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Abstract 

Designing a curriculum in online and distance education can be challenging because the processes 

of what, when, and how students study are not always visible to teachers due to the limited 

opportunities for face-to-face interactions. The aim of this thesis is to explore how teachers design 

for learning, together with  how the learning design impacts upon the students’ actual engagement 

with the learning materials, with the subsequent effect on their academic performance. One way 

forward, is to build on the intersection between the most recent work in learning analytics and 

learning design research. I have therefore argued for and investigated the potential of incorporating 

the design of learning activities into the analysis of student learning behaviour. On the one hand, 

the visualisation of learning activities designed by teachers provides the pedagogical context to 

improve the interpretation of the observed learning behaviour and its effect on academic perfor-

mance. On the other hand, the analysis of online digital traces of learning activities offers a dynamic 

account of how students learn in practice in a distance learning environment. As a result, this thesis 

sheds new light on the implicit process of how learning design influences student engagement in 

distance education 

By employing a mixed-method research design, I first examined how teachers design for learning 

using visualisations and network analysis of 37 modules over 30 weeks at The Open University. In 

the next step, I conducted an in-depth qualitative investigation with 12 teachers into the underlying 

factors that influenced their design decisions, as well as the perceived barriers and affordances of 

adopting approaches from the Open University Learning Design Initiative. The findings revealed 

common patterns as well as variations in learning design across modules and their disciplines of 

study. Analysis of the interviews revealed underlying tensions between teachers’ autonomy and 

the influence of management and institutional policies in the design process and the adoption of 

learning design tools.   

After laying out the foundation for understanding the learning design processes, I carried out a 

large-scale analysis of 37 modules and 45,190 students to examine how learning design influences 

student engagement, satisfaction, and performance. The findings indicated that learning design 

explained up to 69% of the variance in student engagement, which was strongly driven by 

assimilative, assessment, and communication activities. Finally, I conducted a fine-grained analysis 

exploring the (in)consistencies between learning design and student behaviour and how different 

engagement patterns impact academic performance. The analysis found misalignments between 

how teachers designed for learning and how students actually studied. In most weeks, students 

spent less time studying the assigned materials compared to the number of hours recommended 
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by instructors. High-performing students not only studied ‘harder’ by spending more time, but also 

‘smarter’ by engaging in a timely manner.  

Altogether, this thesis has contributed new scientific insights into the dynamic temporal aspects of 

how teachers design for learning and the relations between learning design, engagement, and 

academic performance in distance education. As an implication, the findings reported here 

demonstrated how learning design could improve the accuracy and interpretability of learning 

analytics models, and how learning analytics could help teachers identify potential inconsistencies 

between learning design and student behaviour.   
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Chapter 1 – Introduction 

Nowadays, teaching is just no longer about delivering information, but about planning and design-

ing learning activities, resources, and technologies to help students achieve their goals (Goodyear, 

2015; Kirschner, 2015; Paniagua et al., 2018; Persico et al., 2018). Teachers are expected to not only 

have a deep understanding of what they teach but also whom they teach and how they teach. That 

entails designing an effective curriculum, using technologies to support learning activities and cre-

ating engaging lessons that meet the diverse needs of students and institutions. In the UK, teaching 

effectiveness is often evaluated through course evaluations such as the National Student Survey 

and retention rates (i.e., how many students continue their studies from one year to the next) 

(Gunn, 2018). However, there are concerns about whether these metrics can empower teachers to 

improve their teaching practices, or whether they primarily serve the purposes of quality control 

for institutions and government (Hornstein, 2017; Neary, 2016). While course evaluations and re-

tention rates are related to learning outcomes to some extent, they give limited insights into the 

learning process and questions of what, when, why, and how students learn. Understanding these 

learning processes is even more challenging in online and distance education due to the lack of 

face-to-face interactions between teachers and students.  

Since the early 2000s, two strands of research in education have emerged that can help educators 

gain better insights into the teaching and learning process. These are learning design (LD) and learn-

ing analytics (LA). Learning design, in this context, is defined as “a descriptive framework for teach-

ing and learning activities (“educational notation”), and to explore how this framework can assist 

educators to share and adopt great teaching ideas.” (Dalziel et al., 2016, p.4). Research in LD has 

developed a wide range of tools and frameworks to document and visualise sequences of learning 

activities designed by teachers and to guide them through the LD process (AUTCLearningDesign, 

2002; Cross et al., 2012; Dalziel, 2003; Hernández-Leo et al., 2018; Koper et al., 2004; Laurillard et 

al., 2018; McAndrew et al., 2006). Through the transition from implicit to explicit representations 

of LD, teachers can reflect on their practices, while re-using and adapting good instructional ap-

proaches from others (Agostinho et al., 2011). 

In parallel to LD, LA has emerged as a field in the decade since the first Learning Analytics Knowledge 

(LAK) conference in 2011. Learning analytics is defined as “the measurement, collection, analysis 

and reporting of data about students and their contexts, for purposes of understanding and 

optimising learning and the environments in which it occurs” (Ferguson, 2012, p.305). LA research 

typically collects a large amount of data about students such as demographics, course performance, 

activity logs of students (Macfadyen et al., 2010), discussion forums interactions (Bakharia et al., 

2011; Wise et al., 2017), and open texts from essays or course evaluations (Ullmann, 2019; 

Whitelock, Twiner, et al., 2015). By taking advantage of advanced analytical techniques such as 
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machine learning (Ullmann, 2019), text-mining (Whitelock, Twiner, et al., 2015), and social network 

analysis (Wise et al., 2017), LA has created practical applications to support the learning process. 

One example is to improve retention rates through interventions based on predictions of students 

at risk of falling behind using student historical data (Arnold et al., 2012; Kuzilek et al., 2015; McKay 

et al., 2012).  

Although LA and LD had two different origins, there exists a strong synergy between the two fields, 

which was acknowledged at the first LAK conference (Lockyer et al., 2011) and in subsequent dis-

cussions (Bakharia et al., 2016; Griffiths, 2017; Lockyer et al., 2013; Mangaroska et al., 2018; Mor 

et al., 2015; Persico et al., 2015). Both create models of the learning process, LD represents the 

sequences of learning activities designed by teachers; while LA captures students behaviour while 

engaged in these activities (Griffiths, 2017). On the one hand, LA provides data and tools to test 

pedagogical assumptions in LD against actual student interactions. On the other hand, LD provides 

the necessary contextual overlay to better understand observed student behaviour and translate 

LA findings into actionable insights (Lockyer et al., 2011). Prior empirical works have shown the 

benefits of embedding LD in LA such as improving predictive accuracy of academic performance 

(Gašević et al., 2016), understanding the impact of LD on student engagement, satisfaction, and 

performance (Rienties & Toetenel, 2016b), and exploring the navigation sequence of learning ac-

tivities (Ifenthaler et al., 2018).  

Building on the intersection between LA and LD, the purpose of this thesis is to understand how 

teachers design activities for learning and how LD influences student behaviour in distance educa-

tion. To set the stage for this thesis, the next section highlights the research motivations and gaps 

in the current literature. Section 1.2 presents the aims and the research questions of four empirical 

studies as well as their contributions. Finally, Section 1.3 outlines the structure of the remaining 

chapters of this thesis.  

1.1 Problem Definition 

Designing for learning is both an art and a science (Maina et al., 2015). There are explicitly struc-

tured components in LD which can often be found in a course syllabus. These include the number 

of credits, level of study, subject topics, learning materials, and course schedule. However, LD is 

also a creative process that leaves room for variety in how each teacher designs and scaffolds se-

quences of learning activities for their students to achieve the learning goals (Rienties et al., 2015; 

Toetenel et al., 2016b). For example, some teachers might prefer lectures and readings while others 

emphasise group work and interactive activities. Some teachers prefer a summative assessment 

(i.e., exams) at the end of a course while others continuously assess their students throughout the 

learning process. Each designing decision will influence how students engage with the course, as 

well as their academic performance (Rienties & Toetenel, 2016b).  
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A large number of LD tools and frameworks has been developed over the years to capture and 

describe sequences of learning activities. Early examples are Educational Language Modelling (EML) 

(Koper et al., 2004), and the  Learning Activity Management System (LAMS) (Dalziel, 2003), while 

more recent ones include Learning Design Studio (Law et al., 2017), Learning Designer (Laurillard et 

al., 2018), and the Integrated Learning Design Environment (ILDE) (Hernández-Leo et al., 2018). 

Previous work reported that LD tools were positively perceived by teachers in facilitating new 

teaching ideas (Laurillard et al., 2018; Toetenel et al., 2016a), supporting a collaborative design 

process among practitioners (Hernández-Leo et al., 2018; Hernández-Leo et al., 2014; Hernández-

Leo et al., 2011), and making the LD process more systematic (Dalziel, 2003; Koper et al., 2004). 

While prior research has provided important evaluations of LD tools from a user-experience per-

spective, only a few studies have explored how teacher design courses on a large scale in practice 

(Rienties et al., 2015; Toetenel et al., 2016b).  

For example, Toetenel et al. (2016b) analysed 157 LD visualisations at the Open University (OU) and 

found that the majority of modules used assimilative activities (i.e., readings, watching, listening) 

and assessment (i.e., assignments, exams) activities. On average, assimilative and assessment ac-

tivities accounted for 39.27% and 21.50% of the total workload respectively. Rienties et al. (2015) 

identified four patterns of LD amongst 87 modules, which they labelled constructivist, assessment-

driven, balanced-variety, and social-constructivist. While these studies provided important insights 

into our understanding of LD, they did not explore how LD changes throughout the length of a 

course. For example, teachers use a wide range of learning activities varying from week to week or 

day to day throughout a course. The order and sequence of how learning activities are structured 

will potentially influence the effectiveness of the learning process. Therefore, this thesis will ad-

dress the gap in our understanding of how teachers design for learning in distance education and 

the temporal aspects of learning design.   

Although the documentation and visualisation of LD can make teacher’s pedagogical decisions of 

teachers more explicit, many factors behind the scene may not be visible to LD tools. These include 

pedagogical beliefs, personal experience, composition of the student body, and ‘politics’ within in-

stitutions (Bennett et al., 2015; Bennett, Agostinho, et al., 2017; Bennett, Dawson, et al., 2017; 

Bennett et al., 2011). Extensive research in the field has shown that LD is a multifaceted process 

which involved multiple stakeholders and different factors interacting in the process of designing 

and implementing teaching and learning activities (Bennett et al., 2015; Bennett, Agostinho, et al., 

2017; Bennett, Dawson, et al., 2017; Conole, 2009; Lockyer et al., 2008). For instance, Bennett et 

al. (2015) conducted 30 interviews across 16 Australian universities to explore key influences that 

shape university teachers' design decisions. The authors identified student-related factors (e.g., co-

hort profile, learning objectives, feedback from past sessions), teachers-related factors (e.g., prior 
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experience, pedagogical beliefs, self-belief), and context-related factors (e.g., colleges, institutional 

requirements, resources) that influenced how teachers engaged in the design process (Bennett et 

al., 2015). It is important to understand both what has been designed and why as well as how teach-

ers design. Therefore, this thesis will explore the underlying factors that influence teachers’ LD 

processes.  

While LD decisions are largely driven by teacher experience and the learning environment, it is also 

important to consider student characteristics, behaviours, and performance in order to understand 

the effectiveness of LD (Mor et al., 2015; Persico et al., 2015). Research in LA offers new opportu-

nities to unpack the process of how students engage with learning activities designed by teachers. 

At the same time, pedagogical insights gathered from LD tools can provide researchers with a nar-

rative that goes beyond the numbers. This helps translate LA findings into meaningful feedback to 

teachers. While the connection between LA and LD has been extensively discussed in the literature 

(Bakharia et al., 2016; Lockyer et al., 2013; Mangaroska et al., 2018; Mor et al., 2015; Persico et al., 

2015), there are limited empirical studies that have explored this topic (Gašević et al., 2016; 

Ifenthaler et al., 2018; Rienties & Toetenel, 2016a, 2016b; Rienties et al., 2015). For example, a 

large-scale study by Rienties and Toetenel (2016b) on 151 modules and 111,256 students indicated 

that LD significantly predicted student behaviour, satisfaction, and performance as well as increas-

ing model performance by 13%. Similarly, Gašević et al. (2016) demonstrated how the effect of 

student behaviour on performance varied significantly across different instructional conditions. 

While these two seminal studies (Gašević et al., 2016; Rienties & Toetenel, 2016b) have provided 

important markers for LD and LA, they were conceptualised at a course level. As a result, the com-

plex process of how learning behaviour changes over time has not been unpacked. Two recent spe-

cial issues in the Journal of Learning Analytics have also pointed out the need for more temporal 

analytics research to move the field forwards (Chen et al., 2018; Knight, Friend Wise, et al., 2017a). 

For this reason, this thesis will investigate how LD influences student engagement over time.  

1.2 Research Aims and Contributions  

The overarching aim of this thesis is to understand how teachers design for learning and how LD 

influences student engagement in distance education. The present work sits at the intersection of 

LD and LA research, which acts as a bridge between data-driven research and educational theories. 

The empirical work in this thesis is composed of four studies, which are outlined below. 

Study 1 started the empirical investigation by exploring how teachers design activities for learning 

through representations of learning activities in 37 undergraduate modules at a distance learning 

institution, the Open University UK, over 30 weeks. Using a combination of data visualisations and 

network analysis, Study 1 revealed common patterns and variations in LD over time across a large 

number of modules. By doing so, Study 1 addressed the following research questions: 
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Chapter 4 – Study 1. How teachers design for learning  

RQ1.1 What are the temporal characteristics of learning design? 

RQ1.2 How do different types of learning activity interact with each other? 

While Study 1 has provided an overview of how teachers design activities for learning, Study 2 con-

tinues with an in-depth investigation into the underlying factors that influence the design process 

and the affordances as well as barriers that teachers face when adopting LD practices. Through a 

series of semi-structured interviews with 12 teachers, Study 2 provided a new understanding of the 

opportunities and challenges of implementing an LD tool at scale. This will help OU practitioners 

improve their approaches and provide useful lessons for other institutions that wish to implement 

their own LD tools. Furthermore, this study considers how teachers make use of the existing feed-

back on their module to support LD decisions. Findings from Study 2 will help explain the observed 

LD patterns in Study 1. Altogether, Study 2 addresses the following research questions:  

Chapter 5 – Study 2. The underlying factors behind teachers’ design decisions 

RQ2.1 What are the driving factors behind teachers’ design decisions? 

RQ2.2 What are the barriers and affordances of learning design adoption at the OU? 

RQ2.3 How do teachers make use of feedback on their module to support learning design? 

After laying out the foundation for the understanding of LD through representations of learning 

activities and teacher perceptions, Study 3 examined the effect of LD on student behaviour, satis-

faction, and performance. Through a large-scale analysis of 37 modules and 45,190 students over 

30 weeks, findings from Study 3 helped validate existing assumptions in LD against actual student 

behaviour and triangulate findings from Study 1 and 2. Study 3 addressed the following questions: 

Chapter 6 – Study 3. The impact of learning design on student engagement, satisfaction, 

and pass rate 

RQ3.1 How do learning designs influence student behavioural engagement over time? 

RQ3.2 How do learning designs influence student satisfaction and pass rate?  

Study 4 took a further step to unpack the temporal aspect of student engagement to detect any 

potential mismatch between LD and student behaviour. The study also examines to what extent 

different patterns of engagement affect academic performance. Findings from Study 4 showcased 

how LA models informed by LD could provide teachers with actionable feedback to improve their 

teaching practices. Study 4 addressed the following question: 

Chapter 7 – Study 4. The alignment between learning design and student behaviour, and 

its impact on academic performance 

RQ4.1 How does students’ timing of engagement align with learning design? 

RQ4.2 How does students’ timing of engagement relate to academic performance? 
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Overall, the four empirical studies described above bridged the gaps between LA and LD research 

by examining LD from three integrated dimensions: LD representations, teachers’ perceptions, and 

students’ behaviours (Figure 1). Employing a mixed-method design, this investigation used a com-

bination of data visualisation, network analysis, qualitative interviews and multilevel modelling to 

help triangulate findings from the four studies. As a result, this thesis offers novel contributions to 

the understanding of both the design process and learning process in distance education.  

 

Figure 1. Key concepts and methods used in this thesis 

1.3 Thesis Structure 

The overall structure of the remaining chapters in this thesis are as follows: 

Chapter 2: Literature Review 

Chapter 2 presents an in-depth review of current research on the topics of LD and LA. The chapter 

highlights the current gaps in the literature, providing a rationale for the research questions ad-

dressed by this research.  

Chapter 3: Methodology 

Chapter 3 discusses the overarching methodologies and justifications for the pragmatic and mixed 

methods approach. It also describes the strengths and weaknesses of each methodological choice 

used to answer the research questions. The specific methods used for the four research studies are 

outlined in their corresponding chapters (Chapters 4 through 7). 

Chapter 4: Study 1 Methods and Results  

In Chapter 4, RQ1.1 and RQ1.2 are used to explore common temporal patterns and variations in LD. 

This chapter outlines the specific methods used to address these research questions, including in-

formation about the study setting, instruments, and data analysis. A brief discussion of the research 
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findings is included, as well as the limitations of the study and implications for future work in the 

thesis.  

Chapter 5: Study 2 Methods and Results 

Study 2 triangulates the findings from Study 1 through in-depth qualitative interviews (RQ2.1, 

RQ2.2, and RQ2.3). Chapter 5 outlines the specific research methods used to address these research 

questions including research context, participants, and analysis procedures. Finally, a short discus-

sion is provided, including the study’s limitations and implications for the remaining studies.  

Chapter 6: Study 3 Methods and Results 

Study 3 was a large-scale study to explore the impact of LD on student engagement (RQ3.1), satis-

faction, and retention (RQ3.2). The chapter describes the methods used to answer these research 

questions, including the setting, participants and analysis procedures. The findings are discussed in 

the chapter, along with the study’s limitations and implications for further work. 

Chapter 7: Study 4 Methods and Results 

Building on findings from Study 3, Study 4 carried out a fine-grained analysis of the temporal char-

acteristics of student engagement and its relations to LD (RQ4.1) and academic performance 

(RQ4.2). The chapter describes the methods used to answer these research questions, including the 

setting, participants and analysis procedures. The wider implications and limitations of these find-

ings are covered in a brief discussion. 

Chapter 8: General Conclusions and Discussion 

The final chapter synthesises the findings of the four studies, by providing final conclusions and 

outlining novel theoretical and methodological contributions to the field of LD and LA. In addition, 

implications and suggestions for practices are provided. The chapter concludes the thesis by dis-

cussing overarching limitations of this work and directions for future research.  
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Chapter 2 - Literature Review 

2.1 Introduction 

Drawing upon two strands of literature in learning analytics (LA) and learning design (LD), this chap-

ter seeks to explore the synergy between the two fields and identify the research gaps to be ad-

dressed in this thesis. Chapter 2 is divided into two parts: LD (Section 2.2) and LA (Section 2.3). 

Section 2.2 starts by discussing the existing progress in developing LD representations, followed by 

a synthesis of four LD taxonomies that are being used to classify learning activities, and analyses 

the current research gaps in LD. Section 2.3 first reviews the current progressing LA, then discusses 

its challenges and highlights the synergy between LA and LD. Finally, Section 2.4 summarises the 

research questions and concludes the chapter.  

2.2 Learning Design 

Learning design is a widely used term by researchers and practitioners in education. However, LD 

as a field refers to a body of literature emerging in the early 2000s as a result of the increasing 

presence of constructivist paradigm in education coupled with the emergence of online and tech-

nology-enhanced learning (Dalziel et al., 2016; Dobozy et al., 2018; Lockyer et al., 2008; Maina et 

al., 2015). A common metaphor of an LD is a music notation which contains enough information to 

convey musical (teaching) ideas from one to another over time and space (Dalziel et al., 2016). 

While the field of LD has progressed substantially for the last 20 years, there has been no conceptual 

unity in the definition of LD which reflects the complex nature of the field (Dalziel et al., 2016; 

Dobozy et al., 2018). Table 1 compiled a list of definitions as an overview of the evolution in thinking 

about LD over time. 

Table 1. Overview of learning design definitions 

Author(s) Definitions 

Agostinho (2006, p. 3) A representation of teaching and learning practice documented in 

some notational form so that it can serve as a model or template 

adaptable by a teacher to suit his/her context 

Koper’s (2006, p. 13) The description of the teaching-learning process that takes place in 

a unit of learning (e.g., a course, a lesson or any other designed 

learning event). 

Mor and Craft (2012, 

p.86) 

The creative and deliberate act of devising new practices, plans of 

activity, resources and tools aimed at achieving particular educa-

tional aims in a given context 
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Dobozy (2013, p.68) A way of making explicit epistemological and technological integra-

tion attempts by the designer of a particular learning sequence or 

series of learning sequences 

Conole (2013, p. 121) A methodology for enabling teachers/designers to make more in-

formed decisions in how they go about designing learning activities 

and interventions, which is pedagogically informed and makes ef-

fective use of appropriate resources and technologies 

Dalziel (2016, p.4) The new field of Learning Design seeks to develop a descriptive 

framework for teaching and learning activities (“educational nota-

tion”) and to explore how this framework can assist educators to 

share and adopt great teaching ideas. 

 

As can be seen from Table 1, there are three core features of LD that are present through all differ-

ent definitions: developing tools to describe and represent LD, providing guidance for teachers dur-

ing the LD process, and sharing LD practices between practitioners. While there are many different 

definitions of LD, this thesis operates on the definition laid out by Dalziel (2016) in the “The Larnaca 

Declaration on Learning Design” in 2016 which gathered leading experts in the field. This definition 

was selected because it captures the three salient elements of LD research: representations, guid-

ance, and sharing (Dalziel et al., 2016). The main premise is that by developing a descriptive frame-

work to document sequences of learning activities, it will help teachers reflect on their existing LDs, 

guide the design process, and share best practices with each other (Conole, 2012; Dalziel, 2015; 

Dalziel et al., 2016; Lockyer et al., 2008).  

Although the body of LD literature emerged in the early 2000s, the science of instructional design 

has been around for over six decades (Dick, 1987; Reiser, 2001). The origin of instructional design 

(ID) can be traced back to World War II where a large number of psychologists were called to con-

duct research and develop educational materials for the US military services. Research in ID is 

driven by behaviourism and cognitivism paradigm (i.e., Skinner, Gagne) while LD is influenced by a 

constructivism paradigm (i.e., Piaget, Vygotsky). A key distinction between ID and LD is that the 

former focuses on making the design process more systematic, while the latter aims at making the 

existing design more explicit, sharable, and reusable (Persico et al., 2015). ID focuses on what teach-

ers do while LD put more emphasis on what students do. Research output in ID are systematic 

models such as ADDIE (analyze, design, develop, implement, and evaluate), Dick and Carey systems 

approach model, and ASSURE (analyze students, state objectives, select media and materials, utilise 

materials, require student participation, and evaluation/review). Research output in LD includes 

tools and specifications such as LAMS, EML-ID, and OULDI which are described below. The terms 

learning design and instructional design are being used interchangeably by practitioners. However, 
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because of its historical origin, the term “instructional design” is more popular in the United States 

and Canada while the term “learning design” is frequently used in Europe and Australia. 

