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Abstract

We present a unified framework for studying Coulomb interactions in arbitrary environments using
macroscopic quantum electrodynamics on the basis of the electromagnetic Green’s function. Our
theory can be used to derive the Coulomb potential of a single charged particle as well as that between
two charges in the presence of media, bodies and interfaces of arbitrary shapes. To demonstrate this,
we reproduce the well-known screened Coulomb force, account for local-field effects and consider
new cases such as a multi-layer medium, a dielectric cavity, a conducting wire and a plate with a hole.

1. Introduction

The Coulomb force is perhaps the first electromagnetic interaction encountered by a student of physics,
introduced as an immutable inverse square law that delivers the force between two charged particles. The simple
inverse square distance dependence is used as the basis for a wide variety of descriptions of nature, from the
Hartree—Fock methods of quantum chemistry to the Derjaguin, Landau, Verwey, and Overbeek theory of
colloidal dispersions [ 1, 2]. What is usually missing is the fact that no physical system exists in true isolation;
there will always be some environment enclosing the objects of interest. A prominent example is the exponential
screening of the Coulomb interaction for charges embedded in a non-local medium [3]. This appears across
physics as such effects arise in materials with a high density of free or quasi-free charge carriers; these include
metals (where the screening length is the Thomas—Fermi length), electrolytes (where the screening length is the
Debye—Huckel length), ionic solutions or narrow-band-gap semiconductors [4—7]. One common way of
arriving at these effects is to make a Thomas—Fermi approximation for a free electron gas, then solving the
resulting screened Poisson equation. A small number of works in colloid physics [8] exist that extend this to
charges near an interface, but these rely on a linearised Poisson—Boltzmann equation in which several
assumptions must be made.

A more fundamental and flexible point of view is provided by macroscopic quantum electrodynamics
(QED), where the Coulomb interaction involves the emission and reabsorption of a photon. For example, the
interaction between two charges is mediated by a photon that is emitted from one charge and subsequently
absorbed by the other. On the way, this photon may interact with its environment, for example it may reflect off
amacroscopic body or be travelling through some bulk medium. This leads to an environment-dependent
Coulomb force, which is the subject of this work. We will write the Coulomb force in terms of a version of the
dyadic Green’s function, well-known from the formalism known as macroscopic QED [9, 11]. The special case
of bulk media will, as we shall see, reproduce the screening effects discussed above, but the unified formalism we
use is much more general. It provides a link between medium-assisted Coulomb interactions and the
considerable literature on dyadic Green’s functions [12, 13]. We will demonstrate this by considering general
expressions as well as several particular geometries that demonstrate the power of the toolbox we are presenting.

In general, environment-dependent effects may be described by the dielectric function, so if this can be
engineered the Coulomb interaction can be controlled. One simple way to do this is by varying macroscopic
geometric parameters [14], but an increasingly relevant class of media are those whose microscopic structure is
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designed to generate a desired permittivity. Control of the Coulomb interaction is particularly important in
many solid-state devices like solar cells, where an increase of screening allows for a stronger separation of
excitons into electrons and holes [15]. Moreover trapped atomic ions can be used as a collection of qubits where
quantum information is transferred between the ions thorough their mutual Coulomb interaction [16, 17].

An interesting related problem, which is of particular interest in colloid physics, is the Coulomb interaction
between two charged particles near non-translational-invariant media, like for example a planar multilayer
system. This is distinct from the screening imposed by bulk media, and is much less well-studied, though in the
formalism we present here it may be studied in exactly the same way as screening effects. Charged particles near
macroscopic objects induce a polarisation-charge density on the surface of those objects, which in turn affects
their Coulomb interaction. These polarisation effects are particularly important at the interfaces between media
with very different dielectric permittivities. This problem is usually treated by the method of images, where the
medium is replaced by a set of image charges in order to satisfy a relevant set of boundary conditions on the
surfaces. Sometimes, however, in complex geometries (such as a wedge) it is not clear where to place the image
charges so one must resort to complex calculations of potentials for particular systems, which may be of limited
applicability. Here we will express all Coulomb forces in terms of the dyadic Green’s function, which is a very
well-studied object in a large number of different geometries. The interaction between two atoms near the
relatively simple system of an infinite dielectric slab or metal has been studied [18—21] and, in the metallic case,
extended to include spatial dispersion. The result shows that the Coulomb interaction must be corrected for
distances shorter in comparison with the Thomas—Fermi screening length in the dispersive case [22]. Similarly,
the Coulomb interaction between a charged moving particle and a plasma has been studied in the literature [23].

Although some disparate particular cases have been investigated, to our knowledge no general expression of
the medium-assisted Coulomb interaction is known in the literature. As stated earlier, the aim of this work is to
study the Coulomb interaction in generic environments that are described by the dyadic Green’s tensor. The
interaction will be described in the framework of macroscopic QED as a one-photon exchange process, where
the photon propagator is governed by the electromagnetic environment.

After deriving some general formulae, we will demonstrate the power of the method by firstly considering a
set of examples that reproduce well-known results, the novelty arising from their unification within the same
framework. These will include the screening for spatially dispersive media, the interaction between two charges
near a planar interface between two dielectrics and the interaction between a charge and a polarisable particle.
Following this we also apply our general results to new, non-trivial settings, namely local-field effects, a multi-
layer medium, a dielectric cavity, a conducting wire and a conducting plate with a hole. Our approach can be
applied to every case where the Green’s tensor is known or can be calculated by analytical or numerical means.
As already mentioned, there is a vast literature on the subject of the dyadic Green’s tensor—the calculations
presented here represent a means to reliably translate this wealth of results to the language of the Coulomb
interaction in a rigorous and transparent way.

