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Abstract 24 

The recurring association of specific genetic lesions with particular types of cancer is a fascinating, 25 

and largely unexplained area of cancer biology. This is particularly true of clear cell renal cell 26 

carcinoma (ccRCC) where although key mutations such as loss of VHL is an almost ubiquitous finding, 27 

there remains a conspicuous lack of targetable genetic drivers. In this study, we have identified a 28 

previously unknown pro-tumorigenic role for the RUNX genes in this disease setting. Analysis of 29 

patient tumor biopsies together with loss of function studies in preclinical models established the 30 

importance of RUNX1 and RUNX2 in ccRCC. Patients with high RUNX1 (and RUNX2) expression 31 

exhibited significantly poorer clinical survival compared to patients with low expression. This was 32 

functionally relevant as deletion of RUNX1 in ccRCC cell lines reduced tumor cell growth and viability 33 

in vitro and in vivo. Transcriptional profiling of RUNX1-CRISPR-deleted cells revealed a gene 34 

signature dominated by extracellular matrix remodelling, notably affecting STMN3, SERPINH1, and 35 

EPHRIN signaling. Finally, RUNX1 deletion in a genetic mouse model of kidney cancer improved 36 

overall survival and reduced tumor cell proliferation. In summary, these data attest to the validity of 37 

targeting a RUNX1-transcriptional program in ccRCC. 38 

Significance: These data reveal a novel unexplored oncogenic role for RUNX genes in kidney cancer 39 

and indicate that targeting the effects of RUNX transcriptional activity could be relevant for clinical 40 

intervention in ccRCC. 41 
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Introduction 47 

Kidney cancer is the 7th commonest cancer in the United Kingdom with around 12500 diagnoses and 48 

4500 deaths annually (Cancer Research UK; www.cancerresearchuk.org; accessed July 2019). Around 49 

85% of kidney cancers are classified as renal cell carcinomas (RCC) of which clear cell renal cell 50 

carcinoma (ccRCC) accounts for the vast majority (75%+) (1,2). Since the mid 1970’s age 51 

standardised kidney cancer mortality rates have increased by 74% while the incidence rate has 52 

increased by 85% in relative terms in the last 25 years (Cancer Research UK). Various environmental 53 

risk factors such as smoking, hypertension and obesity contribute to kidney cancer development, but 54 

there is also a strong genetic contribution to the development of the disease (3). Many of these 55 

genetic alterations lead to changes in the transcriptional profile of the kidney cancer cells (4,5). 56 

Currently RCC represents a pressing clinical challenge due to its increasing incidence. Early stage 57 

non-metastatic RCC can be treated by partial or radical nephrectomy, however early stage disease is 58 

often asymptomatic resulting in patients more commonly presenting with advanced disease which 59 

has a much poorer prognosis (6). Standard of care for high risk, advanced metastatic or recurrent 60 

RCC involves targeted tyrosine kinase inhibitors (TKI) primarily against the VEGF and mTOR 61 

pathways, which have modest improvement over previous cytokine therapies (7,8). Recently, 62 

combinatorial use of TKI with immune checkpoint inhibitors against programmed cell death complex 63 

(PD1 and PDL1) have shown promising results in stage III clinical trials (9). However the outlook for 64 

high risk patients remains poor and there is both a need for novel biomarkers of poor prognosis and 65 

identifying targetable genetic drivers.   66 

Foremost among the genetic alterations that occur in kidney cancer is the loss of the short arm of 67 

chromosome 3 which contains the tumour suppressors VHL and PBRM-1, BAP-1, SETD2 and occurs in 68 

up to 90% of cases of ccRCC (10,11). VHL protein functions as an E3 ubiquitin ligase targeting the 69 

hypoxia inducible factor (HIF) family of transcription factors for proteasomal degradation. Loss of 70 

VHL therefore causes a transcription factor driven change in gene expression leading to the 71 
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development of kidney cancer (1). The other tumour suppressor genes commonly deleted (PBRM-1, 72 

BAP-1, SETD2) all act directly or indirectly, through epigenetic changes in methylation status, to 73 

cause alterations in gene expression of kidney cancer cells (12). While much remains unknown about 74 

the transcription factors important for kidney cancer, these genetic alterations highlight the 75 

important role transcriptional misregulation plays in kidney cancer and the pressing need to identify 76 

the key factors involved. 77 

RUNX1 is a member of an evolutionarily conserved family of RUNX genes that encode transcription 78 

factors. Together with its heterotypic binding partner CBFE, RUNX1 forms a DNA binding complex 79 

required for normal mammalian development (13). RUNX1 also has established roles in various 80 

types of cancer (14) where classically, RUNX1 chromosomal translocations and mutations are key 81 

drivers of haematopoietic malignancies and leukaemia (15). Increasingly however, RUNX1 has been 82 

shown to play ‘context dependent’ roles in solid tumours such as in the breast, where both RUNX1 83 

gain and loss of function has been associated with cancer (16-19). RUNX1 has also been implicated in 84 

cancers of the ovary and uterus (20), prostate (21) and skin. To date, very little is known about a 85 

functional role for RUNX1 in either normal kidney development or kidney cancer. There is some 86 

evidence of increased expression of a RUNX1 chromosomal translocation product in ccRCC patient 87 

samples (22) and RUNX1 has been shown to be expressed in mouse models of kidney fibrosis (a 88 

feature of chronic kidney disease correlated with RCC), involving RUNX regulation of TGFβ driven 89 

EMT (23). 90 

Here we show that RUNX1 is expressed in human ccRCC and that high protein expression correlates 91 

with poorer survival. This is functionally relevant as deletion of RUNX1 in human ccRCC cell lines 92 

disrupted tumour cell growth in vitro and in vivo, and enabled identification of a novel set of RUNX1 93 

dependent genes in ccRCC. By utilising a genetically engineered mouse (GEM) model of kidney 94 

cancer we were able to interrogate the role of RUNX1 in tumour formation and genetically confirm 95 

that in vivo deletion of Runx1 slows kidney cancer development. Finally, we reveal that the related 96 
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transcription factor RUNX2 is expressed in ccRCC, also associating with poorer survival. Our results 97 

provide the first evidence that RUNX proteins are novel players in kidney cancer and functionally 98 

contribute to disease progression and clinical outcome.   99 

 100 
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Materials and Methods 117 

Antibodies 118 

RUNX1 (8529), RUNX2 (8486), GAPDH (3683), HRP-conjugated anti Rabbit secondary antibody (7074) 119 

Cell Signaling Technology; SERPINH1 (10875-1-AP), Stathmin3 (11311-1-AP) ProteinTech. Primary 120 

antibodies used for immuno-blotting at 1:1000 dilution. Ki67 SP6 (RM-9106-S) Thermo Fisher 121 

Scientific. 122 

Immunoblotting 123 

Cells lysed in Pierce™ RIPA buffer (Thermo Scientific), protein extracts resolved on 10% NuPAGE 124 

Novex Bis-Tris gels (Life Technologies) and transferred to Hybond-ECL nitrocellulose membranes 125 

(Amersham). All membranes stripped and re-probed for GAPDH.  126 

Immunohistochemistry and analysis 127 

Immunohistochemical (IHC) staining for RUNX1/RUNX2 performed on 4µm formalin fixed paraffin 128 

embedded (FFPE) sections previously dry heated at 60⁰C for 2 hours. IHC performed on Agilent 129 