To develop a descriptive framework of learning activities, researchers need two components: a 

suitable method to represent LDs and an appropriate language to describe LDs. These two compo-

nents are described in the sections below.  

2.2.2 Learning design representation 

At the core of LD is a representation, which can be understood as an approach to document and 

describe teaching and learning activities (Dalziel et al., 2016). A common metaphor of LD represen-

tation is a music notation which contains enough information to convey musical (teaching) ideas 

from one to another over time and space. By developing an educational notation to describe exist-

ing LDs, educators can reflect on their practices, while re-use and adapt good LDs from others.  

LD representations can take the format of visual representations or textual representations. Textual 

representations can be expressed in formal/artificial languages to be processed by computers or in 

natural languages following a narrative. Visual representations often take the form of graphs or 

diagrams, to represent the main entities within a design and their mutual relationships (Persico et 

al., 2015). LD representations can take place at different levels of granularity such as program, mod-

ule, session, and learning activities (Dalziel et al., 2016). In the last 15 years, there has been a large 

number of research projects focusing on developing tools and approaches to make LD explicit 

through visual and textual representations (Table 2) (AUTCLearningDesign, 2002; Conole, 2012; 

Dalziel, 2003; Hernández-Leo et al., 2014; Koper et al., 2004; Laurillard et al., 2018; Law et al., 2017; 

McAndrew et al., 2006). 

Table 2. Learning Design representation tools 

Project Authors Type Purpose 

EML (Educational Modelling 
Language) 
IMS-LD 

Koper et al. (2004) XML languages Representation 
Sharing 
Reusability 

LAMS (Learning Activity 
Management System) 

Dalziel (2003) Diagram Representation 
Monitoring 
Reusability 

ILDE (Integrated Learning 
Design Environment) 

Hernández-Leo et 
al. (2018) 

Diagram Representation 
Sharing 

Learning Designer Laurillard et al. 
(2018) 

Diagram Representation 
Sharing 

LD studio Law et al. (2017) Diagram Representation 
Sharing 

OULDI (OU Learning Design 
Initiative) 

Cross et al. (2012) Diagram Representation 
Sharing 

AUTC (Australian Universi-
ties Teaching Council) 

AUTCLearningDesig
n (2002) 

Narrative Representation 
Sharing 
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An example of an LD representation using artificial languages is the work of Koper (2001); Koper et 

al. (2004); Koper et al. (2003), first on Educational Modelling Language (EML) and subsequently 

Instructional Management Standards Learning Design Specification (IMS-LD). In this research pro-

ject, the authors developed a semantic, formal and machine-interpretable specification of the LD, 

which is defined as the description of the teaching-learning process that takes place in the unit of 

learning. The core concept of IMS-LD consists of the following components: A person gets a role 

(e.g., student or teacher). The person works towards certain outcomes by performing learning or 

teaching activities within an environment. The LD method is designed to provide the coordination 

of roles, activities and associated environments that allows students to meet learning objectives. It 

was then visualised using a UML diagram and then codified into an XML file, which can be read by 

other digital LD engines.  

The repositories of exemplars LD by the Australian University Teaching Committee (AUTC) project 

is an example of a narrative based LD representations (AUTCLearningDesign, 2002).  The project 

aimed to produce generic/reusable LD resources to assist academics to create high quality, flexible 

learning experiences for students. These include a wide variety of guidelines, ICT tools, and a col-

lection of exemplar LDs. Educators can browse from a list of over 30 exemplar LDs categorized by 

five foci: collaborative, concept/procedure development, problem-based learning, project/case 

study, and role-play. Users can also filter the exemplars by other criteria such as discipline, ICTs 

used, or author. Once the users select an exemplar, they can view a snapshot of the LD with a 

written summary. The user can also view the respective LD using a visual format for illustrating the 

flow of activities over time. As of 2019, the website seems to no longer be updated1.   

The Learning Activity Management System (LAMS) is one of the foundation projects in LD since 

2005 and still going on as of 20192 (Dalziel, 2015; Dalziel et al., 2016). LAMS is an open-source sys-

tem for designing, managing and delivering online collaborative learning activities. It provides 

teachers with a visual authoring environment for creating sequences of learning activities. Teachers 

can create a learning sequence by selecting components of learning activities and link them to-

gether using drag and drop functions. The learning sequence can be integrated into LMS systems 

such as Moodle. However, the integration into LMS systems require technical configurations from 

an institutional level and would certainly increase teachers’ workload.  

 
1 http://www.learningdesigns.uow.edu.au/ 
2 https://www.lamsinternational.com/ 
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One of the rationales for making LD explicit is to facilitate knowledge exchange in the LD process. 

For example, the Integrated Learning Design Environment (ILDE), previously LdShake, is a commu-

nity platform to enable collaboration between practitioners for sharing and co-editing both con-

ceptualizations and fully-fledged authored LDs (Hernández-Leo et al., 2018; Hernández-Leo et al., 

2014; Hernández-Leo et al., 2011). The ILDE offers practitioners access to multiple conceptualiza-

tions tools to sketch preliminary ideas for their LDs (e.g Persona card, Course Features, Course Map, 

CompendiumLD). Users then can use authoring tools to produce full-fledged definitions of LDs pro-

vided by the integrated Web Collage (Villasclaras-Fernández et al., 2013) and OpenGLM (Derntl et 

al., 2011) editors. The LDs can then be deployed to VLEs. Users can choose to share the conceptu-

alization, authoring and deployed process with other users in the system. They can choose to 

browse other LDs based on tags, adding comments and discussion, and duplicate an LD for reuse. 

The authors reported overall positive evaluations from 107 workshops attendee and extensive us-

age of the ILDE tools based on user trace data on its system.  

As can be seen from Table 2, most LD representation tools used diagrams or flowcharts to capture 

sequences of learning activities. Visual representations of LD allows educators to have a quick over-

view of their course and the proportion of each learning activity type that make up the whole course 

(Laurillard et al., 2018; Law et al., 2017; Toetenel et al., 2016a). In addition, the sequential order of 

learning activities can be represented using flowcharts which allows educators to reflect on the 

coherence and logic of their LD (Dalziel, 2003; Hernández-Leo et al., 2018; Law et al., 2017). Textual 

representations of LD such as the description of a lesson plan give richer information and capture 

the nuances that might not be present in visual representations (AUTCLearningDesign, 2002). How-

ever, textual representations are time-consuming, and not comparable across different courses. 

While most of the LD tools focus on developing representations, only two of them (EML and LAMS) 

allow users to integrate their LD representations into LMS systems.  

Although the field of LD aims at developing a common descriptive framework to describe teaching 

and learning activities, there has been no consensus on a common educational notation to date 

(Dalziel et al., 2016; Dobozy et al., 2018; Maina et al., 2015). This poses a great challenge as the 

field progresses because new LD projects arising without a common language will create silos of 

knowledge. As a result, it creates a major barrier in sharing and reusing existing LDs for practitioners 

as well as replicating and reproducing scientific knowledges for researchers in the field of LD. The 

next section will dive in-depth into the four major taxonomies used in LD research and compare 

and contrast their similarities and differences as well as strengths and weaknesses: Bloom’s taxon-

omy and the revised Bloom’s taxonomy (Anderson et al., 2001; Bloom, 1956), the Conversational 

Framework (Laurillard, 2002), the Learning activity taxonomy (Conole, 2007; Conole, 2012), and the 

Learning Design pattern language (Law et al., 2017).  



  

14 
 

2.2.2 Taxonomies of learning activity 

Taxonomy refers to the practice and science of classification of things or concepts, including the 

principles that underlie such classification (Linnaeus, 1758). For example, in biology, animals are 

classified based on common ancestors or genetic traits. In economics, taxonomies are used to clas-

sify economic activities, companies and sectors, such as Standard Industrial Classification (SIC). Tax-

onomies are fundamental in advancing scientific progress as they represent a common language 

and thinking system. Without a reliable taxonomy, scientific progress will be inefficient as there are 

duplications and confusions across scientific findings. Although the concept of taxonomy started in 

Biology with Carl Linnaeus (Linnaeus, 1758), it has moved into other areas such as education with 

the Bloom’s taxonomy and the Bloom’s revised taxonomy (Anderson et al., 2001; Bloom, 1956). 

Educational taxonomy plays a vital role in guiding researchers to systematically conceptualizing 

their research to develop a new theoretical framework and learning theories.  

Although there are many taxonomies in education research, I will focus on reviewing four taxono-

mies that have been extensively used and embedded in the field of LD: 1) Bloom’s taxonomy by 

Anderson et al. (2001); Bloom (1956) which is foundational in the development of ID and LD; 2) the 

Conversational Framework by Laurillard (2002) which underpinned the Learning Designer tool at 

UCL3; 3) the learning activity taxonomy by Conole (2007); Conole (2012) which underpinned the LD 

research4 at the OU, 4) and the LD pattern language by Law et al. (2017) which underpinned the 

Learning Design Studio5 at Hong Kong University.  

2.2.2.1 Bloom’s taxonomy 

In 1956, Benjamin Bloom and colleagues published a framework to categorize educational goals 

entitled “Taxonomy of Educational Objectives”, also famously known as Bloom’s taxonomy (Bloom, 

1956). This framework consists of six levels within the cognitive domain: Knowledge, Comprehen-

sion, Application, Analysis, Synthesis, and Evaluation (Table 3). In 2001, another team of scholars 

led by Lorin Anderson, a former student of Bloom’s, and David Krathwohl, one of Bloom’s col-

leagues as he devised his classic cognitive taxonomy, published a revised version of the Bloom’s 

taxonomy (Anderson et al., 2001). The revised Bloom’s taxonomy changed the names of the six 

categories from nouns to verbs: Remember, Understand, Apply, Analyse, Evaluate, and Create 

(Table 3). These action words reflect a more active form of thinking and working with knowledge 

by students.  

 
3 https://www.ucl.ac.uk/learning-designer/ 
4 https://iet.open.ac.uk/themes/learning-analytics-and-learning-design 
5 http://lds.cite.hku.hk/ 
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Table 3. Bloom's taxonomies 

Bloom’s tax-

onomy 1956 

Revised 

Bloom’s tax-

onomy 2001 

Meaning 

Knowledge Remember Recognizing or recalling knowledge from memory. Remember-

ing is when memory is used to produce or retrieve definitions, 

facts, or lists, or to recite previously learned information. 

Comprehen-

sion 

Understand Constructing meaning from different types of functions be they 

have written or graphic messages or activities like interpreting, 

exemplifying, classifying, summarizing, inferring, comparing. 

Application Apply Carrying out or using a procedure through executing or imple-

menting. Applying relates to or refers to situations where 

learned material is used through products like models, presen-

tations, interviews or simulations.  

Analysis Analyse Breaking materials or concepts into parts, determining how the 

parts relate to one another or how they interrelate, or how the 

parts relate to an overall structure or purpose. Mental actions 

included in this function are differentiating, organizing, and at-

tributing, as well as being able to distinguish between the com-

ponents or parts. When one is analysing, he/she can illustrate 

this mental function by creating spreadsheets, surveys, charts, 

or diagrams, or graphic representations. 

Evaluation Evaluate Making judgments based on criteria and standards through 

checking and critiquing. Critiques, recommendations, and re-

ports are some of the products that can be created to demon-

strate the processes of evaluation. In the newer taxonomy, 

evaluating comes before creating as it is often a necessary part 

of the precursory behaviour before one creates something.     

Synthesis Create Putting elements together to form a coherent or functional 

whole; reorganizing elements into a new pattern or structure 

through generating, planning, or producing. Creating requires 

users to put parts together in a new way or synthesize parts 

into something new and different creating a new form or prod-

uct.  This process is the most difficult mental function in the 

new taxonomy. 
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Furthermore, the revised Bloom’s taxonomy also described different types of knowledge – factual, 

conceptual, procedural, and metacognitive and their intersections with the six categories in the 

cognitive process (Table 4).   

Table 4. Bloom's knowledge dimensions 

Knowledge dimension Definition 

Factual Knowledge The basic elements students must know to be acquainted with a dis-

cipline or solve problems. 

Conceptual Knowledge The interrelationships among the basic elements within a larger 

structure that enable them to function together. 

Procedural Knowledge How to do something, methods of inquiry, and criteria for using 

skills, algorithms, techniques, and methods. 

Metacognitive Knowledge Knowledge of cognition in general as well as awareness and 

knowledge of one’s own cognition 

 

Bloom’s taxonomy plays an instrumental role in designing curriculum and assessment in higher ed-

ucation. A recent systematic review of the use of the Bloom’s taxonomy in computer science edu-

cation based on 41 publications suggested that the taxonomy was most frequently used for design-

ing assessments (Masapanta-Carri et al., 2018). This includes developing questions or problems 

aimed at given cognitive levels, classifying questions or problems previously developed into cogni-

tive levels, and classifying students’ performance into cognitive levels. Other applications of 

Bloom’s taxonomy in computer science education includes scheduling instruction, specifying learn-

ing goals, developing new taxonomies, and developing educational software. The taxonomy has 

become a standard for describing learning outcomes of 21st-century university teaching in many 

administrative documents (i.e., the Bologna process documents) (Murtonen et al., 2017).  

Despite its popularity, the Bloom’s taxonomy has been reported as difficult to use due to various 

reasons (Griffiths et al., 2005; Masapanta-Carri et al., 2018; Murtonen et al., 2017). Firstly, as a high-

level classification system, the taxonomy does not account for the disciplinary differences in course 

design (Masapanta-Carri et al., 2018). Secondly, there remain overlaps between different catego-

ries which lead to inconsistent in categorization. For example, writing a report entails understand-

ing, analysing, applying, synthesising and creating. The issue of interpretation is also present in all 

other taxonomies. Thirdly, the interpretation of each level of the taxonomy, as well as the cognitive 

effort, are different between experienced and novice teachers. For example, taking notes could be 

a part of remembering factual knowledge but also a way to synthesise different conceptual 

knowledge. Finally, due to the epistemological origin of the Bloom’s taxonomy (i.e., behaviourism), 
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it does not cover social constructivism learning activities such as discussion, or collaboration 

(Masapanta-Carri et al., 2018; Murtonen et al., 2017).  

2.2.2.2 Conversational Framework 

The Conversational Framework of Laurillard (2002) aims to represent the teaching and learning 

process as an iterative dialogue between teachers, students, and the learning environment 

(Laurillard, 2002). It is inspired by Vygotsky, Piaget, and Dewey’s constructivism learning paradigm, 

and Gordon Pask’s Conversation Theory which proposed that knowledge is constructed through 

conversations between two or more cognitive systems such as teachers and students or students 

and students (Pask, 1976). The Conversational Framework encompasses four different communi-

cation cycles: teacher communication cycle, teacher modelling cycle, peer communication cycle, 

and peer modelling cycle (Laurillard, 2002, 2012). For example, a lecture is an example of the 

teacher communication cycle, in which teachers communicate certain concepts to students and 

students can ask teachers questions to clarify their understanding. Peer communication cycle oc-

curs, for example, when two students having a discussion about a topic. These ‘communication 

cycles’ emphasise the exchange of conceptual knowledge, whilst the ‘modelling cycles’ focus more 

on the exchange of practices. For example, the teacher modelling cycle occurs when teachers give 

written feedback on students’ essay. An example of peer modelling cycle is a group presentation.  

The Conversational Framework underpinned the Learning Designer, a web-based tool6 to support 

teachers in designing practices based on the idea of “teaching as a design science” (Laurillard, 

2012). The Learning Designer tool was developed to help teachers plan a sequence of learning and 

teaching activities using six learning activity types including acquisition, inquiry, practise, produc-

tion, discussion, and collaboration (Table 5) (Laurillard, 2012; Laurillard et al., 2018).   

Table 5. Laurillard’s Conversational Framework 

Pedagogy Activity type Examples 

Individual 

learning 

Acquisition Listening to a lecture or podcast, reading from books or websites, 

and watching demos or videos. 

Inquiry Explore, compare and critique the texts, documents and resources 

that reflect the concepts and ideas being taught. 

Practice Practising exercises; doing practice-based projects, labs, field trips, 

face-to-face role-play activities. 

Production Producing articulations using statements, essays, reports, accounts, 

designs, performances, artefacts, animations, models, videos 

 
6 http://beta.learningdesigner.org/index.php 



  

18 
 

Social 

learning 

Discussion Tutorials, seminars, email discussions, discussion groups, online 

discussion forums, class discussions 

Collaboration Small group project, using online forums, wikis, chat room 

 

In a recent evaluation of the Learning Designer tool based on 55 post-course surveys, Laurillard et 

al. (2018) showed that teachers could see the benefit of the tool and intend to use it for their teach-

ing practices. Further qualitative data indicated that teachers find the taxonomy useful for critical 

reflection on elements of existing LDs and to foster better pedagogy. Trace data from the tool also 

suggested an increasing trend in the number of visitors and pageviews over time.  

A key distinction between the Conversational Framework and Bloom’s taxonomy is the social ele-

ment of learning through discussion and collaboration activities. This reflects the evolution in teach-

ing and learning paradigm as collaborative activities are increasingly embedded in LD. However, 

one caveat of the Conversational Framework’s activity taxonomy was the lack of a separate cate-

gory for assessment activities. Instead, assessment activities fell under the production category as 

students produce learning artefacts (e.g., essays, reports, presentations) based on what they have 

learnt. Although students always produce learning artefacts as a part of assessment activities, there 

is a difference between their purposes (i.e., production activities put a stronger emphasis on help-

ing learners reflect on existing knowledge by producing essays, reports, presentation while assess-

ment activities focus more on evaluating knowledge comprehension) and the motivation of stu-

dents in each type of activities (i.e., non-graded vs graded activities). Furthermore, because assess-

ment design is a major part of LD with many variations (e.g., formative, summative, self, peer) (Earl 

et al., 2006; Panadero et al., 2017; Pereira et al., 2016; Torrance, 2007), it is imperative for a taxon-

omy to capture the essence and complexity of assessment activities.  

2.2.2.3 Learning activity profile 

The Learning Activity profile was developed as a part of a strategic institutional LD initiative at the 

Open University (i.e., OULDI) funded by JISC in 2008 (Cross et al., 2012). The taxonomy was designed 

by Conole (2007) and colleagues to help teachers (and students) map different types of learning 

activity across a course or sequence of learning events. The underlying principles of the OULD tax-

onomy are the concept of mediating artefacts (Conole, 2012), which were grounded in a sociocul-

tural perspective (Vygotsky, 1980) and activity theory (Engeström et al., 1999). The central idea of 

a sociocultural perspective is the notion that the process of cognitive development is contextually 

and socially bound. Thus, this recognizes that learning activities depend on the context within which 

they take place. The use of activity theory highlights the relationship between different components 

embedded in the design process and its context. Learning activities mediate between the users and 
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the end goals. If these activities can be abstracted and represented in a meaningful and under-

standable way, there is a greater chance of them being picked up, used and adapted by others. 

There are six activity types: assimilative, finding and handling information, communication, produc-

tive, experiential, interactive/adaptive, and assessment (Table 6).  

Table 6. Conole's Learning Activity Profile 

Taxonomy Definition Example 

Assimilative Attending to information Read, Watch, Listen, Think about, 

Access. 

Finding and handling 

information 

Searching for and processing 

information 

List, Analyse, Collate, Plot, Find, 

Discover, Access, Use, Gather.  

Communication Discussing module related 

content with at least one other 

person (student or tutor) 

Communicate, Debate, Discuss, 

Argue, Share, Report, Collaborate, 

Present, Describe. 

Productive Actively constructing an artefact Create, Build, Make, Design, 

Construct, Contribute, Complete.  

Experiential Applying learning in a real-world 

setting  

Practice, Apply, Mimic, Experience, 

Explore, Investigate. 

Interactive 

/adaptive 

Applying learning in a simulated 

setting  

Explore, Experiment, Trial, 

Improve, Model, Simulate.  

Assessment All forms of assessment 

(summarive, formative and self 

assessment)  

Write, Present, Report, 

Demonstrate, Critique. 

 

The Learning Activity profile is a fundamental component in LD research and practice at the OU. 

For example, Toetenel et al. (2016a, 2016b) compared the difference in 147 LDs before and after 

an LD workshop and concluded that the pedagogic decisions that educators made substantially 

changed. Courses that were designed after the introduction of LD workshop were more focused on 

the development of a range of skills and included fewer assimilative activities. Further comprehen-

sive analysis of 157 LDs which were represented using the Learning Activity profile found that as-

similative and assessment activities are the two predominant learning activity types accounting for 

39.27% (SD=17.17%) and 21.50% (SD=14.58%) of the total workload.  

Compared to Bloom’s taxonomy and the Conversational Framework’s learning activity taxonomy, 

the Learning Activity profile both captured the social learning aspect (i.e., communication) and eval-

uation activities (i.e., assessment). Both the Learning Activity profile and the Conversational Frame-
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work have similar categories, such as acquisition (assimilative), inquiry (finding and handling infor-

mation), and production (productive). However, the activity profile differentiates between prac-

tising in a simulated environment (i.e., interactive) and in a real-world environment (i.e., experien-

tial). On the other hand, the Conversational Framework differentiates between discussion and col-

laboration while the Learning Activity profile only has one communication category. 

2.2.2.4 Learning Design pattern language 

The LD pattern language was developed by Nancy Law and colleagues at the University of Hong 

Kong as a central part of the Learning Design Studio tool. Similar to the Conversational Framework 

and the activity profile, the LD pattern language was originated from a social constructivist learning 

paradigm, focusing on the role of students as active and self-directed, taking responsibility and 

agency for the learning process, with the teacher serving as a facilitator and motivator. However, 

the LD pattern language was underpinned by Alexander’s Pattern Language (Alexander, 1977) 

which highlights different levels of granularity in design and the relationships between them. For 

this reason, the LD pattern language comprises of 12 fine-grained activity types, which are grouped 

into four pedagogical categories (Table 7).  

