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Abstract—The millimeter wave (mmWave) radio band is promising for the next-generation heterogeneous cellular networks (HetNets)
due to its large bandwidth available for meeting the increasing demand of mobile traffic. However, the unique propagation
characteristics at mmWave band cause huge redundant handoffs in mmWave HetNets that brings heavy signaling overhead, low
energy efficiency and increased user equipment (UE) outage probability if conventional Reference Signal Received Power (RSRP)
based handoff mechanism is used. In this paper, we propose a reinforcement learning based handoff policy named SMART to reduce
the number of handoffs while maintaining user Quality of Service (QoS) requirements in mmWave HetNets. In SMART, we determine
handoff trigger conditions by taking into account both mmWave channel characteristics and QoS requirements of UEs. Furthermore,
we propose reinforcement-learning based BS selection algorithms for different UE densities. Numerical results show that in typical
scenarios, SMART can significantly reduce the number of handoffs when compared with traditional handoff policies without learning.

Index Terms—Handoff, HetNets, Millimeter Wave, Reinforcement Learning.

1 INTRODUCTION

HE 5th generation (5G) networks are expected to sup-
Tport the exponentially increasing demand of mobile
traffic. A simple way to increase the network capacity is
to allocate more bandwidth to 5G networks. Since the radio
spectrum from 300MHz to 3GHz is very crowded, an effec-
tive solution is to design the 5G networks as two-tier hetero-
geneous cellular networks (HetNets) where the macrocell is
supported by traditional cellular band, while some small or
femto cells are supported by the globally available spectrum
at millimeter wave (mmWave) band ranging from 30GHz to
300GHz [1]. This network architecture is called mmWave
HetNets.

The key propagation properties at mmWave band are
large propagation path loss and high sensitivity to block-
age. These properties cause many design challenges for
mmWave HetNets, including integrated circuits design,
beamforming design, user association and handoff mech-
anisms. In particular, handoff is crucial for keeping users
connected while moving around [1], [2]. Handoff mech-
anisms affect not only service quality of users but also
network performance, such as throughput and energy ef-
ficiency. Conventional handoff mechanisms are based on
Reference Signal Received Power (RSRP) measured by user
equipments (UEs) [3]. In HetNets which are composed of
traditional macro base stations and small base stations with
low transmit power, handoff policies are mostly based on
RSRP with Cell Range Expansion (CRE) [4]. With the intro-
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duction of mmWave band into cellular networks, it needs
to co-exist with traditional communication bands forming
a complex heterogeneous network [5]. Moreover, mmWave
channel quality often changes rapidly and intermittently
[6]. Therefore, using conventional handoff mechanisms in
mmWave HetNets may lead to ping-pong effect, causing
high outage probability and redundant handoffs.

Handoffs in mmWave HetNets are more frequent as
mmWave cells are smaller. It was shown in [7] that the
average handoff interval can be as low as 0.75 second in
typical scenarios. A separate study [1] showed by computer
simulation that more than 61% handoffs are unnecessary.
The very large number of redundant handoffs causes heavy
signaling overhead, low energy efficiency and high UE
outage probability.

To reduce redundant handoffs in traditional HetNets,
two parameters hysteresis and threshold are introduced in
3GPP [3]. For a specific UE, handoff is triggered if the RSRP
of the current serving BS is lower than the threshold value
and the RSRP of the target BS is stronger than that of the
serving BS by hysteresis. This method, however, is not suit-
able for use in mmWave HetNets due to highly dense BSs
deployments, small BS coverage and fast varying mmWave
channel quality. There are also occasions where the “two-
parameter” method misses necessary handoffs. Under these
circumstances, artificial intelligence tools that incorporate
information on surrounding environment can be used to
design a smart handoff mechanism in mmWave HetNets.

In this paper, we propose a reinforcement learning based
handoff policy named SMART for mmWave HetNets. Our
design objective is to reduce the number of unnecessary
handoffs while guaranteeing the QoS of UEs. SMART con-
sists of two parts. Part 1 is to determine the handoff trigger
condition by the mmWave channel characteristics and QoS
requirements of UEs. Part 2 is on BS selections, and is
carried out by two algorithms: SMART-S and SMART-M



for different UE density circumstances. SMART-S chooses
target BS for single UE based on Upper Confidence Bound
(UCB) algorithm that can achieve logarithmic performance
when compared with the optimal algorithm that uses glob-
al perfect information. SMART-M is used for dense UE
distribution circumstance to choose BSs for multiple UEs
triggering handoffs in the same measurement report period.
We formulate it as a 0-1 integer programming, and solve it
by Lagrange dual decomposition with relaxation.

In the following, we introduce related works and the
system model in Sections 2 and 3, respectively. In Section 4
we present the framework of our proposed handoff policy
SMART. In Sections 5 and 6, we present the BS selection
algorithm for a single and multiple UEs respectively. We
compare the performance of SMART with traditional hand-
off policies in Section 7 and conclude the paper in Section
8.

2 RELATED WORK

Here, we present the handoff policies for traditional
HetNets and mmWave HetNets separately.

