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Summary:  
Capture-recapture methods for estimating wildlife population sizes almost always require their users to identify 
every detected animal. Many modern-day wildlife surveys detect animals without physical capture-visual 
detection by cameras is one such example. However, for every pair of detections, the surveyor faces a decision 
that is often fraught with uncertainty: are they linked to the same individual? An inability to resolve every such 
decision to a high degree of certainty prevents the use of standard capture-recapture methods, impeding the 
estimation of animal density. Here we develop an estimator for aerial surveys, on which two planes or unmanned 
vehicles (drones) fly a transect over the survey region, detecting individuals via high-definition cameras. Identities 
remain unknown, so one cannot discern if two detections match to the same animal; however, detections in close 
proximity are more likely to match. By modeling detection locations as a clustered point process, we extend 
recently developed methodology and propose a precise and computationally efficient estimator of animal density 
that does not require individual identification. We illustrate the method with an aerial survey of porpoise, on which 
cameras detect individuals at the surface of the sea, and we need to take account of the fact that they are not 
always at the surface. This article is protected by copyright. All rights reserved 
 
Keywords: Capture-recapture, Neyman-Scott process, Palm intensity, spatial capture-recapture, Thomas 
process, unmanned aerial vehicles. 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Cluster capture-recapture to account for identification uncertainty on aerial surveys of animal populations 1

1. Introduction

Capture-recapture (CR) methods (Seber, 1982) are widely used to estimate the size of animal

populations. The key data for these methods are the capture histories: records of where and

when each animal was detected. These data can be obtained without physical capture, for

example through audio detections by microphones (e.g., Dawson and Efford, 2009), visual

detections by camera traps (e.g., Borchers et al., 2014), or sightings from aircraft (e.g.,

Hammond et al., 2002, 2013). These indirect methods of capture have great potential for

species and habitats that are otherwise difficult to sample, but they introduce the problem

that individual identity is uncertain, so compiling detections into individual capture histories

is prone to error.

In this paper, we focus on aerial surveys of marine mammals. These surveys are usually

conducted using human observers, but we anticipate that they will in future be done using

high definition video cameras instead, possibly mounted on drones rather than in piloted

aircraft. Collecting CR data from aerial surveys requires at least two observers, each acting

as a ‘capture occasion’, to account for imperfect detection of animals. Marine mammal

surveys have the particular difficulty that animals are unavailable for detection when they

are diving. This source of detection failure can only be adjusted for if the two observers,

or cameras, are separated in time by some designated lag. Otherwise, if diving animals are

always unavailable to both observers, the diving proportion of the population is effectively

unsampled and there is no information from which to estimate the size of this proportion.

If the two observers are separated by a short time lag, dependence between them is strong,

and there is little information on which to estimate the availability process. On the other

hand, the shorter the time lag, the easier it is to correctly identify recaptures (detections

of the same individual by both observers). With long lags, there can be considerable uncer-

tainty about which detections by the two observers correspond to the same animal, because
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individuals cannot generally be identified from the air. CR methods typically assume no

uncertainty about recaptures. This creates a dilemma for the surveyor: longer lags create

better independence between observers, but greater uncertainty in recapture identification.

Uncertainty about recaptures is common when detection is by remote devices or sightings

rather than by physical capture. Existing methods to account for uncertain identification on

CR surveys typically model the unknown true capture histories, or their frequencies, as latent

variables. These approaches either compute a likelihood via a sum over all plausible sets of

true capture histories (e.g. Hiby and Lovell, 1998), or sample from these sets as part of a

Markov chain Monte Carlo (MCMC) algorithm (e.g., Chandler and Royle, 2012; Link et al.,

2010; Tancredi et al., 2013; Wright et al., 2009). However, even for moderately sized data

sets, the number of plausible detection-to-identity matchings can be prohibitively large. As

a result, computational demands hamper both maximum likelihood and Bayesian methods:

the large number of possible matchings can prohibit calculation of the likelihood function,

and MCMC algorithms involve long computation times.

One recently proposed method (Fewster et al., 2016), however, does not reconstruct capture

histories. This approach treats CR data with uncertain identification as a clustered point

pattern. The survey measures some variable from each detection, chosen so that observed

values across multiple detections of the same individual are more similar than observed

values for different individuals. Observations from the same animal therefore form a ‘cluster’;

a cluster here corresponds to detections of the same individual, not a cluster of different

individuals. The approach of Fewster et al. (2016) then applies a Poisson cluster process

estimation method (Tanaka et al., 2008) to detection data. The parameters of the process

can relate to those of interest in CR studies, such as animal density. This method considers

the discrepancies between all pairs of detections, rather than summing over or sampling from

plausible matchings, providing a computationally efficient estimator. Fewster et al. (2016)

This article is protected by copyright. All rights reserved



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Cluster capture-recapture to account for identification uncertainty on aerial surveys of animal populations 3

used the term ‘trace-contrast’ for this type of estimation; here we adopt the alternative term

‘cluster capture-recapture’.