Table 7. Law's Learning Design Pattern Language 

Pedagogy Activity type Definition 

Directed 

learning 

Receiving & interpreting 

information 

Work through prescribed content materials as in-

structed by the teacher 

Practice Work through prescribed tasks to apply learnt con-

tent/skills 

Test/Assessment Take part in assessment activities 

Exploratory 

learning 

Information exploration Engage in information exploration through search, 

selection, and evaluation 

Exploration through con-

versation 

Engage in the exploration of issues with others 

through conversations 

Tangible/immersive in-

vestigation 

Engage in investigative exploration in physical or 

virtual settings 

Productive 

learning 

Construction: concep-

tual/visual artefacts 

Work individually or together to construct a concep-

tual, visual artefact 

Construction: tangi-

ble/manipulable artefact 

Work individually or together to construct a tangi-

ble artefact 

Presentation, perfor-

mance, and illustration 

Present, illustrate, or perform individually, or in 

group 
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Reflective 

learning 

Reflection Engage in reflecting on the learning process and ex-

perience and making their thoughts explicit 

Revision Revise and resubmit a piece of work 

Self/peer assessment Engage in peer or self-assessment (using self-gener-

ated or teacher-provided rubric) 

 

The larger number of activity types allow users to capture and articulate their LD at a more fine-

grained level of granularity. For example, assessment activities consist of reflection, revision, 

self/peer assessment, and traditional assessment. However, the more categories, the more likely 

that they will overlap between each other, making it difficult for classification purposes. For exam-

ple, making a presentation could fall between “Construction: conceptual/visual artefacts” and 

“Presentation, performance, and illustration”. Because the LD pattern language and the LD Studio 

are in their infancy, there is little information on the efficacy of the tool and as well as the taxonomy. 

Based on the review of literature, Table 8 synthesises the four taxonomies and the associations 

between their activity types.  

Table 8 was organised according to the similarity in categorical definitions between the four learn-

ing taxonomies. For example, ‘remember’ and ‘understand’ in the Bloom’s taxonomy are synony-

mous with ‘acquisition’ in the Conversational Framework, ‘assimilative’ in the Learning Activity Pro-

file, and ‘receiving and interpreting information’ in the LD pattern language. Examples of such ac-

tivities include reading textbooks, watching videos, or listening to podcast. Another example of 

shared meaning in categories was ‘evaluate’ in the Bloom’s taxonomy which was synonymous with 

‘assessment’ in the Learning Activity Profile. The category of assessment was broken down further 

in the LD pattern language into ‘test/assessment’, ‘self/peer assessment’, ‘revision’, and ‘reflec-

tion’. Since there was no separate category for assessment in the Conversational Framework, the 

most relevant category is ‘production’ in which learners produce a wide range of artefacts that 

could be used for assessment, such as essays, reports, or presentation. It is worth mentioning that 

Table 8 refers my own interpretation of the four learning taxonomies, which might or might not 

concur with others’ interpretation. It is difficult to have a clear cut between these different catego-

ries. Nonetheless, when putting all the four learning taxonomies side-by-side, we can observe much 

overlaps and encompasses in many categories of learning activities  



  

22 
 

Table 8. A synthesis of four learning activity taxonomies 

Revised Bloom’s 

taxonomy 

Laurillard’s  

Conversational 

Framework 

Conole’s  

LD activity profile 

Law’s  

LD pattern language 

Remember Acquisition Assimilative Receiving & interpreting in-

formation Understand 

Apply Practice Experiential Practice 

Interactive 

Analyse Inquiry Finding & handling 

information 

Information exploration 

Evaluate Production Assessment Test/Assessment 

Self/peer assessment 

Revision 

Reflection 

Create Production/Collab-

oration 

Productive Tangible/immersive investi-

gation  

Construction: tangible arte-

fact 

Construction: conceptual/vis-

ual artefacts  

Presentation, performance, 

and illustration 

 Discussion Communication Exploration through conver-

sation  

 

Each of the four taxonomies above has its own strengths and weaknesses (Table 9). Although the 

older and more established Bloom’s taxonomy has been widely used across the world, it does not 

capture the shift towards social aspects of learning in the 21st century with collaboration and dis-

cussion activities. The Conversational Framework consists of both individual and social learning di-

mensions. However, it does not consider the essence and complexity of assessment activities, 

which is a major part of any LD in higher education (Earl et al., 2006; Panadero et al., 2017; Torrance, 

2007). The Learning Activity profile may combine the best of both worlds, taking into account both 

social learning and assessment activities. Furthermore, there is an emerging body of research that 

provide empirical evidence that this Learning Activity profile can explain and predict actual stu-

dents’ behaviour and engagement (Nguyen, Huptych, et al., 2018; Nguyen, Rienties, Toetenel, et 
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al., 2017; Nguyen, Thorne, et al., 2018; Rienties & Toetenel, 2016b; Rienties et al., 2015). However, 

the Learning Activity profile does not allow for classifying learning activities at a more fine-grained 

level of granularity compared to the LD Pattern Language with 12 different activity categories. How-

ever, the larger number of categories also means that there is a lot of overlap between categories 

making the interpretation process more difficult for users.  

Table 9. Strengths and weaknesses of four taxonomies (author’s own interpretation) 

Taxonomy Authors Applica-

tions 

Strengths Weaknesses 

Bloom Bloom; 

Anderson 

Across 

higher ed-

ucation 

High-level categorization 

Intersect with knowledge 

levels 

Widely use across the world 

Interpretation de-

pends on teachers’ 

experience  

Does not account for 

social learning (dis-

cussion, collabora-

tion) 

Conversa-

tional 

Framework 

Laurillard UCL’s 

Learning 

Designer 

tool 

Accounts for both individual 

and social learning 

Does not cover as-

sessment 

LD activity 

profile 

Conole OU’s 

Learning 

Design Ini-

tiative 

Accounts for both individual 

and social learning 

Large scale adoption within 

the OU UK and beyond. 

Rich empirical evidence 

showing a strong correlation 

with student behaviour 

Does not differenti-

ate between types of 

assessment 

LD pattern 

language 

Law HKU’s 

Learning 

Design Stu-

dio tool 

More fine-grained catego-

ries 

Accounts for four different 

pedagogies 

Overlapping categori-

zation 

Lack of empirical evi-

dence 

  

The Learning Activity profile developed by Conole (2007) was chosen as the main theoretical frame-

work for this thesis because it captures both the individual and social aspect of learning based on 

the seven types of learning activity. Furthermore, there have been a large amount of conceptual 

and empirical research using the Learning Activity profile to explore LD in online and distance edu-

cation (Conole, 2007; Conole, 2009, 2012; Conole et al., 2004; Mittelmeier, Long, et al., 2018; 

Rienties et al., 2017; Rienties & Toetenel, 2016a, 2016b; Rienties et al., 2015; Rizvi et al., 2019; 

Toetenel et al., 2016a, 2016b; Whitelock et al., 2016). The Learning Activity profile has been a major 

part of LD practice at the OU, with applications to over 150 courses (Rienties & Toetenel, 2016a; 

Toetenel et al., 2016a) and has been adopted by other institutions such as the University of South 
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Africa (Mittelmeier, Long, et al., 2018). Since the study context of this thesis is at the OU, the Learn-

ing Activity profile is the most suitable framework given the availability of LD data as well as the 

wealth of existing research on this framework. 

This session has critically reviewed four major learning activity taxonomies that have been widely 

used and embedded in LD tools. The next section will summarise the current research gaps in LD 

and argue how student learning behaviour can contribute to moving the field forward. 

2.2.3 Challenges in LD research 

Firstly, although LD representations are useful in describing design decisions at a meta-level, there 

are a lot of nuances that may not be captured through LD tools. LD is a complex process that is 

influenced by pedagogical, methodological, technological, and political factors (Bennett et al., 2015; 

Bennett, Agostinho, et al., 2017; Bennett et al., 2011; Dalziel et al., 2016). For instance, Bennett et 

al. (2015) conducted 30 interviews across 16 Australian universities to explore key influences that 

shape university teachers' design decisions. The authors identified student-related factors (e.g., co-

hort profile, learning objectives, feedback from past sessions), teacher-related factors (e.g., prior 

experience, pedagogical beliefs, self-belief), and context-related factors (e.g., colleges, institutional 

requirements, resources) that influenced how teachers engaged in the design process (Bennett et 

al., 2015). Their follow-up analysis focusing on the processes by which teachers design found that 

teachers approach LD as a top-down iterative process, beginning with a broad framework to which 

detail is added through cycles of elaboration. The design extends over the period before, while, and 

after a unit is taught, demonstrating the dynamic nature of design and highlighting the importance 

of reflection in teachers’ design practice (Bennett, Agostinho, et al., 2017). The integration of tech-

nological innovation into design practices was perceived as desirable but is constrained by infra-

structure, support, educator and student skills, and limited time (Bennett, Dawson, et al., 2017).  

Clearly, the process of LD is context-dependent and situated within a larger ecological system that 

involves multiple factors. Understanding teacher design practices and their context is crucial to the 

development of LD tools and frameworks. Insights gathered from teachers would also support the 

interpretation of visual and textual representations of LD. However, there is a lack of empirical 

studies in LD research exploring teacher design practices. A recent systematic review of 20 empirical 

LD studies showed that 13 out of 20 papers were devoted to the evaluation of tools, 5 out of 20 

papers investigated users’ needs, and only 3 out of 20 papers analyzed teachers design practices 

(Dagnino et al., 2018). Therefore, more research is needed to examine the driving factors behind 

teacher design decisions.  

Secondly, despite substantial progress in developing LD tools and frameworks as well as a large 

number of positive evaluation studies (Clifton, 2017; Hernández-Leo et al., 2018; Laurillard et al., 
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2018), LD has not been widely adopted as a standard practice by the education community at large 

(Dagnino et al., 2018). Up to now, many studies have reported on the positive affordances of LD 

practices (Clifton, 2017; Cross et al., 2012; Hernández-Leo et al., 2018; Laurillard et al., 2018) such 

as support for reflections on existing LD, support for reusing and adapting LDs, and facilitate coop-

eration amongst teachers. However, limited attention has been paid to the barriers that teachers 

face while they make use of LD tools and frameworks (Dagnino et al., 2018).  

The benefits for teachers to engage in the LD practices might not worth the cost of learning and 

operating a complex new LD tool. For example, in a critical evaluation of IMS-LD, Goddard et al. 

(2015) identified five reasons why IMS-LD’s progress has been so stunted despite a lot of attention 

it has received since the introduction in 2003. Based on 14 interviews of IMS-LD users, the authors 

suggested that: 

• IMS-LD’s purpose as an interoperability specification became sidelined 

• IMS-LD tries to be all things to all people 

• IMS-LD has not provided teachers and their institutions with compelling reasons to use it 

• IMS-LD places too many demands on teachers, in their practice and in their relationships 

with institutions and students 

• IMS-LD’s origins in distance learning limit the potential for its widespread adoption 

Although the study specifically focused on IMS-LD, its findings can potentially be generalised to 

other LD projects. Engaging in LD practice is a time-consuming process which put an extra burden 

on the workload of teachers without a clear benefit in return. Toetenel et al. (2016a) indicated that 

the process of ‘mapping’ a complete LD of a 60 credit module at the Open University UK takes 3-5 

working days, with multiple iterations between learning designer and teachers to ensure the LD 

representation consistent with the actual LD. Goddard et al. (2015) also reported that it is time-

consuming to document and create an LD specification given the complexity of IMS-LD. Clearly, 

previous studies have signalled some potential causes behind the slow uptake in LD tools and 

frameworks. In their systematic review, Dagnino et al. (2018) suggested that the lack of institutional 

support, lack of training, workload, conceptual complexity of method and tools, and motivations as 

some potential barriers to adoption of LD. The authors also made a point that all these factors were 

indirectly inferred from previous studies, which are often conducted in an experimental setting, 

rather than an explicit investigation into the barriers of adoption. Therefore, there is a lack of stud-

ies exploring the perceived barriers to adoption of LD tools in an authentic environment. 

Thirdly, previous research in LD has collected a large amount of information about the design of a 

certain course through visual or textual representations. Each LD representation is a (simplified) 

pedagogical model that could potentially provide us with insights about the design decisions of 
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teachers such as the type of learning activities, the amount of workload, or the sequential order 

when combining different activities together. However, only a few studies have utilised this infor-

mation captured in LD tools to generate new insights into how teachers design their course. For 

example, Toetenel et al. (2016a) analyzed 157 LD representations at the Open University UK and 

found that most courses predominantly comprised of assimilative activities (e.g., reading, watching, 

listening) and assessment activities while there was little use of collaborative or interactive activity 

types. Rienties et al. (2015) performed a cluster analysis on 87 LD representations to identify four 

distinct patterns of LD namely social-constructivist, constructivist, assessment-driven, and bal-

anced-variety. It is evident that LD representations can reveal many common patterns but also var-

iations of LD across different modules and disciplines. Although previous findings have shed new 

light on our understanding of LD in distance education, they have not explicitly investigated the 

temporal characteristics of LD (i.e., how the design of learning activities varies throughout the 

length of a module). In comparison to existing approaches capturing sequences of learning activi-

ties, a temporal visualization of LD at a weekly level help user gain valuable insights of common 

trends and patterns in the design of their learning activities, which are more difficult to extract from 

a long sequence of learning activities. This is important because learning is a time-variant process. 

Teachers make changes in learning activities and workload throughout the course to best support 

different phases of learning (e.g., understand, apply, synthesize, evaluate). Research in LD provides 

a great opportunity to understand these temporal characteristics of LD through data collected 

about the sequences of learning activities. Therefore, there is a need to better understand the 

temporal aspects of LD using the information generated from existing LD representations.    

The field of LD has a laudable aim of developing a descriptive framework – a common educational 

notation to capture teaching and learning activity and make LD explicit so that it can be shared and 

reused by other educators. However, there are many challenges in realizing this vision. The litera-

ture review has identified three main gaps in LD research: 

• A lack of research exploring teacher design practices 

• A lack of research investigating the affordances and barriers to adoption of LD tools in an 

authentic setting  

• A lack of research examining the temporal characteristics of LD  

To address the current gaps in LD research, this thesis proposed two studies. Firstly, Study 1 exam-

ines how teachers design for learning at the OU based on data generated from LD representations 

using the Learning Activity taxonomy. Study 1 aims to answer the following research questions: 

• RQ1.1 What are the temporal characteristics of LD? 

• RQ1.2 How do different types of learning activity interact with each other? 
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Secondly, Study 2 will explore the underlying factors behind teachers’ design decisions as well as 

the affordances and barriers of adoption of LD tools. Not only will teachers’ perceptions allow for a 

rich account of the complexities and nuances of LD but also help triangulate the findings from Study 

1 which are based on LD representations. Therefore, Study 2 aims to answer the following research 

questions: 

• RQ2.1 What are the driving factors behind teachers’ design decisions? 

• RQ2.2 What are the barriers and affordances of learning design adoption at the OU? 

• RQ2.3 How do teachers make use of feedback on their module to support learning design? 

A potential direction to help the field of LD move forward is to align student feedback and behaviour 

with LD representations to refine and improve existing LD (Dalziel et al., 2016; Lockyer et al., 2013; 

Mor et al., 2015; Persico et al., 2015). The practise of collecting and analysing student responses to 

improve teaching quality has been around for decades (Richardson, 2005). Traditionally, formative 

and summative assessments have been used to indirectly evaluate LDs through how well students 

perform. In addition, course evaluations as self-reports are usually used to capture how satisfied 

students are with the course materials and teaching approaches (Li et al., 2017b). While these two 

formal sources of information (assessment and course evaluation) have been utilised by teachers 

to reflect on their teaching practices, they suffer from several limitations.  

Firstly, summative assessment and course evaluations usually take place once the learning progress 

has finished, which prevent teachers from making in-time interventions (Wise et al., 2015). Sec-

ondly, assessment scores only assess what has been learnt, but not how students learnt and what 

can be improved in LDs. Thirdly, while self-report course evaluations provide a useful reflection of 

students on their learning experience, they are subject to sampling error, sampling bias, and re-

sponse bias (Richardson, 2005). In particular, the response rate of course evaluation is relatively 

low, typically covering only a third of the whole population. Furthermore, survey respondents are 

usually biased toward particular groups of students (i.e., those who completed the course and 

perhaps performed well). Recent large-scale studies have shown that there was little to no 

correlation between student self-report satisfaction and their academic performance (Rienties & 

Toetenel, 2016a; Rienties et al., 2015). In other words, students might find a course entertaining 

but did not learn much and vice versa.   

On the other hand, real-time feedback (verbally or behaviourally) of students while interacting with 

learning activities in class could be a rich source of information for teachers to reflect on (Dalziel et 

al., 2016). Nonetheless, its effectiveness might decrease as the class size increases or not applicable 

in other educational settings (e.g., online learning). For example, it is not possible to capture reac-

tions of all 200 students in a lecture, or how they learn outside of class. A potential opportunity in 
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online learning settings arises from the digital footprints left behind by student interactions in 

online learning platforms. By connecting LD representations to students’ outcome, feedback, and 

behaviour, teachers can evaluate what works and what does not work in their LD. The next section 

will introduce LA and discuss how aligning LA and LD could address the challenges in both fields.  

 

2.3 Learning Analytics 

The field of Learning Analytics has experienced tremendous growth in the last 10 years with 6,370 

publications indexed by Google scholar with the keyword “learning analytics” in 2018 (Figure 2). 

Starting from the first LAK conference in Banff, Canada in 2011, LA has attracted a lot of attention 

from practitioners, managers, and researchers in education by shedding light on a massive amount 

of potentially valuable data in education, as well as providing means to explicitly put traditional 

psychometric instruments and pedagogical theories into testing (Clow, 2013). LA brings together 

researchers from different backgrounds such as computer science, education, psychology, neuro-

science, and behavioural science (Teasley, 2019). The interdisciplinary nature of the field has 

sparked new debates and novel applications of research methods across disciplines. By 2019, the 

LAK proceedings (30% acceptance rate) are ranked 7th in the top 20 most cited publication outlets 

in the subfield of Education Technology.   

 

Figure 2. Publication trend in learning analytics on Google Scholar 

The first and perhaps most successful application of LA in education is predicting academic perfor-

mance or dropouts. An early work of Macfadyen et al. (2010) showed that LMS tracking data of 112 
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students in a fully online undergraduate biology course were able to explain more than 30% of the 

variation in final grade and correctly identified 81% of the students who failed the course. Romero 

et al. (2010) predicted whether a student passes or fail based on discussion forum interactions of 

114 first-year students in computer science. The authors obtained an accuracy of 70%-80% in the 

middle of the course and 80%-90% towards the end of the course. The high predictive power of 

trace data and its scalability have paved the way for many systems to predict at-risk students in 

real-time such as Course Signal at Purdue University (Arnold et al., 2012), E-Coach at Michigan Uni-

versity (McKay et al., 2012), and OU Analyse at Open University UK (Kuzilek et al., 2015).     

The second application of LA is the development of new measures, while cross-validating with self-

report measures, for established educational construct such as self-regulated learning, academic 

engagement, and reflective thinking (D'Mello et al., 2017; Ullmann, 2019; Winne, 2017). Self-regu-

lated learning is an ongoing process which consists of multiple stages such as surveying task condi-

tions, setting goals and planning, engaging the task, and composing major adaptations for future 

tasks (Winne, 2017). Trace data, by its nature, allows researchers to capture factors and features of 

SRL throughout the learning process. For example, Winne (2006) developed the software nStudy, a 

browser plugin which allowed students to annotate, quote, and tag relevant information as they 

study. Trace data generated from nStudy provide a rich account of the SRL process as it opens the 

black box of cognitive strategies during the learning process. Van Laer et al. (2019) investigates 

whether providing cues for calibration affects students’ self-regulated learning by examining 

changes in learning behaviour (computer logs) and academic performance. Kizilcec et al. (2017) 

investigated self-report SRL strategies of 4,831 students across six MOOCs and how these strategies 

manifest in online behaviour.  

Methods used in LA are derived from the inter-disciplinary nature of the field. Most empirical re-

search in LA is quantitative with some exceptions in policy and privacy research (Dawson et al., 

2019; Viberg et al., 2018). In traditional education research, quantitative methods are mostly orig-

inated from inferential statistics based on the Frequentist paradigm with the aim to explain and 

generalise certain educational phenomena. In addition to the existing methods, LA research inherits 

other techniques from a vibrant field of computer science such as machine learning, natural lan-

guage processing (NLP), social network analysis (SNA), sequential analysis, etc. The fusion of tradi-

tional statistics and data science techniques is a powerful driver of LA by allowing its researchers to 

analyse both structured (e.g., rows and columns) and unstructured data (e.g., texts, images) (Shum 

et al., 2016).  

There are some differences in the kind of research questions asked in LA and ‘traditional’ education 

research. On one end of the spectrum is the prediction type of research questions, in which re-

searchers are primarily concerned with optimising predictive accuracy (Brooks et al., 2017; Brooks 
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et al., 2015; Musso et al., 2013). This is somewhat different from the goal of traditional education 

research, which is to gain an understanding of how people learn. However, this kind of research has 

direct applications for building new predictive systems to identify at-risk students, which is a prior-

ity in many higher education institutions. On the other end of the spectrum is the focus on the 

input-process-output model (Tempelaar et al., 2015). Traditional education research often follows 

an input-output model which correlates some self-report measures or interventions with academic 

performance. Because of the availability of data throughout the learning process, LA researchers 

can start unpacking the process of how students come to accomplish their academic outcomes.  

2.3.1 Challenges in LA research 

The unprecedented quantities of learning-related data available today provide researchers with 

exciting opportunities to study patterns and processes of how people learn. However, there is a 

danger in falling into the trap of thinking that with enough data, the numbers speak for themselves.  

Despite its impressive progress to date, the field of LA is still facing many challenges in refining its 

measurements, connecting to learning theories and pedagogy, and translating LA findings into ac-

tionable insights (Crawford, 2011; Gašević et al., 2015; Griffiths, 2013; Wise et al., 2015).  

Firstly, larger datasets are not always better data (Crawford, 2011). From a statistical point of view, 

bigger datasets allow researchers to increase their sample size up to millions of students and the 

generalizability of their findings to a wider population of students. However, there is a well-known 

phenomenon in big data research called “garbage in garbage out”. For example, trace data from a 

course where the VLE is solely used for notes keeping purposes will not tell us much about how 

students learn (e.g., the click counts of downloading lecture slides). The number of clicks can also 

be a by-product of how the course interface was designed or the digital platform used (i.e., Moodle, 

Canvas) which has nothing to do with how students learn. Building a statistical model without an 

understanding of the data and their context will produce misleading findings. Another feature of 

big data is that not all data are equivalent (Crawford, 2011). For example, there is a difference be-

tween trace data of learning activities (e.g., student discussion in a forum) and trace data of admin-

istration/organisation tasks in a learning environment (e.g., teacher announcement in a discussion 

forum). Due to the central limit theorem, with a sufficient number of data points, something will 

always become statistically significant. However, a statistically significant variable does not always 

equate a large effect size. A variable with p =0.01 in 2 million data points might only have an effect 

size Cohen’s on the order of 0.004, which indicates that the variable increases or decreases aca-

demic performance by 0.04%. In other words, statistical analysis in macro data might produce micro 

results.  