2. Coulomb interaction in the presence of dielectrics

To study the Coulomb interaction between two charged particles, we use field quantisation in linear absorbing
and non-local media [9, 10, 24, 25], using the Coulomb gauge. Here and throughout we take the medium to be
non-magnetisable (i.e. with unit relative permeability), so that the electric field can be expanded in terms of the
creation and annihilation operators f T(r, w), f (r, w) for electric excitations labelled by frequency wand

positionr;

E(r, w) = fd3sGe(r, s, w) - £(s, w). (1)

The tensors G, are mode-tensors that depend on the imaginary parts of the electric permittivity of the absorbing

medium:
w? | 7
G.(r,1,w)=i— |[—Ime(r, w)G(r, 1/, w) )
c? TEY

and on the classical Green tensor of the Helmholtz equation G(r, 1/, w) [9, 10]:

[V x V x —L:—zzs(r, w)]G(r, ', w) =860 — 1, 3)

where I is the identity matrix.
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An important relation involving these mode-tensors is:
fd3sG (s, w) - GFT(r/y s, w) = LW Im G(r, v, w), 4)
™

where ' denotes the transpose.
Charged particles interact with the radiation field through the scalar and vector potentials, not directly via
the electric field. The scalar potential ¢ is related to the longitudinal part of the electric field via gl = V. The

longitudinal part fl of a general vector-valued function f can be calculated using the longitudinal delta function
Ol(r) = —VV (4nlr]) ! via:

flry = f Fsol(r — s) - £(s). (5)

Hence the scalar potential satisfies the equation:
Vo(r, w) = —fd35"Ge(r, s, w) - f(s, w), (6)

where |G, is the left-longitudinal component of G,:
IG,(r, ¥/, w) = fd%ﬁ”(r —s) - G,(s, I, w). 7)

The scalar potential can hence be derived performing a line integral of a vector field:
o, w) = —fd3s fr dr’ - IG, (', s, w) - f(s, w). (8)

We assume that the point ry may be placed atinfinity (r — ro] — 00) and take the scalar potential to be defined
relative to this; ¢ (ry, w) = 0. As expected, the potential at a point r is proportional to the work done by the
longitudinal electric field in order to move the charge from infinity to that pomt Analogously the vector
potential can be expressed in terms of the bosonic excitation operators B = —A)

A(r,w) = .—fd3sLGe(r, s, w) - £(s, w), 9
iw
where +G, is the left-transverse component of G,:
1G,(r, 1, w) = fd3551-(r —5) - G,(s, 1, w) (10)

and 61 (r) = V x (V x I)(4r|r|)~!is the transverse delta function.

3. Energy shift

We consider the interaction between two charged particles assisted by a polarisable medium. The distances
between the particle and any interfaces of the medium are considered to be large enough that the interface may
be regarded as a macroscopic surface, i.e. its microscopic structure is not resolved. This means that we are far
enough away to exclude such effects as Pauli repulsion and covalent bonding.

As mentioned in the introduction, the Coulomb interaction may be pictured as arising from the emission
and absorption of one virtual photon. There are three processes which can contribute to the interaction, which
can be conveniently represented through Feynman diagrams. One diagram involves the photon being emitted
and reabsorbed by the same particle as shown in see figure 1. This photon may be affected by the medium,
causing a position-dependent shift—hence this process describes the interaction between a single charged
particle and a polarisable medium.

The other two diagrams involve the exchange of a single virtual photon between the two charges (see
figure 2), and describe the Coulomb interaction between the pair. In all three of these diagrams the interaction is
affected by the medium because the photon can be reflected by the body’s surface, and hence can be considered
emitted by a fictitious image charge.

The energy shift describing the Coulomb interaction can be obtained from second order perturbation theory

. | il I) (1| Higel i
AE _ <l|H1nt|1> _ Z <l| 1nt| >< | 1nt|l> , (11)
I=i Er — E;
and Hi, is the Hamiltonian for a set of charges g,, of momentum p, minimally coupled to the electromagnetic
scalar and vector potentials g?) and A;
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Figure 1. Single-atom Coulomb interaction.

................. |f> TN DU ‘f')
) 1)
12) [4)
Figure 2. Medium-assisted Coulomb interaction between two atoms.
q 9a
A A P 22
Hini= ) 4,00) — >, =P, - Alta) + > ——A(ra) (12)
a=AB a=AB Ma a=AB 2Ma

The second term is absent when one considers charges fixed in space (p, = 0). The intermediate state |I)

corresponds to a state in which one virtual photon s present: [I) = [{1(r, w)}) = fA'T(r, w)|{0}), E; — E; = /w,
while the initial state corresponds to a state without photons |i) = | {0}). Using equations (8), (9), the expectation

value
(03] £, F (!, wHI{0}) = 6 = 1)8(w — W) (13)
and the integral relation (4), the matrix elements of the individual terms that make up equation (11) read;
(il 4,60 1) = —q, [ dr'- 16, 1, w), (14)
Iy
2 2
N 7 o0
(2R ) = S22 [ do T (1m 6 (s v ), (1s)
2myg, 2rm, Jo
where we have introduced the two-sided-transverse component of G
LG (r, v, w) = fd3sfd3s’6L(r —s) - G(s, s, w) - 6L(s' — ). (16)
where &' is the transverse delta function defined below equation (10). Using this and the integral relation (4), the
total energy shift reads:
o < dw Ta [T
AE=--2 ‘ —w? dr - ImIGl(z, v/, w) - dr’
T aﬁz:%,B 1a9p j; w j:g j;)
7 2o
4 2o q—af dw Tr {Im LG (r,, 10, W)}, a17)
T a=ap 2Mqa YO

where we have introduced the two-sided-longitudinal component of G :