In this paper, we generalize the methods of Tanaka et al. (2008) and Fewster et al. (2016) to

develop a cluster capture-recapture estimator of animal density from aerial surveys using two

observers separated by a time lag to account for the unavailability of animals, for example

due to diving. We refer to the two observers as ‘cameras’, as we anticipate this will be

a typical survey mode in the future. The data from these surveys consist of two sets of

locations of detected individuals, one for each camera. Individuals detected by one camera

cannot be matched to those detected by the other by any physical markings or identification

features. Instead, information about identification is obtained from the fact that locations

of detections of the same animal by the two different cameras tend to be more similar than

locations of different animals.

We describe the Tanaka et al. (2008) estimation framework in Section 2, generalize this

approach in Section 3, and show how it applies to two-camera aerial surveys in Section 4.

We apply our method to data in Section 5, and present simulation studies in Section 6.

2. Estimation framework

The framework of Tanaka et al. (2008) estimates parameters of Neyman-Scott point pro-

cesses (NSPPs; see Baddeley et al., 2015, pp. 459–469). NSPPs generate clustered point

patterns. Clusters are formed by ‘parents’, which are produced by a homogeneous Poisson

process with intensity D, the parameter of interest. Parents themselves are not observed,

but each independently spawns a cluster of ‘children’, the number of which comes from some

distribution identical across parents. In this section, we consider processes where the number

of children is Poisson with expectation ν. The children are independently scattered around

their parents—it is these locations that are observed. Specific names for NSPPs indicate

the distribution of the children around their parents; for example, two-dimensional Thomas

This article is protected by copyright. All rights reserved
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processes have locations of children given by a bivariate normal distribution centered on their

parents, with variance matrix σ2I2; see Figure 1(i) for an example. Conceptually, NSPPs may

adequately describe spatial locations of apples around the trees from which they fell (Fewster

et al., 2016), locations of plants around their ancestors due to seed dispersal (Baddeley et al.,

2015, p. 469), and galaxy clusters in the universe (Neyman and Scott, 1952).

Parameter estimation for NSPPs is notoriously difficult. Due to the parent process remain-

ing a latent feature, it is not known how many parent points there are, where the parent

points are located, or which groups of children are ‘siblings’ (i.e., observed points that share a

common parent, such as two apples that fell from the same tree). These must be modeled as

latent variables, and so, under a maximum-likelihood framework, evaluation of the likelihood

function must consist of summing over all possible numbers of parents, integrating over the

possible locations of each parent, and summing over all possible matchings of children to

parents. Even with small sample sizes, the number of possible children-to-parent matchings

is extremely large, and so the likelihood is widely held to be intractable (Baudin, 1981;

Guan, 2006; Tanaka et al., 2008; Waagepetersen, 2007). Adopting a Bayesian approach may

appear more tractable—this involves sampling instead of enumerating numbers of parents,

locations of parents, and children-to-parent matchings. However, creating an MCMC scheme

that adequately samples over this complex latent structure while achieving acceptable mixing

and convergence rates is problematic (Waagepetersen, 2007).

[Figure 1 about here.]

Tanaka et al. (2008) provided an alternative NSPP estimator that is efficient to compute. It

relies on the Palm intensity function, λ0(r), defined as the expected intensity of the process at

a location distance r from a randomly selected child point. For NSPPs, this is a decreasing

function. The intensity is high when r is small, because the presence of a child suggests

nearby siblings. The Palm intensity declines to an asymptote as r increases, because if r is

This article is protected by copyright. All rights reserved



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Cluster capture-recapture to account for identification uncertainty on aerial surveys of animal populations 5

larger than the spread of a cluster, then the Palm intensity is only due to points from other

clusters—the local influence of nearby siblings no longer applies (see Figure 2).

The Palm intensity is λ0(r) = Dν+ν/(4πσ2) exp{−r2/(4σ2)} for two-dimensional Thomas

processes (Tanaka et al., 2008), and is based on the Chi distribution of intersibling distances

(Fewster et al., 2016). One can estimate θ = (D, ν, σ) by finding the parameter values whose

Palm intensity best fits the observed data, according to some objective function (Figure 2).

Tanaka et al. (2008) proposed the ‘Palm likelihood’ as an objective function for this purpose.

[Figure 2 about here.]

The Palm likelihood involves constructing the ‘difference process’ for each of the n observed

points by taking the differences between a selected point and all others (Figures 1(ii)–(v)).

Comparing a reference point at (x1, y1) to another point at (x2, y2) provides the point (x2−

x1, y2 − y1) in its difference process. All n difference processes are then superposed (Figure

1(vii)). The expected intensity of the n superposed difference processes at a location distance

r from the origin is the Palm intensity multiplied by n.

The estimator θ̂ is gained by fitting an inhomogeneous Poisson point process with intensity

function nλ0(r) to the superposed difference processes in R2 (see Figure 1(vi)). The Palm

likelihood is defined as the likelihood for this inhomogeneous Poisson process. Tanaka et al.

(2008) showed that, for two-dimensional Thomas processes, this is

L(θ) =

 ∏
{i,j:i6=j,rij<t}

nλ0(rij)

× exp

[
−nν

{
πDt2 + 1− exp

(
−t2

4σ2

)}]
, (1)

where rij = ‖xi − xj‖ gives the Euclidean distance between the ith and jth observed child

points, xi and xj. The constant t is a truncation distance for dealing with edge effects,

which we explain below. Numerical maximization provides an estimator for θ, which is

computationally efficient to obtain because the Palm likelihood is in closed form.