Furthermore, the over-reliance on trace data may be problematic because of the difficulties in cre-

ating reliable metrics, as well as interpretation. Trace data are often used as proxies of academic 
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engagement (Azevedo, 2015; Tempelaar et al., 2015). However, engagement is a multi-dimensional 

construct which consists of behavioural engagement, cognitive engagement, and emotional en-

gagement (Sinatra et al., 2015). The inferences from trace data are usually limited to behavioural 

engagement only (Azevedo, 2015). Students can exhibit a high level of behavioural engagement 

(i.e., spend a lot of time on VLE) but they might not be cognitively engaged with the learning tasks 

(i.e., watching YouTube). Behavioural engagement patterns based on trace data are also difficult to 

interpret without instructional contexts. For example, a decrease in the level of engagement could 

be explained by either a) the student was falling behind or b) a study break in course design. Gašević 

et al. (2016) demonstrated that the relationship between trace data and academic performance 

was moderated by instructional conditions. Rienties and Toetenel (2016a) established a strong cor-

relation between different types of learning activity and time spent on VLE. Therefore, the lack of 

instructional context in LA research raises concerns as to the validity of LA findings and interpreta-

tions.  

Secondly, many LA studies are focused on algorithm optimisation instead of building a better un-

derstanding of how people learn. While developing new and reliable analytical methods is im-

portant, researchers should not forget the ‘learning’ element in LA (Gašević et al., 2015). Without 

a pedagogically informed approach to data, LA researchers may struggle with deciding which vari-

ables to attend to, how to generalise the results to other contexts, and how to translate their find-

ings into actions (Kirschner, 2016). As a consequence, LA researchers might fall into the trap of only 

measuring what is available instead of what is valuable and important, or as Paul Kirschner elegantly 

put it in his LAK16’s keynote “only searching for the keys where the light is”. Wise et al. (2015) 

argued six important functions of theory in the analysis of large-scale data:  

• Theory gives researcher guidance about which variables to include in a model 

• Theory gives researcher guidance about what potential confounds, subgroups, or covari-

ates in the data to account for  

• Theory gives researcher guidance as to which results to attend to  

• Theory gives researcher a framework for interpreting results  

• Theory gives researcher guidance about how to make results actionable  

• Theory helps researcher generalise results to other contexts and populations 

Thirdly, many behavioural patterns can be identified from student activities, such as the number of 

clicks, discussion posts, or essays completed. However, these patterns alone are not sufficient to 

offer feedback that teachers can put into actions (Gašević et al., 2016; Rienties, Boroowa, Cross, 

Kubiak, et al., 2016; Tempelaar et al., 2017). For example, a recent large-scale study reviewing the 

use of predictive analytics tools with 240 teachers in 10 modules at the OU revealed that while 

teachers expressed interest in using predictive LA data in the future to better support students at 
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risk, there has not been a clear benefit between groups of teachers having access to predictive LA 

data and groups of teachers that had no access (Herodotou et al., 2017). One potential explanation 

for this could be that the predictive analytics tool (i.e., OU Analyse) only provided information about 

the students’ level of engagement on the VLE and their likelihood to pass a course. However, the 

analytics model has not been able to explain why students displayed certain behavioural patterns 

or which learning materials need to be amended. Both internal conditions (e.g., motivation, cogni-

tion, emotion) and external conditions (e.g., learning design, learning equipment) could affect stu-

dent behaviour (Winne et al., 1998). Therefore, from the teacher’s point of view, it is difficult to 

derive interventions based on predictive information without understanding the context (i.e., learn-

ing design) in which these behaviours took place. One way to address the above challenges, as 

suggested by Gašević et al. (2015) is to take into account the instructional context, which is dis-

cussed below.  

2.3.2 Connecting learning analytics and learning design 

Given the increasing need to make use of student data to provide feedback on teaching practices, 

and the importance of taking into account instructional context in large-scale data analysis, the two 

fields LD and LA begin to blend themselves together to reveal the complex interplay between 

teacher and student practices. The potential affordances and limitations in both fields have at-

tracted an increasing interest to align LA with LD (Bakharia et al., 2016; Griffiths, 2017; Lockyer et 

al., 2011; Mangaroska et al., 2018; Mor et al., 2015; Persico et al., 2015). First, the analysis of trace 

data could equip educators with authentic and fine-grained proxies of how students engage in 

online learning activities. Second, by capturing and visualizing the design of learning activities, the 

LD approach could provide a pedagogical context to support interpreting and translating LA findings 

into interventions (Lockyer et al., 2013; Persico et al., 2015). For example, Lockyer et al. (2013) 

introduced two categories of analytics applications: checkpoint analytics to determine whether stu-

dents have met the prerequisites for learning by assessing relevant learning resources, and process 

analytics to capture how students are carrying out their tasks. Persico et al. (2015) argued that the 

learning process should not only depend on experience, or best practice of colleagues but also pre-

existing aggregated data on students’ engagement, progression, and achievement. They discussed 

three dimensions of LD that can be informed by LA: representations, tools, and approaches. 

Bakharia et al. (2016) proposed four types of analytics (temporal, tool specific, cohort, and compar-

ative), and contingency and intervention support tools with the teacher playing a central role. 

By making existing pedagogical models more explicit, LD can equip researchers with a narrative 

behind their numbers and convert trends of data into meaningful understandings and actionable 

insights. For example, Gašević et al. (2016) examined the extent to which instructional conditions 

influence the prediction of academic success in nine undergraduate courses offered in a blended 
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learning model. By comparing the differences in the variability of grades explained by trace data 

metrics across different courses, their results suggested that it is imperative for LA to taking into 

account instructional conditions across disciplines and course to avoid overestimation or underes-

timation of the effect of LMS behaviour on academic success. In a large-scale study of 151 modules 

and their 111,256 students at the OU, Rienties and Toetenel (2016b) revealed relations between 

LD and VLE behaviour, along with student satisfaction, and retention. The findings showed that 

taking the context of LD into account could increase the predictive power of student behaviour by 

10-20%.  

In addition, Rodríguez‐Triana et al. (2015) have illustrated the potential of orchestrating monitor-

ing-aware design processes, and scripting-aware monitoring processes to support teachers to 

design CSCL activities. Rizvi et al. (2019) investigated the sequential engagement pattern of 2,086 

students in a science MOOC course on FutureLearn and found that ‘non-markers’ type of students 

preferred assimilative activities such as watching videos or reading articles (87.46%) to communi-

cation (10.16%) and assessment activities (2.38%). Nguyen, Thorne, et al. (2018) studied the effect 

of study breaks on academic performance and student engagement of 123,916 undergraduate stu-

dents in 205 modules from 2015–2017 at the Open University. The authors indicated a positive 

association between study breaks and the odds of passing a course (odd ratio = 1.28, p<0.001), 

while there was no statistically significant effect in relation to the number of assessment prepara-

tion and revision weeks.  

Although there were numerous conceptual discussions in aligning LA with LD, the number of em-

pirical studies on the subject has been rather limited (Gašević et al., 2016; Rienties & Toetenel, 

2016b; Rienties et al., 2015). The study of Gašević et al. (2016) pointed out the difference in the 

effect of LMS trace data on performance between courses. However, the authors did not specifi-

cally examine aspects of the course design and how LD influences LMS learning behaviour. Two 

studies of Rienties and Toetenel (2016b); Rienties et al. (2015) took into account explicit LD repre-

sentations and their association with student engagement and performance. However, two limita-

tions of these studies were the collapse of all VLE activities under the average weekly time spent 

per course and the aggregated rather than a longitudinal perspective of LD. Since learning and 

teaching is a time-variant process, it is crucial to take into account fine-grained data from individual 

interactions in the VLE and investigate the effect of LD on student behaviour over time.  

The importance of temporal analysis in LA research has been emphasised in the two recent special 

issues in the Journal of Learning Analytics (Chen et al., 2018; Knight, Friend Wise, et al., 2017a). 

Both LA and LD has the capability to collect fine-grained data about learning processes over a long 

period of time. The changes in learning behaviour over time largely depends on the sequences of 

learning activities designed by teachers. For example, courses with a continuous assessment 
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strategy might have a more constant engagement pattern than courses with a mid-term and a final 

exam. The study workload assigned by teachers will influence the amount of time that students 

spend on studying.  

Therefore, the next study in this thesis will examine how LDs influence student engagement, 

satisfaction, and pass rates: 

• RQ3.1 How do learning designs influence student behavioural engagement over time? 

• RQ3.2 How do learning designs influence student satisfaction and pass rate?  

Finally, the last part of this thesis aims to explore to what extent student learning behaviours align 

with teachers’ LD and how can we detect existing inconsistencies. When teachers design for learn-

ing, they often estimate the workload of each activity and the corresponding time period for each 

activity (e.g., take 3 hours to read chapter 2 in week 2). LD is often embedded in the course syllabus 

and acts as a guideline for students to self-regulate their learning process (Biggs et al., 2007; Dalziel, 

2015; van Merriënboer et al., 2002). However, students as agents consciously and perhaps oppor-

tunistically make decisions on what, how, and when to engage in a particular range of learning 

activities (Winne, 2017). While teachers might think that a student will read chapter 2 in week 2, 

perhaps some students are already pre-reading materials from week 4, while other students may 

not have watched the introduction video of week 1.  

A large body of educational literature in time management and procrastination has shown that 

students who are more capable of planning and managing their time for studying tend to perform 

better than students who procrastinate (Broadbent et al., 2015; Claessens et al., 2007; Kim et al., 

2015). While previous studies in education often capture the time construct as a static trait through 

self-report questionnaires (Macan, 1994), there is a shortage of research exploring the dynamic 

temporal changes in learning behaviour in an authentic setting. LD provides a frame of reference 

of what and when teachers expect their students to study, and LA offers a realistic picture of what 

and when students study.  Therefore, by having a better understanding of how much time students 

spent on respective learning materials and, more importantly for this study, when in time they 

studied these learning materials, this may enhance our intertemporal understanding of how stu-

dents make complex study decisions. 

Therefore, Study 4 will investigate the extent to which temporal aspects of student engagement 

align with LDs and how different engagement patterns influence academic performance.  

• RQ4.1 How does students’ timing of engagement align with learning design? 

• RQ4.2 How does students’ timing of engagement relate to academic performance? 
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2.4 Conclusion 

Given the aforementioned gaps in the literature and the synergy between LA and LD, this thesis 

aims to understand how teachers design for learning from three perspectives: LD representations, 

teachers’ perceptions, and students behaviours (Figure 3). Study 1 will examine how teachers de-

sign for learning over time based on data captured from LD representations. Study 2 will explore 

teacher’s perceptions towards their own LD, towards the existing LD practices at the OU, and to-

wards the potential of using LA to support their teaching practices. This will help to compare and 

contrast any similarities and differences between LD representations and the intentions of teach-

ers. Study 3 will investigate the effect of LD on student behavioural engagement over time. This will 

reinforce the role of instructional context and pedagogy in LA research. Study 4 will dive deeper 

into the temporal process of learning behaviours at a fine-grained level. This study will identify the 

inconsistencies between teachers’ LD and actual learning behaviour of students. The study will 

make a powerful case of how combining LA and LD could produce actionable insights. In conclusion, 

the multi-dimensional approach will allow me to examine the complexities of LD and triangulate 

results from multiple perspectives, which will increase the reliability of the findings.    

 

 

Figure 3. Understanding learning design from three perspectives 
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Chapter 3 – Methodology  

3.1 Introduction  

This chapter describes the overarching methodologies and methods adopted in the four empirical 

studies, which are described in Chapters 4-7. Section 3.2 presents the research philosophy and jus-

tifications for the use of a pragmatic approach and mixed methods in this thesis. Section 3.3 pro-

vides an overview of the research design, study context, and instruments. Section 3.4 describes the 

rationale of each method incorporated across the four studies (i.e., network analysis, multilevel 

modelling, and semi-structured interviews). Finally, Section 3.5 discusses the ethical considerations 

applied in this research.  

3.2 Research Philosophy 

This thesis aims to investigate how teachers design their course and the impact of LD on student 

engagement in distance education by connecting LD with LA. Because of the interdisciplinary nature 

of both fields, it is essential to select appropriate methodologies and methods that align with the 

research questions and the philosophical underpinnings when designing research studies (Crotty, 

1998). To understand the positionality of this thesis, it is important to discuss the role of a research 

paradigm (Kivunja et al., 2017). 

In educational research, a research paradigm refers to a perspective, or thinking, or school of 

thought, or set of shared beliefs, that informs the meaning or interpretation of research data (Kuhn, 

1962; Mackenzie et al., 2006). A paradigm comprises of three main elements: epistemology, ontol-

ogy, and methodology (Twining et al., 2017). Ontology refers to the nature of truth (i.e., what is 

reality), while epistemology is concerned with the nature of human knowledge about truth (i.e., 

how do we know what reality is) (Mertens, 2014). Methodology is the broad term used to refer to 

the research design, methods, approaches and procedures used in an investigation that is well 

planned to find out something (Lincoln et al., 1985).  

Three popular research paradigms in education are positivism, interpretivism, and critical paradigm 

(Crotty, 1998). A fourth paradigm which combines elements from these three is known as a prag-

matic paradigm (Tashakkori et al., 1998). Table 10 summarises these four paradigms and their epis-

temology, ontology, and methodology.  
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Table 10 Comparison of popular research paradigms 

Paradigm Ontology Epistemology Methodology Methods 

Positivism There is one single 
truth waiting to be 
found 

Reality is measura-
ble with valid, reli-
able tools 

Quantitative Experiments 
Surveys 
Statistical analysis 

Interpretive / 
Constructiv-
ism 

Realities are multi-
ple and socially 
constructed 

Reality must be 
interpreted 
through the lens 
of group members 

Qualitative Interviews 
Observation 
Case study 
Narrative 

Critical Realities are 
shaped by social, 
political, cultural, 
economic, ethnic 
and gender-based 
forces 

Reality is socially 
constructed and 
must be 
interpreted 
through the lens 
of society 

Qualitative Interviews 
Observations 
Focus groups 
Journals 

Pragmatism Reality is the prac-
tical effects of 
ideas 

Reality can be 
discovered by the 
best-suited 
method for each 
problem 

Quantitative 
and qualitative 
(mixed meth-
ods) 

A combination of 
any of the above 

 

Based on (Kivunja et al., 2017; Lincoln et al., 1985; Mackenzie et al., 2006; Tashakkori et al., 1998; 

Twining et al., 2017) 

Positivism is by far the most dominant research paradigm in the field of LA. For example, systematic 

reviews by Viberg et al. (2018) on 252 papers on LA in higher education from 2012 to 2018, and by 

Dawson et al. (2019) on 552 papers in LAK proceedings from 2011 to 2018 showed that most LA 

studies focused on measuring, quantifying, and modelling student characteristics and their behav-

iours using statistical methods. Positivistic LA researchers often use self-report measures 

(Tempelaar et al., 2015), trace data (Macfadyen et al., 2010), or physiological data (Dikker et al., 

2017) as proxies of student characteristics and learning processes. Positivist LA research operates 

on the assumption that learning strategies, processes and learning outcomes might be captured 

and formalised through proxies generated from digital learning systems or validated question-

naires. The positivist paradigm is frequently adopted when the learning constructs can be quanti-

fied through established measurements and the priority of the research is generalizability (Cohen 

et al., 2002; Mackenzie et al., 2006).  

However, in many circumstances, the investigated problems in education are complex and difficult 

to formalise. For example, LA adoptions and ethical issues are multifaceted, and consist of socially-

constructed perceptions on what is considered as ‘effective’ and ‘ethical’ in LA (Ferguson et al., 

2017; Griffiths, 2013). Therefore, qualitative approaches come from the interpretivism/construc-

tivism, and critical paradigm (i.e., interviews, focus groups) are suitable for evaluating the impact 

of LA adoptions (Herodotou, Rienties, et al., 2019), or understanding ethical/privacy issues in LA 
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(Prinsloo et al., 2017). For example, the SHEILA (Supporting Higher Education to Integrate Learning 

Analytics) introduces a LA policy development framework based on interviews with 78 senior man-

agers from 51 European higher education institutions across 16 countries (Tsai et al., 2018). The 

interpretivism paradigm is often used to gain in-depth understandings of a research phenomenon 

within a specific context (Cohen et al., 2002; Mackenzie et al., 2006).  

Research in the field of LD is drawn from the social-constructivism paradigm (Dalziel et al., 2016; 

Lockyer et al., 2008; Maina et al., 2015). Conole (2012) argues that the underlying principles of LD 

are the concept of mediating artefacts (Conole, 2012), which were grounded in a constructivist 

perspective (Vygotsky, 1980) and activity theory (Engeström et al., 1999). The central idea of a con-

structivist is the notion that the process of cognitive development is contextually and socially 

bound. Thus, this recognizes that learning activities depend on the context within which they take 

place. For example, the use of Activity Theory highlights the relationship between different compo-

nents embedded in the design process and its context (Engeström et al., 1999). Learning activities 

mediate between the users and the end goals. If these activities can be abstracted and represented 

in a meaningful and understandable way, there is a greater chance of them being picked up, used 

and adapted by others (Conole, 2012).  

Each research paradigm has its own strengths and weaknesses. Positivists might overlook the social 

contexts and subtle nuances of educational phenomena, while interpretivist research is subject to 

criticism of generalisability and replicability (Creswell & Clark, 2017). If researchers fix themselves 

only on a single research paradigm, they might have to face certain compromises: generalised (i.e., 

the finding can be applied across contexts) versus contextualised (i.e., the finding account for its 

local context), hypothesis testing (i.e., was there a correlation) versus theory generating (i.e., why 

was(not) there a correlation), or personal biases (e.g., self-fulfilling prophecy, social desirability 

bias) versus systematic biases (e.g., sampling bias, measurement errors) (Cohen et al., 2002; 

Mackenzie et al., 2006).    

Because this thesis revolves around the intersection of LA and LD, it requires methods from differ-

ent research paradigms that are the most suitable for answering each respective research question. 

On the one hand, the exploration of LD and its relation to student behaviour (Study 1,3,4) can be 

captured through artefacts of learning activities and digital traces. On the other hand, teachers’ 

perceptions of LD (Study 2) are influenced by both individual and social context. Therefore, the 

research questions called for the flexibility of a pragmatic approach with a mixture of quantitative 

and qualitative methods (Tashakkori et al., 1998). Pragmatism accepts that truths are multifaceted, 

and researchers should use the best-suited method to answer each research question (Tashakkori 

et al., 1998).  
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Although mixed-methods research is powerful, it can be challenging, expensive, and time-consum-

ing for researchers to carry out because they demand mastery from a wide range of techniques 

(i.e., statistical and computational modelling, surveys design, qualitative analyses). A mixed-method 

design also requires a carefully thought-out research design so that both qualitative and quantita-

tive elements can be harmonised together (Johnson et al., 2004). Last but not least, mixed methods 

can be opposed by “methodological purists” who contend that one should never mix methods from 

two different research paradigms (Twining et al., 2017).  

This section has provided the justifications for adopting a mixed-method research design within a 

pragmatic research paradigm. The next section will describe the research design in more details. 

3.3 Research Design  

The overarching aim of this thesis is to understand how teachers design for learning in a distance 

higher education institution and the effect of LD on student engagement. To achieve this aim, I 

employed a case study approach as a research strategy for methodological exploration. According 

to Yin (2014), a case study is an empirical inquiry that investigates a phenomenon in depth within 

real-world context, where the boundary between the phenomenon (i.e., effect of learning design 

on student engagement) and its context (i.e., The Open University) is unclear, and may contain 

many variables. A case study research design is particularly powerful when the investigated phe-

nomenon requires a collection and analysis of multiple data sources (e.g., learning design artefacts, 

teachers’ beliefs, and students’ behaviour). A case study goes hand in hand with a mixed-method 

research design, as they are both not assigned to a fixed ontological, epistemological or methodo-

logical position (Guetterman & Fetters, 2018). To integrate mixed-methods within a case study de-

sign, this thesis undertook a single, embedded case study approach that involves units of analysis 

that come from multiple levels (i.e., course level, teacher level, student level).  

3.3.1 Study context 

Given the aim of this thesis, which is to explore how teachers design their course and how LD im-

pacts student engagement in distance education, the Open University UK (OU) was chosen as the 

study context of this thesis. Firstly, the OU is the largest academic institution in the UK and in Europe 

with 117,935 enrolled students in 2017/187. The number of part-time students at the OU accounts 

for 23% of all part-time students in the UK1. As a pioneer in distance learning model since 1969, the 

OU offers more than 200 qualifications and 400 modules via a distance learning model, which in-

volves the use of a VLE in conjunction with online and/or face-to-face tutorials with designated 

tutors. Furthermore, many distance learning institutions around the globe have been modelled af-

ter the OU adopting similar teaching and LD principles (Mittelmeier, Long, et al., 2018). Therefore, 

 
7 https://www.hesa.ac.uk/news/17-01-2019/sb252-higher-education-student-statistics/location 
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the OU is an ideal place for research in distance and online education because it increases the gen-

eralisability (i.e., large samples) and transferability (i.e., applicable in other distance learning set-

tings) of the findings in this research project.  

Secondly, the OU is one of the pioneers in researching and implementing LA initiatives at a large 

scale in the UK (Clow, 2013; Ferguson, 2012; Herodotou et al., 2017; Herodotou, Rienties, et al., 

2019). For example, OU Analyse produces an early prediction of ‘at-risk’ students based on their 

demographic data and their interaction with Virtual Learning Environment (Kuzilek et al., 2015). 

The project was piloted in 2014 and now has been rolled out to a large number of 231 module 

teams and 1159 associate lecturers (ALs) at the OU (Herodotou et al., 2019). In addition, the OU 

has a rich database of its students including demographics, academic performance, course registra-

tion, and trace data of activities on VLE across hundreds of thousands of students since 1970s. 

Therefore, the OU provides a unique opportunity for LA researchers to address educational re-

search questions at a large-scale, improving research external validity and generalisability.  

Thirdly, the OU is also a leader in researching and supporting LD in online and distance learning 

environments (Conole, 2012; McAndrew et al., 2006; Sharples et al., 2016) . Compared to other 

universities, the OU module production process is longer and more complex. This process typically 

takes two to four years, involving multiple stakeholders with highly specialised skills in academic 

content writing, teaching, project management, media production and technical development 

(Cross et al., 2012). For example, the OULDI-JISC project from 2008-2012 aimed at implementing, 

evaluating and revising a range of LD tools, approaches and resources that had been developed for 

the enhancement of formal and informal curriculum design practice (Cross et al., 2012). A wide 

range of tools to support LD was created from this project, such as Compendium LD, Cloud works, 

Course Map, Activity Profile. A small number of studies at the OU have started exploring the synergy 

between LA and LD at a macro level (Rienties & Toetenel, 2016a, 2016b; Rienties et al., 2015; 

Toetenel et al., 2016a). This has laid out a foundation for my research project to build upon and to 

further explore the connection between LA and LD at a more fine-grained level.  

