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Abstract

Lack of knowledge in the underlying data distribution in distributed large-scale data can be an obstacle when issuing
analytics & predictive modelling queries. Analysts find themselves having a hard time finding analytics/exploration queries
that satisfy their needs. In this paper, we study how exploration query results can be predicted in order to avoid the execution
of ‘bad’/non-informative queries that waste network, storage, financial resources, and time in a distributed computing
environment. The proposed methodology involves clustering of a training set of exploration queries along with the cardinality
of the results (score) they retrieved and then using query-centroid representatives to proceed with predictions. After the
training phase, we propose a novel refinement process to increase the reliability of predicting the score of new unseen queries
based on the refined query representatives. Comprehensive experimentation with real datasets shows that more reliable
predictions are acquired after the proposed refinement method, which increases the reliability of the closest centroid and
improves predictability under the right circumstances.

Keywords Predictive intelligence - Exploration query prediction - Centroid refinement - Machine learning

1 Introduction Although exploration querying acts as a solution for

accessing distributed data, in most cases there is lack of

Due to the importance and relevance of data in distributed
computing environments, large-scale data analytics, predic-
tive modelling, and exploration tasks, they have rightfully
found their place in almost all, if not all, of today’s indus-
tries. While having access to humongous amounts of data
is very beneficial, it has introduced many new challenges.
One of them is that they cannot be accessed directly (like
a traditional data management systems would be accessed);
instead, subsets of them can be acquired through exploration

querying.
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knowledge about the underlying data distributions and their
impact on the results. As a result, users/analysts may find
it hard to come up with a query to execute and it can be
even harder to find a query that will return a satisfying
number of results. The number of results returned by a
query, which for future convenience will be referred to as
score, can vary from being to little to be significant, to being
extremely high, which can be more than needed. Apart from
the frustration that might be involved in finding the correct
query, executing the aforementioned queries can lead to the
waste of network and storage resources that are involved
in transferring and storing query results among computing
nodes in a distributed computing environment (including
processed data or even raw data for analytics tasks).

As an illustration, we consider the scatter plot in
Fig. 1, where the dots represent data points in a 2-
dimensional space and the squares represent exploration
queries over attributes in both dimensions. One can notice
that exploration Query 1 is expected to return a relatively
big amount of of data (high score), while Query 3 returns a
smaller amount of data (medium score), and Query 2 returns
no data (zero score) and thus is by any means not worth
executing. Users may think though that Query 1 returns
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Fig. 1 An illustration example of a dataset and three exploration
queries represented by rectangles over the 2-dimensional data space

more results than they require or that Query 3 does not
return enough results, therefore in both cases they would
have to redefine their exploration queries and exploration
policy, in general. The queries would still need to be re-
executed for their effect to be seen and they could still not
satisfy the users’ needs.

Query processing and exploration involves financial
costs. The Google’s BigQuery [11] service provides
interactive exploratory analytics along with MapReduce [9].
This involves the issuing of many exploratory queries over
this service with certain non-negligible cost depending on
the complexity of the query or the data [11]. Therefore
analysts/users/applications issuing queries that do not have
a satisfiable score. Moreover, taking into consideration the
available computational and networking resources, the cost
for processing an exploratory and analytics query should
be carefully considered in the total cost of holistic task.
It is claimed in this paper that such challenges can be
avoided if the scores of queries can be reliably predicted
in order to decide in advance whether they are worth
executing based on user criteria. We focus this research on
the exploration queries that are directed towards datasets
involving multidimensional data points. Previous research
in [2, 3] has evidenced the potential of predicting the results
of aggregate queries, through clustering, where specific
clustering methods are adopted to provide estimations of the
query answers.

Our methodology here departs from the limitations of
the previous works in [2, 3] by adopting query vectorial
space clustering and using the resulting closest and rival
centroids to provide more reliable and robust predictions.
We then investigate whether refining centroids to increase
the reliability of a query’s closest centroid can improve
predictability. Based on this refinement, we examine
different approaches of refinement and prediction, as well
as how the behaviour of these approaches can change based
on the number of centroids. The final outcome of this study
involves determining whether a query is worth executing
based on user criteria. As of that reason, we define sets
of user criteria, that define what score a query should have
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in order to be worth executing. We can then examine how
successfully our predicted scores can determine whether
a query should be executed or not, i.e., our initial
research hypothesis. Before elaborating on our motivation,
objectives, novelty and related work discussions, we provide
the fundamental definitions to establish the narrative of our
predictive intelligence approach. We follow the notation
used in the previous research approaches [2, 3] to avoid
confusion to the reader with different mathematical symbols
and notation. Consider a d-dimensional data space x =
[x1,...,x4q] € Rd:

Definition 1 (Exploration Query) Let a d-dimensional
box be defined by two boundary vectors [, ..., 041"
and [ug,...,ug]" such that I; < u;,Vi. An exploration
query, q € R?? is defined by the 2d-dimensional vector
[, ur,..., 14, ud]T.

Definition 2 (Query Distance) The Manhattan (L norm)
distance between two queries q and ¢’ is ||q — q'|l1 =
Zle |l — llfl + |lu; — u§|. This distance metric is subject
to change to adapt to different types of datasets and/or
correlation among dimensions by adopting the Mahalanobis
distance.

Definition 3 (Score) Given a query q and a dataset B that
consists of data points x € R?, y € N is the score or the
cardinality of the subset containing those x € B being in the
interior of the hyper-rectangle defined by the query q that
matches [; < x; < u;, Vi.

The structure of the paper is as follows: Section 2 focuses
on the motivation behind this research along with the
related work and our contribution. Section 3 introduces our
methodology, while Section 4 reports on a comprehensive
experimental evaluation and comparative assessment with
other works found in the literature. Section 5 concludes
the paper with suggestions for future work. Refer to
Table 1 in the Appendix for a nomenclature of the
parameters/notations used in this paper.

2 Related work & contribution
2.1 Motivation

Advances in Approximate Query Processing (AQP) involve
the use of sampling, histograms, self-tuning histograms,
wavelets, and sketches [1, 8, 12, 13, 22]. AQP structures
are based on the fact that the dataset on is always available
and accessible in a distributed computing environment,
when required by analysts to be explored. Data analysis
based on histograms and sampling requires an extensive
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execution of queries over subsets of datasets to acquire a
score prediction. As we mentioned, the execution of such
queries in distributed computing environments has certain
obstacles due to the lack of knowledge about the underlying
data distribution. These obstacles can complicate the task
of finding what query should be executed; which can lead
to executing queries with unsatisfiable scores. This will
inevitably lead to the waste of network, storage and financial
resources as well as time. Furthermore, there are other
scenarios that can make the importance of finding the right
query fast, with less query executions, more significant.
Certain real life data management systems can allow only up
to a certain number of query executions and/or charge any
excesses. For instance, web interface queries can involve
per-IP limits while API based queries can involve per
developer key limits. In either of the mentioned scenarios,
consequences will either involve further waste of resources
or the risk of being denied to execute further queries.
We claim that the aforesaid risks could be avoided if the
scores of queries were predicted in advance; as predicted
scores would be used to determine if the queries are worth
executing based on user criteria. We expect this to reduce
the number of queries that are executed, but the degree to
which this number is decreased will depend on the accuracy
of our prediction methodology.