2.1 Handoff Strategies for Traditional HetNets

In recent years, research on handoff is focused mainly on
HetNets operating in the band of traditional frequency
900MHz-2.4GHz and considering one or more factors in-
cluding RSRP, QoS of UEs, UE mobility characteristics, BS
load, etc. [8], [9], [10], [11], [12]. In [8], a handoff policy is
proposed that considers context parameters, such as user
speed, channel gains and cell load information. The BS selec-
tion decision is based on a Markov Decision Process (MDP)
model with the aim of maximizing UE average capacity. In
[9], the authors proposed a handoff algorithm based on BSs
estimated load. They combined handoff decisions with BS
sleeping policy so as to improve system energy efficiency.
[10] and [11] are mainly focused on the improvement of
handoff trigger conditions. The authors in [10] proposed a
new handoff triggering mechanism named Network Con-
trolled Handover (NCH) for 3GPP Long Term Evolution
(LTE) HetNets. NCH can optimize handoff trigger param-
eters such as Channel Quality Indication (CQI) threshold
based on the statistics of the handoff performance. In [11],
the authors proposed a new handoff algorithm aiming at
the efficient management of BSs transmitted power and
the reduction of unnecessary handoffs. The authors of [12]
proposed a novel handoff policy based on cooperation-
based cell clustering in densely deployed HetNets to reduce
handoff signaling overhead.

2.2 Handoff Strategies for mmWave HetNets

Thus far, there is little research work on handoff in mmWave
HetNets [13], [14], [15], [16]. The authors of [13] pro-
posed the Radio-over-Fiber (RoF) network architecture for
mmWave communications which facilitates flexible and cost
effective deployment of distributed antennas. They then
proposed the Extended Cell (EC) in RoF architecture. An
EC is a group of adjacent cells or antennas that transmit the
same data over the same frequency channel for a specific
UE. This can increase overlapping areas and thus decrease
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the outage probability of UE during handoffs. The method is
suitable for indoor environment with low UE mobility. The
authors of [14] proposed a dual connectivity (DC) network
architecture to deal with the handoff between two radio
access technologies (RATs): mmWave and LTE.

Focusing on the optimization of handoff policies for
mmWave HetNets, the authors of [15] solved the BS se-
lection problem by MDP through combining the contribu-
tions of handoff overhead, cell load and channel conditions
into a reward function. The handoff policy can achieve
high throughput while decreasing the number of hand-
offs. As the computation complexity of solving MDP is
formidable, this strategy cannot readily applied to densely
deployed HetNets. The authors of [16] developed an online
learning-based approach to solve single UE network selec-
tion problem in heterogeneous wireless networks consisting
of mmWave and other RATs, such as Wi-Fi and LTE. This
work is focused on RAT selection for a single UE and
aims at maximizing the long-term throughput of the UE.
We will develop an approach in the following that reduces
the number of unnecessary handoffs while guaranteeing the
QoS of UEs. Besides, due to random line-of-sight mm-wave
link, the authors of [17] suggest to assign more than one
mmWave links to each user equipment so thus to decrease
the signaling overhead for handoff in mmWave networks.
They propose a joint access point placement and mobile
device assignment scheme for mmWave networks with aim
to minimize the number of access points while satisfying the
line of sight coverage of mobile devices.

3 SYSTEM MODEL
3.1 Network Scenario

Consider a densely deployed HetNet with M femto cells
underlying a macrocell as shown in Fig. 1. Let M be the set
of femto base stations (FBSs). FBSs can use either mmWave
or the traditional cellular frequency shared with the macro
base station (MBS). Let A be the ratio of FBSs using mmWave
frequency, M, be the set of the mmWave FBS (denoted as
mm-FBS), and M, be the set of the traditional FBS (denoted
as Tr-FBS). UEs move randomly in the HetNet.
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Fig. 1. The system model of mmWave HetNets.

3.2 Propagation Model

First, we discuss about the channel model of mmWave band.
We assume that the channel of mm-FBS is based on 3GPP
Standard probabilistic LOS-NLOS models [18], meaning
that the channel condition between UE and mm-FBS can
alternate between the two states, Line-of-Sight (LOS) and



Non-Line-of-Sight (NLOS). LOS state means that a line-of-
sight mmWave link between UE and mm-FBS exists. The
channel state transition probability is related to environ-
ment, and this probability is typically unknown [16]. Note
that the channel state for UEs may be different, even when
they are located at the same position and associated with
the same mm-FBS. This is due to blockages, and thus the
UEs may have different SNR. Similar to that in [5], [6], we
assume that the path loss model is

where d is the distance in meters, « and 7 are the least
square fits of floating intercept and slope over the measured
distances (30 to 200 m), and 6? is the lognormal shadowing
variance. The values of «, 1 and 6 are different for LOS
and NLOS states [5], [6]. Since interference can be ignored
for mm-FBS, for a specific UE, say UE n, the SNR when
associated with mm-FBS j can be written as
~1
sy, = L HA) @
o

where P; is the transmit power of mm-FBS j, o2 is the
noise power and 1) is the antenna gain. We assume that
all mm-FBSs are equipped with directional antennas which
are necessary to support beamforming and beam tracking
for mmWave system. On the other hand, we assume that
UEs are equipped with omnidirectional antennas, and thus
the antenna gains are only accounted for at mm-FBSs side
[19]. Similar to that in [5], [19], we assume that antenna gain
model can be expressed as

. 0,
(0) = {%W PRSI ©)

Ymin, Otherwise

where 6 is the angle between UE and mm-FBS, and 0, is the
width of the antenna main lobe. When a UE is associated
with an mm-FBS, in order to maintain the mmWave com-
munication link, beam tracking could be used. We assume
perfect beam tracking is performed, and thus the transmis-
sion direction of the UE is always in the main lobe, so as to
enjoy a high antenna gain.

Next, we present the traditional radio band channel
model. We assume that the MBS and Tr-FBSs are equipped
with omnidirectional antennas to guarantee coverage area
[19]. For traditional band links, we need to consider co-
channel interference due to shared bandwidth deployment.
The SINR of UE n associated with BS j can be expressed as

Pjgn;
2kem, Prgnrto?’