Finally, while there are other distance online learning platforms such as edX, Coursera, Udacity, or 

Future Learn, the OU has the unique advantages as well as disadvantages of being a formal distance 

learning institution (McAndrew et al., 2013). OU students often register to pursue a long-term ed-

ucational process that results in undergraduate and/or post-graduate degrees. Students are ex-

pected to pay tuition fees (approx. £5,000 per annum), to take part in examinations, and follow a 

fixed study schedule (i.e., by semester). In contrast, MOOCs are often offered for free or with a 

small fee without the constraint of a fixed schedule. Therefore, MOOCs attract a larger number of 
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students compared to a formal distance learning institution such as the OU. However, the ad-

vantages of MOOCs come with a price, that is a low completion rate and the lack of information 

about students (Jordan, 2014, 2015). 

To effectively compare LD and learning behaviour using LA, this research requires an environment 

which has a well-established LD practice, a wealth of relevant data about student characteristics 

and their behaviours, and a medium to high completion rate, which allows to analyse students be-

haviour and academic performance from the beginning to the end of a module. Therefore, the OU 

is arguably a well-fitted context for this research.  

3.3.2 Research questions and studies 

This research project comprises of four studies to address nine research questions, as summarised 

in Table 11. Study 1 aims at exploring the overall trends of LD at the OU through visualisations and 

network analysis of 37 LD representations over 30 weeks. The visualisation techniques help to ex-

plore common patterns and variations in LD over time, while the network analysis provides com-

plementary visuals and metrics which accounted for the interactions between different types of 

learning activity. Although common patterns in LD can be identified from LD visualisations, there 

may be subtle nuances that could influence the teacher design process that requires an in-depth 

investigation from the teachers’ perspectives, which is the motivation for Study 2.  

Study 2 uses a qualitative approach to gain an in-depth understanding of the underlying driving 

factors behind the teacher design process and identify the affordances as well as barriers that 

teachers face when adopting LD tools at the OU. Study 2 comprises of 12 semi-structured interviews 

with module chairs, who hold the overall responsibility for the design process of a module. A more 

detailed description of the role of a module chair will be discussed in section 5.2.1. Study 2 and 

Study 1 complement each other for data triangulation purposes contributing to the overall under-

standing of LD at the OU. After laying out the foundation for understanding LD practices at the OU, 

this thesis will continue to investigate the impact of LD on student behaviour.  

Study 3 examines the impact of LD on student engagement measured by time spent on VLE on a 

week-by-week basis in 37 undergraduate modules and their 45,190 students. Because the engage-

ment patterns of students varied from module to module, a fixed-effect model was used in Study 

3 to account for the heterogeneity between different LDs. Study 1,2,3 together aim to contribute 

to a holistic understanding of LD practices at the OU from three data sources: LD data, teacher 

perceptions, and student behaviour.  
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Table 11: Overview of research questions and methods 

Study Research Questions Sample Instruments Methods 

Study 1 RQ1.1 What are the temporal characteristics of learning design? 

RQ1.2 How do different types of learning activity interact with each other? 

37 modules over 30 

weeks 

LD data Visualizations 

Network analysis 

Study 2 RQ2.1 What are the driving factors behind teachers’ design decisions? 

RQ2.2 What are the barriers and affordances of learning design adoption at the OU? 

RQ2.3 How do teachers make use of feedback on their module to support learning design? 

12 teachers (mod-

ule chairs) 

Interview  

questions  

Semi-structured  

interview  

Study 3 RQ3.1 How do learning designs influence student behavioural engagement over time? 

RQ3.2 How do learning designs influence student satisfaction and pass rate? 

37 modules and 

45,190 students 

LD data 

VLE trace data 

 

Fixed-effect  

modelling 

Study 4 RQ4.1 How does students’ timing of engagement align with learning design? 

RQ4.2 How does students’ timing of engagement relate to academic performance? 

1 module, 387 stu-

dents, replicated 

over two semesters 

LD data 

VLE trace data 

 

Multi-level  

modelling 
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Finally, Study 4 takes a further step to investigate to what extent student engagement aligns with 

teachers’ LD and different engagement patterns affect academic performance. Study 4 will analyse 

fine-grained trace data on a daily basis of 387 students in one module over two semesters. Given 

the hierarchical and longitudinal structure of the data (i.e., learning behaviours were nested within 

students), a mixed-effect (multilevel) model was used to account for the random variance across 

individuals. 

The four studies together make up the whole thesis by triangulating data from three different 

sources: LD representations, teacher perceptions, and student behaviour. Triangulation is one 

mean to validate, challenge, or extend existing findings using multiple alternate perspectives (Den-

zin, 2007). In this thesis, two types of triangulation were carried out: data triangulation and meth-

odological triangulation. Data triangulation entails obtaining evidence from multiple sources, or at 

different time points, or under different conditions (Denzin, 2007). In this thesis, data were col-

lected from three main sources at three levels of granularity.  

The first data source was learning design artefacts collected at a module level (i.e., activity types) 

and module characteristics (i.e., disciplines, number of credits, length, workload). The second data 

source was generated at a teacher level, which comprised of interview transcripts that reflected 

their experience, beliefs, and opinions about the course design. The third data source was gener-

ated at a student level, including students’ individual characteristics (i.e., age, gender, grades) and 

their learning activities (i.e., trace data on VLE). For instance, Study 1 extrapolated common trends 

and patterns in learning design across 37 modules. Insights from Study 1 were then combined with 

the underlying perspectives of teachers who were responsible for designing those modules. Finally, 

data from students enrolled in those modules were analysed to understand the effects of these 

learning design decisions on students’ engagement and their academic performance. The data tri-

angulation process also accounted for different temporal dimension, such as daily, weekly, to ag-

gregated data per course (Figure 4).  
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Figure 4. An overview of the research design 

Methodological triangulation in this thesis was achieved by combining more than one method to 

collect or analyse data. This thesis employed a wide range of quantitative methods (e.g., network 

analysis, multilevel modelling) and qualitative method (e.g., semi-structured interviews). The fol-

lowing sections will describe in detail the key variables used in this thesis. 

3.3.3 Learning Design at The Open University 

As described in Chapter 2, the field of LD aims at developing a descriptive representation of learning 

and teaching practices. Capturing and quantifying pedagogical practices is challenging, to say the 

least. At the OU, each new module goes through a mapping process, which maps out all learning 

activities and their estimated time to complete the activities. Learning activities are categorised 

based on the learning activity taxonomy originally developed by Conole et al. (2008), which has 

subsequently been further fine-tuned and adjusted over time based upon both practical experi-

ences as well as LD research (Toetenel et al., 2016a, 2016b) (Table 12).  
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Table 12 Learning activity taxonomy 

Taxonomy Type of activity Example 

Assimilative Attending to information Read, Watch, Listen, Think about, 

Access. 

Finding and handling 

information 

Searching for and processing 

information 

List, Analyse, Collate, Plot, Find, 

Discover, Access, Use, Gather.  

Communication Discussing module related 

content with at least one other 

person (student or tutor) 

Communicate, Debate, Discuss, 

Argue, Share, Report, Collaborate, 

Present, Describe. 

Productive Actively constructing an artefact Create, Build, Make, Design, 

Construct, Contribute, Complete.  

Experiential Applying learning in a real-world 

setting  

Practice, Apply, Mimic, Experience, 

Explore, Investigate. 

Interactive 

/adaptive 

Applying learning in a simulated 

setting  

Explore, Experiment, Trial, 

Improve, Model, Simulate.  

Assessment All forms of assessment 

(summarive, formative and self 

assessment)  

Write, Present, Report, 

Demonstrate, Critique. 

Retrieved from Conole (2007) 

Assimilative activities refer to tasks which require student’s attention to information. These include 

watching lecture video, reading the text, listening to an audio file, etc. Finding and handling infor-

mation activities implies, for example, searching and filtering for relevant literature in a particular 

topic on the internet. Communication activities refer to a range of practices to communicate such 

as posting in a discussion forum and replying to peer comments. Productive activities represent the 

construction of an artefact, such as writing a summary or resolving a problem. Experiential activities 

provide students with opportunities to apply theories in a real-world setting such as case study, or 

field trip. Interactive/adaptive activities encourage students to apply what they learned in an 

experiential environment or interacting with a simulation. Finally, assessment activities evaluate 

the student’s understanding such as writing through the construction of an essay, exam or making 

a presentation (Conole, 2012; Conole et al., 2008).  

For each learning activity, an estimation is made for how long it would take an average student to 

complete that activity. This estimation is usually determined by the module team and being em-

bedded in the module guide on the VLE as a guidance for students’ study time allocation (Figure 5). 

If the time estimation is not explicitly stated in the module guide, it will be determined using agreed 

conventions for study speed and amount of time allocated to studying figures, tables, images, audio 
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and video within module materials8. Study speed can be set at low (35 wpm), medium (70wpm) or 

high (120wpm), depending on the type of material, the level of study, or other influencing factors 

such as concept density. Study speed assumes that as well as reading the text, students will take 

additional time to absorb and reflect on what they read. For example, an introductory-level reading 

of 2000 words would take approximately 2000/120 = 17 minutes. The time estimation of each learn-

ing activity was aggregated at a weekly level (i.e., estimated workload per week). The workload of 

each module was restricted by its number of credits, with each credit equates one hour of studying. 

For example, a 30-credit module requires 300 hours of learning or 8-9 hours per week, and a 60-

credit module requires 600 hours of learning or 16-18 hours per week. 

Figure 5: Time estimation of learning activity in a module guide 

 

Source: A screenshot from the OU online module guide at www.learn2.open.ac.uk 

When using data to compare module design across disciplines and modules, according to previous 

work (Rienties & Toetenel, 2016b; Toetenel et al., 2016a) it is important to classify learning activities 

in an objective and consistent manner. In particular, each module goes through a mapping process 

by a module team which consists of an LD specialist, an LD manager, and faculty members. This 

process typically takes between 1 and 3 days for a single module, depending on the number of 

credits, structure, and quantity of learning resources. First, the learning outcomes specified by the 

module team were captured by an LD specialist. Each learning activity within the module’s weeks, 

topics, or blocks was categorised under the LD taxonomy and stored in an ‘activity planner’ – a 

planning and design tool supporting the development, analysis, and sharing of LD (Figure 6). Next, 

the LD team manager reviews the resulting module map before the findings are forwarded to the 

faculty. This provides academics with an opportunity to comment on the data before the status of 

 
8 http://learning-design.open.ac.uk/conventions 
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the LD is finalised. To sum up, the mapping process is reviewed by at least three people to ensure 

the reliability and robustness of the data relating to LD.  

Figure 6. Activity Planner tool 

 

Source: A screenshot from the OU Activity Profile at www.learning-design.open.ac.uk 

There are several strengths and weaknesses of the current mappings based on the OULD taxonomy 

(Table 13). On one hand, the representations and visualizations of LD using these seven categories 

could help educators gain an overview of the elements embedded in their LD, and their relative 

proportions. The project report of the OULDI (Cross et al., 2012), together with several empirical 

studies based on the OULD taxonomy have indicated some benefits of this approach in supporting 

teachers’ pedagogical decisions (Clifton, 2017; Toetenel et al., 2016a) and predicting student en-

gagement, satisfaction, and pass rates (Rienties & Toetenel, 2016b).  

For example, in a study of 148 LDs by Toetenel et al. (2016b), the introduction of a systematic LD 

initiative consisting of visualization of initial LDs and workshops have been shown to help teachers 

develop a more balanced LD. In a large-scale follow-up study using a larger sample of 151 modules 

and multiple regression analyses of 111,256 students at the Open University, UK, Rienties and 

Toetenel (2016b) revealed relations between LD activities and VLE behaviour, student satisfaction, 

and retention. The findings showed that taking the context of LD into account could increase the 

predictive power by 10-20%. Moreover, the OULDI approach has also been adopted by external 

institutions such as the University of South Africa (Mittelmeier, Long, et al., 2018; Mittelmeier et 

al., 2019).  

On the other hand, compared to other LD representation frameworks as discussed in section 2.2.2 

(Anderson et al., 2001; Bloom, 1956; Laurillard et al., 2018; Law et al., 2017), the OULD taxonomy 

neither captures specific elements nor the sequential order of the learning activities in the LD. Fur-

thermore, the collapsed categorizations of activities at a macro level could inhibit the interpretation 

of the results. For instance, summative and formative assessments are collapsed under one general 

category “assessment activities”. Moreover, there could be overlaps between these activities. For 
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example, when students carry out finding and handling information activities, they also include 

readings (assimilative activities). Therefore, the interpretations of these learning activities are sub-

jective to how data are coded by respective individuals, potentially leading to individual bias.  

Furthermore, the time estimation of each learning activity does not necessarily reflect the actual 

time spent by students. The suggested workload is based on subjective estimation of the module 

team on how long they think each activity should take for an average student to complete. This 

estimation works well for structured activities such as readings or watching videos as they have 

some formal metrics (e.g., words per minute, length of a video). However, the estimation might be 

less accurate for unstructured activities such as discussion forums or exam preparation. Last but 

not least, the OULD taxonomy only captures the output of the LD process (i.e., module guide, arte-

facts of learning activities) while less focus on the underlying factors behind the LD process (e.g., 

teacher experience, institutional policies).  

Table 13. Advantages and disadvantages of OULDI mappings 

Advantages Disadvantages  

Provide an overview of LD at a macro level Overlap or oversimplifications of learning ac-
tivity categories 

Help teachers reflect on the workload and 
types of learning activity 

The accuracy of time estimation varied across 
different types of learning activity 

Provide an estimate of study workload based 
on teachers’ suggested time spent  

Do not reflect actual time spent by students 

Have been shown to be correlated with stu-
dent engagement, satisfaction, and perfor-
mance.  

Only capture the output of the LD process, do 
not take into account the underlying pedagog-
ies 

Based on (Clifton, 2017; Cross et al., 2012; Rienties et al., 2017; Rienties & Toetenel, 2016b; 

Toetenel et al., 2016a, 2016b) 

To address the current limitations, two approaches are proposed. Firstly, in line with recommenda-

tions of Lockyer et al. (2013); Persico et al. (2015), interviews with teachers (Study 2) will be con-

ducted to triangulate LD visualisations with teacher’s perceptions to explore the driving factors be-

hind their design decisions and to critically reflect upon the potential affordances and barriers when 

engaging in LD practices at the OU. Insights from these interviews will help me to unpack the LD at 

a more fine-grained level, and gain a better understanding of the underlying factors that influenced 

LD decisions. At the same time, the results from interviews will provide learning designers with 

feedback on how to further improve the OULD taxonomy and measurements.  

Secondly, the measurement of LDs will be tested against student learning behaviour using LA (Study 

3, 4). In particular, I will test to what extent the number of hours allocated for each learning task 

(i.e., how much time students are expected to spend) align with how much time students actually 

spend on the corresponding task. For example, if reading a book chapter was mapped as an activity 

of 2 hours by the OULDI framework, then to what extent students actually spent this amount of 
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time on this book chapter. Therefore, this step is crucial to identify potential overestimation or 

underestimation of the workload estimates generated by the LD mappings. The measurement of 

student engagement is discussed below. 

3.3.4 Student behavioural engagement 

Academic engagement is a multi-dimensional construct ranging from behavioural engagement, 

emotional engagement, and cognitive engagement, (Azevedo, 2015; Kahu, 2013; Sinatra et al., 

2015; Trowler, 2010). Student academic engagement in this thesis is operationalised from a behav-

ioural perspective, which viewed engagement as involvement in one’s own learning and academic 

tasks through displays of effort, persistence, behavioural aspects of attention, and self-directed ac-

ademic behaviour (Sinatra et al., 2015). The link between student behavioural engagement and 

academic achievements has been robustly established in educational literature (Kahu, 2013; 

Trowler, 2010).  

Educational researchers possess a wealth of measures from which to choose to capture, analyse, 

and infer different aspects of engagement, such as think-aloud protocols, eye-tracking (Miller, 

2015), log-files (Gobert et al., 2015), facial expressions (D'Mello et al., 2017), physiological sensors 

(Dikker et al., 2017), self-report questionnaires (Pekrun et al., 2011; Pintrich et al., 1993), or class-

room observations (Ryu et al., 2015). The choice of measurements should align with the theoretical 

conceptualisations of engagement and the learning context (Azevedo, 2015). For example, eye-

tracking methods can provide a precise measurement of attention allocation and yield several in-

dices of cognitive processing strategies. However, they do not provide direct evidence about meta-

cognitive, affective, and motivational processes. On the other hand, facial expressions and physio-

logical sensors can detect changes in the emotions of a student while engaging in academic tasks. 

However, they are not suitable to understand the cognitive processing of engagement, and typically 

these approaches are difficult to scale beyond the lab environment.  

In this research project, trace data of student learning activities in a VLE (e.g., Moodle) were used 

as a proxy of student engagement, which is justified by the following reasons. Firstly, this thesis 

focuses on the behavioural aspect of engagement, in which time-on-task has been consistently 

shown to significantly correlated with academic performance and self-report measures of engage-

ment (Jovanović et al., 2017; Rienties & Toetenel, 2016b; Tempelaar et al., 2017). Secondly, the 

context of this thesis is a distance learning institution. In this context, most learning activities are 

designed for and on a digital learning platform (e.g., Moodle), which make log-files suitable to cap-

ture and represent learning engagement. This is different from a face-to-face or blended learning 

context, in which most learning activities commonly happen outside of the LMS. Thirdly, the re-

search questions of this thesis emphasise the temporal aspect of the behavioural engagement, such 

as when students engaged and for how long. While other measurements capture engagement at 
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one specific point in time (i.e., surveys) or a short period of time (i.e., eye-tracking, sensors), trace 

data allow researchers to unpack the temporal changes in the behavioural engagement at different 

levels of temporal granularity (i.e., seconds, days, weeks, years). Finally, trace data supports the 

data triangulation process with LD data, by detecting which learning activity/material that students 

engage with and for how long. 

While trace data is one of the most common proxies of engagement in LA research, they should be 

treated with caution (Table 14). From a measurement perspective, as pointed out by previous re-

search (Kovanovic et al., 2016), this metric could be problematic due to (1) the inability to differen-

tiate between active time and non-active time (e.g., students leave the respective web page open 

and go for a coffee), and (2) the last click of the day is followed by a click next day, which makes the 

duration excessively long. Any attempt to set an arbitrary cut-off value would pose a threat in un-

derestimating or overestimating of the actual engagement time. Furthermore, trace data are not 

representative of the whole learning process, as many self-regulated learning activities happen out-

side the LMS, such as searching for information on Google, writing essays in Word, or taking notes.  

Therefore, from an interpretation perspective, the measurement of time-on-task based trace data 

cannot guarantee that students are cognitively engaged with the tasks at hand. For example, stu-

dents could leave their internet browser open while going for a break, or be distracted with Face-

book. Even if students are actively engaging with the task, it is difficult to infer why students do 

certain activities. For example, a long duration of time spent on task could mean that students are 

doing well and enjoying the task, or struggling to understand the concept.  

Finally, trace data are not informative when they are taken out of context. For example, students 

in course A may exhibit a higher level of engagement than students in course B. An alternative 

explanation could be that course A was designed with more online interactive activities, whereas 

course B was designed with more off-line self-study activities, such as writing essays. Therefore, the 

differences in the level of engagement reflect the differences in how the learning activities were 

designed, and whether the traces of these activities can be captured through VLE. This example 

reinforces the importance of integrating LD data to provide the pedagogical context to better in-

terpret digital traces of student engagement.  

Table 14 Advantages and disadvantages of VLE trace data 

Advantages Disadvantages  

A large volume of real-time data Cannot capture activities occurred outside of 
VLE 

Capture learning behaviour over a long period 
of time 

Outlier problems 

Work best in an online learning environment Less suitable for blended or offline learning 

 



  

 52 

This section has explained and justified the choice of study context and the measurements used in 

this thesis. The next section will describe the methods used to analyse the data and its relation to 

the research questions. 

3.4 Research Methods 

3.3.1 Network Analysis 

Study 1 used a combination of visualisation and network analysis to explore the interplay between 

different types of learning activity. Social Network Analysis (SNA) is defined as the study of relation-

ships among actors that interact with one another in a network structure (Wasserman et al., 1994). 

SNA is a commonly used technique in education and social science to study the network structure 

between people and entities (Cela et al., 2015; Dado et al., 2017). For example, a common applica-

tion of SNA in education is the study of group formation between students. Rienties et al. (2018) 

used SNA to examine whether it is better for students to invest in social relations in groups to learn 

and enhance academic performance or to (continue to) invest in social relations outside groups. 

Wise et al. (2018) used a mixed method of SNA and qualitative analysis to compare social relation-

ships and the underlying interactions they represent in forum discussions related and unrelated to 

the learning of course content.  

A network is defined by actors (i.e., nodes) and by relations (i.e., edges, ties) (Figure 7). In social 

sciences, an actor is usually referred to a person although it can be an object, a group or an organ-

isation. A tie exists when two actors are connected (Borgatti et al., 2002; Wasserman et al., 1994). 

For example, students can be considered actors within a network – a school. A tie occurs when two 

students establish a connection such as talking to each other. A tie could be directed (e.g., Student 

A talks to student B) or non-directed (e.g., there exist some communications between students A 

& B). The relationship between two actors/students can be categorised into either binary (con-

nected/not connected) or on a continuum (e.g., from a weak to strong tie) based on the frequency 

of communication. A network that consists of actors belonging to the same type (e.g., students) is 

called a one-mode network. A network can also contain two sets of actors (e.g., students, classes), 

also known as a two-mode network, and ties only exist between actors from different sets (e.g., 

students only know each other by joining the same class).  
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Figure 7. An example of social network analysis 

Although many scholars have used SNA to study the social relations amongst students, little atten-

tion has been paid to the network structure of learning activities. As pointed out by Hora et al. 

(2013), learning activities do not operate in isolation but instead interlink as a result of a complex 

and dynamic designing process. In LD, teachers consider multiple factors such as course content 

and the relations with other previous and subsequent learning activities to ensure a coherent struc-

ture and effective learning process for students (Bennett et al., 2015; Dalziel et al., 2016). For ex-

ample, an hour of reading is followed by 20 minutes discussion in an online forum and 20 minutes 

multiple-choice questions. The number of combinations of different types of learning activity is 

perhaps indefinite, and vary across different modules/teachers. Thus, focusing on analysing only 

one type of activities in isolation might obscure the complexities of the design process. Therefore, 

network analysis may be a suitable tool to model the inter-relationships of different learning activ-

ities in each LD. I used the term network analysis instead of social network analysis because in this 

thesis I focused on the relations between educational entities (i.e., designs of learning activities) 

instead of social relationships amongst students. A detailed description of the analysis procedure is 

provided in Chapter 4 – Study 1. 