While taking the above-mentioned arguments into
account, we present a list of requirements & desiderata in
order to develop a rationale for predicting the scores of
queries:

— R1: The rationale must avoid constant data-accesses
/ interactions with the distributed dataset, in order
to avoid wasting computational and communication
resources as well as making the provision of a
prediction fast.

— R2: The rationale must provide score predictions that
are accurate and reliable enough to determine if a query
is worth executing.

— R3: The rationale must be applicable to datasets that
consist of multidimensional data points.

A possible baseline solution would involve storing
locally AQP structures and using them to predict the
scores of unseen queries or such structures could be held
by the distributed nodes, who would receive queries and
respond with a prediction. The authors in [2, 3] presented
a query-driven solution to this problem that involves
training an ML model with a set of COUNT queries and
their results, and using it to predict the results of new /
unseen queries. Our solution is based on the query-driven
initiative and involves the adoption of query vectorial space
clustering, where centroids are formed with a training set
of exploration queries. The score prediction is associated
with the closest cluster-head to an incoming/unseen query

q are going to work as the basis for making a score
prediction. Notably, we have noticed via experimentation
in our comparative assessment section that through the
query-driven methodology in the literature [2, 3], the closest
cluster-head to a query (Definition 2) has not always had a
better prediction than its rival, the second closest centroid!
In fact, we propose a methodology to refine and locate
the two closest cluster-head to each query q, from a set
of queries, and noticed that in approximately 60% of the
predictions, the best prediction derived from q’s closest
centroid, while in the remaining 40% it was obtained
from its second closest cluster-head. This acted as our
major motivator on how the existing query-driven approach
should be further investigated to provide robust and reliable
predictions.

2.2 Related work & contribution

Queries executed over distributed data for exploration
purposes result to a huge amount of data points to be further
investigated. As of that reason, ways of narrowing down
query results by presenting only the top-k results based on
a scoring function through joining and aggregating multiple
inputs, were introduced in [6, 10, 15]. Other research
approaches like [5, 16, 17] and [7] face with minimizing
the number of relevant data points retrieved. Undeniably,
research focuses on the significance of query’s answer
amount of retrieved data points, which challenges us to
whether we can decide if a query is worth executing based
on the number of results it can return, more relevant.
Histograms is a fundamental tool for a fast estimation
of the number of data points retrieved per aggregate
and/or exploration query. However, histograms to be able
to accurately provided us this information/estimation they
should be updated at times; and this does not benefit a
viable solution in a distributed computing environment.
Moreover, other score prediction methods adopt histograms,
but they are still not applicable for our solution due to
their requirement for data access; the reader could refer to
wavelets [20, 22]. Further approaches that have been studied
for solving the score prediction problem include sampling
[13] and sketching [8]. However, these methodologies are
not suitable in our context since they require all the
underlying data to construct predictors and approximation
models, which is not a viable solution in the case where the
data are distributed in different geo-locations. As we already
mentioned, in this paper we depart from our recent research
on the query-driven ML approach of the relevant research
approaches in [3] and [2] adopt clustering of queries (using
variants of [14, 18] clustering methods) in order to predict
the score. This is achieved by estimating certain query
representative or cluster-heads, used further to predicting
the score of an unseen query. However, as it will be shown
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in our experimental and comparative assessment section, the
use of a unique and the closest cluster-head to an unseen
query is not a panacea for an accurate and robust score
prediction. In this case, we drastically depart from this and
define methods for refining the clustering setting over the
query space to increase reliability ad robustness of the score
prediction for any random query in a distributed computing
system.
The contribution and novelty of our research is:

— We introduce the idea of centroid or cluster-head
refinement, which aims to increase the reliability of
a query’s closest cluster-head, as we believe that
the closest cluster-head to a query should have the
closest prediction. We introduce different refinement
approaches and through the use of experiments we
derive which one is the most effective.

— We present and examine three different approaches on
how cluster-head can be used to make predictions for
a query q. The average prediction error, as well as the
specificity and sensitivity metrics, act as guides to help
us determine which prediction approach is the most
effective.

—  We provide separate predictions using both refined and
unrefined cluster-head to determine whether improved
reliability leads to more accurate predictions, based on
prediction error.

—  We provide a comparative assessment with the previous
approaches [3] and [2] found in the literature, and
showcase the benefits of our methodology in providing
robust and reliable predictions.

— Throughout our experiments, we always take into
account how the behaviour of our methodologies can be
influenced by the number of cluster-head.

3 Predictive intelligence methodology
3.1 Rationale

We introduce our methodology on how the scores of queries
can be predicted with the use of clustering as well as
the rationale for involving cluster-head refinement in the
process. Recall that our study focuses on queries that are
examining multivariate data, therefore a dataset includes
scalar values in all dimensions. As in our first step we issue
random queries to be executed against the dataset, we scale
all values of the dataset in x = [x, ..., xq] € [O, 1719. We
then generate a random query set that consists of exploration
queries of (/;, u;) pairs for each dimensioni = 1,...,d;
see Definition 1. In order for a data point X = [x1, ..., x4]
to match a query q = [I1, u1, ..., lg, ug], each x; value that
is being referred to by a (/;, u;) pair has tobe: [; < x; < u;.
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Fig. 2 An example exploration query projected onto the 2-dim. data
space that consists of a (min,max) pair in each dimension

Each time a point matches a query, it will cause the score
of that query q to be increased by 1. For example, in Fig. 2
the query [0.5, 0.6, 0.6, 0.8], represented by the square, has
a score of 3, i.e., there are three data points included in this
square.

Once the random query set is generated, it executes each
query q against the dataset to obtain its score, q(y) or simply
y > 0. The score is associated with each query, thus a scored
query q vector is expanded at this point to accommodate y
obtaining the following representation:

q=1[l,u1, ...l uq, y] € R¥*! .