As with any spatial modeling process, attention must be given to edge effects. There are

many ways of dealing with these (see Baddeley et al., 2015, pp. 212–220). Tanaka et al.

This article is protected by copyright. All rights reserved
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(2008) calculated distances subject to periodic boundary conditions and set a truncation

distance, t, to the superposed difference processes. Any points further than t from the origin

were ignored. For this approach, all edges of a rectangular surveyed area must be at least 2t

in length, and t should be larger than any plausible distance between two siblings.

An inhomogeneous Poisson point process with intensity nλ0(r) is not the correct model

for the superposed difference processes; it is used solely to provide an objective function

to maximize, giving an estimator of θ. While this provides straightforward estimation, it is

an ad hoc model. Nevertheless, Tanaka et al. (2008) showed via simulation that the Palm

likelihood method gives estimators with negligible bias, and Prokešová and Jensen (2013)

proved that they are consistent and have asymptotic normality. See Baddeley et al. (2015,

pp. 292–295, 484–485) for further background on Palm intensity and likelihood.

3. Generalization of the Palm likelihood estimation framework

In principle, Palm likelihood estimation could be applied to any clustered point process,

but first it is necessary to derive the Palm intensity and Palm likelihood functions of the

process. Tanaka et al. (2008) did so for five Poisson cluster processes, four of which were

variants of the Thomas process. All five processes were two-dimensional and used a Poisson

distribution for the number of children spawned by each parent. In this section, we derive

the Palm intensity and likelihood for NSPPs that are of general dimension d, and for which

the number of children spawned by each parent is not necessarily a Poisson random variable.

Additionally, for some applications, we may partially observe sibling relationships, such

that it is known with certainty that particular pairs of points are either siblings or nonsiblings.

For example, two apples in a field may be known to be nonsiblings if they are of different

varieties, but this still leaves many pairs of apples of the same variety that might or might

not be siblings. We also extend the methodology to incorporate this information.

Hereafter, functions with the dimensionality of the point process, d, appearing in their

This article is protected by copyright. All rights reserved



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Cluster capture-recapture to account for identification uncertainty on aerial surveys of animal populations 7

definitions are followed by the superscript (d) to denote this dependence; for example, the

Palm intensity function is now given by λ
(d)
0 (r).

3.1 The Palm intensity and Palm likelihood functions

In Web Appendices A and B, we derive the Palm intensity for d-dimensional NSPPs as

λ
(d)
0 (r) = DE(C) +

f
(d)
Q (r)E{C(C − 1)}

s(d)(r)E(C)
. (2)

The random variable Q is the distance between two randomly selected siblings, with prob-

ability density function f
(d)
Q (r) and cumulative distribution function F

(d)
Q (r). Both are fully

specified for Thomas processes in Web Appendix C. The random variable C is the number

of children generated by a randomly selected parent, with expectation E(C) and variance

V (C); it need not be Poisson. From Web Appendix A, E{C(C − 1)}/E(C) = {V (C) +

E(C)2}/E(C) − 1, and so the distribution of C only affects the Palm intensity through its

expectation and variance. Functions s(d)(r) and v(d)(r), used below, are the boundary volume

and the volume of a d-dimensional hypersphere of radius r (Web Appendix B).

The Palm likelihood is derived by treating the superposed difference processes as an

inhomogeneous Poisson point process. The intensity of this process is nλ
(d)
0 (r) at a point

in R2 distance r from the origin. This gives our objective function, the Palm likelihood:

L(d)(θ) =

 ∏
{i,j:i6=j;rij<t}

nλ
(d)
0 (rij)

× exp

{
−n
∫ t

0

λ
(d)
0 (r)s(d)(r) dr

}
, (3)

where rij = ‖xi −xj‖ is the Euclidean distance between the ith and the jth child point. As

per Tanaka et al. (2008), we calculate distances subject to periodic boundary conditions and

truncate them at t to deal with edge effects. The integral is available in closed form:∫ t

0

λ
(d)
0 (r)s(d)(r) dr = DE(C)v(d)(t) +

E{C(C − 1)}F (d)
Q (t)

E(C)
. (4)

3.2 Incorporating known sibling information

In some survey contexts, additional data may provide information about relationships be-

tween some pairs of points. We partition the Palm intensity into separate components

This article is protected by copyright. All rights reserved
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due to (i) comparisons between known siblings, λ0s(r, α); (ii) comparisons between known

nonsiblings, λ0n(r, β); and (iii) comparisons between points whose relationship is unknown,

λ0u(r, α, β). These three functions sum to λ
(d)
0 (r). In Web Appendix D, we show that this

provides the Palm likelihood function

L(d)(θ) =

 ∏
{i,j;i6=j,rij<t,hij=0}

nλ0s(rij, α)

×
 ∏
{i,j;i6=j,rij<t,hij=1}

nλ0n(rij, β)


×

 ∏
{i,j;i6=j,rij<t,hij=2}

nλ0u(rij, α, β)

× exp

{
−n
∫ t

0

λ
(d)
0 (r)s(d)(r) dr

}
, (5)

where α is the probability that two randomly selected siblings are known siblings; β is the

probability that two randomly selected nonsiblings are known nonsiblings. Here, hij = 0 if

points i and j are known siblings, hij = 1 if they are are known nonsiblings, and hij = 2 if

their relationship is unknown. We assume that α and β are known; see Web Appendix D.