Pjgn; .
eM
S e iatomss) /5y Prgnnto?? t

j is MBS

SINR!, = . (4

where g,,; is the channel gain between UE n and BS j, which
includes path loss and shadowing. Since we assume that Tt-
FBSs and UEs are equipped with omnidirectional antennas,
there is no extra antennas gain. For path loss, we use flexible
path loss exponent model [20]

PL(d) = 10elog;, (d) + 201og;, f + 32.45, )

where d is the distance in meters, € is the path loss exponent
and f is the carrier frequency in MHz. For NLOS environ-
ments, a larger exponent is used [20]. For shadow fading,
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we use a zero mean Gaussian random variable £ to describe
it [21].

We assume that all BSs allocate bandwidth resources to
their serving UEs uniformly. According to Shannon capacity
formula, the achievable transmission rate for UE n associat-
ed with BS j can be written as

Zloga(1+ SNRY), j € My,
Otlogz(1+ SINR),), j € {M,UMBS}

where B,,, (B;) is the bandwidth of mm-FBS (Tr-FBS and
MBS) and Uj is the total number of UEs served by BS j.

J —
) =

(6)

3.3

In this subsection, we illustrate how to discover a new BS,
and establish a possible connection in case a handover is
performed. We assume that the cell search procedure for
traditional band is identical to that in LTE, i.e. the MBS and
Tr-FBSs perform cell search by transmitting omnidirectional
synchronization signals [22]. For mmWave system, 4G-LTE
initial access procedure is infeasible due to the problem
of discovery range mismatch [23], [24]. In our model, we
adopt an efficient initial cell search scheme, iterative search
[25], [26], which performs a two-stage scanning procedure
of the angular space. In detail, the space is partitioned into
several wide sectors, and each wide sector is divided into
several narrow sectors. In the first phase, the BS transmits
pilots over wide sectors. In the second phase, the BS refines
its search within the best wide sector by steering narrow
beams, and thus finds the best narrow sector [23]. All the
pilots are transmitted on a directional mmWave channel.

Technically, the cell search procedure is independent
with the target BS selection policy. Hence, although the ini-
tial cell search scheme could affect the absolute value of the
number of handoffs [27], [28], it does not affect the relative
performance enhancement of the proposed SMART policy.
Intuitively, some new cell search schemes, such as those
proposed in [27] and [28] which use context information to
speed up the cell search process, could be implemented with
the proposed SMART handoffs policy in mmWave HetNets.
As this is beyond the scope of the work, we use the afore-
mentioned iterative search scheme for mmWave band initial
cell search.

Initial Access Model

3.4 QoS Model

Similar to that in [29], [30], we use two factors to describe
QoS requirement: minimum threshold of transmission rate
ymin and endurable time 7,. The endurable time is the
maximum time a UE is allowed to have the transmission
rate lower than the minimum threshold. We state that the

QoS of UE n is satisfied when the following condition holds
3t € [t — Tn, 1], s.t.77 (tg) > Y7, @)

Furthermore, to classify the type of service more precisely,
we introduce a third factor: maximum threshold of trans-
mission rate, denoted by ~/***. Let C = {C4,Cs,---,CL}
be the set of all service types, and specify that the ser-
vice of UE n belongs to type C; when 7, € [1;,7i11),
W€ Iy AT and vt € [T, A 17). We assume
that UEs in the system move at a random speed and in a
random direction.



4 FRAMEWORK OF SMART HANDOFF PoLIcY

3GPP Standard defines six handoff events for cellular net-
works [3] with Event A2 and Event A3 being the most
common ones in HetNets. Our proposed SMART handoff
policy focuses on these two handoff events, and other hand-
off decisions remain the same as those in 3GPP.

4.1 Handoff Trigger Conditions

Event A2 occurs when the RSRP of the serving BS becomes
worse than a threshold [3], and the trigger condition can be
expressed as

RSRP’ < threshold — Hys, 8)

where Hys is a hysteresis parameter added for reducing
redundant handoffs (e.g. ping-pong effect). Event A2 hand-
off is performed when the serving BS cannot fulfill the
minimum UE QoS requirement. Thus, in SMART, the trigger
condition can be written as

Vtg € [t — Tn,t],

min

(o) <" ©)
where 7, and 7

" are UE service type parameters. This
change can avoid many unnecessary handoffs. Once in-
equality (9) is satisfied for UE n, an Event A2 handoff is
triggered, and the UE needs to select a suitable target BS.

Event A3 occurs when a neighbor BS becomes offset
better than the serving BS [3], and the trigger condition can
be expressed as

RSRP" > RSRPI + offset, (10)

for time-to-trigger (TTT) period, where RSRP* and RSRP’,
are the RSRPs of target BS £ and current serving BS j
measured by UE n respectively, and offset and TTT are
two parameters defined in 3GPP. Once a UE experiences
a handoff in this event, it means that the UE switches to
a better BS which can improve its QoS although current
serving BS can fulfill the minimum QoS requirement. Thus,
SMART uses the following three trigger conditions

3t € [t — Tn, ], s.t.77 (tg) > 41", (11-1)
rE(t) > 19 (t) + offset, (11-2)
,YZLax _ ,y;rlnin > €. (11_3)

Condition (11-1) states that the current serving BS can
fulfill the minimum UE QoS requirement. Condition (11-
2) constraints that the transmission rate of the target BS
k is at least offset higher than that of the serving BS j.
Condition (11-3) indicates that the difference of transmission
rate between maximum threshold and minimum threshold
is greater than € in QoS requirement. Similar to traditional
handoff mechanism, when the above three conditions hold
for TTT time, Event A3 handoff is triggered.