The random query set is usually divided into two sets,
60% of the random query set becomes a training set while
the remaining 40% becomes a testing set. The training
set is the input to the k-means clustering algorithm which
produces the k centroid, coined here as query representative
patterns:

Wi = [l1s wkts - - - s by Uk, yi] € R24HL (2)

Different sets of centroids are created at different values
of k, in order to examine changes in the behaviour of our
refinement and prediction approaches based on the numbers
of centroids. For each query q in the testing set, we find its
two closest centroids. The distance between q and a centroid
is measured through the Manhattan distance between the
values of the (/;, u;) pairs. We refer to these two centroids
as the winner representative and the rival representative,
where the former is the closest centroid to q. Specifically,
given a query q, the winner (closest) representative w

(closest) out of the k representatives W = {wi}f.‘zl is

defined as:

W = arg min —w;ll, 3
g min g = wil: A

where the Manhattan (L1 norm) distance is defined as:

d
g —welli =Dl — liil + lui — g )
i=1
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The rival representative r (2nd closest) is defined as:

r=arg min |q—w;, (3)
w; e{ w}

i.e., after excluding the winner (closest) representative w
of the W set, the rival representative is the second closest
representative to the query q.

We subsequently measure the score prediction error for
each of the two representatives (closest/winner and second
closest/rival), where that is the absolute difference between
a representative’s score and ¢’s score. That is, the score
prediction error w.r.t. winner representative is defined as:

ew =1y — Jwl, (©)

where y is the actual score of the query q and
is the winner representative’s score yy of the winner
representative w. Similarly, the the score prediction error
w.r.t. rival representative is defined as:

er =y — Jl, (N

where y, is the rival representative’s score yp of the rival
representative r.

The winner and rival representative along with their score
prediction errors expand the vectorial representation of the
scored query vector q, thus q now has the holistic vectorial
representation:

qz[llaulv"-aldaud? y7waeW9r’el‘]7 (8)

where w is the winner representative with its associated
score prediction score ey, and r is the rival representative
with its associated score prediction ey.

Given a query q with actual score y, we define the
indicator Iq = 1 if the rival prediction error is less than
the winner prediction error w.r.t. query q; 0 otherwise, i.e.,
Iq = 1ifer < ey, while I = 0if e > eyw. Let fp and f; be
the percentage of cases (out of N predictions) that the rival
representative has smaller prediction error than the winner
representative, and vice versa, respectively, i.e.,

N
fim o Yl and fo= 1 i )

i=1
We have noticed that in a huge number of cases N >
10, 000, the rival representative has had a lower score
prediction error than the winner representative about 40%,
ie., fi = 04, while fo = 0.6. This has lead to our
study to introduce our rationale: centroid refinement, i.e.,
optimally updating the positions of the rival and winner
representative such that fo — 1 and f; — 0. This
means that, we cater for updating the representatives such
that the winner representative will highly likely provide
more accurate predictions that its rival. The algorithm for
estimating the probabilities fp and f; of prediction for

the winner and rival query representatives, respectively, is
shown in Algorithm 1.

Algorithm 1 Winner & rival prediction probabilities.

Result: prediction probabilities fo; fi
fo< 0,1 < 0,1 < 1;
while r < N do
Receive random query q with score y;
Winner query representative
w = arg miny, ey |lq — wil1;
Rival query representative
r = arg ming, cpy\wy 14 — will1;
Winner’s predicted score Jy;
Rival’s predicted score Jy;
if |y — yw| < |y — Jr| then

| fo<fo+1;
else

| i< it
end

end

o fin < 4

3.2 Centroid refinement mechanism
3.2.1 Refinement methods

The centroid refinement aims to increase the reliability
of the winner representative in the score prediction. In
other words, the centroid refinement aims to decrease
the cases where the winner representative has a higher
score prediction error than the rival representative. The
reason behind this is that, we will be basing our score
predictions for new sets of queries on the values of
representative centroids. We argue that the closest centroid
to a query should have the closest score prediction,
therefore by improving reliability we expect also to
improve predictability. Although, the use of the appropriate
experiments shall determine whether that statement holds as
will be shown later.

In order to initiate centroid refinement, a new random
query set must be generated called the refinement set. This
refinement process involves penalty and reward formulas
on the winner and rival representatives. The reward formula,
shown below, aims to shift the representative vector w closer
to the query q, where q is a query from the refinement set,
ie.,

w=w+a(q) - (q—w). (10)

The parameter a(q) € (0, 1) is a query-driven parameter
that determines the rewarding effect; if a = 1 then the
representative would take the exact same form as q, while
if @ = 0 the representative would remain unaltered. The
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penalty formula behaves in exactly the opposite manner, it
aims to shift a representative further from the q:

w=w-—a(q-(q—Ww). Y

We introduce three different methods for acquiring a
rewarding value of a defined below. All of the three
rewarding methods will be examined to determine which
leads to the best refinement. Given a query (:

Rewarding Method A suggests a be a scalar indepen-
dent of the query q.

Rewarding Method B includes two functions for a.
The first function is a rewarding a value depending on the
winner representative score prediction error. That is, the
greater the winner score error is, the greater the reward
effect will be:

a(q) = 1 — emmier (12)

where ey = |y— Yw| is the absolute error difference between
the q’s score and the winner representative’s score and e, =
|y — Pr| is the absolute error difference between q’s score
and the rival representative’s score.

The second function is a penalizing a value depending
on the rival score prediction error, such that the greater the
rival score error is, the greater the penalty effect will be:

a(q) = 1 — emwiter (13)

Rewarding Method C suggests that a depends on ny, >
1, where ny is the number of the query members of a
representative’s cluster. Specifically, let Q = {q,,l}f‘f:1
be the set of all issued queries over the dataset B. The
query set Q is split into k > 0 groups Q,, of queries,
where each group is associated with a query representative
wy,,m = 1,...,k. A query q belongs to a query group
Q,, iff the distances of this query q with the corresponding
query representative w,, is the smallest compared to all the
distances of q with the other query representatives. Thus,
we define the cardinality of a query group ny,, represented
by the query representative w,, as:

Ny, = [Onl, (14)

and therefore M = Zf‘nzl Ny, - Based on this cardinality,
we obtain that, given a query q whose winner representative
is w, the rewarding value a(q) is a reciprocal function of the
winner’s group cardinality:
1
N+ 1
The refinement mechanism makes use of the penalties
and rewards to refine centroids incrementally. In this
context, we introduce three refinement approaches that will
be examined to determine our final refinement mechanism.
We then eventually choose the approach that maximizes
the reliability of the winner representative. We also test

a(q) = (15

@ Springer

how the different refinement approaches behave with the
three methods for acquiring the value of a as well as how
the refinement’s effect can vary with different numbers of
centroids.

During the refinement phase, we visit every query q
from the refinement set and determine whether the score
prediction error of the winner representative is higher
than the rival representative’s. If it is found that the
winner representative has the lowest score error then the
reward formula is imposed on each winner representative
(including its score), while the rival representative remains
unaltered. If it is found that the rival representative has
a lower score error than the winner representative, then
the three candidate refinement approaches are taken into
consideration:

— Refinement Approach 1 suggests imposing the reward
formula on each rival representative attribute including
its score, while the winner representative remains
unaltered.