3.3 Variance estimation

We follow Fewster et al. (2016) and recommend variance estimation via a parametric boot-

strap. This is computationally efficient because simulation from NSPPs is straightforward,

and our estimation procedure maximises an easily computed function.

4. Cluster capture-recapture for two-camera aerial surveys

In this section we show how data collected on two-camera aerial surveys can be modeled using

an NSPP, and that estimation of animal density, D, is possible using the generalizations we

have made to the approach of Tanaka et al. (2008) in Section 3.

The cameras monitor the same strip of ocean, the ‘detection region’, of length k km and

width 2w km, with some lag in time, l, between them. See Figure 3(i) for a depiction of

example simulated data, where the detection region is given by the grey strip.

Let xij = (xij, yij) be the location of the ith individual at the passing of the jth camera,

where xij is the distance along the transect and yij is the perpendicular distance from the

This article is protected by copyright. All rights reserved



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Cluster capture-recapture to account for identification uncertainty on aerial surveys of animal populations 9

transect’s center line. If the second camera passes shortly after the first, then we expect xi1

and xi2 to be close to one another. We model this as follows: The ith individual is associated

with a parent location, pi, representing the central point about which its locations at the

passing of the cameras are distributed. We assume that parent locations are a realization of

a homogeneous Poisson point process, and that (X ij | pi) ∼ N2(pi, σ
2I2), where X ij is the

ith individual’s location at the passing of the jth camera.

The survey records the locations of detected animals within the detection region. We

consider that an animal’s location is observed by a camera at a discrete point in time—it is

not possible for a single camera to detect the same individual more than once. For now, we

assume that a passing camera always detects an individual that is both within the detection

region and on the ocean surface. A passing camera does not detect an individual that is either

diving or outside the detection region. We use a continuous-time Markov chain to explain

how an individual’s dive-states at the passing of the two cameras are related (Section 4.4.1).

[Figure 3 about here.]

4.1 Link with spatial capture-recapture

This two-camera survey is similar to a spatial capture-recapture (SCR) area-search survey

(Efford, 2011), in which a detection region is searched across a number of occasions (in our

case, the two cameras). Individuals’ parent locations are analogous to the latent activity

centers in SCR, used to model spatial similarity in detection locations. The most obvious

distinction is that animal identities are observed on SCR surveys. Chandler and Royle (2012)

proposed an SCR method for unidentified animals, but they considered an array of detectors

at discrete points, rather than a continuous detection region. Another distinction is that,

on a two-camera survey, detections on different occasions are correlated at small time lags

because animals tend to stay at the surface for a period of time.

This article is protected by copyright. All rights reserved
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4.2 Link with Thomas processes

Detection locations from two-camera aerial surveys share many features with Thomas pro-

cesses (Section 2; Figure 1). Expected cetacean locations (parents) form a Poisson point

pattern, and detection locations (children) are clustered around these, subject to Gaussian

dispersion. There are two distinctions, however. First, the number of times each individual

is detected (the number of children generated by each parent), C, is not a Poisson random

variable; we have c = 2 for individuals detected by both cameras, c = 1 for individuals

detected by only one of the cameras, and c = 0 for individuals that evaded detection entirely.

Second, we sometimes observe that two children are nonsiblings; detections made by the same

camera cannot be of the same individual, even if they are in close proximity (see Figure 3(ii)).

We can therefore estimate cetacean density (the intensity of parents) via maximization

of the Palm likelihood we developed in Section 3, Equation (5). To do so, we must specify

the expectation and variance of C as a function of the model parameters, and appropriate

values for α and β. We do this in Sections 4.4 and 4.5. We first deal with the additional

complication of edge effects in Section 4.3.

4.3 Reduction to one dimension

Using periodic boundary conditions to account for edge effects requires the truncation

distance, t, to be less than half the length of the shortest side of the detection region,

2w, and to be greater than the largest plausible distance between two siblings (e.g., 5σ for a

Thomas process). If animals travel further than the width of the detection region between the

passing of the two cameras (e.g., if 5σ > 2w), then it is impossible to fulfil both constraints.

We project the two-dimensional locations onto a one-dimensional point pattern to deal with

these edge effects. The remaining dimension represents the distance along the transect at

which detections were made (Figure 3(ii)). We set a buffer distance, b, at a value large enough

so that any individual with a parent location beyond distance b from the transect cannot

This article is protected by copyright. All rights reserved



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Cluster capture-recapture to account for identification uncertainty on aerial surveys of animal populations 11

plausibly generate a child within the detection region. We define the ‘survey region’ as the

region containing all locations within distance b of the transect center line (i.e., both the grey

and the white regions in Figure 3(i)). The one-dimensional projection of the two-dimensional

process enables us to accommodate movement of animals in and out of the detection region,

without having to apply periodic boundary conditions in the second dimension.

Setting d = 1 and maximizing Equation (3) or (5) provides a density estimate D̂ repre-

senting the number of parent locations within distance b of the transect per kilometer flown

by the aerial vehicles. We can then obtain animal density per square kilometer D̂2 = D̂/(2b).