4.2 BS Selection

Once handoff trigger conditions are met, UEs need to se-
lect suitable target BSs. In SMART, we use reinforcement-
learning for selecting BSs to reduce the number of unnec-
essary handoffs. We design two BS selection algorithms:
SMART-S and SMART-M, for different UE density circum-
stances. SMART-S with low computational complexity is for
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a specific UE. It is suitable for sparse UE density circum-
stance. SMART-M is a joint optimal policy for multiple UEs
triggering handoffs in the same measurement report period.
It is suitable for dense UE distribution circumstance with a
central controller.

5 SMART-S ALGORITHM FOR SINGLE TARGET
BS SELECTION

Note that once a specific BS satisfies the trigger conditions
of Event A3, the target BS is determined. We therefore focus
on the BS selection for Event A2. Let A, (t) be the set of
admissible BSs when UE n triggers Event A2 handoff at
time ¢,

A, () = {k | rF(t) > 4™ + T,Vk € MU MBS}, (12)

where I is a criteria offset parameter. For UE n with volume
of data @), to be transmitted, we use H, to denote the
number of handoffs. Our goal is to select BS in set A, (t)
with minimum H,, once Event A2 condition is triggered.

5.1 Reinforcement-Learning Framework

We model the BS selection problem as a reinforcement
learning problem. It consists of three elements: agent, envi-
ronment and action. In our model shown in Fig.2, the agent
is a specific UE n, the environment is the channel conditions
of BSs, and the action is BS selection policy. The aim is to
maximize the total reward by a sequence of BS selections.

index update ~ states and expected reward of all BSs BSs states change

reward obtained from serving BS

Environment
(Channel conditions of
BSs)

Agent
(UE n)

target BS selection based on index

Fig. 2. Reinforcement learning based BS selection framework

Our objective is to minimize the total number of handoffs
H,. As it is difficult to incorporate H, into the reward
function directly, we make a transformation as follows.
Let reward function RE(t) be defined as the volume of
transmitted data from time ¢ to t* when UE n switches to
BS k at time ¢, or

(13)

Proposition 1. Minimizing the total number of handoffs H,
for UE n is equivalent to solving the proposed reinforcement
learning problem with the reward function defined in (13).

Proof: Let t* in (13) equal to the time when the next handoff
for UE n is triggered after time ¢, and we define a sort
function @ in a finite set X as

®(z) = k,z € X and x is the k smallest element in X.
(14)



The objective of the above reinforcement learning mod-
el is to find the optimal policy 7*:

K

7" = argmax E,| Z RE ()],
" P(tk)=1

(15)

where K is the maximum value of ®(t¥), which is
equals to the number of handoffs in the time period.

If we fix the volume of transmitted data of UE
n as @y, applying policy 7* can minimize the to-
tal number of handoffs of UE n when transmitting
Q@ data, which equals to our optimization objective
min H,,. Ol

5.2 Expected Reward Estimation

As t* and rF(t) in (13) are unknown random variables,
the expected reward E[RF(¢)] can only be estimated from
historical information. We use R (¢) to denote the observed
value of RE(t) which can be obtained once UE n switches
to BS k. However, a UE may not stay around a specific BS k
for a long time, and thus we cannot have enough historical
information to estimate R (t) accurately. To get around, we
define type reward RE, (TE ) as

RE (0) =0, (16-1)
T4 RE, (T, + RE(t)

TE +1 ’

RE (TE +1) = (16-2)
where Tgn denotes the number of times that BS k is selected
by UEs with service type C),. We take this observed value
R’én (Té?n ) as the mean reward for UEs with the same service
type C,,, and each UE uses his own observed reward RF (t)
to update the type reward R’é (T& ) after a handoff occurs
based on (16-2). Thus, the expected reward can be estimated

as
B[R (1)] = {Rk (Tk), ifnec,

. 17)
0, otherwise

Since the handoff trigger conditions of UEs with the same
service type are similar, type reward Rén (T, gn) can be
accurately estimated by reinforcement learning.

5.3 BS Selection Algorithm

We cannot always select the BS with the highest reward
since a well-known dilemma exploration vs. exploitation
exists in reinforcement learning. This dilemma states that
there is a tradeoff between improving UEs knowledge about
the reward distributions of BSs (exploration) and switching
to the BS with the highest empirical mean reward (exploita-
tion). Regret is a concept to measure the performance of a
policy [16], which is defined as the difference of total reward
between the adopted policy and global optimal policy. In
our problem, the regret of policy 7 after W handoffs occur
for UE n can be expressed as

w
Regret, (W) = > [Ru-(tn) = Ru(tn)s],  (18)
D(th)=1
where R« (t£) is the reward of the optimal policy 7* at time

tk. It was shown in [31] that the best regret is logarithmic
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with respect to the number of handoffs W. Based on that,
the authors of [32] proposed an Upper Confidence Bound
(UCB) algorithm to deal with this tradeoff. It can achieve
logarithmic regret with low computation complexity. The
UCB policy states that the agent chooses machine j* at each
decision time according to the following index

2In W
w; )’
where ; is the average reward obtained from machine j,
W; is the number of times machine j has been chosen and
W is the overall number of decisions so far.
The BS selection algorithm when UE n triggers Event A2

handoffs is based on UCB. We set index of BS j for UE n as
RE (TE )+¢ 21“ H" , where ¢ = pax RE, (T ) and

H,, is the total number of handoffs for UE n so far. Thus, the
policy is selecting BS £* in set A,, for UE n once Event A2
handoff occurs, where k* can be expressed as

j* = arg max (xj + (19)
J

2In H,
. . (20)
T¢,

We summarize our proposed SMART-S BS selection algo-
rithm in Algorithm 1.