— Refinement Approach 2 suggests imposing the reward
formula on each rival representative attribute including
its score, while also imposing the penalty formula on
each winner representative attribute excluding its score.

— Refinement Approach 3 is similar with Refinement
Approach 2, but only in this case, the penalty formula
is also imposed on the winner representative’s score.
It shall be noted though that in this case a winner
representative’s score might suffer from too many
penalties and cause its score to be constantly dropping.
If it keeps dropping, it might drop below zero where it
is impossible for a query to return a negative number of
data points. In these cases, the score will be held at zero
value.

As the refinement set is entirely random, it can be
assumed that there could be queries within our set that
worsen the refinement process. That is to say, there could be
queries that lead to imposing too many penalties or rewards
on a specific representative and as a result, refinement could
not be working to its full potential. As of that reason, instead
of generating a single refinement set, we generate a series
of random refinement sets. We refer to this process as the
refinement cycles methodology. During the first refinement
cycle, a refinement set refines the initial centroids and in
every succeeding refinement cycle, a refinement set refines
the resulting centroids from the previous refinement set.
For each of those refinement cycles, we aim to pick the
refinement set that maximizes reliability. This includes
trying multiple refinement sets at each cycle and finally
picking the one with the best performance. This will help
us determine the full potential of refinement. The algorithm
for the centroid refinement is shown in Algorithm 2.
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Algorithm 2 Centroid refinement.

Result: Refined centroids in W
while TRUE do
Receive random query q with score y;
Find winner representative
w = arg miny, ey llq — willi;
Update winner cardinality index ny < nw + 1;
Find rival representative
r = arg miny, cpy\wjllq — Wi ll1;
Set winner’s and rival’s predicted scores Jy and Jy;
Set winner and rival prediction errors:
ew < |y — Jwls er < |y — Jrls
Update reward/penalty factor a(q) based on ey, and
er (see Rewarding Methods A, B, C);
if eyy < ey then
Reward winner: w < w + a(q)(q — w);

‘ Penalize rival: r < r — a(q)(q — r);
else
Reward rival: r <— r + a(q)(q — r);
Penalize winner: w <— w — a(q)(q — w);

end
end

3.2.2 Refinement evaluation metrics

We measure the effectiveness of our refinement techniques
by creating a new random set of queries, the test
refinement set, to obtain the evaluation metrics:

— B.R. (Before Refinement) percentage is defined as the
percentage representing the number of cases in the test
refinement set where there is a higher winner represen-
tative score error, using the unrefined centroids.

— A.R. (After Refinement) percentage is defined as the
percentage representing the number of cases in the
test refinement set where there was a higher winner
representative score error, using the refined centroids.

— IMP (Improvement) due to refinement is defined as:

IMP=B.R. — AR. (16)

Once the appropriate experiments have been conducted, we
are now able to determine which refinement approach along
with which method for acquiring the value of a should be
used for centroid refinement. We can then use these refined
centroids to make predictions for the scores of queries.

3.3 Query score prediction mechanism
3.3.1 Prediction methods

In order to carry out score prediction, a query set is
required where for each query q the two representatives and

the actual score are known. We provide three prediction
approaches to be taken into account:

— Prediction Approach 1: the predicted score of q is the
score of its winner representative:

y=w.y a7

where ¥ is the predicted score of q and w.y is the score
of the winner representative w.

— Prediction Approach 2: the predicted score of q is the
result of the weighted sum of the scores of the two
representatives:

y=fo-wy+ fi-ry (18)

where r.y is the score of the rival representative.
The empirical probabilities fy, f1 € (0, 1) defined
in (9) represent the portion of queries the winner
representative had had a lower prediction score than the
rival representative, and vice versa, respectively.

— Prediction Approach 3: In this stochastic approach,
the predicted score is that of the rival representative with
probability f1 € [0, 1] (defined in Prediction Approach
2), otherwise it is the score of the winner representative,
ie.,

N r.y with probability f;

y= {W.y with probability fo =1 — f; (19

The algorithm for the score prediction given the refined

centroids is shown in Algorithm 3.

Algorithm 3 Score prediction w.r.t. refined centroids.

Result: Average absolute score prediction error e
t < 1;
while 7 < n do
Receive random query q with actual score y;
Find winner representative
W = arg miny, eyyllq — Wi 1;
Find rival representative
r = arg miny, co\wy llq — Will1;
Prediction Approach 1: predicted score y < w.y;
Prediction Approach 2: predicted score
V< fo-wy+ fi-ry;
Prediction Approach 3:;
Get a uniformly distributed random number
p~UQ, D)
if p < f1 then
| predicted score y < r.y;
else
| predicted score y < w.y;
end
Prediction error e <— e + |y — y|

end
e

€(—E
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3.3.2 Predictability & reliability evaluation metrics

The predicted score of q is kept in pairs with its actual score
to allow an easy prediction error calculation. We can then
calculate the average absolute prediction error e of a set of
n queries:

1 « .
e=~2 (g — gy (20)
i=1

We explore the average prediction errors of our three
prediction approaches at different values of k (the number
of centroids). We concluded that predictions get better as k
increases until improvement ceased to exist.

Two separate prediction errors are obtained for each predic-
tion approach that use the refined or unrefined centroids as
the prediction basis. This allows us to determine whether
improved reliability also benefits predictability. We can then
determine which prediction approach at which k is the most
effective, which will be the one that has the lowest average
prediction error. We refer to the chosen prediction approach
given a chosen k to answer the question:

Can we use the predicted score to determine whether it is
worth executing a query?

In order to answer this, user criteria must be defined first
to declare what the score of a query should be in order to be
worth executing, for instance: 10 < score < 350.

The sensitivity metric is used to determine how effective
our prediction model is in determining whether a query is
worth executing based on user criteria, where T P (True Posi-
tive) is the number of cases where the predicted scores
correctly met user criteria, while P (True Positive +
False Negative) is the number of cases where actual
scores met user criteria:

TP
Sensitivity = - 201

We determine how effective our prediction model is in
determining whether a query is not worth executing based
on user criteria through a specificity metric where: TN
(True Negative) is the number of cases where the predicted
scores correctly did not meet user criteria and N (True
Negative + False Positive) is the number of cases where the
actual scores did not meet user criteria:

TN
Specificity = ~ (22)
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4 Experimental evaluation & comparative
assessment

4.1 System workflow

Before reporting on the experimental evaluation of our
approach, we would like to consolidate all the intelligent
components of the proposed methodology to demonstrate
the system workflow. Upon recording predictive analytics
queries and their corresponding scores (cardinality values),
we first quantize the query-space into a set of centroids,
representing the patterns of the issued queries. Then, the
novel cluster-head refinement method is applied to increase
the reliability of a query’s closest cluster-head, such that the
closest cluster-head of a given query should have the most
accurate score prediction.