If b is large enough so that parent locations outside the survey region will not spawn points

in the detection region, then its precise value is inconsequential. Setting b too small causes

estimator bias, but setting it too large only increases computation time. The concept of an

‘integration buffer width’ in the SCR literature is analogous (see Borchers and Efford, 2008).

4.4 Distribution of C for two-camera aerial surveys

In our context, the unobserved random variable C is the number of times (0, 1, or 2) we

detect a randomly selected individual with a parent location in the survey region. Both the

animal’s position relative to the detection region and its depth in the water column affect

C. For now we assume animals are detected with certainty if they are on or near the ocean

surface and within the detection region at the passing of a camera; we discuss the problem

of imperfect detection later. In general, the random variable C does not have a binomial

distribution due to dependence in each of these events across the two cameras.

Consider a randomly selected animal located within the survey region. Let Aj be an

indicator variable for the event that the animal is detected by the jth camera. Let Uj and

Zj be indicators for the animal being on the surface, and for the animal being within the

detection region, when the jth camera passes, so Aj = UjZj. If diving is not affected by

the passing of the cameras, then Uj and Zj′ are independent for any choice of j, j′ ∈ {1, 2}.

This article is protected by copyright. All rights reserved
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However, the events U1 and U2 may be dependent, as may Z1 and Z2: an individual on the

surface and within the detection region when the first camera passes may be likely to remain

as such when the second camera passes. These dependencies are discussed below.

4.4.1 Dive-state dependence: U1 and U2. Continuous-time Markov chains have previously

been applied to cetacean diving behavior (e.g., Hiby and Lovell, 1998), and we use this

approach here. We introduce two parameters: the mean dive-cycle duration, τ , and the

mean duration of the surface phase, κ. The marginal probability of an individual being on

the surface at the passing of either camera is Pr(Uj) = κ/τ for j ∈ {1, 2}, and the probability

that it is on the surface at the passing of the second given it was on the surface for the first

is

Pr(U2 | U1) =
κ

τ
+
τ − κ
τ

exp

{
−
(

1

κ
+

1

τ − κ

)
l

}
, (6)

where l is the lag in time between the two cameras in seconds; see Hiby and Lovell (1998).

4.4.2 Detection region dependence: Z1 and Z2. In this section we remove the subscript i

for clarity, and so xj = (xj, yj), j ∈ {1, 2}, contains the Cartesian coordinates of a randomly

selected individual within the survey region at the passing of the jth camera. Recall that

these coordinates are the distance along the transect and the perpendicular distance from

the transect at which the animal was located, respectively. For the latter, let sightings to the

left of the plane take a negative value and those to the right take a positive value.

Event Zj occurs if and only if −w 6 yj 6 w (that is, if the individual is in the detection

region). Let p = (px, py) be the coordinates of the individual’s parent location, where py is the

perpendicular distance from the transect. As parent locations are assumed to be generated by

a homogeneous Poisson point process throughout the survey region, py is a uniform random

variable with probability density function fPy(py) = 1/(2b), py ∈ [−b, b].

The probability that an individual is in the detection region at the passing of the second

This article is protected by copyright. All rights reserved



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Cluster capture-recapture to account for identification uncertainty on aerial surveys of animal populations 13

camera, given that it was in the detection region at the passing of the first, is

Pr(Z2 | Z1) = Pr(−w 6 Y2 6 w | −w 6 Y1 6 w)

≈ 1

2w

∫ +b

−b
Pr(−w 6 Y1 6 w | py)2 dpy ; (7)

see Web Appendix E. The error associated with this approximation approaches 0 as b

increases; the error is negligible for b > w + 5σ. Likewise, the marginal probability of

being within the detection region is Pr(Zj) ≈ w/b for j ∈ {1, 2}, with the error in this

approximation approaching 0 as b increases. The integral can be approximated numerically.

4.4.3 Expectation and variance of C. The distribution of C only affects the Palm intensity

through its expectation and variance (Web Appendix A); we must derive these in terms of

the model parameters. The random variable C = A1+A2 is a sum of two dependent Bernoulli

random variables, one occurring at the passing of each camera. As A1 and A2 depend on

both diving and location states, C depends on parameters κ, τ , and σ.

The marginal probability that the jth camera detects an individual with a parent location

within the survey region is Pr(Aj = 1) = Pr(Uj ∩ Zj) = Pr(Uj) Pr(Zj) = κw/(τb) for

j ∈ {1, 2}, due to independence of Uj and Zj. As Aj is a Bernoulli random variable, this

is equivalent to its expectation. This gives E(C) = E(A1) + E(A2) = 2κw/(τb). For the

variance, V (C) = E(C2) − E(C)2, the first term of which is E(C2) = E(A2
1) + E(A2

2) +

2E(A1A2) = E(A1)+E(A2)+2E(A1A2), where E(A1A2) = Pr(A1A2 = 1) = Pr(U1) Pr(U2 |

U1) Pr(Z1) Pr(Z2 | Z1), each term of which is also provided above.

4.5 Sibling information on two-camera aerial surveys: α and β

In our design, β is the probability that two randomly selected nonsibling detections can

be identified as nonsiblings because the two detections were made by the same camera.

A randomly selected detection is equally likely to have been by either camera. Half of all

randomly chosen nonsibling pairs of detections come from the same camera, in the same
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way that half of all pairs of coin flips have the same outcome, and so β = 0.5. We can never

conclude with certainty that detections from different cameras are of the same individual.