Despite its advantages, SNA has some limitations. Firstly, SNA studies are unlikely to capture the 

full extent and influence of all relevant factors. In this context, the learning activity taxonomy de-

termines the number of nodes in a network of learning activities. There could be missing links be-

tween activity types that are not included in the theoretical framework. For example, both summa-

tive and formative assessments were collapsed under the same assessment category. Secondly, 

SNA might oversimply the actual relationship existed between two actors by categorising them into 

binary or undirected relations. In addition, the richness of information that flows between two ac-

tors is not captured in SNA. For example, SNA can visualise the frequency and direction of forum 

messages from one student to another, but the messages’ content is not presented. Thirdly, as with 

most quantitative approaches, SNA is unable to answer why teachers design and combine different 

types of activities the way they do.   
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3.3.2 Semi-structured Interviews 

While Study 1 uses a range of visualisations and network analysis to identify common LD patterns 

across a large number of modules, it cannot capture the contextual nuances of the design process, 

such as teacher pedagogy, institutional policies, or characteristics of learning environments 

(Bennett et al., 2015; Bennett, Agostinho, et al., 2017; Bennett et al., 2018). Study 1 can answer the 

what question (i.e., what has been designed) but not the how and why questions (i.e., how and why 

teachers designed the way they did). This is the key goal of Study 2: to gain an in-depth understand-

ing of the underlying factors that influenced the LD process and to triangulate quantitative findings 

from Study 1. Therefore, Study 2 requires an analysis of teacher perceptions and reflections on the 

LD process at the OU through in-depth qualitative interviews.  

Qualitative interviews are a commonly used method in educational research that allows research-

ers to develop in-depth accounts of experiences and perceptions of individuals. By collecting and 

transcribing interview talk, the researcher can produce rich empirical data about the lives and per-

spectives of individuals (Cousin, 2009). The structure of the interview and the design of the ques-

tions will influence the depth and freedom with which a participant can respond. Broadly speaking, 

there are three main types of interview designs: structured, semi-structured, and unstructured in-

terviews (Brinkmann, 2014; Cousin, 2009; Williamson, 2018).  

Structured or standardised interviews allows the researcher to ask each participant the same set of 

questions. This format makes it easy to compare respondent answers and can be replicated on a 

large scale, such as the UK Household Longitudinal Study9. However, structured interviews are not 

flexible as the interview schedule must be followed in a strict order and it does not provide in-depth 

insights into a phenomenon (Williamson, 2018). On the other hand, semi-structured and unstruc-

tured interviews are more flexible as questions can be adapted and changed depending on the 

respondents’ answers (Williamson, 2018). This is important for this research because LD is heavily 

influenced by both individual and contextual/political factors.  

For example, from a series of 30 interviews with educators across 16 Australian higher education 

institutions, Bennett et al. (2015) identified three key influences on teacher design decisions: stu-

dent-related factors (student profile, learning goals, feedback), teacher-related factors (prior expe-

rience, pedagogical belief, self-belief), and contextual-related factors (colleagues, accreditation, in-

stitutional requirements, department requirements, resources). Therefore, semi-structured inter-

views offer opportunities to uncover hidden issues and subtleties in the LD process. At the same 

time, this nuanced analysis of teacher perceptions helps triangulate and confirm findings from 

 
9 https://www.understandingsociety.ac.uk/ 
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Study 1. Both studies complement each other by providing a macro-level analysis at the module 

level (top-down) and micro-analysis at the individual teacher level (bottom-up).  

However, there are some caveats of qualitative interviews that should be acknowledged. Firstly, 

the appearances and behaviours of the interviewer might bias how participants respond, so-called 

interviewer effect. Factors such as age, gender, race, occupation can contribute to this bias. There 

is also a risk of response bias as participants might not be completely honest, or present themselves 

in a social-desirable manner. To minimise these biases, I have made the motivation and rationale 

of my study explicit to the participants about, as well as my neutral stance as an independent PhD 

researcher with neither affiliation with the OU management nor the LD team. The participants were 

also reassured about the confidentiality of their responses with an explicit consent form and verbal 

confirmation at the beginning of each interview.  

Secondly, because the qualitative analysis is an interpretive process, there might be room for mis-

interpretation or self-fulling prophecy when coding the interview transcripts. To overcome this lim-

itation, as per suggestions from literature in qualitative research method (Cohen et al., 2002; 

Creswell & Poth, 2017) and previous studies in LD (Bennett et al., 2015; Bennett, Agostinho, et al., 

2017; Bennett et al., 2018), a random selection of the qualitative data was coded individually by 

two members: the primary researcher (myself) and another member from the supervision team. 

The codes were then compared and discussed to ensure the consistency and accuracy of interpre-

tation.  

Finally, qualitative studies are often subject to criticisms regarding the generalisability of the study 

due to the small sample size. This weakness is in part offset by Study 1 and Study 3 which carried 

out large scale analyses on 37 modules and 45,190 students. The next section will discuss the quan-

titative methods of Study 3 and 4.  

3.3.3 Fixed-effect modelling 

Study 1 and Study 2 lay the foundation of understanding LD in this thesis. Study 3 takes a further 

step to examine how LD decisions influence student learning behaviour. While there have been a 

few studies exploring this relation between LD and student behaviour (Gašević et al., 2016; Rienties 

& Toetenel, 2016a, 2016b; Rienties et al., 2015), their analyses based on linear regression have not 

taken into account the heterogeneity between modules. This is important because the effect of LD 

on student behaviour can vary from modules to modules, as shown in (Gašević et al., 2016). Given 

the panel data set in Study 3 (multiple modules over multiple weeks), a fixed-effect model was 

chosen to analyse the relations between LD and student behaviour because it accounted for the 

differences between modules.  
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To help readers understand the advantages of a fixed-effect regression model, I will compare it to 

a traditional linear regression model. A simple linear regression quantifies the relation between an 

independent variable X and a dependent variable Y, which can be formalised as follows: 

Yi = β0 + β1*Xi + εi 

 Where  

• Yi is the dependent variable of subject i 

• β0 is the intercept of the regression line 

• β1 is the coefficient of Xi meaning how much Y change if X changes 

• Xi is the independent variable of subject i  

• εi is the residuals/error terms 

Take an example where a simple linear regression is run between academic performance and stu-

dent engagement, assuming the data are taken from multiple modules over multiple time points. 

Notice that in linear regression, the participants are treated as they belong to a homogenous sam-

ple while the heterogeneity between modules and time points is ignored. A fixed-effect regression 

overcomes this by accounting for the fact that the effect of engagement on academic performance 

varies between modules. Examples of these fixed effects of modules include level of study, number 

of credits, or disciplines. A fixed-effect model can be formalised as follows: 

Yit = β0 + β1*Xit + εit 

 Where  

• Yit is the dependent variable of subject i at time t 

• β0 is the intercept of the regression line 

• β1 is the coefficient of Xi meaning how much Y change if X changes 

• Xit is the independent variable of subject i at time t 

• εit is the residuals/error terms 

Figure 8 illustrates the difference between linear regression and a fixed-effect model. In a fixed-

effect model, a regression line was fit for each group of students according to the module they 

enrolled whereas a linear regression treated all students the same.  
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Figure 8. Linear regression versus fixed-effect regression – a hypothetical example 

Because Study 3 collects data from both module level (i.e., LD mappings) and student level (i.e., 

behavioural engagement) over multiple weeks, fixed-effect models will be used to account for the 

unobservable heterogeneity of the data. A limitation of fixed-effect models is that all time-invariant 

factors of modules were absorbed in the intercept β0, which makes it difficult to isolate the effect 

of time-invariant variables. For example, the level of study was already accounted by the intercept. 

Therefore, it is not possible to isolate the effect of the level of study in a fixed-effect model.  

  

3.3.4 Multi-level modelling  

Study 4 investigates the relations between the timing of engagement, LD, and academic perfor-

mance. While Study 3 accounted for the heterogeneity between modules and time, Study 4 took a 

step further to account for the differences at the student level. The hierarchical structure of the 

dataset (i.e., students are nested within modules) calls for the use of a multilevel model. Multilevel 

modeling, also often known as random-effect or mixed-effect model, is a well-established method 

to analyse hierarchical and longitudinal data in social sciences (Goldstein, 2011). Education presents 

an obvious example of a hierarchical structure, with students (level 1) nested within courses (level 

2), as indicated in Figure 9.  

 

Figure 9: An example of hierarchical data in education 
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A traditional approach to the analysis of these data would be to carry out an ordinal least squares 

(OLS) regression with student engagement as a predictor and grade as an outcome. For example, 

Macfadyen et al. (2012) reported positive correlations between LMS activities and course grade 

using data of 95,132 undergraduate student enrolments in LMS-supported courses. In OLS regres-

sions, all test outcomes from all students are assumed to be independent. However, when individ-

uals form clusters, we might expect dependencies between different levels of the data. For exam-

ple, the effect of students’ engagement on academic performance might be influenced by both 

individual factors (i.e., prior knowledge, demographics) and contextual factors (i.e., course level, 

number of credits, discipline).  

Therefore, using OLS regressions leads to smaller standard errors than true standard errors, which 

in turns produce misleading conclusions (i.e., conclude a significant effect while they might just be 

random variations). For example, Gašević et al. (2016) examined the effect of instructional condi-

tion on the prediction of academic success of 4143 undergraduate students in nine blended-learn-

ing courses. Their findings suggest that the lack of consideration for instructional conditions can 

lead to an over or underestimation of the effects of LMS behaviour on academic performance. To 

illustrate this problem, Figure 10 presents a hypothetical example of the difference between an OLS 

regression versus a random-slope multilevel model. It is evident that our estimations can be biased 

if we ignore contextual factors. To simply translate to educational research, the effect of engage-

ment on learning outcome is influenced by the context in which learning occurs.  

 

Figure 10: Linear regression versus multilevel model – a hypothetical example  
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Another application of MLM is the analysis of longitudinal data (i.e., VLE engagement over time are 

nested within students). The advantages of MLM compared to the traditional repeated-measures 

analysis of variance (RM-ANOVA) are its flexibility in handling missing data and variable timing of 

data collection. For example, students might be active on the VLE on day 1, inactive on day 2, 3, 

and then active again on day 4. This goes against the assumptions of RM-ANOVA which requires a 

fixed timing of data collection (i.e., every day, or every 2 days).  

Given the research questions (RQ4.1, 4.2) and the hierarchical nature of the dataset in this research 

project, MLM is the most suitable method. Firstly, MLM accounts for heterogeneity across modules 

when examining the effect of LD on the timing of engagement. Secondly, MLM is an extension of a 

fixed-effect model that accounts for individual differences when examining the effect of longitudi-

nal VLE engagement on academic performance (RQ4). Finally, my data fit with MLM requirements 

as they consist of numerous VLE activities nested within thousands of students across multiple 

modules and presentations. More technical details will be discussed in the subsequent studies.   

There are some caveats of MLM and statistical modelling in general (Goldstein, 2011). As with any 

observational research, statistical inferences are limited to correlations only. In other words, a sta-

tistically significant effect could be found between two variables. However, I cannot make any 

causal inference based on the findings. For example, a positive and statistically significant relation-

ship between student engagement and academic performance can be interpreted either as engage-

ment causes performance (e.g., students study hard, therefore achieve higher grade) or perfor-

mance causes engagement (e.g., high-performing students tend to study hard). Furthermore, ob-

servational data are open to interpretation and therefore the consistency between individuals var-

ies. For example, a lack of engagement on VLE can be either interpreted as inactive (i.e., students 

did not study during that period of time) or studying in other platforms (i.e., students study offline 

or researching literature on google).  

In summary, the interdisciplinary and multifaceted nature of this thesis requires a mixed-method 

design to address the RQs in a comprehensive and appropriate manner. The thesis comprised of 

four carefully designed empirical studies with a mix of qualitative and quantitative elements from 

multiple sources (i.e., module, teacher, student) that allow for data triangulation and complement 

each other strengths and weaknesses. The next section will outline the ethical considerations of 

this thesis.  
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3.5 Ethics  

Ethics are quintessential in any research project involving the collection of data from human par-

ticipants. Research in education must adhere to a set of published guidelines such as the British 

Educational Research Association’s Ethical Guidelines10 or the British Psychological Society ‘s Code 

of Ethics and Conduct11 to ensure explicit consent from participants and ethical use of their data. In 

the field of LA, there have been numerous guidelines and checklists for ethical practices of institu-

tions when implementing LA. For example, Sclater (2016) present a code of practice for LA 12, de-

veloped by JISC. Drachsler et al. (2016) introduce a ‘D-E-L-I-C-A-T-E’ checklist for researchers, poli-

cymakers, and institutional managers to facilitate a trusted implementation of LA. Prinsloo et al. 

(2017) explore the moral and legal basis for the obligation to act on the analyses of student data 

through two case studies from the Open University UK and the University of South Africa. 

The issue of ethics is even more salient in LA research when student data are automatically col-

lected by digital systems on a large scale. On the one hand, traditional educational research requires 

informed consent from participants for their data to be used in research. For instance, the OU Ethics 

Principles for Research Involving Human Participants13 state that “Except in exceptional circum-

stances, where the nature of the research design requires it, no research shall be conducted with-

out the opt-in valid consent of participants.” and that “Participants ... have a right to withdraw their 

consent at any time up to a specified date”. On the other hand, when registered at the OU students 

gave their consent for their data to be used, as part of the operational research to “identify inter-

ventions which aim to support students in achieving their study goals”15 and the OU makes it explicit 

in its Learning Analytics Ethics Guideline that “it is not possible, at present, to have your data ex-

cluded”. As a result, there seems to be a hidden ‘ethical waiver’ for learning analytics research 

within institutions (Griffiths, 2017).  

The ethical considerations in this research project is informed by the vast amount of literature on 

ethical use of LA (Drachsler et al., 2016; Prinsloo et al., 2017; Sclater, 2016), the Open University’s 

guidelines “Data Protection Policy”14, the “Policy on Ethical use of Student Data for Learning Ana-

lytics”15,the Data Protection Act UK (Gov.uk, 2017) and the EU General Data Protection Regulation 

(GDPR)16.  

 

 
10 https://www.bera.ac.uk/publication/ethical-guidelines-for-educational-research-2018 
11 https://www.bps.org.uk/psychologists/standards-and-guidelines 
12 https://www.jisc.ac.uk/guides/code-of-practice-for-learning-analytics 
13 https://www.open.ac.uk/research/sites/www.open.ac.uk.research/files/files/ecms/research-pr/web-con-
tent/Ethics-Principles-for-Research-involving-Human-Participants.pdf 
14 http://www.open.ac.uk/students/charter/sites/www.open.ac.uk.students.charter/files/files/ecms/web-
content/data-protection.pdf 
15 http://www.open.ac.uk/students/charter/sites/www.open.ac.uk.students.charter/files/files/ecms/web-
content/ethical-use-of-student-data-policy.pdf  
16 https://eugdpr.org/  
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Firstly, this research has been granted ethical approval from the Open University’s Human Research 

Ethics Committee (HREC/2584/NGUYEN for Study 1, 3, 4; HREC/2693/NGUYEN for Study 2) (Appen-

dix 1, Appendix 3). According to the Data Protection Policy1 at the Open University, “to support you 

in your studies. We may use information you have given us such as your ethnic background, disabil-

ity and/or educational qualifications in addition to information we collect about your participation 

in learning activities to identify students who require additional support or specific services. We 

consider your disclosure of such information and your acceptance of the terms and conditions of 

registration as explicit consent to use this information for this purpose.” Therefore, all the students 

gave informed consent when they accept the terms and conditions of registration. Since all regis-

tered students at the OU have given their consent to the OU according to the Data Protection Policy, 

no further consensus from students were needed in this PhD project.  

 

Secondly, the researcher has undergone various training in data protection with up-to-date guide-

lines and obtained a certificate of completion of GDPR training to ensure the ethical use of the data 

collected (Appendix 2). All personally identifiable information such as student names, student id, 

and email address were removed and anonymised before publishing. Module name and module 

code were also anonymised before publishing to protect the identity of the chosen modules. All 

interview responses were anonymised before sharing the transcripts with the supervisors. Data in 

this thesis are securely stored on OU protected servers. Only the primary researcher has access to 

the datasets.  

 

With regards to Study 2 (interviews), all participants have given explicit consent by reading and 

signing the consent form as well as the participant information sheet before doing the interview 

(Appendix 3-6).  

3.5 Conclusions 

This chapter has provided explanations and justifications of the chosen measurements and meth-

ods to address the research questions in this thesis. The next four Chapters (4-7) will describe the 

methods of each study in more details and present the findings from each research question.   
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Chapter 4 - Study 1 How teachers design for learning17 

As described in chapter 3, the empirical work for this thesis comprised of four separate studies. This 

chapter describes Study 1, which explores the temporal aspects of LD and interplay between learn-

ing activity types. Section 4.1 – Introduction summarises the rationale of the study and presents its 

research questions. Section 4.2 – Methods describes an overview of the specific methods used in 

Study 1, including information about the setting, participants, instruments and data analysis. Sec-

tion 4.3 – Results presents the findings in relation to each research question. Section 4.4 – Discus-

sion sets out the implications as well as the limitations of Study 1 and provides connections to the 

subsequent empirical work.  

4.1 Introduction 

Chapter 2 has highlighted the importance of LD representations in making existing LDs more visible. 

By doing so, researchers can gain a better understanding of how teachers design for learning and 

compare LDs across modules and disciplines (Dalziel et al., 2016; Maina et al., 2015). Although there 

have been many studies evaluating the use of LD tools (Hernández-Leo et al., 2018; Laurillard et al., 

2018) and investigating teachers’ LD process (Bennett et al., 2015; Bennett, Dawson, et al., 2017; 

Bennett et al., 2018), only a few studies have explored how LD representations can inform us about 

how teachers design their courses (Toetenel et al., 2016a, 2016b). One possible explanation for the 

lack of empirical studies on LD representations is that most existing LD tools have only been 

adopted by a relatively small number of practitioners, usually in an experimental setting designed 

for a research project. Therefore, it is difficult to synthesize and analyse LD data systematically. The 

OU is a notable exception because the OULDI project has been rolled out at scale across hundreds 

of modules since 2013 (Cross et al., 2012). As a result, a large number of LD representations have 

been generated and stored, providing a great opportunity to examine LD patterns across many 

modules.  

For example, Toetenel et al. (2016a) analysed 157 LD representations at the OU and found that the 

majority of educators used two types of learning activity most widely, namely assimilative activities 

 
17 The empirical investigations undertaken for this chapter have now published as: 
1. Nguyen, Q., Rienties, B., & Toetenel, L. (2017). Unravelling the dynamics of instructional practice: a lon-

gitudinal study on learning design and VLE activities. In Proceedings of the 7th International Learning An-

alytics & Knowledge Conference, LAK 17, ACM, New York, NY, USA, pp. 168–177.  

2. Nguyen, Q., Rienties, B., & Toetenel, L. (2017). Mixing and matching learning design and learning analyt-

ics (best paper award). In P. Zaphiris & A. Ioannou (Eds.), Learning and Collaboration Technologies: 

Forth International Conference, LCT 2017, Part II, Held as Part of HCI International 2017, Proceedings 

(Vol. 10296, pp. 1-15). Cham: Springer International Publishing. 
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(reading, watching, and listening) and assessment activities. On average, assimilative and assess-

ment activities accounted for 39.27% and 21.50% of the total workload respectively (SDassimila-

tive=17.17, SDassessment=14.58). These were not the only learning activities uncovered by this type of 

analysis as the researchers also discovered that productive (M = 13.13%, SD = 10.40], communica-

tive (M = 8.41, SD = 7.40), finding information (M = 6.76, SD = 7.08), experiential (M = 5.79, SD = 

7.61) and interactive (M = 5.14, SD = 6.75) activities form part of the LD plan for these 157 modules. 

Although the above study has shown an overview of how LDs were configured at the OU, the ag-

gregated figures at module level omitted the dynamic temporal characteristics of LDs. As argued in 

chapter 2, learning is a dynamic temporal process occurring over time, so as LD. Teachers deliber-

ately make unique and perhaps inconsistent decisions during the learning process depending on 

the specific learning goals of each study phase. Therefore, it is imperative to unpack how LDs were 

configured over time: 

RQ1.1 What are the temporal characteristics of learning design? 

Another research gap in the LD literature was the lack of studies exploring the interplay between 

different types of learning activity over time. Previous studies have shown that teachers used a mix 

of learning activities within a learning sequence or a task (AUTCLearningDesign, 2002; Bennett et 

al., 2015; Hora et al., 2013). For example, Hora et al. (2013) used network analysis to illustrate a 

diverse set of instructional practices between math, physics, biology and geology courses regarding 

how teachers mix and match various teaching methods and instructional technologies. If we only 

concentrate on a single component of LDs in isolation, we might omit the complexity and critical 

features of the instructional dynamics and interplay between activities. Therefore, the next RQ in-

vestigates how different types of learning activity interconnect within an LD. 

RQ1.2 How do different types of learning activity interact with each other? 

To address these two research questions, Study 1 carried out a combination of data visualisations, 

descriptive statistics, and network analysis based on LD data collected from 37 undergraduate mod-

ules over 30 weeks. The next section provides an in-depth overview of the methods employed in 

Study 1 to address these questions.  

4.2 Methods 

4.2.1 Setting and Participants 

Study 1 took place at the OU with a focus on undergraduate modules because they accounted for 

the largest number of students and subsequently had the highest proportion of students dropping 

out (Nguyen, Thorne, et al., 2018; Rienties & Toetenel, 2016b). These modules have a strategic 

position within the OU curriculum and need to be designed well as students do not necessarily have 
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the prerequisite qualifications required by other universities. This is because as its name suggests 

the OU is open to all. If students fail, then their future opportunities become limited and the mission 

of the OU is at risk.  

Given the focus of the RQs on temporal characteristics of LDs, 56 modules were selected from the 

Activity Profile tool which mapped modules on a weekly basis (see section 4.2.2 below for a detailed 

description of the mapping process). After excluding 14 short and intensive training modules, be-

cause they did not count toward academic credit, Study 1 used only 42 modules. The next step was 

to filter out five postgraduate modules because these modules consisted of a small number of stu-

dents, whose background is not comparable to most OU students. Therefore, Study 1 was con-

ducted on 37 undergraduate modules.  

Using descriptive statistics for these 37 modules, it is clear from Table 15 below that there was 

approximately an equal distribution of 30 to 60 credit modules investigated. With respect to the 

levels of study, level 1 modules accounted for the largest percentage (70.3%), followed by level 2 

modules (13.5%), level 3 and access modules (8.1%). The sample was distributed across all the four 

faculties at the OU, with the highest frequency in STEM (35.1%), followed by Arts and Social Sci-

ences (24.3%), Education, Health, and Languages (24.3%), and Business and Law (16.2%).  