Autostainer link48. Sections manually dewaxed through xylene, graded alcohol, tap water before 130 

heat-induced epitope retrieval (HIER) with sections heated to 98⁰C (25 mins); rinsed in Tris buffered 131 

saline with Tween (TBST), peroxidase blocked (Agilent, UK), washed in TBST before application of 132 

antibody at previously optimised dilution (RUNX1 1:75, RUNX2 1:300) for 40 minutes. Sections 133 

washed in TBST before application of rabbit EnVision (Agilent, UK) secondary antibody for 35 134 

minutes and rinsed in TBST before applying Liquid DAB (Agilent, UK) for 10 minutes. Sections washed 135 

in water, counterstained with haematoxylin and cover-slipped using DPX. Ki67 (1:200 dilution); 136 

SERPINH1 (1:80 dilution and high pH antigen retrieval). Digital images captured on a Leica SCN400f 137 

slide-scanner (x20). Quantification of Ki67 performed manually using HALO image analysis software 138 

(Indica Labs).  139 

Tissue microarray  140 
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The tissue microarray (TMA) contained cores from 184 patients diagnosed with ccRCC within the 141 

Greater Glasgow NHS Trust between 1997 and 2008 and obtained from Greater Glasgow and Clyde 142 

NHS Biorepository as described previously (24,25). Briefly, to address tumour homogeneity, three 143 

cores measuring 0.6mm2 from three different tumour-rich areas, as identified by a specialist 144 

pathologist, were used to construct the 3 TMAs. After IHC for RUNX1 or RUNX2 (above) and 145 

haematoxylin co-staining, the proportion of tumour cells with RUNX nuclear positivity was manually 146 

quantified using the weighted histoscore (H-Score) method. This involved calculating a semi-147 

quantitative score by multiplying the percentage of cells showing staining by a score ranging from 0-148 

3 representing increasing intensity of staining (Score 0-no staining, Score 1-weak staining, Score 2-149 

moderate staining and Score 3-strong staining) providing a score from 0 to 300 (25). Three TMA 150 

sections were stained at the same time and average H-Scores obtained. H-Scores were stratified into 151 

quartiles (Q1-Q4), the upper quartile Q4 assigned as RUNX-High and remaining quartiles Q1-3 152 

assigned as RUNX-Low. One third of the TMA was independently scored and agreement assessed by 153 

Interclass correlation coefficient >0.8 (26). Klintrup-Makinen score is a pathologically defined 154 

measure of inflammatory infiltration described previously for this TMA (24,25,27). Statistical analysis 155 

performed using SPSS Statistics Version 21.0 (SPSS IBM, NY). Associations between categorised H-156 

scores and available data on variables were analysed using X2-tests. Kaplan-Meier curves plotted 157 

with corresponding log-rank tests to assess the relationship between these markers and survival. 158 

Multivariate analysis was performed using backwards Cox regression conditional technique to test 159 

for independence (25).  160 

Cell Lines 161 

786-O cells (cultured in RPMI medium), Caki-2 cells (cultured in McCoy’s 5a medium (Sigma)) and 162 

HEK293 cells (cultured in DMEM) were provided by Professor Eyal Gottlieb, (Beatson Institute, 163 

2014). All media supplemented with 10% FCS, 2mM L-Glutamine, Penicillin/Streptomycin and 164 

0.5µg/ml Amphotericin B (Sigma). All media reagents from Gibco unless otherwise stated. Cells were 165 
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of low passage and cultured for approximately 2 months after recovery from frozen vials. RCC cell 166 

lines (786-O & Caki-2) were authenticated using Promega GenePrint 10 system Short Tandem 167 

Repeats (STR) multiplex assay that amplifies 9 tetranucleotide repeat loci and the Amelogenin 168 

gender determining marker (December 2016). Cells routinely tested for mycoplasma. 169 

shRNA and CRISPR/CAS9 RUNX1 gene silencing 170 

RUNX1 MISSION© shRNA lentivirus DNA constructs (Sigma) used for targeting human RUNX1 (sh1: 171 

TRCN0000338489, sh5: TRCN0000013660). Lentiviruses produced by transfecting HEK293 cells with 172 

10µg of the relevant shRNA expression vector (pLKO) with 7.5µg PsPax2 and 4µg pVSVG packaging 173 

vectors (Tronolab) using the Calcium Chloride method; complete medium replacement 5 hours after 174 

transfection. 48 hours after transfection viral supernatant was removed, sterile filtered (0.45µm 175 

pores) and used to infect adherent 786-O and Caki-2 cells overnight in the presence of 8µg/ml 176 

Polybrene (Sigma). Live cell visualisation of GFP confirmed successful transduction. Cells were 177 

maintained in medium containing 2µg/ml Puromycin (Sigma). For CRISPR/CAS9 deletion, guide RNAs 178 

(gRNA) targeting human RUNX1 were designed using the Zhang Lab tool (MIT, USA). The gRNA 179 

sequence used was 5’-ATGAGCGAGGCGTTGCCGCT-3’. 786-O cells were transfected using 180 

lipofectamine (Thermo Fisher); 8Pl of Lipofectamine in 250Pl serum free medium (SFM) and 2µg 181 

DNA in 250Pl of SFM (with GLN), were each left for 10 minutes at room temperature then the 182 

Lipofectamine/DNA mix incubated at RT for 30 min before being added to 2x105 786-O cells (plated 183 

overnight) and incubated at 37oC for 5 hours prior to a medium change. 48 hours after transfection 184 

cells were cultured in medium containing 2µg/ml Puromycin for 48 hours. Transfected cells grew 185 

back as individual colonies, which were picked, expanded and screened for RUNX1 deletion by 186 

immunoblotting.  187 

Cell growth assays (cell counting, xCELLigence and MTS) 188 

2x104 786-O (pX Ctrl) and 786-O RUNX1 CRISPR clones (CRISPR A1/CRISPR A3) were plated in 189 

triplicate in 12-well plates, trypsinised and counted using the Casyton cell counter 96 hours later. 190 
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Cell count for pX Ctrl cells were normalised to 1 and CRISPR clones expressed as a proportion, 191 

experiments were repeated at least 4 times. 7x103 Caki-2 cells were plated and counted as above. 192 

For xCELLigence assay 3x103 786-O cells were plated in quadruplicate into wells of an E Plate 16. The 193 

impedance applied to an electric field over time caused by cells growing in the plate is proportional 194 

to the number of cells in the plate which is represented as a cell index when measured using the 195 

XCELLigence Real Time Cell Analysis System (Roche Diagnostics GmbH, Mannheim, Germany). 196 

Experiments performed in quadruplicate at least 3 times with separate batches of cells. For MTS cell 197 

viability assays 3x103 786-O cells or 1x103 Caki-2 cells were plated in quadruplicate in 96 well plates, 198 

every 24 hours a 20% volume of CellTiter96 MTS assay reagent (Promega) was added per well and 199 

incubated for 1 hour prior to reading absorbance at A490. Experiments repeated at least three times 200 

with separate batches of cells. 201 

EdU pulse chase 202 

1x105 786-O cells were left to adhere overnight in complete medium. Medium was removed and 203 

replaced with complete medium containing 10µM EdU and incubated at 37OC for 30 minutes. Cells 204 

were washed twice in PBS and sampled immediately or 6 hours later. Cells were co-stained with 205 