IGI (r, v/, w) = fd3sfd3s’6”(r —98)-G(s, s/, w) - s’ — 1), (18)
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where 8l = V ® V(47|r|)~!is the longitudinal delta function. Here we have used a property of the Green’s
tensor under transposition; G(r, 1/, w) = G(r’, 1, w). We use the Schwarz reflection principle;

G*(r, ', w) = G(r, t', —w) (19)

to extend the frequency integral (17) to the whole real axis :

AE Z qaqﬁf fr& frd dr - IGl(, ¢/, w) - dr’

.B=A,B

7
+ P > f dw Tr {Im 1G(xa, 0, w)}. (20)
T o= A,B mOé
The tensor w?G(r, r’, w) is analytic in the upper half of the complex plane (including the real axis), and it is also
finite at the origin. This means we close the path with an infinitely large half-circle in the upper complex half-
plane and deal with the singular point w = 0 using the principal value prescription. The integral along the
infinite semi-circle vanishes for r = r’ because:
lim w?G(r, 1/, W)|rer = 0. (21)

Calculating the residue atw = 0, the energy shift reads:

AE=—-— > 4,45 L/;rﬂ j;rj dr- G, r) - dr’

250ad AB

i > f dw Tr {Im +G* (ra, 145 W)}, (22)

T o= A,B ma

where we have defined the static Green tensor
w? w?
G(r, 1) = lim =!G, ', w) = lim =G, ', w). (23)
w—0 C2 w—0 (:2

The last equality follows from the fact that for zero frequency the Green’s tensor is purely longitudinal [9].
The energy shift (22) consists of two parts. Firstly there are the single-particle terms which describe the
interaction with the surface;

2 Ty s
Ury) = _quAf f dr- G(r, ') - dr/ + 0% ity f dw Tr {Im LG (rs, 14, w)) (24)
0 Iy Iy

7TmA

and secondly the medium-assisted Coulomb interaction between the two particles, which reads:
Ulry, 1) = —Ja98 f f dr- G(r, r') - dr’ (25)

asis well-known for arbitrary charge distributions [26]. Combining the single-particle and two-particle terms
one has;

AE = U(ry) + Ul(ry, rp). (26)

Note that the single-particle shift U (r4) contains an infinite contribution which comes from the free
Coulomb interaction; however this shift does not depend on the position of the particle and does not lead to any
observable force. Note that our results (24) and (25) remain valid for non-local media where the mode tensor (2)
involves a convolution over the non-local permittivity [25].

In equation (24) the first term represents the classical interaction while the second term is a quantum
correction that vanishes in the classical limit Z — 0. The single-particle shift represents a correction to the force
if the charge is situated in an environment. In general the expressions for such a correction are very complicated,
but itis in fact possible to estimate the order of magnitude of this term by direct inspection of equation (24).
Firstly we rewrite (24) in terms of the Compton wavelength \y = 27/ / (mac)

Ul(ry) = ——[f f dr - G(r, 1) - dr’ — )\A lf dw Tr {Im G+ (r,, 14, w)}] 27)

We begin by noting that the Green’s tensor G(r, 1/, w) typically has an order of magnitude of r~! where r
represents the typical distance between the charge and the surface of the medium. Then, equation (23) tells us
that that the static Green’s tensor G (r, r’) has an order of magnitude of ¥ . Hence, the ratio between the second
and first term of (27) is of order of magnitude A\, /r. An electron has A, ~ 1072 m, this should be contrasted
with the fact that the description of the surface as a macroscopic body breaks down at distances of around
10~ m. Thus for all distances for which the basic assumptions of this work hold, the second term of
equation (27) can safely be discarded.
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This analysis is backed up by the detailed evaluation of both terms previously carried out in [23], where the
problem was analysed in both the non-retarded and the retarded regimes for a plasma surface. There, it is found
that the ratio of the second term to the first term is equal to Ay A, / (27+/2 ?) in the non-retarded regime, and
A4/ (mr) in the retarded regime, where ), is the plasma wavelength. Since for real materials the plasma
wavelength is in the visible range we recognise also in this case that the first term of (27) dominates the second.

4. Energy shift in terms of the scalar Green’s function

The Coulomb interaction depends on the static Green tensor G(r, r’) as defined in equation (23), which is
related to the scalar Green function g (r, r’) from electrostatics defined via [26]:

V. [e(®)Vg(r, t)] = =6 — ). (28)

Note that the scalar Green’s function is symmetric, g (r, r') = g(r/, r), see [26].

In order to show the connection between the two quantities G(r, r’) and g (r, t’) consider equation (3),
which defines the full, frequency-dependent dyadic Green’s tensor G(r, r’, w). Taking the divergence of both
sides of (3) and considering the static limit w — 0 one has;

V. [e®)G(, )] = -V — 1), (29)

where (r) = e(r, w — 0)is the static permittivity and G (r, r’) the static Green’s tensor, see equation (23).
Applying the operator V' to both sides of equation (28) and comparing the result to equation (29) we see
that:

G(r,r') = —-VV'g(r, 1) (30)

Using the well-known relation
[ a e = £ - f@o), (3D
To

to replace gby G in equations (24) and (25), we find:
2

q
Ul(ra) = —2-g(ra, 1a)
250

9448
€0

U(ra, 1p) =

g(rA’ rB)) (32)
where we have additionally used the property g (r, ') — 0for|r — r'| — oo.Itis worth noting that, apart from
the quantum correction, the Coulomb interaction between two charge distributions p,, p; was already
described by, for example, Schwinger [26] as:

1 / / ’
AU = Z—Eofdﬁrfd% Pa(0) g (r, ) py (x). (33)

In free space we obtain the well-known Coulomb potential since g(o)(rA, rg) = 1/(47|ry — rp|). In general the
Green’s function is the sum of the free-space contribution g® and the scattering part g which accounts for
reflections from any surfaces that may be present. In the rest of this work we subtract from U (r,) the divergent
free-space contribution, as our main focus is the corrections to this stemming from the electromagnetic
environment, thus we will work with the following pair of equations;

2

UD (1) = A gD(ry, 1), (34)
250
qa4

Ul(ty, 1) = ‘;Bg(rA, rp). (35)
0

The Green’s function g (r, r’) represents the propagator of the field, describing the amplitude for a photon
emitted at r’ to be absorbed at r. Hence equation (34) represents an emission and absorption of a photon by the
charge, with a reflection from the surface. In fact the reflected photon can be thought of as emitted by a fictitious
image charge. Equation (35) represents a back-and-forth excitation exchange between the two charges (with
possible reflection).

Formulae (34) and (35) together with (30) constitute a recipe that takes a dyadic Green’s tensor G (r, r’, w) as
input, and produces Coulomb potentials U" (r,) and U (r,, 13). As mentioned in the introduction, a proper
account of this process allows one to calculate Coulomb interactions in exotic situations by exploiting the huge
literature on dyadic Green’s functions.

For transitionally invariant media the Green’s function depends only on the difference between the two
points: g(r4, r5) = g(ra — rp). Inthis kind of system the forces acting on the two charges would be equal and

6
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E - (r)

Figure 3. Cavity model: the guest charges in a medium are separated by small, vacuum-filled spherical cavities of radius R.. E4~(r) is
the electric field transmitted by the cavity’s surface into a point r outside the cavity.

opposite, which is just a consequence of the action—reaction principle. However when the translational
invariance is broken and local-field corrections are taken into account the two forces are not equal and opposite.
This is not a violation of action—reaction since the interface between two different media takes some momentum
to restore the balance.

Finally, we note that we can give an interpretation of the classical shift in terms of the work needed to bring
the static charges from infinity and assemble them in the required positions. The medium-assisted Coulomb
electric field produced by the charge A, with position r4, using equation (30), is:

Ea(r) = 14 f YA G, 0 = —Ave(r, 1), (36)
gy Yrg €0
Hence the potential in r due to both charges is:
o = — [ dr' - BaG) + Ep(r). (37)
The work Wrequired to assemble the charges is
> 4,0t (33)
a=A,B

which coincides with the classical energy shift derived previously in equation (32).

5. Local-field corrections to the Coulomb interaction

In section 4 we derived the Coulomb interaction between two charges placed within a generic environment. It
was assumed that the local electromagnetic field acting on the two particles is the macroscopic field. However
this assumption is not satisfied in optically dense media, where local field corrections are important [27, 28]. One
way to introduce the local-field correction is via the real-cavity model. There, the charges are considered to be
surrounded by small, empty, spherical cavities of radius R and are hence well-separated from the neighbouring
atoms of the media.

We consider first the electric field transmitted by the cavity’s surface into a point r outside the cavity, where
the surrounding medium is infinite, see figure 3. The Green’s function of the infinite body with the cavity, for
r > R, ry < R,reads[29]:
00 1 I

(0) (r, 1) =)

cd+ 1)+ [0 l+1 Z Yin(0, @)Y (O 64)s (39)
=0

where Y},,, are the spherical harmonics. The Green’s tensor of the infinite body without the cavity
(r > R, 74 < R)is:
rh

—5 Z Yin (0, ) Y75 (Oa, ). (40)

m=—1I

1

g(O)(r) rA)
4me |r — rA|

(o)
=
Hence the electric field E4 - transmitted through the cavity surface to a point r outside the cavity is equal to the

field that would be transmitted to the same point in the absence of the cavity (r4 = 0):

6(2l +1r

Eyu(r) = q‘* Vg<°><r, 1) = —i—AVg@(r, ). (1)
0
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(b)

Figure 4. (a) Schematic illustration of g, the finite-body scattering Green’s function with the cavity. (b) Schematic illustration of

g;(zl)’ the finite-body scattering Green’s function without the cavity.

Moreover:
3¢
2¢ +1

This means that the electric field transmitted through the cavity surface to the point inside the cavity r, is equal
to the field that would be transmitted to the same point in the absence of the cavity, multiplied by a global factor
3e/(2e + 1). However the medium can have a finite size and the electric field can be reflected from the outer
surface of the medium. The scattering of the field from the outer surface is taken into account by replacing the
infinite-body Green’s function g ¥ with the finite-body Green’s scattering function g ), see figure 4. The
electric field transmitted through the cavity surface, reflected from the outer body surface and finally
retransmitted into the cavity reads:

Viag O(rs, 1). (42)

Vagd(ea, 1) =

3¢ a0, 1y, (43)

EV (r) = —q—AV (r,ra) = —
A< €0 &c 4 2e +1 ¢

where g1 is the scattering Green’s function of the finite-body with the cavity, see figure 4.
The local-field corrected force acting on A reads:

2
UG, 1), (44)

Fa(r, =g, EQ(r) = ————
w(ra,p) = g E, L (ra) et 1

Note that we should consider the electric field reflected at the surface of the cavity as well; however using the
Green’s function in [29] it is simple to show that this contribution vanishes. We can generalise our results when
the dielectric constant of the medium is not homogeneous; the local field corrected force acting on A reads:

2
3e(ra) q_AVg(“ (5 1) le=r,- )

Fu(r, =g, EP (1) = ———4
4(ra,B) = q,E L (ra) et + 1

We now focus on the local-field corrected interaction between two charges. Charge B will produce some field
which is experienced by charge A. Following the same previous steps we find that the force experienced by the
charge Ais:

3e(ra) MVAg (ta, rp). (40

Fa(ry, 15) = g, Bpe(ry) = ———22
w(ra, 15) = g, Ep(ra) o) £ 1 2

Both the scattering and the bulk contributions of the Green’s tensor contribute, leading to enhancement of the
force. For example, water has a static permittivity of approximately 80 leading to an enhancement factor of about
1.49. To our knowledge the local-field corrected Coulomb force calculated in this section is a new result, which
could find applications in the physics of ions suspended in solvents.