K = arg max < RE (TE ) +¢

Algorithm 1 : SMART-S BS selection algorithm based on
UCB.
Input: Network topology (BS and UE distributions, \); ser-
vice type of UEs.
Output: BS selection decisions k*.
1: Initialization: obtain TC , Hp, RC (TC ) in time T
based on traditional handoff policy
2: while handoff conditions are met for a certain UE n do

3:  if Event A2 handoff then
4: Judge service type C), of UE n
7 T¢, Re, (T6,)+ R, (1)
s RE(Th +1) e Tl E)
6: k*:argm]?x(Rk (TE )+ £, /250 )
e,

7 Tgn — Tgn +1LH, < H, +1

8 else
9: switch to the unique target BS k*
10:  end if

11: end while

5.4 Properties of SMART-S

SMART-S algorithm does not perform iteration and thus

does not have convergence issue. We investigate here the

performance bound and signaling overhead. The perfor-

mance bound is established from Fact 1 and Corollary 1.

Fact 1. For all K > 1, if policy UCB is run on K machines
having arbitrary reward distributions P, --- , Px with
support in [0, 1], its expected regret can achieve logarith-
mic bound.

Proof: cf. [32] for proofs. O

Corollary 1. The proposed UCB-based SMART-S BS selec-
tion policy achieves logarithmic regret with respect to
the total number of handoffs H,,.



Proof: We construct a new reinforcement learning model
which is the same as our above proposed model except
for the reward function. For sake of convenience, we
denote the above proposed and the new reinforcement
learning model as RL 1 and RL 2 respectively. The
reward function of RL 2 is defined as

AU
===,

YE(t) (21)
where RF(t) is the reward function of RL 1 defined in
(13). As ¢ is a constant, RL1 and RL2 have the same
policy solution. Since Y,*(¢) has a bounded support in
[0, 1], we use UCB algorithm to solve RL 2 problem, and
thus the index in (19) can be expressed as

21an>

TS @2)

k* = arg max (yk +

n

where 7, is the average reward obtained from BS k
Re, (T6,)
[

which equals to . Thus, the index can be

rewritten as

Rk, (TE
k* = argm?x( C"(E C") +

2l H.
S ") 23)
TC

n

According to Fact 1, we know that the regret bound is
logarithmic for RL 2 problem, and thus for RL 1. Since
¢ is a constant, we use

k* = arg max <Rgﬂ (Tg) +/ 2lan> (24)

TE
to replace the index in (23) which is the same as the
proposed BS selection policy. O

Next we discuss the signaling overhead for SMART-S BS
selection algorithm. When the handoff trigger conditions are
satisfied for a specific UE, it notifies his service type to the
admissible BSs in set A,,, and the BSs calculate and send
their corresponding indexes to the UE. The UE switches to
the target BS, say BS k, determined by using (20). When the
next handoff occurs, the UE obtains the value of R” (t), and
transmits it to BS k. The BS uses it to update the expected
reward and index according to (16) and (17). Thus, the
number of signaling exchanges needed is 2|A4,,| and each
signaling exchange uses several bits.

6 SMART-M ALGORITHM FOR MULTIPLE TARGET
BS SELECTION

The BS selection algorithm discussed in Section 5 focuses on
individual UEs. However, in the time interval between two
adjacent measurement report periods, there may be multiple
UEs that need handoff especially for dense UE distribution.
Moreover, multiple UEs may trigger handoffs in the same
time period or even simultaneously in typical scenarios,
such as a group of UEs riding in a moving bus. We therefore
design SMART-M algorithm for optimal multi-BS selection.

6.1 Problem Formulation based on Learning Results

Let A be the set of UEs sending handoff request to the
network central controller in a measurement period and let
N = |N|. As the period is usually short (e.g. in tens of
milliseconds), we assume that the BS selection decisions are
made at the end of individual periods. Here, the objective
function Y is again chosen as the volume of transmitted
data before the next handoff occurs for these N UEs. Also
we use R{, (TZ ) to estimate E[R%(t)] based on the above
reinforcement learning. The problem is formulated as

max Y = Z Z xljR]C (Té) (25)
iEN jEA;
st Y wij < Nj,Vj € Uien A, (25-1)
ieEN
Y my=1LVieN (25-2)
JEA;
Tij € {O, 1},VZ' S N, Vj e UiENAi7 (25-3)

where z;; is a binary variable indicating whether UE i
switches to BS j, INV; is the current connection capacity of
BS j (equals to the maximum connection capacity minus
the number of current serving UEs), and A; is the set of
admissible BSs for UE i. Constraint (25-1) ensures that the
number of UEs which switch to the same BS does not exceed
the current BS connection capacity. Constraints (25-2) and
(25-3) guarantee that each UE can only be associated with
one BS at a time. For convenience, we use set A to denote
UienrA; in the rest of the paper.

6.2 BS Selection

The problem stated in (25) is a special case of a well-known
NP-hard problem Generalized Assignment Problem (GAP),
with O(NI) complexity using brute force algorithm. Ob-
viously it is infeasible to use the brute force algorithm
for solving dense deployment mmWave HetNets due to
prohibitively high computational complexity. Instead, we
propose the following efficient heuristics. We first relax
binary variables x;; in constraints (25-3) to be continuous
variables in [0, 1]. We then exploit Lagrange dual decompo-
sition method [33] to solve this optimization problem.