The refinements are achieved by investigating the
statistical patterns of the winner and the rival cluster-
heads, which are adjusted to minimize the prediction
error. The adjustment mechanism adopts a reward-penalty
methodology to fine tuning the positions of the winner and
the rival cluster-head vectors in the query space in light of
increasing the reliability in the score prediction and, at the
same time, minimizing the prediction error.

Finally, the system hosting the refined cluster-heads is
ready to provide reliable score predictions for any given

query.
4.2 Dataset & experiment set-up

We conducted a series of experiments to answer the
different questions that have been asked in our methodology
section. In order to carry out these experiments, the use of a
real life data sets and query work loads were required.

Dataset We adopted the data set of gas contextual sensor
data in [21] and [19] publicly available from the UCI
Machine Learning Repository.! The data set consists of
14,000 measurements from 16 chemical sensors exposed to
6 gases at different concentration levels, where there are 8
features for each chemical sensor. Our exploration queries
focus on the measurements of the first two features of the
first chemical sensor for ethanol.

Query workload We used the query workload set of size
1000 adopted from UCI ML Repository,” where each query

"https://archive.ics.uci.edu/ml/datasets/
Gas+Sensor+Array+Drift+Dataset+at+Different+Concentrations
Zhttp://archive.ics.uci.edu/ml/datasets/
Query+Analytics+Workloads+Dataset


https://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different +Concentrations
https://archive.ics.uci.edu/ml/datasets/Gas+Sensor+Array+Drift+Dataset+at+Different +Concentrations
http://archive.ics.uci.edu/ml/datasets/Query+Analytics+Workloads+Dataset
http://archive.ics.uci.edu/ml/datasets/Query+Analytics+Workloads+Dataset
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has two (min, max) pairs, and run it against the data set to
obtain the score y of each query. Therefore the resulting
training set was of size 600 while the testing set was of size
400.

Experimental set-up For the query space quantization, we
experimented with the k-means algorithm with values
k e {7,15,22,40}. As there are no known methods for
acquiring the optimal k value in our specific query-driven
clustering process, we decided to start off with small values
of k to be able to monitor each centroid. These k values were
also considered in the related work [3], which will be used
for our comparative assessment.

In order to compare our model with the predictive models
[3] and [2], we adopted n-fold cross-validation with n =
10. To check whether there is a statistically significant
difference between the means of the score prediction
accuracy values, we fixed a significance level « = 0.95,
where the reasoning is that if difference is significant at
the a% level, there is a 100 — % chance that there really
is a difference. We divided the significance level by two
using the two-tailed test? i.e., the significance level is set
to (1 — «)/2 = 0.025. In all the reported experiments and
comparison, the derived probability values (p-values) were
less that (1 — «)/2 = 0.025 (with average p—value being
0.0127). This indicates that the comparison assessment of
the score prediction accuracy is statistically significant.

4.3 Reliable refinement methodology
& comparative assessment

We examine the behaviour of the three refinement methods
of reward/penalty w.r.t. value of a(q) given a query q. We
firstly report on the results of the Rewarding Methods A
and B, as the method C is investigated later. We decided
that an appropriate way to determine which the best method
was, was by measuring the performance of each possible
combination between Method A (or B) and the three
Refinement Approaches using the same initial centroids.
For each of these tests, we initially created a new
refinement set of 1500 queries and uses a method-
refinement approach combination to produce a new set of
refined centroids. A test refinement set of 400 queries is
used to obtain the average BR, AR and IM P metrics
that quantify the refinement’s effect. For each refinement

3 Anderson, Dallas W., et al. ”On Stratification, Grouping and
Matching.” Scandinavian Journal of Statistics, vol. 7, no. 2, 1980, pp.
61-66.
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Method A B.R. AR IMP
Refinement Approach 1 37.65% 30.15% 7.50%
Refinement Approach 2 37.42% 25.98% 11.44%
Refinement Approach 3 37.20% 30.67% 6.53%
Method B B.R. A.R. IMP
Refinement Approach 1 37.15% 30.55%  6.60%
Refinement Approach 2 37.42% 32.90% 4.52%
Refinement Approach 3 37.30% 30.86% 6.44%

Fig. 3 Evaluation of the Refinement Approaches along with the
rewarding/penalizing methods based on the refinement metrics BR,
AR, and IMP

set, five testing refinement sets were produced and their
BR, AR and I M P values were averaged. This process is
repeated three times for each experiment with three different
refinement sets. The average BR, AR and I M P values for
an experiment are once again averaged.

The results for Methods A and B for each refinement
approach are provided in Fig. 3. Method A with a(q) = 0.1
achieves the best performance in improving the reliability
of the winner representative (according to /M P). Using
Method A along with Refinement Approach 2 leads to
the best refinement in all experiments. At that point, we
concluded that Method A was the best choice for acquiring a
value of a, but, we were still not convinced that Refinement
Approach 2 was the best choice. We expect that the behavior
of the refinement approaches will change when the number
of centroids increased.

Based on this reasoning, we conducted a new series of
experiments to determine which refinement approach is the
best using Method A. In these experiments, four sets of
centroids were explored corresponding to k = 7, k = 15,
k = 22 and k = 40. It should be noted that, in all of
these experiments, we ensure that the same initial sets of
centroids were used for each k. The same methodology as
previously was used for producing average BR, AR and
I M P values. The results of these experiments are provided
in Fig. 4. In most cases, the refinement’s effect decreases
as the size of k increases. The relationship between k and
I M P (the refinement’s effect) is further examined in Fig. 5.
This inverse-like relationship applies for all refinement
approaches at all sizes of k, except when k = 15 for the
Refinement Approach 3, where the refinement seems to be
most effective.

It may also be noticed that the lowest AR may belong
to a different Refinement Approach at different k values,
although at most cases the difference can be too small to be
deemed as important. We consequently concluded that the
Refinement Approach 2 would be our choice for refining
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Fig.4 Evaluation of the
Refinement Approaches with
different values of k using
Rewarding Method A

B.R. A.R. IMP
k=7 36.90% 30.27%  7.83%
Refinement Approach 1| k=15  43.03% 38.07% 4.96%
k=22 41.72% 37.32% 4.40%
k=40 43.62% 40.88% 2.73%
B.R. A.R. IMP
k=7 37.42%  25.98% 11.43%
Refinement Approach 2| k=15  43.71% 34.45% 9.26%
k= 22 41.95% 38.70% 3.25%
k= 40 43.96% 41.30% 2.66%
B.R. A.R. IMP
k=7 37.30% 30.67%  6.63%
Refinement Approach 3| k=15  44.88% 33.98% 10.90%
k= 22 42.15% 3747% 4.68%
k= 40 43.23% 41.52% 1.71%

centroids. We then considered that the method for acquiring
a value of a can depend on the number of occupants in a
representative’s cluster [4], i.e., Method C. As a result of our
decision making, experiments were conducted in the same
manner as previously, but this time we used Refinement
Approach 2 in combination with Method C.