50µg/ml propidium iodide (Sigma) for 30 minutes with gentle rocking then analysed on an Attune 206 

NTX flow cytometer. All experimental conditions performed in triplicate three separate times. Flow 207 

cytometry data analysed using FlowJo. 208 

Sytox© Green apoptosis assay 209 

3x103 786-O cells were plated (24 well plate) and allowed to adhere overnight. The next day medium 210 

was changed to complete medium containing 5µM of Sytox© Green. The plate was imaged every 211 

hour for 68 hours on an Incucyte FLR imaging system. Confluence and number of Sytox© positive 212 

cells per well were calculated using Incucyte software.  213 

Scratch wound assay 214 
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786-O cells were plated in a 96 well image lock plate and allowed to adhere overnight in complete 215 

medium. At confluence the plate was scratched using the wound-maker (Essen Biosciences) and 216 

medium changed. Closure of the wound was imaged every hour over 24 hours and analysed using 217 

Incucyte ZOOM live cell imaging system. All experiments performed in quadruplicate 3 times.   218 

Animal studies 219 

All animal experiments performed under UK Home Office Project Licences (60/4181 & 70/8645) with 220 

ethical approval from the Beatson Institute and the University of Glasgow under the Animal 221 

(Scientific Procedures) Act 1986 and EU directive 2010. Mice were maintained in purpose built 222 

facility in a 12-hour light/dark cycle with continual access to food and water. 223 

Kidney capsule xenograft 224 

8-10 week old female CD1-Foxn1nu (nude) mice obtained from Charles River (UK). 5x105 786-O* cells 225 

were injected directly into the kidney capsule in 20µl growth factor reduced Matrigel. Mice were 226 

continually assessed for signs of kidney impairment, and kidney tumour development monitored by 227 

Ultrasound Imaging. Mice were humanely sacrificed at clinical endpoint or 18 week time-point. 228 

Parental 786-O cells were initially passaged once in vivo through the kidney (as described above) and 229 

a secondary 786-O cell line (referred to as 786-O*) was established in culture using an adapted 230 

version of the method described here (28). Briefly, the kidney was excised and normal tissue 231 

removed. The tumour was finely chopped into a paste and incubated with 140rpm rotation at 37OC 232 

for ten minutes in 10ml of 1mg/ml Type 2 collagenase (Sigma). The tube was vortexed vigorously for 233 

30 seconds before a second ten minute incubation. Cells were washed with RPMI and passed 234 

through sequential 100, 70 and 40µm filters. RUNX1 was deleted from the 786-O* line by 235 

CRISPR/CAS9 as described above. 786-O* vector control and CRISPR cells were confirmed to not 236 

express CAS9 prior to engraftment. 237 

RNA sequencing 238 
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5x105 786-O cells (pX Ctrl, CRISPR A1 and CRISPR A3) were plated and sampled 48 hours later. Whole 239 

RNA extracted using RNeasy mini kit (Qiagen) according to manufacturer’s protocol. RNA was DNAse 240 

treated using RNAse free DNAse set (Qiagen). RNA quality was tested on an Agilent 2200 Tapestation 241 

using RNA screentape, all RNA integrity value ≥9.6. Libraries for cluster generation and DNA 242 

sequencing were prepared following an adapted method from Fisher et al (29) using Illumina TruSeq 243 

Stranded mRNA LT Kit. Quality and quantity of DNA libraries assessed on an Agilent 2200 244 

Tapestation (D1000 screentape) and Qubit (Thermo Fisher Scientific) respectively. Libraries were run 245 

on Illumina Next Seq 500 using High Output 75 cycles kit (2x36cycles, paired end reads, single index). 246 

Quality checks on raw RNA-seq data files done using fastqc version 0.11.7 and fastq_screen version 247 

0.11.4. RNA-seq paired-end reads were aligned to the GRCh38 (30) version of the mouse genome 248 

using tophat2 version 2.1.0 with Bowtie version 2.2.6.0. Expression levels determined and 249 

statistically analysed by a combination of HTSeq version 0.6.1, the R environment, version 3.5.0, 250 

utilizing packages from Bioconductor data analysis suite and differential gene expression analysis 251 

based on the negative binomial distribution using DESeq2. Full data sets produced from this study 252 

are publically available on the Sequence Read Archive database, accession number: PRJNA605312.  253 

GEM model of kidney cancer 254 

Cyp1aCre; Apcfl/fl; p21-/- mice (hereafter referred to as CAP) were characterised in the Sansom lab as 255 

described previously (31). These mice were crossed with Runx1fl/fl mice (32) (a kind gift from Dr 256 

Nancy Speck, Jax:010673, B6;129-Runx1tm3.1Spe/J) and/or Runx2fl/fl mice (33). Tumour mice (equivalent 257 

numbers males/females in each cohort) were monitored for signs of tumour development and 258 

subsequently checked 3 times a week for signs of endpoint renal failure (blood in urine, hunching, 259 

swollen kidneys)(31). At endpoint kidneys were fixed in 10% neutral buffered formalin and 260 

embedded in paraffin for subsequent histological analyses.  261 

Statistical Analyses 262 
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The TMA was analysed using SPSS. All other statistical analyses were performed using 263 

Graphpad/PRISM. The specific statistical tests used are indicated throughout. All error bars 264 

represent -/+ SEM unless otherwise indicated. 265 

 266 

 267 

 268 

 269 
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Results 283 

RUNX1 is expressed in human ccRCC and correlates with poor survival and increased inflammation 284 

In silico analysis of The Cancer Genome Atlas (TCGA) ccRCC dataset (5) revealed that RUNX1 285 

alterations occur in 6% of ccRCC cases and strikingly, the vast majority of these alterations are mRNA 286 

upregulations (96%) (Supplementary Fig1a). A 6% alteration rate is comparable with the rate at 287 

which other established genes involved in ccRCC are altered (34) such as MTOR (11%), PI3KCA (8%), 288 

PTEN (8%), TP53 (7%), while interestingly, the pattern of alterations is much more varied for these 289 

genes (Supplementary Fig1b). Kaplan-Meier survival analysis of the ccRCC patients with RUNX1 290 

mRNA upregulation shows that they have a statistically significant decrease in survival compared to 291 

the unaltered cohort (Log-rank P=0.0008, RUNX1 Unaltered median=76.98 months, RUNX1 mRNA 292 

upregulation median=36.21 months) (Supplementary Fig1c). This is in line with a recent report 293 

interrogating the TCGA dataset (35).  Furthermore, data obtained using the pan-cancer RNA-seq KM 294 

plotter (36) tool analysing clinical survival data from 530 ccRCC patients also show that high RUNX1 295 

expression correlates with poorer overall survival (P<0.0001), (Supplementary Fig1d).  296 

Tissue microarrays (TMA) have previously been used to investigate the protein expression level of 297 

RUNX1 in human epithelial tumours of the breast (17,37) and ovary (38). Therefore, as an 298 

independent validation of in silico observations we immuno-stained a TMA containing 184 tumour 299 

samples from ccRCC patients. RUNX1 is clearly expressed in cell nuclei in a subset of ccRCC patient 300 

samples and is not expressed in the non-tumour kidney sample contained within the TMA (Fig1a). 301 