After relaxing x;;, problem (25) becomes a linear prob-
lem with Lagrange function

Lim,p) = > Y ai R (TL) = > 1 (O @iy — Ny),
iEN JEA; jEA iEN
(26)

where p; is Lagrange multiplier. For a fixed vector u,
Lagrange dual function can be expressed as

g(p) = sup L(z, p) 27)
st. > @y =1LVieN, (27-1)

JEA;
0<umzy; <L VieN,VjeA, (27-2)

and the dual problem is min g(u). Rewriting function g(p)
m
yields
g(p) =sup Y > @i (RL(TL) — pj) + > u;Nj. (28)

T ieNjeA; jEA



Since it dose not include the cross-term of x;;, we can
exchange the computation order as:
= 1) + Z piN.

gm) =" sup > @i(RL(TL)
(29)

ieN i d€A jea,
Thus, we can solve the following problem for each UE 1
separately,

gi(w)= sup > @i(RL (TL) — p)) (30)
i €A jea;

st Y @y =1, (30-1)
JEA;

0< T4 <1Vje A;. (30-2)

Since we want to find a binary solution of z;;, for a fixed
vector p, problem (30) is described as: for UE %, we choose
a BS j* from set A; to maximize the value of Rél (t) — pj=-
Therefore, when p is fixed, problem (27) can be solved by
choosing the optimal BS j* for each UE respectively. Then
we minimize g(p) over p to obtain the optimal value p*
for the dual problem. We use negative gradient direction to
update p1; with respect to u; > 0,

+

R)(N; = wiy)| Vi€ A (1)
1EN

pi(k+1) = |p(k) =0

where (k) > 0 is the update step size, and is given by

9(ky,) — g
CALL VLI )
|2

where gy, is an estimate of the optimal value g*. The proce-
dure of updating g;, is given by

5(k) = (32)

g = min, g(p) — ek, (33)
and ¢y, is updated according to
if <
T o) S 5y
max{feg,e} otherwise

where ¢, 5 and p are fixed positive constant with 5 < 1 and
p>11[34].

For linear programs, strong duality holds. Therefore, the
minimum value of g(u) is equal to the maximum value of
the original problem. The solution process is that: we first
obtain the maximum value g(p) over « with fixed p, and
then minimize g(p) over p denoted as g(p*). The optimal
binary solution x* is obtained with the corresponding solu-
tion pu*. According to * we make BS selections for those
handoff UEs.

Similar to that in Section 5, RZ, (T ) is updated once the
next handoff occurs according to (14) and (15). Note that,
the reinforcement-learning process m Section 5 can improve
the accuracy of the value of RJ ( _) thus the solution of
this optimization problem. We summarize the SMART-M
algorithm in Algorithm 2.

6.3 Convergence and Computational Complexity of
SMART-M

To prove the convergence of SMARI-M BS selection algo-
rithm, we need Propositions 2 and 3.
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Algorithm 2 : Joint optimal SMART-M BS selection algorith-
m.
Input: Network topology (BS and UE distributions, A);
handoff UEs NV.
Output: BS selection decisions x*.
Initialization:

1: Judge service type of UEs

2: Determine admissible BSs

3: The BSs send the value of R, (
controller
BS selection decisions:
x0 «— 0, 2° « current connections, k + 1
: while 2 # xF~1 do
k< k+1
for each UE i € A do

solve problem (30)

end for (obtain x*)
10:  update uk according to (31)
11: end while
12: ¥« xF

TZ. ) and N; to the central

R N A

Proposition 2. Let p,, be the sequence generated by (31). Then,
for all non-negative | A|-dimensional vectors v and k > 0

s = ol* < e = vlI” = 28(k)(9(i) — 9(v))
+0(k)?|lh () |17,
where ||h(xy)|| is an | A|-dimensional vector with elements
hj = Nj — Y icn 2ty |Al is the cardinality of set A, and
Xy, is a vector that satisfies L(xy, py,) = sup, L(x, p;,) =
9(1)-

Proof: According to (31), we have
— 8(k)h(zx) — vl

—v)" h(zx) + 6(k)?||h(zp)|*.
(35)

g1 — ol = [l
= |lpy — U||2 —25(k) (pay,

As L(x, p) in (26) is linear and h(x) = %ﬁ’”), for all
vectors x € [0, 1]VI¥IAl we have

L(z, uy,) — L(x,v) = (u, — v)"h(x). (36)
For vector x,
L@k, py) — L(zg, v) = g(py,) — L@k, v)
= 9(py) = sup L(z, v) = gpe) — 9(v). 57)
Combining (36) and (37) yields
(ke — )" h(@) = g(py,) — g(v). (38)
Combining (35) and (38) yields
ltr1 = v)1* < Ny, — v]|* = 26(k) (9(ss) — 9(v))
+0(k)? b))
|

Proposition 3. Assuming that step size 0(k) is determined by
(32), (33) and (34), if g* > —oo then klim inf g(py) <
ade ]

g +e



Proof: As N; and zF i; are bounded, h; = N;j — >,/ xfj

and then vector h(xy) are also bounded. Since h(x) =

%ﬁ“), there exists a scalar c that

c> sup{||59(ﬂ)||}~

Combining Proposition 2 and (39), we can con-
clude that our problem satisfies the necessary con-
ditions of Proposition 6.3.6 in [34]. By applying
this proposition with -, = 1, we obtain the
Proposition 3, and the convergence of SMART-M is
proved. O

(39)

Next we discuss the computational complexity of
SMART-M BS selection algorithm. At each iteration, we de-
compose g(p) into N sub-problems g;(p), and the compu-
tational complexity of g;(pt) is O(|.A;|). Thus, the complexity
of SMART-M BS selection algorithm is O(k|N||.A]), where k
is the number of iterations. In most simulation experiments,
the algorithm converges in less than 10 iterations with total
run time several milliseconds, which can satisfy real-time
requirements.

We again evaluate the signaling overhead for SMART-M
BS selection algorithm. The UEs who trigger handoff condi-
tions need to notify the service types to their admissible BSs,
which calculate and send the corresponding value Ra (1Z.,)
to the central controller. The central controller makes hand-
off decisions based on SMART-M policy, and sends these
decisions to UEs. Thus, the number of signaling exchanges
needed is >~ | |A;|+|.A|+|], and each signaling exchange
uses several bits.