Hence α = 0; we will never identify siblings as siblings.

We estimate θ via maximization of Equation (5), setting α = 0, β = 0.5, hij = 1 if the ith

and jth detections were from the same camera, and hij = 2 otherwise. Unlike maximization of

Equation (3), this makes use of all available information about possible sibling relationships.

4.6 Uncertain detection at the ocean surface

The method described above assumes that animals on the surface are detected with certainty,

but in some surveys they may be detected with probability φ < 1 (e.g., Conn et al., 2014).

In this case, let Uj be the event that an individual is both on the ocean surface and detected

by the jth camera. This gives Pr(Uj) = φκ/τ , and in place of (6) we have

Pr(U2 | U1) = φ

[
κ

τ
+
τ − κ
τ

exp

{
−
(

1

κ
+

1

τ − κ

)
l

}]
.

4.7 Dive-cycle duration and uncertain detection of surfacing individuals

The parameters φ, κ, and τ are used to model dependence due to diving behavior, and

are necessary to characterise the joint distribution of U1 and U2. However, surveys with

two lagged capture occasions do not provide the information to estimate both dive-state

parameters. This is not unique to our estimation approach, and remains a problem even

if identities are observed; see Web Appendix F. Hiby and Lovell (1998) dealt with this by

fixing τ at some known value. Additionally, under scenarios where detection at the surface

is not certain, the parameter φ is not identifiable. If the lag between cameras is short, two of

these parameters must be supplied in order to obtain an unbiased estimate of D2. In good

conditions it may be reasonable to fix φ = 1, but otherwise it can be estimated from auxiliary

data, as may either τ or κ (e.g., using data from tags). Uncertainty in these estimates can

be incorporated into a bootstrap procedure so that it is reflected in the variance estimate of
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animal density.

However, when the lag between cameras is large, we may assume independence between

U1 and U2. Under the diving behavior framework in Section 4.4.1, plotting Pr(U2 | U1)

against l in Equation (6) demonstrates that Pr(U2 | U1) ≈ Pr(U2) for any l > τ . The

joint distribution of U1 and U2 is then characterised by a single parameter, γ = φκ/τ ,

representing the probability that an individual in the detection region is detected by a passing

camera. In this case, we can estimate the identifiable parameter vector (D2, σ, γ) instead of

(D2, σ, τ, κ, φ). Thus, our method is fully robust to both uncertain detection at the surface

and unknown dive-cycle parameters if the lag between capture occasions is sufficiently large.

4.8 Software implementation

We have implemented the methods described above in the R package palm (Stevenson, 2018),

which is available on CRAN; see Web Appendix J for an example of its use.

5. Application

Aerial surveys that monitor cetaceans using two planes, or two cameras mounted on the same

plane, are currently still in the planning phase. Part of this planning is to ensure that there is

suitable statistical methodology to analyse the resulting data, which is our purpose here. Our

focus is therefore to establish an analytical framework that enables evaluation of the likely

precision that a two-camera survey can achieve, to aid practitioners in assessing the costs of

running two aircraft or engineering a double camera-mount on a single aircraft. This is best

done by simulation for the specific taxa and survey conditions under consideration. Due to

the lack of real data at present, we provide here an analysis of synthetic data generated by

resampling real data from aerial circle-backs to emulate a two-camera survey.

Circle-backs were conducted on a series of surveys that recorded pods of harbor porpoise

(Phocoena phocoena) in the North Sea and off the coasts of western Denmark, northeastern
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Germany, and The Netherlands. A single plane intermittently circled back to retrace its

path, with two observers on board who recorded the location of each pod they sighted. Of

the stretches of ocean that were covered twice, the average lag between the passes was 248 s.

See Web Appendix G for further information about the circle-back data, and how it was used

to construct our synthetic two-camera aerial survey data. Our synthetic data represented a

survey of length k = 1 100 km with a detection region halfwidth of w = 0.125 km.

We estimated porpoise pod density using the method described in Sections 3 and 4. The

lag was set at l = 248 s and this was longer than any plausible value for τ , the mean

dive-cycle duration (Westgate et al., 1995). We therefore only estimated a single parameter,

γ = κ/τ , the proportion of time spent on the surface, for the distribution of C, and used

Pr(U2 | U1) = Pr(U1) = γ, as justified in Section 4.7. We set b = 2 km, a value suitably large

to ensure that the error associated with the numerical approximation in (7) was negligible.

Our estimation method produced estimates (with 95% confidence intervals using the

percentile bootstrap method) of 1.05 (0.84, 1.60) pods per km2 for D2, 0.15 (0.11, 0.19) km

for σ, and 0.86 (0.56, 1.00) for γ. These uncertainties correspond to coefficients of variation

of 19% for D2, 16% for σ, and 13% for γ. See Web Appendix G for discussion about these

parameter estimates, and how they compare to values obtained in other studies.

6. Simulation studies

We conducted three simulation studies to assess the performance of our animal density

estimator for two-camera aerial surveys. For all simulations, we set τ = 110 s, consistent

with surfacing data reported by Westgate et al. (1995), and κ = 94 s to match γ̂ from the

synthetic data analysis. We set σ based on a calculation involving l, which varied across

studies, and an animal speed of 0.95 ms−1. Likewise, we matched D2 to its estimate from

the synthetic data. Survey constants w, b, and k were also set to values from Section 5.