RUNX1 staining was scored by the weighted average histoscore (H-Score) method to quantify the 302 

range of RUNX1 expression (see methods). The TMA was stratified into quartiles and the upper 303 

quartile (RUNX1-High, H-Score: 30 to 225, mean=87.5, n=46) was compared to the remaining lowest 304 

scoring cores (RUNX1-Low, Q1-Q3 H-Score: 0-26.7, mean=4.1, n=138) (Fig1b). Patient survival 305 

information was available for 183 patients, Kaplan-Meier survival analysis revealed that RUNX1-high 306 

patients had a significantly poorer cumulative survival than RUNX1-low patients, Log-rank P=0.007 307 
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(Fig1c). The survival rate was consistently lower year on year and at 5 years from diagnosis was 68% 308 

for RUNX1-high patients compared to 88% for RUNX1-low, Wilcoxon p=0.005 (Fig1c). Assessment of 309 

clinico-pathological characteristics showed that there was no significant association with RUNX1 H-310 

Score and age, grade, necrosis or recurrence (Table1). However high RUNX1 expression was 311 

significantly associated with a high Klintrup-Makinen (KM) score, a pathologically defined measure of 312 

inflammation previously described for this TMA (see methods). The average RUNX1 H-Score was 313 

significantly higher for patients with a high KM score compared to low (34.1 vs 15.2, T-test P= 314 

0.0027) (Fig1d). Accordingly, RUNX1-high patients were distributed 28% KM low vs 72% KM high, 315 

compared to 55% KM low vs 45% KM high for RUNX1-low patients (Fig1e). These data reveal for the 316 

first time that RUNX1 protein is aberrantly expressed in human ccRCC and that high RUNX1 317 

expression is an independent marker of poor prognosis (P=0.027, hazard ratio 1.58: 95% 1.054-318 

2.372) when combined with age, stage, grade and tumour necrosis. These data also reveal that 319 

RUNX1-high patients have an increase in inflammatory infiltration compared to their RUNX1-low 320 

counterparts. 321 

RUNX1 is expressed in human ccRCC cell lines and deletion reduces cell growth 322 

Having conclusively shown that RUNX1 expression correlates with poorer survival in ccRCC we 323 

wanted to ascertain a functional role for RUNX1 in this disease setting. To this end RUNX1 324 

expression was modulated in human ccRCC cell lines. Lentiviral delivery of different short hairpin 325 

RNAs (shRNA) was used to knockdown RUNX1 expression in 786-O and Caki-2 cells (sh1 and sh5) 326 

compared to a scrambled control shRNA (Scr) (inset Fig2a and Supplementary Fig2a). shRNA 327 

mediated knockdown of RUNX1 caused a decrease in cell index (proportional to the number of 328 

adherent viable cells) over a 125h period in culture in the 786-O cell line as assayed using the 329 

xCELLigence assay system (Fig2a-b). Cell number was also significantly reduced in a second cell line 330 

(Caki-2) with RUNX1 knockdown (Fig 2c). In addition, cell viability after RUNX1 knockdown in 786-O 331 

and Caki-2 cells was reduced as assessed by the MTS assay (Supplementary Fig2b-c). To validate 332 
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these findings 786-O cells were transfected with gRNA targeting RUNX1, and CAS9 nuclease. 333 

Complete knockout of RUNX1 protein was confirmed in 786-O RUNX1 CRISPR clones (CRISPR A1 and 334 

CRISPR A3) by immunoblot (inset Fig2d). CRISPR deletion of RUNX1 also caused a more pronounced 335 

decrease in cell index (Fig2d-e) and a decrease in cell number (Fig2f) in both 786-O CRISPR clones.  336 

To understand the nature of the growth defect observed in the RUNX1 knockout cells, the rate at 337 

which they were actively synthesising DNA by incorporation of the thymidine analogue EdU was 338 

assessed. 786-O control and RUNX1-deleted cells were pulsed with EdU by incubation for 30 minutes 339 

in medium containing EdU, then sampled by fixation in 4% PFA immediately after EdU incubation 340 

(T0) or 6 hours later (T6). The cells were co-stained for EdU and PI (Propidium Iodide) and analysed 341 

by flow cytometry as shown for the T6 time-point (Fig2g). There was no difference in total EdU 342 

incorporation between control and RUNX1-deleted cells at T0 (Supplementary Fig2d) and at T6 343 

(Fig2h). However there was a clear reduction in the G1* population representing EdU+ve cells which 344 

have transitioned through S-phase and returned to G1 in both the RUNX1–deleted cell lines (Fig2i 345 

and population highlighted in box in Fig2g). This suggests that the RUNX1-deleted cells face a delay 346 

in transitioning through the S/G2 stages of the cell cycle. Finally, the number of dead cells was 347 

assessed by time-lapse imaging of the control and RUNX1-deleted cells in the presence of SYTOX® 348 

Green nucleic acid stain. This revealed that the number of SYTOX® positive dead cells per well, as a 349 

proportion of % confluence, was higher in the RUNX1-deleted cells compared to control, especially 350 

at earlier time-points (Fig2j). Confluence and the number of SYTOX® positive dead cells per well are 351 

shown individually in Supplementary Fig2e-f. Together, these data indicate that knockout of RUNX1 352 

causes a reduction in cell growth in ccRCC cell lines and that RUNX1 CRISPR cells have a subtle delay 353 

in progression through the cell cycle and an increase in cell death.  354 

Knockout of RUNX1 in 786-O ccRCC cells reduces in vitro cell migration and in vivo tumour 355 

formation  356 
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To further investigate the effect of RUNX1 knockout in physiologically relevant assay systems, the 357 

effect of deletion on cell migration using in vitro scratch-wound assays was assessed. This revealed 358 

that RUNX1 deleted cells exhibited decreased wound closure and reduced relative wound density 359 

over a 24h period (Fig3a-c). To establish whether RUNX1 deletion effects ccRCC development in vivo, 360 

and to circumvent the low tumourigenicity of the 786-O cell line, we generated a secondary cell line 361 

(hereafter referred to as 786-O*) by passaging 786-O cells through the kidney in vivo (see methods). 362 

RUNX1 was deleted in these 786-O* cells by CRISPR/CAS9 as performed above (Supplementary 363 

Fig3a) and these 786-O* RUNX1-deleted cells showed a similar growth defect to the parental cells 364 

(Supplementary Fig3b-c). RUNX1-deleted and control 786-O* cells were injected directly into the 365 

kidney capsule of CD1-Nu/Nu recipient mice and their tumour growth was monitored by ultrasound 366 

over an 18 week period. This revealed that at 10 weeks post-surgery 7/13 mice injected with the 367 

control cells had formed tumours compared to 0/13 for the RUNX1-deleted 786-O* cells (Fig3d). 368 

When sacrificed at 18 weeks, 8/13 mice injected with RUNX1-proficient cells had grossly observable 369 

kidney tumours whereas just 1/13 of the recipients with RUNX1-deleted cells had a small tumour 370 

growth (p=0.011; Fishers Exact Test; Fig3d & Supplementary Fig3d). Four out of thirteen control mice 371 

exhibited gross lung metastases whilst none of the RUNX1-deleted group did. Kidney tumours from 372 

the control group and the single tumour arising in the RUNX-1 deleted cohort were stained for 373 