Table 15: Descriptive statistics of 37 modules 

 Frequency Per cent 

Credits   

30 17 45.9% 

60 20 54.1% 

Level   

0 3 8.1% 

1 26 70.3% 

2 5 13.5% 

3 3 8.1% 

Faculty   

Arts & Social Sciences 9 24.3% 

Business & Law 6 16.2% 

Education, Health, Languages 9 24.3% 

STEM 13 35.1% 

Note: Level 1, 2, 3 at the OU are equivalent to introductory, intermediate, and advanced courses. 

Level 0 represents access modules 

4.2.2 Instruments 

Data for Study 1 was collected from the Activity Profile tool (Toetenel et al., 2016a; Whitelock et 

al., 2016) which was designed to help teachers map different types of learning activity across a 

course or sequence of learning events (see section 3.2.2). The tool was developed based on the 

OULDI’s learning activity taxonomy which consists of seven types of learning activity: assimilative, 
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productive, assessment, communication, finding and handling information, interactive, and experi-

ential. A detailed discussion about this taxonomy can be found in chapter 2 and the measurement 

can be found in chapter 3.  

To ensure the quality of data, two approaches were taken by the researcher. Firstly, throughout 

the process, I maintained continuous discussions with four learning designers in the Institute of 

Educational Technology, who were responsible for the mapping process of these modules. I also 

joined several internal meetings of the LD team to understand the module mapping protocols. Sec-

ondly, I carried out independent cross-checking with each selected module based on its online mod-

ule guide available on the OU website (Figure 11).  

 

Figure 11. Sampling process 

4.2.3 Data analysis 

To address RQ1.1, a combination of data visualisation, descriptive statistics, and correlational anal-

ysis was used to explore the overall trends within the data. The data visualisation was completed 

using Tableau 10.1.6 and the descriptive statistics and correlational analysis were done using SPSS 

23.  

To answer RQ1.2, network analysis was used as this technique enables us to quantify and visualise 

the interactions and connections between the seven types of learning activity. A discussion about 

the background of network analysis can be found in chapter 3. 

While the application of network analysis in education has primarily focused on modelling interac-

tions between students, there has been very limited studies applying network analysis to model 

interactions between learning activities. To help readers understand the data analysis process, Ta-

ble 16 showed an example of an LD mapping for 4 weeks. For example, in week 1, students were 

expected to spend 3.8 hours on readings, watching, listening activities and 0.8 hours on productive 

activities.  

All weekly mapped 
modules

• 55 modules

Exclude short 
training modules

• 42 modules

Exclude postgradute 
modules • 37 modules

Cross check with 4 learning designers 
Cross check with OU online module guides 

Crosscheck with online module guide 
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Table 16. Example of an LD mapping at a weekly level (unit=hours) 

 Week 1 Week 2 Week 3 Week 4 

Assimilative 3.8 4.3 2.8 1.3 

Information     

Communication     

Productive 0.8 3.9 2.6 1.4 

Experiential    0.5 

Interactive     

Assessment   1.8 3 

 

This LD mapping was a weighted two-mode network as it consisted of different learning activity 

types (mode 1) across several weeks (mode 2) as illustrated in Figure 12 below. Since I am primarily 

interested in the relationships among learning activity types, the dataset was transformed into a 

one-mode network in line with Hora et al. (2013). In doing so, two assumptions were made. 

 

Figure 12. A weighted two-mode network of module X across the first five weeks 

Firstly, two learning activities (blue nodes) become connected if they were present in the same 

week (red nodes). For example, if teachers allocated 3.8 hours for assimilative (e.g., readings) and 

0.8 hours for productive activities in week 1, then assimilative and productive activities become 

connected (Figure 13).  
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Figure 13. Transformation of a two-mode network into a one-mode network 

However, simply visualising the connection between two activity types does not tell us much about 

the strength of the relationship. For example, module A with 5 hours of assimilative and 1 hour of 

productive activities will might look the same as module B with 1 hour of assimilative and 1 hour of 

productive. Since we captured how much time students were expected to spend on each LD each 

week, the weights of the two learning activities had directed towards identical weeks could also be 

measured. In this type of projected network, the weight of a tie from one LD to another was not 

necessarily equal to the weight of the reverse. For example, in Figure 13, if 3.8 hours were spent on 

assimilative activities and 0.8 were spent on assessment activities in the same week, then the 

weight from assimilative to assessment is recorded as 3.8 and the weight of the reverse is recorded 

as 0.8.  

Second, the weight of each tie was discounted for the number of learning activity types in the same 

week (Newman, 2001). It can be argued that the tie between the two activity types becomes 

weaker when there are more activity types that are present in the same week. A simple analogy is 

the connection between two people is stronger there are fewer people in their group. This can be 

generalised as follows: 

𝑤𝑖𝑗 = ∑
𝑤𝑖𝑝

𝑁𝑝 − 1𝑝
 

where wij is the weight between LD i and LD j, and Np is the number of learning activities in week p. 

After transforming the dataset from two-mode to one-mode network, I used the Netdraw function 

of UCINET 6.627 (Borgatti et al., 2002), which is based on non-metric multidimensional scaling 

(Kruskal, 1964), to visualise the co-occurrences between each pair of learning activities across all 

weeks. The stress value was computed in order to determine the number of dimensions. Since all 

the stress values of two-dimensional scaling were far below 0.2, the graphs were visualised in two-

dimensional space (Everton, 2012). The nodes represent different learning activity types. The tie 
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represents the co-occurrence of two learning activity types in the same week. The thickness of the 

line reflects the strength of the ties. In other words, the thicker the line, the higher the weights of 

the tie between two learning activity types. 

In addition, descriptive network metrics were reported to support the reader’s interpretation:  

• Network density: The percentage of existing ties out of all possible ties. The higher the den-

sity, the more variety of combinations between activity types was used in an LD. 

• Out-degree centrality: The frequency of an activity type was used with other types 

• In-degree centrality: The frequency of other activity types was used with an activity type 

To address RQ1.2, which examines how teachers combine different types of learning activity in their 

LD, the first part of network analysis assumed that two learning activity types were “connected” if 

they were present in the same study week. For example, if week 1’s learning activities consist of 

assimilative activities (i.e. readings) and productive activities (i.e. open-ended questions), then as-

similative and productive types are connected. The goal of RQ1.2 is to illustrate the diversity in how 

teachers mix and match different types of learning activity across modules. Due to limited space, I 

chose to report four exemplary modules from four different disciplines out of 37 modules to high-

light different variations in LD.  

While the first part of network analysis considers interactions between activity types at a weekly 

level, one could argue there are multiple learning tasks within a week. Thus, how teachers com-

bined different activity types depends on the nature of each individual task. Therefore, the second 

part of network analysis was conducted at a learning task level. That means two activity types were 

connected only if they were used in the same learning task. For example, activity 1.1. consists of 

readings and finding information, then assimilative type and finding information type are con-

nected. This fine-grained network analysis was carried out on 268 individual learning tasks on a 

level 1 Social Sciences module because this module has been mapped at a task level.  

4.3 Results 

There was a large variation in the size of modules ranging from 208 to 3707 enrolled students 

(M=1221.4, SD=964.93) as shown in Table 17. The average pass rate, which was calculated as the 

percentage of passed students amongst registered students, was 63.63% (SD=8.84%). On average, 

69.10% of the registered students completed the module (SD=6.82%), which means 31.90% of them 

either dropped out or did not engage with the final assessment. However, 91.81% of those who 

completed the module and took part in the final assessment achieved a passing score. These pat-

terns suggested that perhaps assessments were not the main reason behind a low retention rate. 

However, keeping the students engaged throughout 31 weeks long of studying was the main chal-

lenge.  
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Table 17. Descriptive statistics of selected modules starting 2014J 

Variables N Minimum Maximum Mean Std. Dev 

Registrations 37 208 3707 1221.4 964.93 
Completions 37 163 2461 832.3 660.55 
Passed 37 149 2347 766.8 623.24 
Completed of registered 37 56.49% 85.08% 69.10% 6.82% 
Passed of completed 37 77.48% 98.57% 91.81% 5.70% 
Passed of registered 37 44.71% 81.78% 63.63% 8.84% 

 

In line with previous findings (Rienties & Toetenel, 2016b; Toetenel et al., 2016a), assimilative, as-

sessment, and productive activities were the predominant types of learning activity (Table 18). As-

similative activities accounted for half of the workload on average (M=50.0%, SD = 13.03%), fol-

lowed by assessment (M=24.4%, SD=8.38%) and productive (M=17.6%, SD=12.39%). There was a 

large variation in terms of the total workload across modules. All modules have some proportions 

of assimilative, productive, and assessment but some modules did not have any communication, 

finding information, interactive, or experiential activities (Table 18).  

Table 18. Descriptive statistics of seven types of learning activity in 37 modules 

  N Minimum Maximum Mean 
Std. Devi-
ation 

Assimilative 37 23% 75% 50.0% 13.03% 

Information 37 0% 8% 2.2% 1.98% 

Communication 37 0% 9% 2.5% 2.96% 

Productive 37 2% 59% 17.6% 12.39% 

Experiential 37 0% 12% 1.1% 2.25% 

Interactive 37 0% 19% 2.2% 4.56% 

Assessment 37 13% 57% 24.4% 8.38% 

Metric = % of total workload 

 

A visual comparison of LDs across the four disciplines suggested that STEM modules were more 

likely to use experiential and interactive activities than other disciplines (Figure 14). Modules in 

Education, Health, and Languages had the highest proportion of workload for productive activities. 

A Kruskal-Wallis test indicated that the differences between disciplines in productive (X2=14.37, 

p=0.002) and experiential activities (X2=8.64, p=0.034) were statistically significant at 5% alpha 

(Table 19).  
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Figure 14. A comparison of seven learning activity types across four disciplines 

 

Table 19. A Kruskal Wallis test comparing LDs between four disciplines 

  Chi-Square df p-value 

Assimilative 6.611 3 0.085 
Information 5.762 3 0.124 
Communication 7.075 3 0.070 
Productive 14.37 3 0.002 
Experiential 8.642 3 0.034 
Interactive 7.405 3 0.060 
Assessment 4.425 3 0.219 

Kruskal Wallis Test 

Grouping Variable: Discipline 

These results based on aggregated figures of LD confirmed findings from previous studies (Rienties 

& Toetenel, 2016b; Toetenel et al., 2016a). It also added new insights into the disciplinary differ-

ences in LDs. The next section will unpack the changes in LDs over time. 

4.3.1 RQ 1.1 Learning design over time 

Figure 15 visualised the changes in total workload of 37 modules over 31 weeks grouped by the 

number of credits. By default, the total workload of 30 credit modules was lower than 60 credit 

modules. However, there were a lot of fluctuations in workload across modules over time (M30 credit 

= 6.5, SD30 credit = 3.11; M60 credit = 8.9, SD60 credit = 4.42) with a slight decrease in the last 4 weeks 

toward the end of the module (Table 20).  
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Figure 15. Visualisation of total workload over time of 37 modules over 31 weeks 

 

Table 20. Descriptive statistics of seven learning activity types of 37 modules over 31 weeks 

  N Min Max Mean Std. Deviation 

30 credits modules      

Assimilative 475 0.0 12.4 3.1 2.36 

Information 475 0.0 2.3 0.1 0.31 

Communication 475 0.0 2.5 0.2 0.38 

Productive 475 0.0 9.5 1.3 1.39 

Experiential 475 0.0 9.0 0.1 0.71 

Interactive 475 0.0 4.4 0.2 0.78 

Assessment 475 0.0 10.5 1.3 2.23 

Total 475 0.0 23.6 6.4 3.11 

60 credits modules      

Assimilative 613 0.0 15.0 4.5 3.88 

Information 613 0.0 13.0 0.3 0.92 

Communication 613 0.0 11.0 0.3 0.89 

Productive 613 0.0 12.5 1.3 1.94 

Experiential 613 0.0 1.8 0.0 0.17 

Interactive 613 0.0 19.1 0.1 0.87 

Assessment 613 0.0 20.0 2.4 4.06 

Total 613 0.0 35.9 8.9 4.42 

 Metrics = Hours 

N = Number of data points per module per week. For example, a 30-week long module has 30 

data points.  
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Figure 16 illustrates the average time students were expected to spend per module (in hours) on 

different learning activities over 34 weeks. Each colour represents a type of learning activities. The 

visualisation also confirmed the dominance of assimilative (orange), assessment (blue), and pro-

ductive (purple) learning activity types. Assimilative activities were present throughout most of the 

learning process except for the last four weeks and accounted for half of the total workload (M=3.9, 

SD=3.37). 

 

 

Figure 16. Visualisation of seven learning activity types over time of 37 modules over 31 weeks 

 

Interestingly, there was an opposite trend between assimilative and assessment activities through-

out the course (Pearson’s r = -0.462, p <0.01). More assimilative activities were used at the begin-

ning of a module, whereas more assessments were used toward the end. Assessment activities 

were also negatively correlated with other types of learning activity (Table 21). In other words, 

teachers deliberately reduce the workload of other learning activity types when an assessment was 

activated.  
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Table 21. Correlation analysis of seven learning activity types over time of 37 modules  

  1 2 3 4 5 6 7 8 

1. Assimilative 1               
2. Information .082** 1       

3. Communication .166** .167** 1      

4. Productive .161** .167** .130** 1     

5. Experiential .021 -.021 -.022 -.002 1    

6. Interactive .016 .015 .050 .008 .012 1   

7. Assessment -.462** -.115** -.124** -.292** -.062* -.003 1  

8. Total .555** .248** .300** .362** .078** .230** .283** 1 

**. Correlation is significant at the 0.01 level (2-tailed). 
*. Correlation is significant at the 0.05 level (2-tailed). 

N=1088 data points 

After capturing the dynamic picture of LD over time, I took a further step to investigate how LDs 

were configured across different modules. I reported four exemplary modules across four disci-

plines with a variety of configurations and patterns of learning activities (Figure 17). In line with the 

findings above, all four modules extensively made use of assimilative (orange), productive (purple), 

and assessment activities (blue). However, there are subtle differences in the way each module 

utilised these three activity types.  

The first module in Arts followed a traditional design, with a lot of reading, watching, listening ac-

tivities. Its assessment consisted of 5 continuous assessments, so-called Tutor Marked Assessments 

(TMAs) every 4-5 weeks and an end of module assessment (EMA) in week 30. The workload of this 

module was relatively constant for most parts, except for the peak in week 8 which had a double 

workload (i.e., 11.31 hours) compared to other weeks.  

The second module in Health was similar to the first module in Arts. However, the former used 

more productive activities and had a two-week long studying time for each TMA. The third module 

in Science adopted a continuous assessment strategy using a lot of quizzes throughout the learning 

process. This module also had a considerable amount of interactive (yellow) and experiential (light 

blue) activities compared to other modules. There were several dips in workload in week 14, 19, 

and 25 which represented TMA preparation weeks. The dip in week 29 represented an EMA prep-

aration week. The fourth module in languages had a higher mix of assimilative and productive ac-

tivities. There was also a higher presence of communication activities (red) in this module.  
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Figure 17. Four exemplary modules from Arts, Health, Science, and Languages 

 

In summary, the findings have started to demonstrate through visualisations and statistical analysis 

the overall trends in LDs across 37 modules over 31 weeks. The three main types of learning activity 

namely assimilative, productive, and assessment were visible in all modules. There was a moderate 

negative correlation between assimilative and assessment activities. A closer look into each module 

individually revealed subtle differences in how each teacher utilised each learning activity type. The 

next section will explore further the interplay between the different types of learning activity using 

network analysis. 

4.3.2 RQ 1.2 Interplay between learning activities 

Figure 18 visualises networks of learning activities in the same four exemplary modules in RQ1.1. 

To recap, two nodes (i.e., activity types) are assumed to be connected if they were used in the same 

study week. The thickness of each tie represents the strength of the connection between two ac-
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tivity types. The thicker the line is, the stronger the relationship between two nodes. Network den-

sity represents the percentage of the existed ties out of the maximum possible ties. In simple terms, 

the higher the network density is, the more variety of learning activity types were used.  

  

            Module 1, Arts (density = 1)  Module 2, Health (density = 0.286) 

   

     Module 3, Science (density = 0.714)        Module 4, Languages (density = 0.714) 

Figure 18. Network visualisations of four exemplary modules 

Note: The weight of ties was omitted for the sake of visual clarity. Instead, I reported the centrality 

measures in Table 22 below.  

Table 22. Freeman’s centrality measures of seven learning activity types 

  Arts Health Science Languages 

 

Out de-
gree 

In de-
gree 

Out de-
gree 

In de-
gree 

Out de-
gree 

In de-
gree 

Out de-
gree 

In de-
gree 

Assimilative 101.6 11.9 65.9 31.7 152.0 36.9 75.2 56.9 
Information 3.3 23.4 0.9 9.3 0.6 8.7 0.9 6.5 
Communication 2.5 5.3 0.0 0.0 0.0 0.0 10.4 24.0 
Productive 12.1 33.0 37.8 56.1 36.9 78.0 52.1 32.9 
Experiential 0.7 1.8 0.0 0.0 10.3 32.5 5.5 46.0 
Interactive 2.8 29.7 0.0 0.0 11.9 39.9 0.0 0.0 
Assessment 7.1 25.0 5.0 12.6 43.5 59.0 56.6 34.3 
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Additional network centrality metrics (out-degree and in-degree) were reported to support the 

reader’s interpretation (Table 22). Out-degree in an unweighted network refers to the number of 

ties directed outwards (or inwards for in-degree). However, for a weighted network, out-degree 

refers to the sum of weights directed outwards (or inwards for in-degree) (Newman, 2001). For 

example, assimilative activities in the Arts module had out-degree = 101.6 and in-degree = 11.9. In 

other words, there were in total 101.6 hours of assimilative activities that were mixed with other 

types. The total number of hours of other learning activity types which were used in combination 

with assimilative activities was 11.9 hours. 

In Module 1 in Arts, there were strong connections between assimilative and assessment, assimila-

tive and production, assimilative and interactive, and assimilative and information. There were 

weak links among other learning activity types. The network density was 100% which suggested 

that all seven types of learning activity were used in the module.  

In Module 2 in Health, there was a strong link between assimilative and productive activities. How-

ever, this module did not use any interactive, experiential, or communication activities. The net-

work density was low (28.6%) which suggested that there was a lack of variety in the LD. The most 

common repertoire of practice was assimilative and productive (10 out of 31 weeks)  

In Module 3 in Science, there were strong links between assimilative and assessment, assimilative 

and production, assimilative and interactive, and assimilative and experiential. There were no com-

munication activities in this module (e.g., discussing module related content with peers or tutors in 

online disucsison forums). The network density was 71.4% suggesting a good mix of learning activ-

ities was used. The most common repertoire of practice was assimilative, productive, interactive, 

and assessment (7 out of 31 weeks), and assimilative, productive, and assessment (6 out of 31 

weeks). 

In Module 4 in Languages, assimilative and experiential activities were often mixed with assessment 

and productive types. There were no interactive activities in this module. The most common rep-

ertoire of practice was assimilative, communication, productive, experiential, and assessment (9 

out of 31 weeks) followed by assimilative, productive, experiential, and assessment (7 out of 31 

weeks).  

To sum up, the network analysis has uncovered complex LD strategies used in four different mod-

ules, which were not visible with simple line graphs. The analysis indicated a strong influence of 

assimilative activities in workload and in relations with other learning activities. In the next step, I 

will further explore the media types that are used in assimilative activities, which provides a rich 

picture of the media mix used in a particular LD. This is important because not only which learning 

activity type was used but also how it was delivered will have different effects on student learning. 
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This analysis was carried out on 268 learning tasks of a selected module in Social Sciences because 

it was one of the few modules that have been mapped at a task level (Figure 19). 

 

Figure 19. LD mapping at a task level of an exemplar module in the Social sciences 

When coding learning activities, media assets are indicated at a high level, in order to compare the 

overall amount of time spent on video, words, photos, and figures for instance. This high-level no-

tation does not indicate whether a module includes one video of half an hour or six videos of five 

minutes, as the total time spent per item is recorded. The decomposition of assimilative activities 

of the exemplary module is illustrated in Figure 20. On average, most assimilative activities took 

forms of words (M= 3.32, SD=1.92). This suggests that educators were more likely to use reading 

materials to convey information, but most weeks also included another media element. Figure 20 

also shows that figures and videos were also used over time, but in less frequency compared to 

words. 
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Figure 20. Assimilative activities of an exemplar module in Social sciences 

Using descriptive statistics, Table 23 indicated that on average, teachers in this module allocated 

0.98 hours for each learning task (SD=1.75). Assimilative activities accounted for more than half of 

the workload of each learning task (M=0.58, SD=1.60). Readings were the main component of as-

similative activities accounting for 0.39 hours (24.3 minutes) on average.     

Table 23. Descriptive statistics of 267 learning tasks in an example module in Social Science 

Variable N Mean SD Min Max 

      
Assimilative 267 0.58 1.60 0 9.00 

Words 267 0.39 1.17 0 6.80 

Figures 267 0.06 0.23 0 2.08 

Photos 267 0.03 0.12 0 0.90 

Tables 267 0.01 0.07 0 0.58 

Equations 267 0.00 0.02 0 0.33 

Audios 267 0.01 0.09 0 1.00 

Videos 267 0.03 0.12 0 1.00 

Others 267 0.04 0.56 0 9.00 

Information 267 0.06 0.24 0 2.00 

Productive 267 0.09 0.18 0 1.00 

Experiential 267 0.00 0.00 0 0.00 

Assessment 267 0.25 0.91 0 6.00 

Total 267 0.98 1.75 0 9.00 

      
 

Note: Metric = hours. 

Further SNA analysis demonstrated the inter-relationships between different types of assimilative 

activities and other learning activities (Figure 21). There were in total 40 ties in the network, with a 

density of 22% and the average distance between a pair of ties of 2.036. Firstly, there were strong 

connections between the use of words with photos, tables, and figures. These forms of assimilative 

activities often appeared together in reading materials. In line with the multi-media principle of 

Mayer (2002), this module employed an integrated representation of graphics and words. Given 

the nature of this module, most of the graphics were representational (visuals that illustrate the 

appearance of an object), organizational (visuals that show qualitative relationships among con-

tent), and interpretive (visuals that make intangible phenomena visible and concrete) (Mayer, 

2002). The use of words had a strong influence on photos, figures, and tables with a weight of 38.9, 

16.4, 38.4 respectively (out-degree centrality = 118.541).  

Secondly, videos were often used in combination with finding information activities and productive 

activities. For example, students were asked to watch a short video, and answer some questions 

using the information from the video. Alternatively, students were asked to interpret and draw a 

conclusion using the information from the video.  
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Figure 21. Inter-relationships between assimilative activities and other activities of an exemplar 
module in Social sciences 

 

Note: Blue nodes represent assimilative activities, red nodes represent other activities 

The structure of the network also revealed interesting findings. There were two local networks in 

which the first one (right-hand side) consists of mainly assimilative activities, whereas the second 

one (left-hand side) consisted of some assimilative activities (i.e., videos, others), finding infor-

mation and productive activities. The connection between words and productive activities acted as 

a bridge between these two local networks. The betweenness centrality of the edge productive and 

words was 28, which means there were 28 flows between all pairs of nodes which were carried 

using this edge. 