6. Applications

To demonstrate the use of our general results (34), (35) and their generalisations (45), (46) including local-field
effects, we apply them to several geometries.

6.1. Homogeneous non-local medium

As an initial example to check the consistency of our method we consider a translationally invariant medium,
which is also spatially dispersive. Spatial dispersion is the dependence of the permittivity on the wave vector
(rather than simply its magnitude), which means that the electric induction D at some point is caused by the
electric field E at one or more displaced points. In a bulk medium the Green’s function must be translation-
invariant, which means that it can only depend on the difference between the coordinates:

8
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Gr, r',w) =G -1/, w). (47)
In this case the Green’s dyadic is often Fourier transformed:

G — v, w) = 2m) > f et G(k, w), (48)

where the Fourier transform can be given in terms of the transverse and longitudinal permittivities, ¢, (k, w)
and g)(k, w)[30]:

2 -1 Kk c2
Gk, w) = —| Le (k) — K (]1__)_7 49
(o @) [ c? L@ ] k? wk?e|(k, w) )
Here [ is the identity matrix. Hence the Green’s function reads:
1 . /
r, 1) = Phk—— eik—1), 50
8 ) 2m)? f kZEH(k, 0) (50)

Substituting the Fourier-transformed Green’s function (50) into the two-body Coulomb potential given by
equation (35), we find (using f dQe*r = 47 sin (kr) / kr):

443 1 T 449 [~ 1 eV
U(ra, tp) = &k o) = A8 dk ’ .
(ra rp) 2 f ke (k, 0)e 4nepi f»a gk, 0) kr (51)

wherer = r, — r3.
The longitudinal and transverse non-local permittivity of a real medium can be described by the
hydrodynamic Drude model, which can be considered a limiting case of the Hopfield model [31-33]:

~2 2

w w
P » (52)

+ .
wh— ww+ il B%? — ww + iy)

gk, w) =1+

The first term represents the dielectric function for bound electrons and the second one that for conduction
electrons. The plasma frequencies are defined by w, = / ne’/mgso, @p =+ Ne?/me,, where n, m, m, are
respectively the number density, effective mass of the free electrons and bound electrons and the Nis the density
of bound electrons. Finally, wy is a transition frequency and I, v > 0 are damping constants that govern
absorption in the medium. For a free electron gas 32 = 3v{ /5, with v the Fermi velocity [34].

Inserting the longitudinal permittivity (52) into the energy shift (51) and evaluating the residua of the poles
in the upper part of the complex plane we find;

quqp e &

U@ =
4mege 1

(53)
withe =1 + (IJ; / wiand k, = wp /(BVE). Thisis a screened Coulomb potential where both bound and free
electrons contribute to the screening [7, 34]. In particular, bound electrons reduce the interaction by a factor 1/
¢, where € represents the associated permittivity; free electrons are responsible for the exponential

suppression e ",

6.2. Dielectric slab
In the previous section we considered a homogeneous medium. However in many interesting cases translational
symmetry is broken, for example in planar multilayer systems. Here we consider two point charges embedded in
a semi-infinite dielectric medium of dielectric constant &,, which has a planar interface with a material of
dielectric constant ¢, (see figure 5)

The Green’s function satisfies equation (28), with the boundary conditions that gand the normal component
of the displacement vector D are continuous across the interface between two media. Its expression for source
position z’> 0 reads [26]:

1 1 181—52 1

— , ifz>0
aarlr — '] g & + & 4nlr — 1’|

2 1 . ’
ifz<0

g, 1) = (54)

/)
€1+€247T|I‘—I'|

where r* = (x, y, —z) is the position of an image charge that corresponds to a real charge placed atr. We can
first derive the single-particle Coulomb term (z4 > 0):
2 2
qA & — g 1 qA & —g 1

U(zy) = — — = - — (55)
8mepa €2 + & |ra — 1} 167ege €2 + & 24
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Figure 5. Two point charges near a semi infinite dielectric.

and the related corrected force:

2 A
FA(ZA) _ qA & — & 351 z

—- (56)
16Tepe €2 + & 2 + 125

This can be interpreted in terms of the interaction between the real charge A and its image. The factor 1/2 arises
because the the image charge is not a real charge, but rather an induced one.

Inserting the Green’s function (54) into (35) we obtain the following Coulomb interaction between the two
charges (z4, zg > 0):

1 — 1
U (s, 15) = —AT8 ( - - ] (57)
drega\|ra — 1l & + & |ra — rj

where ry = (xp, y, —2) is the position of the image of charge B. The first term represents the free Coulomb
interaction, while the second one represents the interactions between the real charge A and the image charge B*.