RUNX1 and its closely related family member RUNX2. RUNX1 was highly expressed in all control 374 

tumours tested (n=4) while it was absent from the RUNX1-deleted tumour as expected (Fig3e).  375 

However it was notable that RUNX2 was present in both control and RUNX1-deleted tumours. These 376 

data support our findings that RUNX1 is important for growth and survival of human ccRCC cells and 377 

that deletion of RUNX1 hampers tumour growth and development in vivo. 378 

Identification of a RUNX1 regulated gene signature in ccRCC 379 

As RUNX1 deletion causes a defect in ccRCC cell growth we wanted to understand the significant 380 

downstream players by assessing how deletion of RUNX1 effects the global transcriptional profile in 381 
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human 786-O ccRCC cells. RNA sequencing was performed on whole RNA extracts from control and 382 

RUNX1 CRISPR cells (as used in Figure 2). Several hundred genes were significantly differentially 383 

expressed (P<0.05, >2fold up or down regulation) in either RUNX1-deleted cell line (A1=1185, 384 

A3=1296). This revealed a novel RUNX1 regulated signature of 724 genes common to both clones 385 

that were significantly differentially expressed, with 710 altered in the same direction in both RUNX1 386 

CRISPR clones compared to the control cells (Fig4a). Excluding uncharacterised genes, pseudogenes 387 

and novel transcripts, 661 genes are significantly differentially expressed with 394 upregulated and 388 

267 downregulated on RUNX1 deletion in both clones. Principle component analysis revealed 389 

exceptionally high agreement between the datasets with 97% of the variance explained by RUNX1 390 

deletion (Supplementary Fig4). Full lists of the regulated genes are available in supplementary data 391 

file 1 where they are ranked by fold-change and significance. Gene ontological analysis using 392 

Metacore revealed the main biological pathways that were altered on RUNX1 deletion. This 393 

encompasses a range of pathways such as cell adhesion and ECM remodelling, Eph and Ephrin 394 

signalling, angiogenesis and Glutathione metabolism (Fig4a). The most altered pathway was cell 395 

adhesion and ECM remodelling which included changes in expression of genes such as MMP1, 396 

MMP16, SERPINE2, Fibronectin and Syndecan 2 (Fig4b). The average fold change on the x axis 397 

(x=Average log2(Fold Change)) was plotted against significance on the y axis (y=-log10(Max(adjusted 398 

P values)) in a volcano plot to visually depict the most significantly differentially expressed genes 399 

(Fig4c). Two such genes, STMN3, which encodes a protein that plays a role in microtubule dynamics 400 

in the cell cycle (upregulated +46.3x, red circle Fig4c) and SERPINH1 (HSP-47), increased expression 401 

of which has been shown to be a marker of poor prognosis in ccRCC (downregulated -4.1x, blue 402 

circle Fig4c) were validated by western blot which supported the findings of the RNA-seq data 403 

(Fig4d). Interestingly, the second most altered gene ontology was Eph and Ephrin signalling which 404 

are downstream targets of the WNT signalling pathway which is itself modulated by RUNX1 activity 405 

(Fig4e). Finally CPT1A which has been shown to be supressed in ccRCC was increased on RUNX1 406 

deletion (Fig4f). These data have, for the first time, identified a group of genes whose expression is 407 
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significantly altered as a consequence of the level of RUNX1 in human ccRCC. This shows that 408 

deregulation of RUNX1 expression affects a wide range of key pathways, many of which are related 409 

to kidney cancer and cancer progression. 410 

RUNX1 deletion improves survival in a genetic mouse model of kidney cancer. 411 

To further explore the functional role of RUNX1 in a physiological setting we turned to a genetically 412 

engineered mouse (GEM) model where we could intrinsically modulate RUNX1 levels. First we 413 

ascertained the levels of RUNX1 in a GEM model of kidney cancer available in our lab in which Cre 414 

recombinase expressed in the kidney epithelium drives deletion of the tumour suppressor Apc on a 415 

p21 null background (31). Normal kidneys and kidney tumours from this model (AH-Cre;Apcfl/fl;p21-/- 416 

referred to as CAP) were stained for RUNX1 to reveal that while RUNX1 is not expressed in normal 417 

kidney, it is significantly upregulated in kidney tumours (Fig5a). We proceeded to cross this CAP 418 

model with a conditional knockout of Runx1 (Runx1fl/fl) (32). RUNX1 deletion in the tumours of 419 

CAP;Runx1fl/fl mice was confirmed at the protein level by immunohistochemistry (IHC) which showed 420 

absence of RUNX1 (Fig5b). Cohorts of CAP;Runx1+/+ and CAP;Runx1fl/fl mice were aged until clinical 421 

endpoint. Kaplan-Meier analysis shows that survival of CAP;Runx1fl/fl mice was significantly extended 422 

(Log-rank P= 0.0365) compared to their CAP;Runx1+/+ counterparts, with a mean survival of 104.6 vs 423 

78.6 days, t-test P= 0.0415 (Fig5c-d). Tumours were immuno-stained for the proliferation marker 424 

Ki67, which exhibited lower positive staining in tumours from the CAP;Runx1fl/fl mice compared to 425 

CAP;Runx1+/+ (Fig5e). This was confirmed by quantification using the HALO imaging platform, which 426 

revealed that tumours from CAP;Runx1+/+ mice had a higher proportion of Ki67+ve cells than from 427 

CAP;Runx1fl/fl mice (34% vs 24.4%, t-test P= 0.0154) (Fig5f). Finally, tumours immuno-stained for 428 

SERPINH1 (down-regulated in RNA-seq, Fig4e) revealed SERPINH1 is highly expressed in 429 

CAP;Runx1+/+  tumours compared to normal kidney (Fig5g). Deletion of RUNX1 causes a significant 430 

decrease in SERPINH1 levels in kidney tumours in line with our RNA-seq data. Taken together, these 431 
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data from our GEM model of kidney cancer confirm in vivo that deletion of RUNX1 leads to improved 432 

survival and less tumour proliferation. 433 

High RUNX2 expression also correlates with poorer survival in human ccRCC 434 

Whilst deletion of Runx1 significantly delayed tumourigenesis in the GEM model these animals still 435 

succumbed to disease. We hypothesized that the related RUNX family protein RUNX2 might be 436 

expressed and contribute to disease progression. Indeed RUNX2 was expressed both in the 437 

CAP;Runx1+/+ and CAP;Runx1fl/fl tumours (Fig6a). Attempts to model deletion of RUNX2 in this model 438 

of kidney cancer were hampered by the non-viability of AH-Cre;Runx2fl/fl mice (suggesting a possible 439 

limiting requirement for RUNX2 in embryonic development). Heterozygous deletion of Runx2 did not 440 

affect survival either on a Runx1+/+ or Runx1fl/fl background in the CAP model. Although, it is 441 

important to note that RUNX2 protein expression was still observed in these tumours 442 

(Supplementary Fig5a-d). Interestingly however, in silico analysis of RUNX2 expression in the TCGA 443 

human ccRCC data set (5) revealed that RUNX2 is altered in 8% of ccRCC patients (93.5% are mRNA 444 

upregulations, Supplementary Fig5e). The pan-cancer RNA-seq KM plotter tool (described in 445 

