)
quasiangle state and (b) quasi-OAM state.

and


3|ln〉 = |ln−1〉,1 < n � N


3|l1〉 = |lN 〉. (35)

In this basis, 
1 effectively becomes a clock matrix,
while 
3 is a shift matrix. We illustrate the two matrix
transformations with ln = 1 in Fig. 5(b).

Generalized Pauli matrices are implemented perfectly with
our proposal as each spot is just deflected to a new location
and/or phase shifted. The theoretical efficiency as discussed
above is 100%. In our numerical simulation, the efficiency is
calculated as

η =
∣∣∣∣ 〈βcal|βid〉
〈βid|βid〉

∣∣∣∣, (36)

where |βid〉 is the idealized output state and |βcal〉 is the
calculated state. In the above four cases, the calculated
efficiency is 91.78 ± 2.21%, with the small drop due to the
rasterization effects in the phase pattern on the SLM and the
field itself.

B. Some sparse matrices

A permutation matrix is a further generalization of Pauli
matrices that is unitary and can also be achieved with a
theoretical efficiency of 100%. We illustrate this with a specific
permutation matrix as

T1 =

⎡
⎢⎢⎢⎣

0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎦. (37)

The calculated results are shown in Fig. 6(a). Comparing
state |β〉 with state |α〉, the first and second spots (counting
from the positive x semiaxis counterclockwise) are exchanged.
The same is with the fourth and fifth spots, while the
third spot is retained. The whole process fulfills the matrix
transformation implied by T1 and the calculated efficiency is
91.99%.

The efficiency would be worse when more than one element
per row or column of the transformation matrix is nonzero.
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2mm

π

-π

|α〉 |β〉Before SLM1 Before SLM2
(a)

(b)

FIG. 6. (a) Permutation matrix and (b) tridiagonal Toeplitz matrix
transformations.

It can be expected to stay moderately high as long as the
matrix is sufficiently sparse, or close to a sparse matrix. An
example inspired by classical random walk on a line could be
the tridiagonal Toeplitz matrix

T2 = 1√
3

⎡
⎢⎢⎢⎣

0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎦. (38)

The calculated results are shown in Fig. 6(b). Though this
requires multiplexing in most inputs and outputs and is not
unitary, it was still achieved in our simulation with calculated
efficiency of 52.78%, compared to the theoretical efficiency of
1/

√
3 ≈ 57.74%.

Furthermore, we sampled fields at two key locations
between states |β〉 and |α〉 to give more information about the
whole process. One is right before SLM1 (second column in
Fig. 6), where the original Gaussian beam spots are diverging
due to free-space propagation. The other is right before SLM2
(third column in Fig. 6), where one could see the amplitude
pattern of beams from different directions.

C. DFT matrix

To investigate a more involved case of a matrix without any
zero elements, we illustrate the potential for practical use of
the theory with a matrix describing DFT,

W = 1√
N

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...
1 ωN−1 ω2(N−1) · · · ω(N−1)(N−1)

⎤
⎥⎥⎥⎥⎥⎦

.

(39)

As indicated by Eq. (4), the Fourier relationship between
the quasiangle and quasi-OAM states could be equivalently
given as

|ln〉 = W−1|ϕn〉, ∀n ∈ {1,2, . . . ,N}
|ϕn〉 = W |ln〉, ∀n ∈ {1,2, . . . ,N}. (40)

In particular, the second equality indicates that each quasi-
OAM state would be projected to one certain Gaussian beam
spot after the DFT matrix transformation. This represents

l = 0

l = 1

π

-π

l = 2
2mm

l = -2

l = -1

LG beam |β〉|α〉 Before filtering

FIG. 7. Topological charge measurement of Laguerre-Gaussian
beams with DFT matrix transformations.

a potential method to measure the topological charge of a
vortex beam, if the quasi-OAM state inherits the original OAM
information of the vortex.

As there are N quasi-OAM states whose total azimuthal
phase variation is given by 2πln, each of them approximates a
vortex beam with topological charge of l ≡ lnmodN . In fact,
this correspondence is manifested if the quasi-OAM state is
simply spatially filtered from the respective vortex beam. It
is important to mention that vortex beams with topological
charges of ln + mN (m ∈ Z) become indistinguishable in the
projection with the condition of w0 � r0.

In our simulation shown in Fig. 7, Laguerre-Gaussian
beams with topological charge of l [22] are spatially filtered
by a fixed mask to reach the quasi-OAM states as state |α〉.
The radius of the pinholes on this fixed mask is 1.5 times the
size of beam waist w0. Then the latter are projected to the
corresponding Gaussian beam spots applying the DFT matrix,
which clearly sorts them according to their topological charges.
The field before spatial filtering is also illustrated, where one
could see the unwanted diffractions after focusing by SLM2.
The pinhole is schematically illustrated by a white dashed
circle in the figure, enabling the field inside it to pass through.

The efficiency is calculated to be 8.41 ± 1.10% (over the
five studied cases), compared to the theoretical efficiency of
5−3/2 ≈ 8.94%. Some calculated efficiencies even surpass the
theoretical expectation due to the fact that state |α〉 is made up
of binary cutoff beam spots with slightly larger size, rather than
ideal Gaussian beams as assumed in the theoretical model.

Conversely, the inverse DFT matrix could be viewed as
a generator for quasi-OAM states and even OAM states
themselves [23], if one starts from the quasiangle states.
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2mm

π

-π

|α〉 Before filtering |β〉

FIG. 8. Generation of quasi-OAM state from quasiangle state
with inverse DFT matrix transformation.

Figure 8 illustrates a specific inverse DFT transformation by
Eq. (40) with n = 4 with the efficiency of 8.37%.

By introducing the DFT matrix, we have illustrated a
topological charge measurement method of a vortex beam.
Furthermore, the vortex beam could also be generated with
the inverse DFT matrix.

IV. DISCUSSION

By applying the experimentally realizable and high-
dimensional quasiangle state, the programmable holographic
technique presented here successfully demonstrates the im-
plementation of unitary and nonunitary transformations. The
efficiency of the transformation depends on the matrix applied
and has a universal lower bound of η = N−3/2. Though only
square transformation matrices are investigated in this work, it
is important to state that our proposed scheme could be readily
extended for any rectangular matrix. Furthermore, though an

angular pattern is considered here as a choice inspired by
optics, the distribution of Gaussian beam spots in the plane
is largely irrelevant and could also be tailored for a particular
purpose.

It is worthwhile to mention that all the optical elements
need to be interferometrically stabilized with a high precision
in experiment. The SLMs may be further replaced by custom
refractive elements for a fixed transformation to obtain a
higher efficiency [24]. A possible application of the technique
would be an integrated implementation with nanophotonics
technologies to further reduce the size of the setup and improve
the dynamic characteristics.

Inspired by the angle and OAM states, the quasiangle state
expands the dimensionality remarkably when compared to two
polarization states and paves the way for high-dimensional
Hilbert space manipulations. The measurement of OAM
topological charge is demonstrated in detail, indicating a
metrology method for optical vortices. Our proposed scheme
also has potential for optical free-space communication in-
volving OAM multiplexing and optical computing.
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