We can see from Fig. 6 that Method C produces the
lowest AR results in all cases. Additionally, when k = 22,
despite the fact that Refinement Approach 2 with Method
C produced the lowest AR, the I M P turns negative. This
shows that the refinement function slightly decreased the
reliability of the winner representative. This also indicates
that there is a limit to how much we refine a set of centroids
until reliability stops improving; this assumption will be
further examined later. Similar results are obtained for
Method C combined with refinement approaches 1 and 3.

Fig.5 Impact of number of
centroids k on the IMP

=0= Refinement Approach 1

In order to examine whether the centroid refinement
method has improved the reliability of the winner represen-
tative, we provided our comparison results in the Figs. 7, 8,
9, and 10 with the previous approaches [3] and [2] using the
query winner representative for prediction decision. Each
of those comparison results represents the number of cases
where the rival representative had a better prediction than
the winner representative using the prediction approach in
[3] and [2] (Red Bar) in comparison with one of our centroid
refinement methods (Blue Bar) for four sets of centroids.
We present the performance of our methodology using the
Refinement Approaches 1,2 & 3 with Method A as well as
Refinement Approach 2 with Method C.

We conclude by observing these results that our proposed
centroid refinement offers higher reliability of the winner
representative than the existing approaches [3] and [2].
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Methaod C
B.R. A.R. IMP
k=7 43.12%  27.02%  16.10%
k=15 37.18% 32.72% 4.47%
k=22 35.43% 35.75% -0.32%
k=40 40.50% 37.50% 3.00 %

Fig.6 Evaluation of the Refinement Approach 2 vs different values of
k adopting Method C

Note: we obtain similar comparative assessment results with
refinement approaches combined with rewarding methods,
illustrating the capability of our methodology to provide
accurate and reliable predictions after appropriate centroids
refinement.

4.4 Refinement cycles & prediction reliability

We have discussed previously that the contents of a
refinement set can be crucial to the refinement’s effect on
centroids. We suspected that as refinement sets are random,
there can be queries within the set that can either improve
or worsen the centroid refinement. Hence, we decided to
present the idea of the refinement cycles.

During a refinement cycle, a new refinement set is
generated and imposes the refinement function on the
resulting centroids of the previous refinement cycle. This
holds unless it is the first refinement cycle, where
refinement will occur on the centroids that resulted from the
k-means clustering. We keep introducing new refinement
cycles as long as there was a positive /M P value; in other
words, as long as there is improvement.

Fig.7 Existing approaches [2,

[l Before Refinement

We initially created four different sets of centroids, where
in all cases k = 7. During each refinement cycle, we create
a refinement set of 500 queries to be used by the refinement
function and a test refinement set of 400 queries to produce
the values for BR, AR and I M P. The refinement function
made use of the Refinement Approach 2 with Method A. At
the end of each refinement cycle, we calculate the average
values for BR, AR and I M P for the four sets of centroids.
We then attempted ten different refinement sets during
each cycle and eventually used the one that had the best
performance in improving reliability. This way we ensured
that at each cycle, we had the best refinement set we could
find.

The results of these experiments are presented in Figs. 11
and 12. It can be seen in all four cases, that no further
improvements in reliability could be made during the third
refinement cycle as all of our / M P values became negative.

While also taking into account the /M P value when
k = 22, we conclude that we can refine the centroids
up to a certain point before the reliability of the winner
representative starts getting worse. We can also see that
the average AR of the second refinement cycle is close to
the value we obtained 25.98%. Therefore, we deduce that
refinement cycles won’t lead to a drastic improvement in
reliability.

In addition, we used 500 queries less to reach a
similar AR value but also used another 500 queries to
determine that the best AR has been reached in the previous
cycle. As we ensured what the limits of refinement were,
we proceeded to examining our predictions approaches
while using the Refinement Approach 2 with Method
C for centroid refinement. We have discussed three
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Fig.8 Existing approaches [2,
3] (red bar) vs. our Refinement
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different prediction approaches in our methodology that
will all be examined in this subsection. The conducted
experiments here did not only aim to find which is the
best prediction approach, but also to determine whether
improved reliability of the winner representative leads to
better predictability. These results are shown in Fig. 13.

We further examined each prediction approach by
making predictions for the scores of queries. We made
separate predictions for queries that were derived from the
three refinement sets, used during centroid refinement and
their corresponding test refinement sets. The actual scores
of these queries were in all cases already known. This
allowed for the prediction errors to be calculated.

Fig.9 Existing approaches [2,
3] (red bar) vs. our Refinement

W Before Refinement

i
A5 27 a0
Number of centroids

All the prediction errors were then used to produce
the average absolute prediction error. We made separate
predictions using both the Refined (R) and Unrefined (UR)
centroids in order to compare their average prediction
errors and derive whether centroid refinement has benefited
our predictions. We ensured that for all refinement sets
and test refinement sets, predictions were made with their
corresponding centroids from centroid refinement.

The average prediction errors for unrefined centroids can
be found in the columns labelled as U R, while the average
prediction errors for refined centroids can be found in the
columns labelled as R in Fig. 13. Therefore, for a given
k, there are four average prediction error values for each
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W Before Refinement

Fig. 10 Existing approaches [2,
3] (red bar) vs. our Refinement
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prediction approach. Our initial tests involved three sets
of centroids where k = 7, k = 22 and k = 40. We
observed that for all prediction approaches, our average
prediction errors tend to drop as the number of centroids was
increasing. This lead us to conducting more experiments
with higher k numbers, where k = 85, k = 107 and
k = 130. There are a couple of key points that we can
conclude from our experimental results.

Firstly, Prediction Approach 2 outperforms all other
prediction approaches in all cases. The only case where
this does not hold is when k& = 7, for predictions made

r__Z
A5 27 0
Number of centroids

using the refined centroids for the test refinement set, where
the average prediction error is the same with Prediction
Approach 1. Hence, we can determine that using the scores
of more than one representatives improves our predictions.
We can assume at this point that our predictions can be
further improved if the calculations included the scores of
even more centroids that are close to a query and weighting
them appropriately.