Supplementary Fig1c) revealed human ccRCC patients with high RUNX2 expression had poorer 446 

survival (Log-rank P= <0.0001), (Supplementary Fig5f).  It is noteworthy that RUNX3 is also 447 

upregulated in ccRCC however, unlike RUNX1 and RUNX2, it does not significantly correlate with 448 

disease-free survival (Supplementary Fig 5e-f).  To directly assess the expression of RUNX2 in human 449 

ccRCC patients, the same TMA in Fig1 was used to show that RUNX2 protein is also expressed in 450 

human ccRCC (Fig6b). While the RUNX2 H-Score was on average lower than RUNX1 (Supplementary 451 

Fig5g), when stratified into quartiles based on RUNX2 H-Score (Supplementary Fig5h) patients with 452 

high RUNX2 also had a statistically significant decrease in survival compared to patients with low or 453 

no RUNX2 expression, Log-rank P= 0.0478 (Fig6c). At five years post diagnosis, survival for the 454 

RUNX2 Low quartile was 87% compared to 73% for RUNX2 High (inset table Fig6c). A positive 455 

correlation between RUNX1-High and RUNX2-High expression was also observed (Supplementary 456 
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Fig5i). Assessment of clinico-pathological characteristics for RUNX2 expression also showed no 457 

correlation with age, grade, necrosis and recurrence (Supplementary table 1). However similar to 458 

RUNX1, RUNX2 also correlated with a high KM score (Fig6d-e). These data reveal that the related 459 

transcription factor RUNX2 is also important in human ccRCC with high expression being indicative of 460 

a poorer prognosis.  461 

Taken together, we have identified a novel role for the RUNX family of transcription factors in kidney 462 

cancer where both RUNX1 and RUNX2 are expressed and act in an oncogenic fashion that aids the 463 

progression of the disease. 464 

 465 

 466 

 467 

 468 

 469 

  470 
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Discussion 471 

This study underscores the importance and functional relevance of the developmentally important 472 

transcription factor RUNX1 in kidney cancer. Interrogation of The Cancer Genome Atlas shows 473 

RUNX1 to be upregulated in ccRCC (this study and (35,39)) which we can now corroborate using 474 

histochemical analysis of an independent cohort. ccRCC patients with poor prognosis have high 475 

RUNX1 expression, while deletion of RUNX1 reduced kidney cancer cell growth and prevented or 476 

delayed tumour development. In addition we have shown for the first time that RUNX2 is also 477 

expressed in patients with poor prognosis. This work opens up a new and unexplored avenue of 478 

research into the RUNX genes’ enigmatic functions in neoplastic disease and identifies the RUNX 479 

genes as novel players in the genetic landscape of kidney cancer. 480 

Initial gene expression observations in silico revealed that alterations in RUNX1 occur at a similar 481 

frequency as perturbation of other kidney cancer drivers. Strikingly, almost all RUNX1 alterations 482 

were mRNA upregulations, suggesting increased expression is the mode by which RUNX1 483 

contributes to ccRCC. RUNX1 activity appears to be associated with the neoplastic state in renal cells 484 

as normal tissues show little evidence of expression. This may reflect the specific ccRCC 485 

transcriptome, defined by the recurring molecular changes that typify this disease. Given the 486 

importance of Hypoxia Induced Factor (HIF) activation in the pathogenesis of this disease it is worth 487 

noting that a number of studies have pointed to the interplay between HIFs and RUNX transcription 488 

factors including: physical interaction; co-regulation of target genes; and in the case of RUNX2, 489 

stabilisation of the HIF protein (40-42). Moreover, the RUNX genes are themselves regulated by HIFs, 490 

raising the possibility that they are both downstream targets, and act to potentiate the oncogenic 491 

signal (43). Molecular characterisation of RCC subtypes revealed that increased immune cell 492 

infiltration gene expression signatures associated with the poorest performing patients specifically in 493 

ccRCC (4,44,45) and immune checkpoint inhibitors are currently in clinical trial for advanced disease 494 

(8,9). In this regard it is interesting that our study reveals a positive correlation between RUNX and 495 
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local inflammatory cell infiltration. Increased systemic inflammation is a known feature of renal 496 

cancer (46,47) and integration of Klintrup-Makinen score with systemic biomarkers was able to 497 

predict poor prognosis in ccRCC (27). Gene ontology profiles suggest that immune and inflammatory 498 

processes dominate the expression landscape of ccRCC (10,11). 499 

RUNX1 deletion in ccRCC cell lines perturbed the cell cycle and reduced cell viability while Runx1 500 

deletion in our GEM model decreased tumour growth and tumour cell proliferation. This genetically 501 

confirmed an oncogenic role for RUNX1 which was also highly upregulated in another murine model 502 

of ccRCC (48). There is considerable evidence that RUNX1 has an important role in proliferation in 503 

organisms as diverse as nematodes (49), sea urchins (50) and mammals; although whether it 504 

promotes or restricts cell division depends on the cellular context (51,52). Similarly RUNX1 is known 505 

to regulate cell survival differently in different cell types (53,54), and downstream mediators of 506 

survival have been identified in some tissue systems (55). Our cell line data is given greater 507 

physiological relevance by the observation that RUNX1 null ccRCC cells almost entirely failed to grow 508 

in a kidney xenograft model. Further, our data showing a pro-proliferative effect in cell lines and 509 

tumours together with enhanced cell survival suggests an exclusively oncogenic role for RUNX1 in 510 

the context of renal cancer cells. 511 

Using RNA sequencing we revealed that deletion of RUNX1 induces profound gene expression 512 

changes. KEGG analysis of RCC expression profile studies have emphasised that upregulated genes 513 

are associated with significant cell adhesion changes and interactions between cytokines and their 514 

receptors (56). In this regard it is worth noting that our gene analysis showed enriched expression of 515 

genes involved in cell-ECM interactions and cell-cell interactions such as Eph-Ephrin signalling, 516 

suggesting RUNX1 may be contributing to a common oncogenic pathway in renal cancer. One of the 517 

most significantly down-regulated genes in our human RUNX1-deleted RCC cells and murine 518 

tumours was SERPINH1. Importantly, SERPINH1 is a potential negative prognostic marker in ccRCC 519 

(57) and is required for collagen folding and secretion (58), therefore its expression may contribute 520 
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to changes in tissue architecture that promote tumour development. SERPINH1 also associates with 521 

enhanced TGFβ signalling and both RUNX1 and RUNX2 have been shown to be involved in TGFβ 522 

induced kidney fibrosis (23,59). The role of collagen in ccRCC is currently unclear, however collagen 523 

density and alignment have recently been shown to be significantly higher in patients with high 524 

grade tumours compared to low grade (60). The fatty acid metabolism enzyme CPT1A increased 525 

markedly on RUNX1 deletion suggesting a negative correlation. CPT1A is reduced in ccRCC where 526 

suppression causes lipid droplet accumulation (a prominent feature of ccRCC) and tumour 527 

development (61). Intriguingly, suppression of CPT1A in ccRCC is mediated by the HIF family and is 528 

therefore an example of potential RUNX1 interplay with the VHL-HIF signalling axis. We also 529 

observed a pronounced increase in STATHMIN3, a microtubule binding protein important for the 530 

formation of mitotic spindles.  Over expression of STATHMIN3 has been associated with delayed cell 531 

cycle in leukaemia (62). Future studies using ChIP-seq analysis would provide valuable insights into 532 

which genes are directly modulated by RUNX activity and functionally contribute to the RUNX1-533 