6.4 Further Discussions on SMART-S and SMART-M

After discussing the details of the two algorithms separately,
in this subsection, we clarify the two algorithms together
from two aspects: (1) the relation between the two algo-
rithms; and (2) the implementation of the algorithms.

First, the two algorithms are designed for different UE
density scenarios. SMART-S is appropriate for sparse UE
density, while SMART-M is designed for dense UE distribu-
tion. Specifically, SMART-S chooses target BS for a single UE
without considering the states and decisions of other UEs.
SMART-M can achieve a joint optimal BS selection policy
for multiple UEs which are triggered to perform handoffs
in the same measurement report period. The computational
complexity of SMART-M is higher than SMART-S algorithm.
Thus, we choose SMART-S or SMART-M according to the
UE density.

On the other hand, SMART-M makes handoff decisions
for multiple UEs by solving an optimization problem with
unknown parameters. We employ the learning algorithm
of SMART-S to evaluate the unknown parameters in the
optimization framework. In more details, SMART-M needs
to solve (25) with the expected reward Ry, (77 ) in the
reinforcement learning model of SMART-S, Wthh is indeed
the estimated value of E[RE (¢)]. In this sense, SMART-S can
be used to enhance the accuracy of RY, (T] ) from historical
data, and thus improve the performance of SMART-M.

Second, let us discuss the implementations of the two
algorithms, in order to further clarify their relation. For the
selection between the two algorithms, SMART-S is indeed
feasible for any UE density. From Corollary 1, we can see
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that SMART-S achieves logarithmic regret with respect to
the total number of handoffs. In other words, although
we always run SMART-S for any UE density, we can still
achieve at least logarithmic regret bound and enjoy perfor-
mance improvement. Certainly, for dense UE distribution
circumstances, we can run SMART-M algorithm to further
improve the handoff performance with some computational
cost.

In our system, we adopt a simple selection policy be-
tween the two algorithms. We define a UE density threshold
I' to identify sparse or dense UE distribution. When the
number of UEs which send handoff request to the controller
in a measurement period is lower than I', SMART-S is
selected, otherwise SMART-M is selected. Other handoff
procedure remains the same as that in conventional handoff

policy.

7 NUMERICAL RESULTS

In this section, we compare the performance of SMART with
two conventional handoff policies as follows. (1) Rate-based
handoff (RBH). RBH has similar trigger conditions as those
in 3GPP. When choosing target BSs for handoffs, the ones
with maximum transmission data rates are chosen (instead
of maximum RSRP in 3GPP [3]). (2)SINR based handoff
(SBH). SBH has the same handoff trigger conditions as that
of SMART and uses maximum SINR for target BS selection.

7.1 Simulation Settings

We consider a two-tier HetNet deployed in urban area,
and the HetNet consists of an MBS and varying number
of mm-FBSs, Tr-FBSs and UEs. The MBS is located at the
central of a circular area with radius equal to 500m, and
both mm-FBSs and Tr-FBSs are randomly distributed in the
area. The transmit power of MBS, mm-FBS and Tr-FBS is
set to 46dBm, 30dBm and 20dBm, respectively. Both the
number and region of blockages in mm-FBS are randomly
generated. Similar to that in [6], when UEs in mm-FBS
move to blockage regions, the channel state is assumed
to be NLOS with parametersa = 72 and n = 2.92 in (1).
In non-blockages areas, the channel state is assumed to be
LOS with parameters v = 61.4 and = 2 in (1). Other
parameters related to mmWave band path loss model are
the same as those in [6]. For traditional band, the carrier
frequency is set to 2GHz, and we use path loss model in
(5) with different exponent, ¢ = 2 for LOS and ¢ = 3 for
NLOS. The bandwidth allocated to MBS/ Tr-FBSs and mm-
FBSs is 20MHz and 500MHz respectively. The noise power
is set to -101dBm and -77dBm for traditional and mmWave
band respectively [5]. We assume that the UEs are randomly
distributed in the area and move to a random direction at
a random speed. We assume that perfect initial cell search
can be performed, and thus UEs can discover BSs correctly
when a handoff occurs. TABLE I summarizes the system
parameters we use in the simulations. Our simulations are
implemented with MATLAB codes and carried out on a PC
equipped with an Intel-i5 4 core 3.2GHz processor and 4G
RAM.



TABLE 1
Simulation Parameters

Parameters Value
MBS radius 500 m
Power of MBS 46dBm
Power of mm-FBSs 30dBm
Power of Tr-FBSs 20dBm
Bandwidth of MBS/ Tr-FBS 20 MHz
Bandwidth of mm-FBS 500 MHz
Path loss exponent for LOS 2
Path loss exponent for NLOS 3
Ymaz 18dB
Ymin -2dB
Carrier frequency 2000 MHz
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7.2 Numerical Results and Discussions

In Experiment 1, we compare the number of handoffs and
system throughput of the three handoff policies. In this
experiment, we fix the number of FBSs and UEs as 100 and
500 respectively. The average UE movement speed is 5m/s.
Fig.3 shows the number of handoffs and system throughput
for the three handoff policies with different mm-FBS ratio X
in 1000 seconds. Fig.3 (a) shows that when A = 0.2, the total
number of handoffs for RBH, SBH and SMART is 8.3 x 10,
6.1 x 10*and 4.4 x 10%, respectively. These numbers show
that SMART can reduce handoffs by 47% and 28% when
compared with RBH and SBH respectively. For A = 0.8,
the reduction percentages are 50% and 46%. Note that
fewer handoffs implies reduced signaling overhead, energy
consumption and UE outage probability. Fig.3 (b) shows
that the system throughput of all the three handoff policies
increases with the ratio of mm-FBS because of increasing
available bandwidth in mm-FBS. The system throughput of
RBH is higher than that of the other two schemes since that
the handoff trigger conditions in RBH takes into account
only UE data rate. In other words, in RBH a UE may
frequently perform handoff for achieving maximum data
rate, while ignoring the negative effective of handoff. We
also find that the difference of system throughput between
SMART and RBH is relatively small (2% for A = 0.8, 5%
for A = 0.2), implying that significant handoff performance
gain can be accomplished with a small compromise on
throughput.