Secondly, improving the winner representative’s reliabil-
ity does not make predictions better at all cases. We can
see from our results that the cases where predictions, made

Fig. 11 Evaluation of the
Refinement Approach2 atk =7

using different refinement cycles

REFINEMENT CYCLE 1 B.R. A.R. IMP
Refinement 1 38.00% 28.80% 9.20%
Refinement 2 39.19% 29.40%  9.79%
Refinement 3 36.00% 24.79% 11.21%
Refinement 4 39.00%  25.40% 13.60%
Average 38.05% 27.10% 10.95%
REFINEMENT CYCLE 2 B.R. A.R. IMP
Refinement 1 28.79% 24.40% 4.39%
Refinement 2 27.21%  24.00% 3.21%
Refinement 3 26.39% 24.80% 1.59%
Refinement 4 26.20%  25.40% 0.80%
Average 27.15%  24.65% 2.50%
REFINEMENT CYCLE 3 B.R. A.R. IMP
Refinement 1 25.78%  45.61% -19.83%
Refinement 2 23.60% 49.41% -25.81%
Refinement 3 26.00% 31.20% -5.20%
Refinement 4 27.80%  30.60% -2.80%
Average 25.80% 39.21% -13.41%
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Fig.12 Impact of the refinement

cycles on IMP for k =7

from refined centroids, are consistently better than the unre-
fined centroids (or at least as good), for all three prediction

Fig. 13 Average prediction

errors for the three prediction
approaches at different k over
Refined (R) and Unrefined (UR)

query centroids

@ Springer
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approaches, for all six sizes of k, are the predictions made
for queries of the refinement sets. This comes as no big
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Fig. 14 Prediction Approach 1: B Unrefined M Refined
Average prediction errors for the 180
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unrefined centroids vs the 150
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Fig. 15 Prediction Approach 2: B Unrefined B Refined
Average prediction errors for the 190
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Fig. 16 The sensitivity for the (0,15) (0,50) (0,100) (50,100) (200,300) (100,300) (100<) (300<)
predicted scores of the test k=85 R 68.19% 83.17% 85.10%  21.80% 31.27% 68.16% 86.70%  52.67%
refinement sets by the best k=107 UR 62.80% 80.98% 86.02%  40.29% 24.73% 58.04% 84.03%  70.14%
performing prediction models k=107 R 72.50% 80.59% 85.60%  20.88% 28.91% 72.62% 80.26%  64.27%
for eight sets of user criteria k=130 UR 71.36% 86.48% 88.26%  20.82% 20.03% 63.41% 86.32%  58.48%
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Fig. 17 Bar chart visualizing the M (0,15) M (0,50)

H (0,100)
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surprise of course, as they are the set that re-adjusted the
centroids. Centroid refinement seemed to be most effective
in Prediction Approaches 1 and 3, where the former has a
better performance for k € {85, 107, 130}, while the latter
has a better performance for k € {7, 22, 40}.

Figure 14 displays how score predictions from the
refined centroids outperformed all score predictions from
the unrefined centroids (using Prediction Approach 1);
except in k = 22, where predictions from the unrefined
and refined centroids had the exact same average prediction
error. As that is the only case where there was no drop in
the average prediction error, we can take a look at Fig. 6 and
observe that k = 22 was the test where we actually had a
small negative IMP value. In the rest of our k values, /M P
was always positive and predictions were improved; we now
provide the I M P values for k = 80, k = 107 and k = 130
respectively: 0.40%, 0.20% and 0.57%.

Thirdly, the test refinement set experiments are where
we ideally like to see consistent improvement due to
refinement, as these can act as indicators of how effective
our rationale is in terms of generalization.In the cases of
k = 40 and k = 85, lower average prediction errors
were achieved due to centroid refinement in all prediction
approaches, even if at some cases the improvement is
not that big to be deemed significant. The comparison
of the average prediction errors, between predictions
made from unrefined and refined centroids using Prediction
Approach 2 for the test refinement sets, is shown in Fig. 15.

k=107 UR k=107 R
Prediction Models

k=130 UR

In these cases, there are no obvious indicators on when
refinement seems to help or at which prediction approaches.
We can further support this claim by taking into account our
BR, AR and IM P values. The greatest /M P value was
noticed during k = 7 and the lowest at k = 22 (where I M P
is actually negative). When we look at the corresponding
case of Prediction Approach 2 at k = 7 in Figs. 13 and
15, the unrefined centroids offered the better predictions by
a significant margin. While in the corresponding case for
Prediction Approach 2 at k = 22, the refined centroids had
an average prediction error of 132.5 while the unrefined
centroids had an average prediction error of only 131.5.

Therefore our conclusions from the above analysis are:

— Firstly, the centroid refinement has the potential to
always improve score predictions for queries in the
refinement set. We expect to see the average prediction
error decrease as long as there is a positive / M P value
(see Fig. 14).

—  Secondly, there does not seem to be a direct relationship
between /M P and the average prediction error when
predicting scores for the test refinement queries, as
there are both cases where predictions got worse
or better due to centroid refinement. Increasing the
number of centroids to improve predictions works up
to a certain extend. We can see from Fig. 13, that in
most cases when we increased k, the average prediction
error for the same test at a lower k would be higher.

Fig. 18 The specificity for the (0,15) (0,50) (0,100) (50,100) (200,300) (100,300) (100<) (300<)
predicted scores of the test k=85 R 05.60% 91457 S7.12% 9280%  89.40% 79.53% 82.68%  9534%
refinement sets by the best k=107 UR 93.04% 89.76% 85.99%  92.55%  93.23% 84.99% 86.98%  96.78%
performing prediction models k=107 R 97.15% 91.35% 88.28%  91.28%  93.52% 86.96% 88.01%  96.47%
for eight sets of user criteria k=130 UR 95.66% 91.45% 87.12%  92.84%  89.40% 79.54% 82.68%  95.84%
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Fig. 19 Bar chart visualizing the W (0,15 M (0,50)
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Despite that, the drop in the average prediction error,
gets smaller every time we increase k. In fact, at
certain cases the average prediction error can get worse
as k increases, e.g., almost all results of Refinement
Approach 1 from k = 85 to k = 130.

— We can also observe from our bar charts in Figs. 14 and
15 that the effect that k£ has on the average predictions
errors becomes more subtle as k increases. We can
safely conclude that predictions can get better at a
specific range of high k values, but this range can be
acquired only through experimentation, as k should
differ between datasets and queries with different
numbers of dimensions.

At the end of these experiments, we picked our best
performing prediction models to investigate whether we
could answer the question: Can we use the predicted score
of a query to determine if it is worth executing based on
user criteria? All of the selected prediction models made
use of Prediction Approach 2 and were using the following
sets of centroids as their prediction basis: k = 85 with UR,
k = 107 with UR, k = 107 with R and k = 130 with UR.
We decided to pick more than one model, as the average
prediction errors of these four prediction models were too
close one another to single one out.