related phenotype in renal cells. 534 

The long term trend for kidney cancer is one of growing global incidence, and improved treatments 535 

for advanced disease remains an unmet clinical need. Human patients with the highest RUNX1 536 

expression in our study had the poorest prognosis and a 20% reduction in survival rate at 5 years 537 

post diagnosis (68% vs 88%). Indeed, RUNX1 associated with poorer survival independent of age, 538 

grade and stage. These data identify RUNX1 as a novel prognostic biomarker and as a potential 539 

therapeutic target in human ccRCC. This is encouraging given the active pursuit of therapeutic agents 540 

that can block the transcriptional function of the RUNX proteins (63). However the wider 541 

consequences of directly targeting RUNX in kidney cancer would need to be established in the 542 

context of the sustained requirement for RUNX function in other tissues.  543 

In general, the relationship between the RUNX genes and other haematopoietic and solid tumours is 544 

complex with both a tumour suppressor and a pro-oncogenic role described in leukaemia (14,15), 545 
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breast (18) and prostate cancer (21). As such ccRCC may be the optimal choice for exploring novel 546 

therapeutic agents that block RUNX function. This is further given credence considering that the 547 

related family member RUNX2 is also associated with poorer survival and increased inflammation in 548 

ccRCC patients, and was also highly expressed in our GEM model.  Indeed RUNX1 and RUNX2 co-549 

occurred in a selection of patient samples as well as in GEM tumours. Although our staining was 550 

carried out on serial sections, dual immunohistochemistry for both RUNX1 and RUNX2 could give 551 

valuable insights into the spatial localisation and consequence of co-occurrence of the RUNX 552 

transcription factors. Although beyond the scope of this study, it will be important to dissect this 553 

interplay between the RUNX proteins in ccRCC and how they each contribute to the disease 554 

phenotype. Furthermore, while we have not specifically investigated RUNX3 in our system, in silico 555 

analysis revealed it is also upregulated in kidney tumours at the mRNA level.  Intriguingly, akin to 556 

that observed in pancreatic adenocarcinoma (64), transcriptomic upregulation of RUNX3 did not 557 

relate to patient survival. Nonetheless Whittle et al elegantly demonstrated that high RUNX3 in their 558 

pancreatic cancer TMA did correlate with poor prognosis and conveyed a pro-metastatic phenotype.  559 

Therefore it will be interesting to study RUNX3 further in the context of ccRCC to ascertain if its role 560 

recapitulates that seen in pancreatic cancer. Future studies will use compound genetic models and 561 

anti-RUNX drugs to investigate the consequence of total ablation of RUNX function in kidney cancer.  562 
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 777 

Tables 778 

Table 1. The relationship between RUNX1 and clinico-pathological characteristics of kidney cancer in 779 
the TMA study.  780 
All statistics Pearson Chi Square. Clinico-pathological scoring as previously published (24,25). 781 
 782 
 783 

 784 

 785 

 786 

 787 

 788 

 789 

 790 

 791 

 792 

  793 

Clinico-patholgical 
Characteristic 

RUNX1 High  
n                 % 

RUNX1 Low  
n                   % 

P value 

Age (≤61/>61) 21/24          (47/53) 68/70            (49/51) 0.211 

Grade (I/II/III/IV) 2/16/17/10  (4/36/38/22) 11/38/65/19  (8/29/49/14)  0.332 

T-Stage (I/II/III/IV) 22/6/15/2    (49/14/33/4) 57/24/48/4    (43/18/36/3) 0.802 

Necrosis (not necrotic/necrotic) 3/19            (14/86) 8/38              (17/83) 0.861 

Recurrence (no/yes) 30/16          (65/35) 106/32          (77/23) 0.121 

Klintrup Makinen (Low/High) 13/33          (28/72) 76/62            (55/45) 0.002 
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Figure Legends 794 

Figure 1. ccRCC patients with high RUNX1 expression have poorer survival. A human tissue 795 

microarray containing 184 cores from ccRCC patients was stained for RUNX1. a, Representative 796 

examples of RUNX1 staining in non-tumour normal kidney and RCC cores. A range of RUNX1 797 

expression was observed in ccRCC patients from negative to high. Magnified areas in dashed boxes, 798 

scale bar=100 pixels. b, Quantification of RUNX1 expression as shown by RUNX1 histoscore (H-Score) 799 

for the full TMA, the dashed red line represents the cut off for RUNX1 low (Quartile 1-3, H-Score: 0 800 

to 26.7, n=138) and RUNX1 High (upper quartile, H-Score: 30 to 225, n=46). c, Kaplan-Meier curve 801 

showing reduced cancer specific survival in RUNX1 High patients, Log-rank P=0.007 (survival data 802 

was available for 183 patients, RUNX1 High n=45). The cumulative % survival for 5 years after 803 

diagnosis is shown below, Wilcoxon P=0.005. d, Average RUNX1 H-Score for patients divided into 804 

high Klintrup-Makinen score (KM High, average RUNX1 H-score=34.1) vs low Klintrup-Makinen score 805 

(KM Low, average RUNX1 H-score=15.2), t-test P=0.0027. e, % Distribution of KM Low and KM High 806 

patients in RUNX1 Low and High groups, RUNX1 Low: KM lo/hi %=55/45, RUNX1 High: KM lo/hi 807 

%=28/72, Chi-Square P=0.001. 808 

 809 

Figure 2. Deletion of RUNX1 causes a growth defect in human ccRCC cell lines. a, Representative 810 

immunoblot for RUNX1 (inset) shows partial knockdown in 786-O cells stably transduced with two 811 

different shRUNX1 lentiviruses (786-O sh1 and 786-O sh5) compared to scrambled control (786-O 812 

Scr), re-probed for GAPDH loading control. shRUNX1 cells grow slower compared to Scr control in 813 

xCELLigence assay, N=4 independent experiments performed in quadruplicate. b, Cell index of 786-O 814 

shRUNX1 cells at 125h, *ANOVA P=0.0339; Scr vs sh5. c, Caki-2 ccRCC cells stably transfected with 815 

shRUNX1 (Caki-2 sh1 and Caki-2 sh5); average number of cells 96 hours after plating is shown; N=3 816 

independent experiments, performed in triplicate, ANOVA P values: *sh1= 0.0226, **sh5= 0.0052. d, 817 

Representative Immunoblot for RUNX1 (inset) on 786-O vector control (pX Ctrl) and RUNX1 CRISPR 818 

cells (CRISPR A1 and CRISPR A3), re-probed for GAPDH loading control. 786-O RUNX1 CRISPR deleted 819 
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cells have a growth defect in xCELLigence assay, N=3 independent experiments, performed in 820 

quadruplicate. e, Cell index of RUNX1 CRISPR cells at 125h, ANOVA P values: **A1=0.0058, 821 

**A3=0.0025. f, Normalised cell counts of 786-O RUNX1 CRISPR cells compared to control at 96h 822 

after plating, N=4 independent experiments, performed in triplicate, ANOVA P values: **A1 823 

P=0.0021 and **A3 P=0.0069. g, Representative flow cytometry plots for pX control and RUNX1 824 