The result (57) is well-known, however using our formalism we can introduce local-field effects at the level of
the Green’s function as described in section 5. The local-field corrected force on A reads:

3 1 - 1
Fa(ra, 1p) = ——A08_20_g, -2—4 — | (58)
dmege 26 + 1 |[ra — 13| & + & |ra — rg

We also briefly comment on the the case where one charge is embedded in a medium of dielectric constant ¢,
and the other charge embedded in the medium of dielectric constant ;. In this case:

a9 1 1
2meg § + &5 |ra — rp]

U(rA, I'B) = (59)

In particular if one medium is a perfect conductor (e.g.  — ©0), the two charges do not interact, since any
photon emitted by one charge is completely reflected by the interface and does not reach the other charge. The
local-field corrected force reads:

1 3 1
9498 & v, ‘
2meg 6 + €26 + 1 |rg — rp|

Fa(rs, rp) = — (60)

The above results can easily be generalised to the case of a multi-layer medium. For the Green’s function g; in
the rightmost layer of an n-layer (n — 1 interface) stack whose layered are indexed by j one has (see, for
examples, [9, 35]);

&(pz,2) = LE— : f kR ek (kp), (61)
0

g 4nlr — v'|  4mg

where ], is the zeroth-order Bessel function of the first kind, p = \/ (x — x")? + (y — y/)?,and the reflection
coefficient R, is defined recursively via;

R — (€jr1— &) + (g1 + Ej)efsz”'RjH

] _ ] >
(gjr1 + &) + (41 — ge ZkL’“Rj+1

(62)

wherej = 1...n — 1,and L;is the thickness of layer j. The recursion is stopped by imposition of the termination
condition R,, = 0, physically corresponding to there being no interface to reflect from (i.e. a zero-reflectivity
boundary) after the final interface. For n = 2 itis trivial to reproduce the Green’s function (54), and the recursive
reflection coefficient allows large numbers of layers to be systematically taken into account.

10
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Figure 6. Two charges inside a dielectric cavity.

6.3. Cavity
Our next example is the Coulomb interaction between two charges in a cavity. We suppose that two charges are
embedded in a medium with dielectric constant €, and are near two other parallel semi-infinite dielectrics with
relative permittivity €; and €. The plane z = 0 is equidistant from the two dielectric surfaces, which are
separated by a distance d, as shown in figure 6

At the midpoint between the plates (z4 = zz = 0), the Green’s function (see appendix) reads

1 R (1 — e_del)(l — e_de3)
[ a
0 1 - e*deR1R3

&(p) = Jo(kp), (63)

4me;

where R; and R; are the reflection coefficients for the two media bounding region 2;

R = ﬁ) Ry = ] (64)
a-+ e &+ &
and p = \/ (xa — x5)* + (3, — ¥»)*. We can expand the denominator of (63) in a power series
(1 — e 2R Ry = 30°_ (R Rse~ k)" which can then be integrated term-by-term
1 | R 2(RiR3)" 1 & RiR3)"(Ry + R
4,(0) = (RiR3) (RiR3)"(Ry 3) (65)

+ - .
dme,p  4me, ,;1 Jd?(2n)? + p? 4me, ,; \/d2(2n + 1)? + p?

Each term here can be interpreted as what one would have obtained using the image method, but the method
outlined here and in the appendix is more convenient as in this case we would have to deal with an infinite series
of images corresponding to multiple reflections.

Formula (65) is a new result, valid for arbitrary values of reflectivities R, R3, position p and cavity size d. To
make contact with previous results [36, 37], we consider an asymptotic limit where the left and right surfaces are
perfect conductors: R; = R; = 1, and the charges are separated by a much larger distance than that between the
plates p > d, finding

1 [8
&> d R=R=1)= L emrd (66)
4me, \ pd

in agreement with [36, 37].

Since both charges are equidistant from the conducting surfaces (z4 = zg = 0) the interaction between the
charges and the surfaces vanishes, as one would expect from symmetry considerations. However the interaction
between the two charges does not vanish. In particular for p > d, according to equation (35) the interaction

reads:
Ups d) = Ja%8 iexp(,@), 67)
dmege, \ pd d

Hence the cavity exponentially suppresses the Coulomb interaction at large distances. At small p (or equivalently
large d) the interaction is just the Coulomb potential between two isolated charges

11
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0.500
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d
0.001 0.010 0.100 1 10 p/

Figure 7. Coulomb interaction between two charges in vacuum at the midpoint of a perfectly reflecting cavity. At small distances the
interaction is equal to the standard Coulomb result (68), and at large distances it is equal to the asymptotic result (67) where the
interaction is exponentially suppressed.

U©)
20

1.0

Figure 8. Left; two charges located near a perfect conducting cylinder of radius R. Right; Coulomb potential U of charge A in the xy
plane. The charge Bis placed at r3/R = {3/2, 3/2, 0}, and the resulting potential is scaled to that for the interaction potential U® of
two charges in free space.

U@<®=£ﬂL, (68)
4megerp
which we plot in figure 7, alongside the large-distance asymptotic result (67) and the result obtained from
numerical evaluation of (35) using (65). Finally, if the region inside the cavity has &, = 1, the local-field corrected
force reads:

4,95 3& V2

Fa(p > d) =
alp ATege; 265 + 1 (pd)>/?

exp(——zgz)(d-+ 27p) p. (69)

6.4. Interaction between charges placed near a conducting wire

We now consider the Coulomb interaction near an infinitely long conducting wire of radius R, as shown in the
left panel of figure 8. The scalar scattering Green’s function g for such a setting is found (in agreement with [38])
to be;

1

s 00
(1)(rA) l‘B) = - f d[i eim(¢A_¢B)+iK(ZA—ZB)
g 27?2 Z 0

I,(kR)

X, (<R) Kin(£py) Kin(Kpp), (70)

m=—00
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A
Q
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Figure 9. Two charges are located near a perfect conducting plate with a hole of radius R. The symmetry axis of the plate is the Z axis.

where p = \Jx* + y?, x = x4 — xp, ¥y = y, — ypand I, K,, are the mth modified Bessel functions of the first
and second kind, respectively. The remaining coordinates are defined as shown in figure 8, where the Coulomb
potential in the xy plane is plotted as a function of the position of charge B.