4.5 Discussion on query execution

We handle the question: is a query worth executing or
not? as a simple binary classification problem. We classify

\

==ygaanunill

k=107 UR k=107 R
Prediction Models

k=130 UR

queries, based on user criteria, into queries that are worth
executing (class label: 1) and queries that are not worth
executing ( class label: 0). In order to do that, we firstly had
to define sets of user criteria, where these can be seen in the
headings of columns of the tables displayed in Figs. 16 and
19. A set of user criteria in the format (cy, ¢p) declares that:

1 <y =e, (23)
while a set of user criteria in the format (¢; <) declares that:
1<y (24)

For each prediction model, represented by a row in
Figs. 16 and 18, we used the predicted scores for the queries
of the test refinement sets (the same test refinement sets for
which we can see their average prediction errors in Fig. 13)
along with their actual scores, to measure sensitivity and
specificity. Each sensitivity/specificity value displayed is an
average from measuring the sensitivity/specificity of those
test refinement sets. The sensitivity metric indicates the
percentage of queries that we predicted are worth executing
and indeed were, according to their actual score.

The sensitivity results can be seen in Fig. 16 while
a visual representation of these tests is available through
the bar chart in Fig. 19. The specificity metric indicates
the percentage of queries that we predicted are not worth
executing and indeed weren’t according to their actual
score. The specificity results can be seen in Fig. 18; and
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as previously, a visual representation of these results is
provided in Fig. 19.

As we can recall from our previous tests in Fig. 13 the
average prediction errors of the four prediction models were
very similar, too similar to safely determine which one was
better. As one may notice, there are plenty of similarities
between the sensitivity and specificity measurements of
prediction models for certain user criteria as well. We have
drawn a couple of conclusions from these experiments that
we are presenting below.

Sensitivity We notice the refinement’s effect in the cases
of k = 107; UR and k = 107; R for the tests (50, 100)
and (100, 300). We can see that the UR model had a
performance almost twice as good as the R model in the
(50, 100) test, while the R model outperformed the UR
model in the (100, 300) test by a significant amount. In
order to determine the best performing prediction model, we
have calculated the average sensitivity for each prediction
model for the declared user criteria, these are (respectively
as they appear in Fig. 16 from top to bottom): 62.52%,
63.38%, 64.33% and 61.90%. Surely, such sensitivity values
are only relevant for the specified user criteria, but we can
see that there is indeed no prediction model that particularly
stands out. There are tests where all models scored well,
such as (0, 100), and tests were they all scored poorly, such
as (200, 300). This could be due to the fact that we are only
relying on the scores of only two of the closest centroids,
which might not always offer the closest prediction. This
could again be overcome if we further managed to reduce
our average prediction errors, by involving more than two
centroids in our prediction process.

Specificity As one may notice from observing Figs. 16,
17, 18, and 19 when we changed our question from Is a
query worth executing? to Is a query not worth executing?,
the performance of our prediction models got significantly
better. This is reasonable as the sensitivity tests have more
boundaries on what the predicted score should be, therefore
the specificity metric is more forgiving when it comes to the
error of our predicted scores.

We can notice patterns in our specificity values as well,
there are tests where all models performed consistently
well such as (300<) and tests where performance was
poorer such as (100<). We have calculated average
specificity values for the four prediction models, these are
( respectively as they appear in Fig 18 from top to bottom):
89.32%, 90.42%, 91.63% and 89.32%.

Although these average sensitivity and specificity values
are not absolute, as it is impossible to declare and test every
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possible user criteria, we can still make certain conclusions
about which the best prediction model is. Prediction model
k = 107; R has the highest average sensitivity and
specificity values, even if it did not significantly outperform
the other models, as well as the lowest average prediction
errors for both the refinement and test refinement sets.
Surely, this does not mean that this is the definitive
prediction model for determining whether a query is worth
executing or not, as different data-sets and queries with
more/ less dimensions would most likely require a different
k number.

5 Conclusions & future work

In this work, we hypothesize whether we can determine if
a query is worth executing based on score prediction and
user criteria in distributed computing environments based
on query-driven mechanisms. We implemented a query-
driven machine learning approach, where we took a set of
exploration queries, obtained their scores. We obtained the
two closest centroids (winner and rival representatives) for
each query in a testing set of real query workloads over real
data and calculated their score errors. The representatives’
score errors acted as a motivator for our decision to perform
centroid refinement to improve the reliability of the closest
centroid and determine whether our actions would improve
the accuracy of our predictions.

We have experimented and compared with other
approaches in the literature with different refinement
approaches and through our experiments determined which
one maximized reliability of the closest centroid. While
doing so, we looked into the factors that could influence our
refinement: the value of k query representatives and how
many queries are needed to reach the best refinement possi-
ble. We observed that as k increases the effect of refinement
decreases, while other tests have shown that we can refine
centroids up to a certain degree before the reliability of the
closest centroid starts worsening.

We then used both our refined centroids and unrefined
centroids to make separate predictions for different sets
of queries using three different predictions approaches. We
observed that predictions can get better in terms of
accuracy in predictions as the number of centroids increases,
but as previously, after a certain point predictions will stop
improving.

We observed that increased reliability does improve
predictability when predicting scores for the refinement
query sets but is not as effective with new query sets.
Despite that, it has to be noted that although centroid
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refinement does not always improve predictability for new
query sets, it can often offer an average prediction error
similar to what the unrefined centroids would offer.

We also evidenced that the best predictions are acquired
when we use the scores of both representatives. This has
lead us to the conclusion that we can further improve
predictions in the future if we involved more than two
representatives in the score prediction process. We would
calculate the weighted sum of the two representatives’
scores to obtain a score prediction for a query, where these
weights would depend on our BR or AR metrics. Future
work could therefore involve an appropriate methodology
of how the n > 2 closest centroids should be weighted
according to their score errors.

We finally introduced and measured the sensitivity
and specificity for the score predictions of our four best
performing prediction models, to see whether a query is
worth executing or not worth executing according to user
criteria. As much higher percentages were acquired while
measuring specificity, we determined that it is easier to
answer the question is a query not worth executing? rather
than is a query worth executing ?. During the sensitivity tests
we also observed that prediction models k = 107; UR and
k = 107; R would outperform each other on different user
criteria tests. For that reason, other possible future work
could involve combining a set of refined and unrefined
centroids to produce a new set of centroids which could lead
to more accurate predictions overall.

Our results have acted as proof that our methodology
can be used to avoid the execution of bad/non-informative
queries that will waste resources and has the potential for
further improvement.
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Appendix

Table 1 Table of notations

Parameter  Notation

d data dimensionality

X data point in d-dimensional space

q query in 2d-dimensional space

y query score in N

y predicted query score in Ny

B dataset of d-dimensional points

w set of k query representatives

w winner query representative in 2d-dimensional space
r rival query representative in 2d-dimensional space

ew score prediction error of the winner query representative
er score prediction error of the rival query representative
f1. fo rival and winner prediction probabilities

a(q) rewarding/penalizing function given a query q

Ny cardinality of a query group represented by winner w
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