CRISPR clones (A1 and A3) time-point T6 (6 hours after 30 minute EdU pulse). Y axis is Log EdU-647 825 

fluorescence, X axis is PI staining. Quadrants applied whereby Q1 and Q2 are EdU+ve and Q3 and Q4 826 

are EdU-ve. Box represents G1* population. Numbers in quadrants are % of total single cells 827 

analysed. h, Average % of EdU+ve cells at T6. i, Average G1* % population of EdU+ve cells reveals 828 

G1* population is higher in pX control cells, ANOVA P values: ***A1 P= 0.0001 and *A3 P= 0.01. All 829 

flow cytometry are N=3 independent experiments performed in triplicate. j, Average number of 830 

SYTOX® green dead cells per well as a proportion of % confluence, ANOVA P values: A1= 0.0006, A3= 831 

0.0015. N=4 independent experiments, performed in quadruplicate, analysed using Incucyte 832 

software. All error bars -/+ SEM. 833 

 834 

Figure 3. RUNX1 deleted cells have reduced in vitro cell migration and in vivo tumour formation. a, 835 

Representative images of scratch wound closure (yellow) at 0, 12 and 24h after wounding for control 836 

and RUNX1 deleted 786-O cells. Scale bar=300mm. b, Quantification of wound closure as shown by 837 

relative wound density, ANOVA P values: A1 P= 0.0182, A3 P= 0.039. c, Relative wound density at 838 

12h time-point is significantly reduced in RUNX1 deleted cells (A1 & A3), ANOVA P values: A1 P= 839 

0.0164, A3 P= 0.0212. All scratch wound assays were performed in quadruplicate in 3 independent 840 

experiments, error bars are -/+ SEM. d, Representative ultrasound images of orthotopic recipient 841 

kidneys with 786-O* control and RUNX1-deleted cells over 18 weeks from surgery at indicated time-842 

points. In control injected kidney the purple dashed line represents normal kidney outline, blue 843 

dashed line represents tumour outline. The proportion of tumour bearing kidneys as identified by 844 

ultrasound is presented below the panels for each time-point; p=0.011 (Fishers Exact test) at 18 845 
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weeks. e, H&E and IHC images of kidney tumours from control (n=4) and RUNX1-deleted (n=1)  846 

injected kidneys stained for RUNX1 and RUNX2, tumour areas indicated by arrows in H&E. The 847 

RUNX1-deleted injected kidney is negative for RUNX1 staining in the epithelium of the small tumour 848 

region whilst RUNX1 is still present in stromal cells, scale=100µm.  849 

 850 

Figure 4. RNA-sequencing reveals a RUNX1 dependant gene set in RCC cells. a, Heatmap of genes in 851 

786-O ccRCC cells that were identified from analysis of RNA-seq data as having significant differential 852 

expression (P<0.05; >2 fold change-FC), in the same direction between CRISPR clone A1 (n=3) and 853 

Control pX (n=3), and between CRISPR clone A3 (n=3) and Control pX. Blue represents down-854 

regulation of gene expression (Row Z-Score <0) and red represents up-regulation of gene expression 855 

(Row Z-Score>0). Venn diagram of significantly differentially expressed (FC>2 and adjP<0.05) genes 856 

in CRISPR clone A1 (yellow) and clone A3 (purple) vs. Control and the overlap. 724 genes were 857 

significantly differentially expressed in both clones with 710 changed in the same direction in both, 858 

shown in brackets. Table of statistically significant pathways modulated in RUNX1 deleted 786-O 859 

cells compared to control, produced by Metacore (Clarivate Analytics) GeneGO analysis of RNA-seq 860 

data. P value and FDR (false discovery rate) shown. b, RNA-seq read counts of selected targets from 861 

the top pathway ‘cell adhesion and ECM remodelling’. c, Volcano plot of average log2 fold change (x 862 

axis), versus –Log10 max adjusted P values (y axis). The average and max relate to values for both 863 

CRISPR clones A1 and A3. The points highlighted in red are the 724 differentially altered genes with 864 

average log2(Fold Change) >1 and Max(adjusted P values) <0.05. STMN3 highlighted in red circle, 865 

SERPINH1 highlighted in blue circle. d, Left: average read counts from RNA-seq data for STMN3 866 

(upregulated +46.3x, P<0.0001) and SEPRINH1 (downregulated -4.1x, P<0.0001). Right: 867 

corresponding validation at the protein level, representative immuno-blot probed for STATHMIN3 868 

and sequentially re-probed for SERPINH1 and GAPDH (loading control). e, RNA-seq read counts of 869 
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selected targets from the 2nd top pathway ‘Eph and Ephrin signalling’. f, RNA-seq read count for 870 

CPT1A. Mean and SD of 3 biological replicates shown for all RNA-seq read counts, P values <0.0003. 871 

 872 

Figure 5. RUNX1 deletion delays kidney cancer in a genetic mouse model. a, Representative images 873 

of two normal kidneys and kidney tumours from the AH-Cre;Apcfl/fl;p21-/- (referred to as CAP) genetic 874 

mouse model of kidney cancer stained for RUNX1 (scale bar=100µm). b, Immunohistochemistry 875 

(IHC) for RUNX1 in two representative kidney tumours from CAP;Runx1fl/fl mice confirms deletion of 876 

RUNX1 in the tumours. c, Kaplan-Meier survival curve for CAP;Runx1+/+ vs CAP;Runx1fl/fl mice 877 

showing improved survival on Runx1 deletion, Log-rank P=0.0365. d, Mean average lifespan for 878 

CAP;Runx1+/+ (78.6 days, n=16) vs CAP;Runx1fl/fl mice (104.6 days, n=19), t-test P=0.0415. e, 879 

Representative images of two different CAP;Runx1+/+ and CAP;Runx1fl/fl tumours (n1 and n2) stained 880 

for the proliferation marker Ki67 (scale bar=100µm). f, Quantification by HALO analysis of the % of 881 

Ki67+ cells, Runx1+/+=34% (n=12), Runx1fl/fl=24.4% (n=9), t-test P=0.0154. g, Representative IHC 882 

images of tumours (4 vs 4) from CAP;Runx1+/+ vs CAP;Runx1fl/fl mice stained for SERPINH1.  883 

 884 

Figure 6. RUNX2 is expressed in human RCC and correlates with poorer survival. a, Serial sections 885 

from CAP;Runx1+/+ and CAP;Runx1fl/fl murine kidney tumours immuno-stained for both RUNX1 and 886 

RUNX2 show high RUNX2 expression in both cohorts. Magnified section in dashed boxes, scale 887 

bars=100µm. CAP mice are AH-Cre;Apcfl/fl;p21-/-. b, Representative examples of RUNX2 staining in 888 

non-tumour normal kidney and RCC cores from human TMA as used in Fig1. A range of RUNX2 889 

expression was observed in RCC patients from negative to high. Magnified areas in dashed boxes, 890 

scale bars=100µm. c, Kaplan-Meier curve showing reduced cancer specific survival in RUNX2 High 891 

patients, Log-rank P=0.0478 and inset life table showing cumulative % survival for 5 years after 892 

diagnosis, Wilcoxon P=0.045. d, RUNX2 H-Score is significantly higher in patients with a high KM 893 
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score (KM Low=5.3, KM High=16.1, t-test p=0.0005). e, Proportion of KM Low and KM High patients 894 

in RUNX2 Low and High groups, RUNX2 Low KM lo/hi %=57/43, RUNX2 High KM lo/hi %=28/72. 895 

 896 

 897 
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