In Experiment 2, we evaluate the average running time
per handoff (RT) of the three handoff policies with varying
number of FBSs. The simulation settings used remain the
same with those in Experiment 1. RT directly reflects the
computational complexity for a handoff policy. Fig.4 shows
the RT of the three handoff policies as a function of the
number of FBSs. From the figure, we can see that the run-

system throughput (bits)

0.5 : .

L 1

0.4

0.5
mm-FBS ratio
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(b) system throughput

Fig. 3. Handoff performance as a function of mm-FBS ratio A
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Fig. 4. Running time comparisons for handoff policies.



ning time of SMART increases approximately linearly with
the number of FBSs. Moreover, we can see that although the
RT of SMART is always the largest, it is still in the same
order of magnitude (within 2-3 times) as that of the other
two policies.

70

—— SMART e
60 |-C--RBH s

—%— SBH ¥

50

40 t

30

average signaling overhead

40 60 80 100 120 140 160
number of FBSs

Fig. 5. Signaling overhead comparisons for handoff policies.

In Experiment 3, we examine the average signaling over-
head (SOH), which is defined as the number of signaling
exchanges per handoff with varying number of FBSs by
using the same simulation settings. Fig.5 shows the SOH
of the three handoff policies as a function of the number of
FBSs. Note that in the experiment, SMART-S or SMART-M
algorithm is selected according to the number of handoff
UEs in each measurement report period, and we count the
total number of signaling exchanges in 1000s time as the
SOH of SMART. From the analysis in Section V. (D) and
Section VI. (C), we know that the SOH of both SMART-
S and SMART-M increases with the number of FBSs in
a linear fashion with different slope. From the figure, we
can observe that trend of SOH for SMART increases ap-
proximately linearly with the number of FBSs, which is
concordant with the theoretical analysis. Moreover, we find
that the curve of SMART is very close to that of RBH,
which means that SMART handoff policy does not introduce
additional signaling overhead. This is because that almost
all the handoff procedures of SMART remain the same
as that in conventional handoff policy, except for reward
update and handoff algorithm selection.

In Experiment 4, we examine the effect of UE movement
speed at A = 0.5 with parameters the same as the Exper-
iment 1. Fig.6 shows the number of handoffs and system
throughput for the three handoff policies as a function of
the mean UE movement speed. From Fig. 6 (a), we see that
from fast walking speed of 2 m/s (7.2 km/h) to slow driving
of speed of 14 m/s (50km/h), the numbers of handoffs
are increased slightly for all three policies. The relative
advantage of SMART remains. As expected, Fig.6 (b) shows
that the system throughput of all the three policies decreases
with UE movement speed due to faster change of channel
quality.

In Experiment 5, we examine the performance of handoff
policies for varying number of FBSs while using fixed mm-
FBS ratio 0.5. Other parameters remain the same as those
of the Experiment 1. Fig. 7 shows the number of handoffs
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and system throughput as a function of the number of FBSs.
From Fig.7 (a) we can see that the number of handoffs for
SMART is always significantly smaller than that of the other
two policies. When the number of FBSs increases from 40 to
140, the number of handoffs for SMART is increased slightly.
Fig.7 (b) shows that the throughput of SMART and SBH
increases with the number of FBSs due to more available
wireless resources.

In Experiment 6, we examine the optimality of SMART
policy. SMART-M algorithm cannot achieve the exactly op-
timum solution due to the relaxation in solving problem
(25). Hence, we compare SMART policy with the optimal
solution, denoted by SMART-OPT, which is obtained by
using integer programming solver, in small scale scenarios.
In the experiments, we set the number of BSs to 20, and vary
the number of USs from 50 to 200. Other simulation settings
are the same with those in Experiment 1. Fig. 8 shows the
comparison of SMART-OPT with the other three handoff
policies in term of the number of handoffs in 500 seconds.
From this figure, we can see that the difference between
SMART-OPT and SMART is rather small, which means that
SMART policy can reach a near-optimal performance in
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terms of the number of handoffs. On the other hand, we
would like to mention that the computational complexity of
SMART is much lower than that of brute force algorithm.
We find that the brute force algorithm is at least an order of
magnitude lower than the other three policies.
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Fig. 8. The comparison of number of handoffs with optimal solution.
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8 CONCLUSIONS

In this paper, the SMART handoff policy is proposed for
mmWave HetNets based on reinforcement learning. In S-
MART, the handoff trigger conditions are determined by
taking into account both mmWave channel characteristics
and QoS requirements of UEs. SMART has two BS selection
algorithms for different UE density circumstances. SMART-
S is for single UE and uses reinforcement-learning for BS
selection. SMART-M is for multiple UEs and uses a heuristic
for the simultaneous identification of the best target BSs.
The computational complexity of SMART is much lower
than that of brute force algorithm to calculate the optimal
solution. Moreover, as SMART is based on learning, it can
be implemented in a distributed manner. Numerical results
have shown that the performance of SMART is near the
optimal solution. Without sacrificing UE QoS, SMART can
reduce the number of handoffs by about 50% when com-
pared with handoff policies without machine learning.
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