6.5. Plate with a hole

Finally we consider a more involved example, namely a perfect conducting plate with a hole of radius R, as
shown in figure 9.Analogous problems involving the plate with a hole have been considered in the literature
[39,40]. This case is interesting from a technical point of view since it is not obvious how to locate the image
charges to satisfy the boundary conditions, and interesting from an applied point of view due to its relevance to
membranes. A hole or pore in the membrane of a biological cell can allow a variety of possibly ionised particles to
enter [41]. The required Green’s function may be obtained from the Kelvin inversion from the Green’s function
of the semi-infinite half-plane [38, 42]. However the expression obtained in [42] is valid for rand ' lying on the
same side of the plate: z, z/ > 0. Here we generalise the Green’s function to include the case z > 0,7z’ < 0aswell,

finding:
g, ') = L{L[l + &arctan(i)] — L[1 + Z/\—J’arctan(i)]}, (71)
8t | D- s D D, m D,
where:
1
E. = 2+ 2_R2 /2+/2_R2
=R {(p*+ 2 )(p z )
FARZZ + (@ + (p — RD(E + (p + R)?)
X NE 4 (= ROE + (0 + R, (72)
Dy = \p*+ p"? — 2pp' cos (¢ — ¢)) + (z £ 2)?, (73)

\. = Jsen [2/(p> + 22 — R + z(p? + 22 — R?)], ifz> 0,2 >0,
R ifz>0,z <0,
_{1, ifz>0,z >0,

74
sgn[z/(p* + 2z — R) — z(p?> + 2’2 — RY)], ifz>0,2/ <0 74)

and (p, ¢, z) represents the coordinates of r in a cylindrical system where the symmetry axis of the hole is the z
axis and the origin is at the centre of the hole. We will initially focus on the case where both charges are on the
symmetry axis, and firstly quote the single-particle result found via equation (34)

2 2
U(zy) = — I + I arctan i _ A . (75)
32megza  16m3epza 2

The resulting interaction is shown in figure 10, where we have scaled with respect to the free interaction
UO(z4) = —qj /16megzy, i.e. the interaction for large distances).

The interaction is always attractive and vanishes in the limit z, — 0 for finite R, which is also clear from
symmetry considerations. In the full-plate case (R = 0) the force diverges asz4 — 0 since there we can
construct the image charge which approaches the real charge. Hence in the limit z4 < R, for d finite, the

13
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Figure 10. Coulomb interaction between an on-axis electron and the plate for R = 0. The interaction is scaled with respect to the
function U0 (z4) = —q; /167524

U(za, 2B)
U(O)(Z’A7 ZB)

1

—_ R/ZA:()

R/ZAZI

— R/ZA: 10

ZB

-3 -2 -1 1 2 3 A

Figure 11. Coulomb interaction between two on-axis charges assisted by the plate. The interaction is scaled with respect to the free
interaction U©)(zy, zg) = 1/4m|z4 — 25| We consider three different values of the radius: R/z, = 0, 1, 10.

interaction with the surface can be neglected and we can focus only on the medium-assisted interaction between
the two charges.

To calculate the interaction potential between the charges we suppose that one charge in one side of the plate
and we vary the position of the other charge. If the two charges are lying on the z axis on opposite sides of the
plate: z4 > 0, zg < 0 and R — Owehave F./D, — 400 and Ay = —1, meaning that the interaction vanishes.
This is to be expected since the plate is a perfect conductor, so any photon emitted by one charge is completely
reflected by the surface, so the charges do not see each other. If R is finite a photon can travel from one side to to
the other, so we expect a non-vanishing interaction. In figure 11 we plot the this interaction energy for different
value of the radius of the hole. The interaction is scaled with respect to the free interaction
U (z4, zg) = 1/47|z4 — zp|. For a finite hole radius R there is a non-vanishing weak interaction also
when zz < 0.

To demonstrate the power and general applicability of our method we consider now the interaction between
charges A and Bwhen each charge may be located at any position. Directly using (35) in (71) we can produce the
full three-dimensional interaction potential, which we show a slice of in figure 12;

6.6. Interaction between a charged particle and a polarisable molecule
Finally we consider what happens when a charged particle is placed near a polarisable medium, in which case the
Coulomb field of the charged particle will polarise the molecules that constitute the medium. In the dilute limit

14
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Figure 12. Cross-section of the scattering correction U (14, rg) to the Coulomb interaction of two charges positioned near a plate
with a hole (the interaction is mediated by a photon reflected from the surface). All distances are measured in units of the hole radius R,
and the position of one charge is taken as z4 = —0.15R, p, = R.The colours represent the potential felt by the other charge at that
point. The interaction is scaled to be in units of the free space result U®(r,, rp) = 1/47|ry — rp|, and the two charges are assumed to
be lying in the plane shown in the figure (i.e. g4 = ¢p).

Figure 13. Microscopic interpretation of the Coulomb interaction between a molecule and a polarisable body.

the Coulomb interaction between the charge and the surface can be described in microscopic terms, as arising
from the Coulomb interaction of the charge and the individual molecules, as shown in figure 13.