First, the synthetic data in Section 5 had a large lag between the passing cameras, and so
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we could assume independence between U1 and U2 (Section 4.7). This is not appropriate if

two cameras are attached to the same plane; we test this scenario below by generating data

with a shorter lag of 20 s. This simulation study is described below. Additional simulation

studies test the robustness of our estimator to various assumption violations and compare it

to existing spatial and nonspatial CR models, see Web Appendices H and I.

In total, we simulated 10 000 data sets using a lag of l = 20 s. From each simulated data

set, we estimated the parameters by maximizing the expressions in both (3) and (5), allowing

comparison between estimators that do and do not use the partial sibling information.

[Figure 4 about here.]

Results are shown in Figure 4. Estimators for all parameters showed negligible bias,

especially those that used the partial sibling information (observed biases of 0.5%, 0.1%, and

−0.5% for D̂2, σ̂, and κ̂). Density estimates for those that used partial sibling information

were slightly more precise (coefficient of variation of 7.7%) than those that did not (9.5%).

7. Discussion

While our cluster capture-recapture estimator was motivated by two-camera aerial surveys,

our generalization of the method proposed by Tanaka et al. (2008) in Section 3 is of general

interest beyond the scope of ecology. It allows NSPP parameter estimation in a broader

context, accounting for (i) any distribution for the number of children generated by each par-

ent, (ii) d-dimensional spatial data, and (iii) known information about sibling relationships.

Because our estimation framework is an extension of point process methodology, existing

tools for model selection and goodness-of-fit are available from the point process literature.

Our method involves a computationally efficient estimation process. On average, computing

point estimates from each simulated data set in Section 6 took just 1.6 s on a laptop

computer with a 2.00 GHz processor. This indicates cluster capture-recapture has promise
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for application to a wide class of wildlife surveys with uncertain animal identification.

7.1 Clustering of individuals

Web Appendix H shows some robustness to departures from the assumption that parent

locations are a homogeneous Poisson point pattern. However, this assumption is clearly

violated if animals travel in groups, potentially causing non-negligible bias. We therefore

treated porpoise pods as the detection unit—a common approach in distance sampling, as

it is more reasonable to assume independence between groups than independence between

animals (Buckland et al., 2001, p. 432). We estimate pod density, but an estimate of the

average pod size allows conversion to animal density (e.g., see Hammond et al., 2002, 2013).

If we wish to consider individuals as the detection unit, one option is to consider a

multi-generational NSPP, where ‘grandparents’ are defined as a pod centroid, around which

individuals’ parent locations are clustered. A Palm likelihood estimator for such processes

may provide estimators of both pod and animal densities from the survey data.

7.2 Concluding remarks

We have proposed a new method for analysing data from aerial two-camera surveys that

accounts for uncertain animal identification, and models the dependence between detections

on different occasions due to animal movement into and out of the detection region. Non-

spatial CR methods fail to account for animal movement and cannot estimate the effective

sampling area (Royle et al., 2013; pp. 167–169), precluding unbiased estimation of animal

density (Web Appendix I). Area-search SCR methods do account for animal movement, but

both of these existing methods force the surveyor to match detections to identities.

If the lag between cameras is short, then manually allocating identities to individuals

could potentially be achieved with reasonable accuracy. If this lag is short relative to the

dive-cycle duration, then it is necessary to account for dependence between capture occasions

(or cameras) due to cetacean diving behavior via parameters τ and κ; moreover, under a
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short-lag scenario, we must account for uncertain detection at the surface, φ < 1, if survey

conditions are not conducive to an assumption of perfect detection (Sections 4.6 and 4.7).

Existing methods that estimate between-occasion dependence in standard nonspatial CR

and area-search SCR methods (e.g., variants of model Mb; Otis et al., 1978) do not do so

with cetacean diving behavior in mind. It is only possible to estimate one of τ , κ, and φ

directly from the aerial survey, even if identities are observed (Web Appendix F). For short-

lag surveys, we recommend estimating two of these parameters from auxiliary data (Section

4.7) and incorporating any uncertainty into the bootstrap variance estimator (Section 3.3).

If the lag between cameras is long, by contrast, then animal density is estimable without

fixing any parameters, as only the parameter γ = φκ/τ is required (Section 4.7).

8. Supplementary materials

Web Appendices and Figures referenced in Sections 3–7 are available with this paper at the

Biometrics website on Wiley Online Library, along with the R code used to fit models to the

synthetic harbor porpoise data and carry out all simulation studies.

Acknowledgements

Two anonymous reviewers and the associate editor provided insightful feedback that greatly

improved this manuscript. We thank Anita Gilles for providing the real circle-back data from

which the synthetic data were generated, collected during aerial surveys funded by both the

German Federal Ministry for the Environment, Nature Conservation, Building and Nuclear

Safety, and the Federal Agency for Nature Conservation. This work was funded by a joint

EPSRC/NERC PhD grant (No. EP/1000917/1), by the EPSRC through a Doctoral Prize

Fellowship, and by the Royal Society of New Zealand through Marsden grant 14-UOA-155.

This article is protected by copyright. All rights reserved



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

20 Biometrics, 000 0000

References

Baddeley, A., Rubak, E., and Turner, R. (2015). Spatial Point Patterns: Methodology and

Applications with R. CRC Press, Boca Raton.

Baudin, M. (1981). Likelihood and nearest-neighbor distance properties of multidimensional

Poisson cluster processes. Journal of Applied Probability 18, 879–888.

Borchers, D., Distiller, G., Foster, R., Harmsen, B., and Milazzo, L. (2014). Continuous-time

spatially explicit capture-recapture models, with an application to a jaguar camera-trap

survey. Methods in Ecology and Evolution 5, 656–665.

Borchers, D. L. and Efford, M. G. (2008). Spatially explicit maximum likelihood methods

for capture-recapture studies. Biometrics 64, 377–385.

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas,

L. (2001). Introduction to Distance Sampling: Estimating Abundance of Biological

Populations. Oxford University Press, Oxford.

Chandler, R. B. and Royle, J. A. (2012). Spatially explicit models for inference about

density in unmarked or partially marked populations. The Annals of Applied Statistics

7, 936–954.

Conn, P. B., Hoef, J. M. V., McClintock, B. T., Moreland, E. E., London, J. M., Cameron,

M. F., Dahle, S. P., and Boveng, P. L. (2014). Estimating multispecies abundance using

automated detection systems: Ice-associated seals in the bering sea. Methods in Ecology

and Evolution 5, 1280–1293.

Dawson, D. K. and Efford, M. G. (2009). Bird population density estimated from acoustic

signals. Journal of Applied Ecology 46, 1201–1209.

Efford, M. G. (2011). Estimation of population density by spatially explicit capture-recapture

analysis of data from area searches. Ecology 92, 2202–2207.

Fewster, R. M., Stevenson, B. C., and Borchers, D. L. (2016). Trace-contrast models for

This article is protected by copyright. All rights reserved



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Cluster capture-recapture to account for identification uncertainty on aerial surveys of animal populations 21

capture-recapture without capture histories. Statistical Science 31, 245–258.

Guan, Y. (2006). A composite likelihood approach in fitting spatial point process models.

Journal of the American Statistical Association 101, 1502–1512.

Hammond, P. S., Berggren, P., Benke, H., Borchers, D. L., Collet, A., Heide-Jørgensen, M. P.,

et al. (2002). Abundance of harbour porpoise and other cetaceans in the North Sea and

adjacent waters. Journal of Applied Ecology 39, 361–376.

Hammond, P. S., Macleod, K., Berggren, P., Borchers, D. L., Burt, L., Cañadas, A., et al.
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Figure 1. An example of a Thomas point pattern (observed on the unit square) and
exposition of the estimation approach due to Tanaka et al. (2008): (i) Children (open circles)
and parents (grey crosses) generated from simulation of a Thomas process. Despite there
being five parents, due to some being in close proximity the children are loosely aggregated
in three groups. (ii) A difference process taken from one particular point. (iii) Shifting this
difference process to the origin. (iv) Another difference process taken from a different point;
note the use of periodic boundary conditions to deal with edge effects. (v) Superposition of
this second difference process onto the first. (vi) The expected intensity of the superposed
difference process—this declines radially from the origin, and is given by nλ0(r), where r
is the distance from the origin. Thus, intensity of the superposed difference process is high
near the origin (solid circle), eventually declining to an asymptote at regions further from
the origin (dashed circle). (vii) Superposition of all n difference processes from the small
sample n = 41 shown in (i).
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Figure 2. The empirical Palm intensity function (dashed line; see Fewster et al., 2016) and
the best-fitting Palm intensity function of the form λ0(r) = Dν + ν exp{−r2/(4σ2)}/(4πσ2)
(solid line) from the point pattern in Figure 1(i). The latter was estimated using the method
of Tanaka et al. (2008).
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Figure 3. Example simulated data from a two-camera survey. Plot (i): Parent locations
(crosses) along with corresponding locations at the passing of the first (circles) and second
(triangles) cameras. Solid plotting characters depict individuals on the surface at the passing
of a camera, while open plotting characters depict those that were not. The horizontal arrow
represents the transect flown by the two cameras; the grey region is the detection region.
A detection is made if an individual is both on the surface and in the detection region.
Plot (ii): The resulting one-dimensional point pattern that is collected and analyzed here.
The identities of the individuals detected are uncertain. Note the four labeled groups of
points: Identities associated with (1) are unambiguous—different detections from the same
camera cannot be of the same animal. Identities associated with (2) are ambiguous and
there are two possible allocations—these points could represent two detections of the same
individual, or one detection each of two different individuals. Identities associated with (3)
are unambiguous—the distance between the detections is too great for these to correspond
to the same individual. Identities associated with (4) are ambiguous—between three and five
individuals have been detected, and there are 13 different possible allocations within this
group alone. Therefore, in conjunction with the ambiguous group (2), there are a total of 26
different possible allocations in this small example data set.
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Figure 4. Box plots showing point estimates from the 10 000 simulated data sets for models
that both did (via maximization of (5)) and did not (via maximization of (3)) incorporate
the partial sibling information via the camera ID. Estimates were obtained with parameter
τ fixed at 110 s.
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