Itis well-known that for a dilute medium a Born expansion of the scattering Green tensor can be performed
[10]:

GO (r, v, w) = pyw? f &y n(rp) G(r, 15, W) - (W) - G(rp, ¥/, W) +.ry (76)

where G is the background Green’s tensor, i.e. the Green’s tensor in the absence of the dilute medium (which
could be yet another medium), nis the number density and the integration is over the volume of the polarisable
medium. Using equations (23), (30) we can write the Born expansion in terms of the scalar background Green’s
function g;

1
gV, )= = fd3rB n(rp) Vg (r, rp) - a(0) - Vg (rp, ') + ... (77)
0

We substitute this expansion into the single-particle Coulomb interaction, equation (34):
UG = [ Uyaea, 1), (78)

where U,_, (r, rp) is the electrostatic interaction between a charged particle and a polarisable molecule in the
presence of arbitrary media as background (with the background Green’s function now denoted as g):
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2
q
Uj—a(ta, 18) = —T;VBg(rA, rp) - ap(0) - Vpg(rp, ra). (79)
0

In free space, since g (r4, r5) = 1/47|ry — rp|we find:

qj r-ag(0)-r
3272l r6

U© (ta, 1p) = —

(30
andr = r4 — rp. This expression is well-known in the literature for the special case of isotropic particles [43], in
which case one has;

 q;05(0)

v () =-—2—=.
o 32m2egrt

(81)

Our result (79) generalises this to anisotropically polarised particles, as well as being applicable to any geometry. For
example, the interaction between a charged particle and a polarisable molecule near a perfectly conducting surface
can be found by using in equation (79) the result of an image construction g (ra, 15) = g (ra, 1) + gV (ra, 13),
where ¢ (ry, 15) = —1/4m|rs — 13|, 15 = (x5, ¥3» —25). The scattering Green’s function gV corresponds to
the interaction between the charge and the image dipole of the polarisable molecule. In fact in equation (79) the
interaction can be easily interpreted: the photon propagates from the charge A to the polarisable molecule B, directly
or after a reflection (these processes being described with the propagator g (rp, r,)), is reflected by the polarisable
molecule, and finally absorbed by the charge A. Hence the interaction between the charge and the polarisable
molecule is a two-photon process.

7. Conclusions and outlook

In this article we have developed a systematic and unified description of Coulomb interactions of charges in non-
trivial environments. The presence of the environment is included via the classical Green’s tensor, or also in a
simpler fashion in terms of the Green’s function.

Our approach can be applied to non-trivial geometries where it is not possible or practical to find the suitable
image charges, we have demonstrated this via the examples of the plate with a hole and a wire. Using the same
framework, we have shown examples where the environment significantly changes the interaction, for example
by exponentially suppressing it in the dielectric cavity geometry. We have quantified how the Coulomb
interaction can be significantly tuned by changing the geometric and dielectric parameters of the environment,
many more cases of which could be investigated, all within the formalism presented here.

Thus the outlook from this work is to apply the formalism to important practical examples. For example, we
have considered only neutral environments here, while without much extra complication one could consider
environments which carry a net charge, like for example ionic solutions. We have also considered only stationary
charges, in which case there is no real complication associated with the instantaneous nature of the Coulomb
interaction. A time-dependent model could be developed to include retardation effects thereby satisfying
causality requirements and opening up our work to the study of moving charges.

Acknowledgments

The authors thank Gabriel Barton and Carsten Henkel for very useful discussions, and acknowledge DFG
(grants BU 1803 /3-1 and GRK 2079/1). SYB additionally acknowledges support from the Freiburg Institute for
Advanced Studies (FRIAS), and RB acknowledges support from the Alexander von Humboldt Foundation.

Appendix. Green’s function of a cavity

We consider the cavity configuration in figure 6. The dielectric constant is:

a, ifz< —d/2
Az, p) =16, if —d/2<z<d/2, (A.1)
g, ifz > d/2

where p s the radial component of a cylindrical co-ordinate system. A point charge is placed atz = z;in the
central region, which induces surface charges at the interfaces. The corresponding source-term of the Green
function is:
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1 1
47e,|r — 1o 47e,

[ digy(kpye e, (A2)
0

where J,, is the nth Bessel function of the first kind. In the central region the Green’s function consists in a
superposition of rising and falling exponentials, as well a term stemming from the point source:

1

4me,

& (P, 2, 20) = fow dko(kp)(a(k)e ™ =20 4+ p(k)ekE=20 4 e~Hz=zl), (A3)

where a(k) and b(k) are coefficients to be found. In the left region we have only rising exponential since the
Green’s function must vanish for z — —oo:

1 oo
&z 20 = —— [ dlo(kp)e(ler = (A4)
4me, Jo
while in the right region:
1 o0
&2z = — [ dklo(kp)d (ke ke, (A5)
4me, Jo

where c(k) and d(k) are coefficients not yet determined. In order to find the four unknown coefficients a(k), b(k),
c(k), d(k) we impose the condition from Maxwell’s equations that the Green’s function and the normal
component of the displacement vector D are continuous across the interface between the media:

gl(()) _d/2> z0) = gz(o) _d/z) 20)
618g1/82(0, —d/2, Z()) = 628g2/62(0, —d/2, Z())
gz(oa d/2> ZO) = g3(0: d/2> ZO)
€,08,/02(0, d/2, z) = €30g,/02(0, d/2, z). (A.6)

Solving the resulting system of equations allows one to eliminate the four unknowns, the result for the Green’s
function in the central region is, for z > z:

1 foc dke*k(Z*Zo)(l _ e—k(d+220)R1)(1 _ e—k(d—ZZ)Rl)
4me, Jo (1 — e*deR1R3)

where R; and R; are the reflection coefficients for the left and right media, as shown in equation (64).

&(ps 2, 20) = Jo(kp), (A7)
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