4.4 Study 1 Discussion 

Research question 1.1 of Study 1 explored how LDs were configured over time by identifying com-

mon LD patterns amongst 37 modules as well as varieties of LD across different modules and disci-

plines. The findings were consistent with previous studies at the OU (Rienties & Toetenel, 2016b; 

Toetenel et al., 2016a), which confirmed the dominance of assimilative activities followed by as-

sessment and productive activities in most modules. Furthermore, Study 1 has shed new light on 

how LDs changed throughout their module’s timeline. The findings demonstrated that the total 

workload fluctuated from week to week, with a standard deviation of 3.11 hours for 30 credit mod-

ules (M=6.5) and 4.42 hours for 60 credit modules (M=8.9). This was equivalent to approximately 

50% variation in weekly workload across modules. At the beginning of the module more assimilative 

activities were introduced, while towards the end more assessment activities were used, and the 

overall workload decreased. There was a negative correlation between assessment and all other 

activities, suggesting that teachers reduced studying workload on purpose when they introduced 

assessment activities.  



  

 80 

While the fluctuations in workload across modules could be explained by the differences in subject 

content, these fluctuations still remained within the module itself, as illustrated by the four exem-

plary modules. Keeping a balance and consistent workload is crucial to the success of OU students. 

For example, a full-time OU student needs to complete 120 credits worth of study (i.e., two 60 

credit modules). If the workload between and within these two modules varied by 50% from week 

to week, then a student is likely to feel overwhelmed and may struggle to allocate sufficient time 

for studying (Kyndt et al., 2014; Whitelock, Thorpe, et al., 2015). For a part-time OU student, these 

fluctuations in workload have even more severe consequences to their performance because of 

their studying time is limited by other duties such as full-time job, part-time job, or family (Nguyen, 

Thorne, et al., 2018). By making instructional practices more visible through LD representations, 

teachers and curriculum managers can identify trends and issues in their designs. Most importantly, 

the visualisations can help teachers narrow down the potentially problematic area in their LD (e.g., 

the workload increased by 100% in week 8). By doing so, teachers can focus their time and effort 

on important issues within their LD. 

A second important finding from Study 1 was the under-representation of collaborative and inter-

active/experiential activities in all modules. It has been established in educational literature that 

collaboration and interactive activities have a positive impact on student engagement and aca-

demic performance (Cherney et al., 2017; Kreijns et al., 2003). Learning to effectively collaborate in 

digital environments is a valuable skill in the 21st century. However, designing collaborative activi-

ties in an online learning environment can be challenging for several reasons (Thorpe, 2002). For 

example, the lack of face to face interactions makes it difficult to establish trust and rapport be-

tween students in an online setting (Kreijns et al., 2003; Thorpe, 2002). The diversity in OU student 

population in terms of age and prior educational background can also be a barrier for collaboration 

(Kreijns et al., 2003; Thorpe, 2002). There are also practical and logistic challenges in organising 

collaboration activities at scale for a large number of students, such as assessment strategy for 

collaboration, and staff resources.  

Research question 1.2 of Study 1 examined the interplay between different types of learning activ-

ity. Through a novel application of network analysis, the findings illustrated the underlying com-

plexities in how teachers mix and match different activity types in their LDs. Even though all mod-

ules put a strong emphasis on assimilative activities type, each module utilised it with other learning 

activities in different ways. For example, the repertoire of practice in module 2 in Health (assimila-

tive, productive) was different from module 3 in Science (assimilative, productive, interactive, and 

assessment), and module 4 in Languages (assimilative, communication, productive, experiential, 

and assessment). This is important for teacher reflection because two modules can have the same 

amount of activities, but how they were combined and used together can have different effects on 

student learning.  
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Further analysis of 268 individual learning activities in our social science module demonstrated the 

usage and connections of media in assimilative activities. Overall, most assimilative activities took 

forms of words. This suggests that educators were more likely to use reading materials to convey 

information, but also included another media element. The findings revealed strong ties between 

words, figures, photos, and tables. This implies that educators employed integrated representa-

tions of words and graphics, which has been shown to be effective in helping students absorb in-

formation (Mayer, 2002).  

4.5 Conclusion 

In conclusion, Study 1 investigated how LDs are configured over time by analysing 37 modules over 

31 weeks at the Open University UK. By visualizing how LD varied week-by-week throughout the 

course, teachers can explicitly reflect on their practice as well as compare and contrast with others. 

Using network analysis, Study 1 illustrated how different learning activities interact with each other 

and which repertoire of practice was frequently adopted. The results indicated a wide variance in 

the number of learning activities was used as well as the workload balance across modules. The 

findings also highlighted the fluctuations in workload between and within modules, which could 

have important implications to OU students.  

Study 1 has provided large-scale empirical evidence exploring two important and under-explored 

dimensions of LDs, namely time and network. Future research should continue investigating the 

temporal changes in LD such as how LD changes across a series of modules within a qualification, 

how LD changes from level 1 to level 2 and level 3, or how LD of the same module changes across 

different semesters. Similarly, interesting questions could be asked about the network structure of 

LDs such as how does a network of learning activities within a module interact with a network of 

students, what are the common LD patterns amongst multiple networks of learning activities 

(Holmes et al., 2019), or how does a network of learning activities change over time.  

While Study 1 has described the overall LD patterns across 37 undergraduate modules from a num-

ber of disciplines, a limitation of Study 1 was the potential sampling bias in selecting modules due 

to the availability of the data. The findings were based on modules produced in 2014, which might 

not apply to new modules that were developed recently. Last but not least, Study 1 has not ad-

dressed the why question to provide an explanation for why teachers designed their module this 

way. To answer this, Study 2 will take a qualitative approach through 12 semi-structured interviews 

with module chairs to explain the underlying perspectives of teachers in designing their modules. 

Furthermore, Study 1 did not specifically focus on how the LD influenced actual student behaviour, 

which will be the focus of Study 3 and Study 4. 
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Chapter 5 - Study 2 The underlying factors behind teachers’ design decisions 

This chapter describes Study 2 in this thesis, which explores the underlying factors that influence 

how teachers design for learning in a distance learning setting through a series of qualitative inter-

views. Section 5.1 – Introduction summarises the rationale of the study and presents its research 

questions. Section 5.2 – Methods describes an overview of the specific methods used in Study 2, 

including information about the setting, participants, procedure, instruments and the data analysis 

techniques employed. Section 5.3 – Results presents the findings in relation to each research ques-

tion. Section 5.4 – Discussion reports the implications as well as limitations of Study 2 and provides 

connections to Studies 3 and 4.  

 

5.1 Introduction 

In chapter 4, Study 1 has highlighted the overall trends as well as the differences between the ways 

in which teachers have designed their modules at the OU over a long period of time. In particular, 

the predominant learning activity types in most modules were assimilative, productive, and assess-

ment activities, whereas interactive and communication activities, were used less in comparison. 

Furthermore, another important finding was the large variation in the estimated workload by 

teachers over time both within and between modules. However, these quantitative findings only 

provided one perspective on LD (i.e., what teachers have designed), while follow-up qualitative 

research is needed for an in-depth understanding of the observed phenomena (i.e., how teachers 

designed and why teachers designed the way they did). A mixed-method research design can help 

researchers triangulate the findings to increase the rigour and completeness of their findings 

(Creswell & Clark, 2017; Johnson et al., 2004) while they engage in a complex inquiry such as un-

derstanding LD. Therefore, this chapter reports an in-depth qualitative analysis of teacher reflec-

tions on the LD process at the OU over 2018-2019. 

Extensive research in the field of LD has shown that LD is a multifaceted process which involves 

multiple stakeholders and different elements interacting in the process of designing and imple-

menting teaching and learning activities (Bennett et al., 2015; Bennett, Agostinho, et al., 2017; 

Bennett, Dawson, et al., 2017; Conole, 2009; Lockyer et al., 2008). Dalziel et al. (2016) suggested 

that the LD process is driven by factors such as educational philosophy, educational theories and 

methodologies, and characteristics about learning environments. Firstly, the teacher’s philosophy 

of how learning occurs will determine the instructional tasks accordingly. For example, behaviour-

ists propose that learning happens through a stimulus-response process (Watson, 1913). This par-

adigm is often used in physical education and military training, in which LD consists of trials and 
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repetitions (Light, 2008). In contrast, social constructivists often advocate for learning through col-

laboration as the development of knowledge is social situated and constructed through interactions 

with others (Laurillard, 2002; Vygotsky, 1980).    

Secondly, LD decisions are also driven by the learning theories that teachers adopt. For example, a 

cognitive load theory (CLT) proposes that human working memory can only process a limited 

amount of information at a time (Kirschner, 2002; Paas et al., 2003; Sweller et al., 1998). CLT sug-

gests that if the cognitive load exceeds our processing capacity, students will struggle to complete 

the activity successfully. CLT identifies three forms of cognitive load: intrinsic – related to the diffi-

culty of the materials itself, extraneous – cognitive load generated by the way information was 

presented, and germane – cognitive load produced by the construction of schemas (Paas et al., 

2003). By adopting this theory, teachers would often simplify their instructions or break a complex 

process into smaller chunks to reduce student’s cognitive load. 

Thirdly, LD decisions are often influenced by the characteristics of learning environments (Bennett 

et al., 2015). Examples include student demographics and prior knowledge, institutional policies, 

and technological infrastructure. As shown in Nguyen, Thorne, et al. (2018), OU students varied 

considerably in age, with 24% under 25 years old, 37% aged 26–35, 22% aged 36–45, 13% aged 45–

55, and 5% aged 56 and over. More than half of them were working full-time (53%), while 21% were 

working part-time, 7% were looking after the home/family, and 5% were unemployed and looking 

for a job. Regarding students’ qualifications, there are no formal academic entry requirements at 

an undergraduate level at the OU. In the study, 40% of the students had A levels or equivalent, 28% 

had less than A levels, 24% had higher education degrees, and 3% had a postgraduate qualification. 

On average, 10% of the students had a reported disability. This diverse population of students poses 

a great challenge for teachers in designing their modules. 

As can be seen from Study 1, there were both common patterns and varieties in how different 

modules were designed at the OU. Given the complexity of LD based on the existing literature, and 

the empirical evidence from Study 1, the first RQ of Study 2 will explore underlying factors that 

influence teachers design decisions: 

• RQ2.1 What are the driving factors behind teachers’ design decisions?  

The Open University has been one of the pioneers in LD research for the last 10 years (Conole et 

al., 2004; Rienties et al., 2017). The OU offers a wide range of workshops and online visualisation 

tools to support and guide teachers in the design process (Toetenel et al., 2016b). As indicated 

previously, new modules at the OU are expected to join the LD workshops. A number of studies at 

the OU has made use of the LD data to explore trends and patterns of LD (Toetenel et al., 2016a, 

2016b), and link LD with student behaviour, performance, and satisfaction (Rienties & Toetenel, 
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2016a, 2016b; Rienties et al., 2015). While the previous studies have reported a positive impact of 

OULDI on the teacher design process based on the LD data collected (Clifton, 2017; Toetenel et al., 

2016a), limited attention has been paid to the affordances and barriers for teachers when they 

engaged in the OULDI process. This is important for two reasons.  

Firstly, there has been a host of LD projects and tools developed by researchers around the world 

(AUTCLearningDesign, 2002; Dalziel, 2003; Koper et al., 2004; Laurillard et al., 2018). Although a lot 

of papers reported positive evaluations from users (Clifton, 2017; Hernández-Leo et al., 2018; 

Laurillard et al., 2018), it is still unclear why most of these LD tools have not been adopted by teach-

ers as a part of their standard practices. Secondly, the OULDI is one of a few LD tools that has been 

rolled out across multiple institutions and structurally embedded as a part of the design protocols 

at the OU. Nonetheless, there seemed to be mixed feelings about the OULDI approach from OU 

staff when presenting my research to internal quality enhancement seminars and conferences. 

Therefore, an objective evaluation of the opportunities and challenges of implementing an LD tool 

on a large scale will help OU practitioners reflect on their approaches and may provide useful les-

sons for other institutions that seek to implement their own LD tools. Therefore, the second RQ of 

Study 2 is:  

• RQ2.2 What are the barriers and affordances of learning design adoption at the OU? 

Finally, an important element in every design process is feedback and evaluation (Dalziel et al., 

2016). There are many sources of feedback that teachers use to improve their teaching practices 

such as course grade, student evaluations, peer observations, training workshops, and student an-

alytics. The OU is one of the few institutions that provided analytic tools for teachers on a large 

scale (Herodotou, Rienties, et al., 2019; Rienties, Boroowa, Cross, Farrington-Flint, et al., 2016). For 

example, OU Analyse is a tool that provides teachers with (near) real-time analytics of student be-

haviour (e.g., click count, submission record) and predicts academic performance based on data 

about students (Kuzilek et al., 2015). Since feedback and reflection is an essential step in the design 

process, the next RQ seeks to understand what kind of feedback teachers receive on their modules, 

and how they make use of this feedback. This also provides a bridge between subsequent studies 

(Chapter 6 and 7) which connected LD with student behavioural engagement. 

• RQ2.3 How do teachers make use of feedback on their module to support learning design? 

The next section provides an in-depth overview of the methods employed in Study 2 to address 

these questions.  
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5.2 Methods 

5.2.1 Setting and Participants 

In order to discuss how the participants were sampled, it is important to first understand the con-

text of the LD process at the Open University UK. In a traditional university, a module or a course is 

usually designed by a lecturer/professor who has the full autonomy to make decisions such as what 

to teach, how to teach, and how the course is scheduled (Biggs et al., 2007). In contrast, designing 

a module in a distance learning setting (i.e., OU) requires participation from multiple stakeholders 

(i.e., a production team) with several stages/checking points during the design process to ensure 

the consistency and quality of the module produced (Figure 22). Table 24 below provides an over-

view of the different roles in the module teams.  

 

Figure 22. The module production process of the Faculty of Business and Law 201918 

 

 

 

 
18 https://openuniv.sharepoint.com/sites/curr/fbl/fbl-compressed-production-project/fbl-compressed-pro-
duction/Shared%20Documents/Forms/AllItems.aspx?id=%2Fsites%2Fcurr%2Ffbl%2Ffbl%2Dcom-
pressed%2Dproduction%2Dproject%2Ffbl%2Dcompressed%2Dproduction%2FShared%20Docu-
ments%2FModule%20Production 



  

 86 

Table 24. A summary of the module production team’s roles19 

Production 

team  

Role 

Module chair(s) OU Module chair(s) have the responsibility of providing academic leadership 

to ensure the coherence, cohesion and quality of the learning experience of-

fered by the module within the qualification(s) it belongs to. They have overall 

responsibility for the work of the module team and the setting and mainte-

nance of academic standards 

Academic staff Authors who write the module materials and develop academic content 

Readers who critically assess the module materials  

External asses-

sor 

A reputable academic subject specialist, usually from another university, with 

responsibility for ensuring that the academic standard of the module is con-

sistent with the rest of the sector and acknowledges current thinking in the 

subject area. 

Curriculum 

manager 

Responsibility for project management and day-to-day administration of the 

planning, production and presentation of a module. 

Module team 

secretary 

Provide secretarial support for the module team 

A member of 

the Institute of 

Educational 

Technology 

(IET), or the 

Learning and 

Teaching Solu-

tions (LTS) if ap-

propriate 

Provide pedagogically advises on teaching strategies, using media, testing ma-

terials prior to the first presentation 

Other staffs External consultants, media project managers, media developer specialists 

(e.g., editors, interactive media developers and designers, sound and vision 

producers and media assistants working on activities such as text layout and 

rights clearance), subject information specialists and production and presen-

tation administrators 

  

 
19 https://openuniv.sharepoint.com/sites/intranet-curriculum-management-guide/Pages/production.aspx 
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Table 24 illustrates that module chairs are responsible for making key design decisions, leading the 

production team and overlooking the module in its production phase and in presentation (i.e., when 

the module was running). Therefore, module chairs were selected as the participants of Study 2 

because they are in a good position to offer valuable insights into the LD process (RQ2.1), their 

experience working with the OULDI framework and tools (RQ2.2), as well as how they make use of 

feedback on their module (RQ2.3). Study 2 specifically focuses on level 1 undergraduate modules 

(the equivalent of 1st-year courses) because they account for the largest number of enrolled stu-

dents. Furthermore, given the focus on retention strategic management, the OU has invested heav-

ily in monitoring and following the LDs in year 1 (Herodotou, Hlosta, et al., 2019; Herodotou, 

Rienties, et al., 2019). In addition, this focus also allows me to triangulate the qualitative findings 

with quantitative findings from Study 1, 3, 4, all of which were also carried out on level 1 modules 

(Table 25).   

In most cases, the module chair in production (i.e., when the module is designed) and in presenta-

tion (i.e., when the module is delivered to students) is the same person. However, in some cases in 

which the module was produced a long time ago, the module chair in presentation might not be 

the same person as the module chair in production due to the change of staff. In these cases, I tried 

to reach out to both module chairs to have a representative account of their experience in the LD 

process. Furthermore, in line with Creswell and Poth (2017), I continued to sample teachers until I 

reached a point of saturation, whereby limited new insights were added when new participants 

were added. There were 12 interviews in total taking place in 10 level 1 modules across a wide 

range of disciplines. Table 25  gives descriptive information about the modules selected in Study 2.  

Table 25. Descriptive information about modules included in Study 2 

Module Enrolments** Launched since Credits 

Language 200 2017J 30 

Computing 2 700 2017J 30 

Arts 1 1400 2015J 60 

Science 1400 2017J 60 

Health* 1700 2015J 60 

Computing 1 2400 2018D 30 

Arts 2 2600 2015J 60 

Business 2600 2015J 60 

Education* 4000 2014J 60 

Psychology 4900 2015J 60 
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* Two interviews, one for each module chair 

** Number of students at 25% fee liability date in 2018 J (starting in October), figures were 

rounded to the nearest 100 for anonymization purposes 

5.2.2 Procedure 

The participants who were interviewed were identified from the module website which lists the 

contact information of the module chairs. In line with recommendations of Creswell and Clark 

(2017), the module chairs were then approached via email including the study information sheet 

(see Appendix 4), which allowed the module chairs to make an informed decision about whether 

or not to participate. Prior to the interview, a set of example interview questions were sent to the 

participants to give them an overview of the topics and the kinds of questions that would be cov-

ered in the interview. There was no financial compensation to participate in the interview. Upon 

arrival at the interview, the information sheet was summarised verbally. Informed consent was 

given via physical signatures at the bottom of the information sheet and was collected by the re-

searcher at the start of the interview. All interviews were audio-recorded using a recording device 

with explicit verbal permission from the participant.   

The interviews took place on the OU campus in a meeting room, except for two interviews taking 

place via Skype. Each interview lasted 45 minutes on average and was conducted in English. Partic-

ipants were assured of the confidentiality of all statements during the interview and reminded that 

all identifiable information about the participants or the module would be anonymised.  

The format of the interviews was semi-structured because it allows for key topics related to the 

research questions to be discussed while providing flexibility for unexpected themes to emerge 

from the interviews at the same time (Braun et al., 2012; Creswell & Clark, 2017) see also Chapter 

3. Since LD in the OU context is an extremely complicated process, the flexibility of semi-structured 

interview format will be more suitable for unpacking nuances in module chairs’ beliefs and experi-

ence in engaging with the LD process.  

In line with Creswell and Clark (2017); Creswell and Poth (2017), the interview questions were writ-

ten in a way that encouraged module chairs to discuss elements that they found most relevant to 

their experience in LD. For instance, broad questions such as “How do you design learning activities 

in this module” or “What are your experience working with the OULDI framework/tools” were 

drafted to minimise biasing participant opinions through leading questions. The interviewer’s body 

language, tone of voice, and facial expressions were being kept as neutral as possible to avoid in-

fluencing respondents in such a way that it might distorts the outcome of the interview (Braun et 

al., 2012; Creswell & Clark, 2017). 
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At the beginning of the interview, participants were asked about their role and history of working 

for the OU in order to establish rapport and understand their background (i.e., prior teaching and 

designing experience at the OU). The interview was then divided into three parts that correspond 

to three RQs of Study 2. In the first part, participants were asked about the LD of the module and 

the LD process (RQ2.1). The interview questions were designed in order to tease out explanations, 

rationale, and opinions about their design decisions rather than merely describing what has been 

done. The second part of the interview explored participants’ experience with the OULDI frame-

work and tools (RQ2.2). Participants were encouraged to give examples of both the affordances 

and challenges that they encountered with the OULDI approach. In the third part of the interview, 

participants were asked to identify the various channels of feedback they received on their module 

design and how they made use of that feedback.  

In order to practice interview techniques, as well as develop and test the suitability of the interview 

questions, two module chairs based in IET were selected to participate in a mock interview. At the 

end of the pilot interviews, the participants were asked a series of questions related to their under-

standing of the interview questions, their level of comfort with discussing interview topics and sug-

gestions for improving the interview techniques. Research notes were taken to further refine the 

interview questions and interview techniques. The interview questions were checked by the super-

vision team and other experienced qualitative researchers in the department to ensure the clarity 

of the questions was appropriate (Figure 23).  

Introduction 

• Self-introduction 

• Explain the purpose of the interview 

• Asking for permission to start recording 

Warm up 

• Could you please briefly describe your role at the OU? 

• Could you please briefly describe the module (who is it for, what is it aiming to 
achieve) 

Exploring learning design 

• What do you want your students to learn from this module?  

• How do you structure the module? Why? 

• What kinds of learning activities have you designed in this module? 

• Why did you choose these activities? 

• Who were involved in the module’s design process? 

Experience with OULDI 

• What is your experience with the OULDI? 

• What do think about the LD taxonomy? 

• How do you use OULDI in your design process? 

Learning design and feedback 

• What kinds of feedback or data that you received on your module?  

• What are your thoughts about receiving this information? 
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• How useful this information is? What did you with it/Any changes with the module? 

• Is there any additional information you would like to receive about the module? 

Wrap-up 

• Are there any other thoughts or experiences that you would like to share? 

Figure 23. Semi-structured interview questions 

5.2.3 Data Analysis  

Thematic analysis was used to analyse the interview data to identify emerging themes of discussion 

that arose from the broad semi-structured interview questions (Braun et al., 2006). The analysis 

followed a six steps protocol as suggested by Braun et al. (2006, 2012).  

1. Familiarizing yourself with the data 

2. Generating initial codes 

3. Searching for themes 

4. Reviewing themes 

5. Defining and naming themes 

6. Producing the report 

In the first stage of analysis, I transcribed two audio recordings in order to gain familiarity with the 

data and used a transcription service for the rest. Next, I re-read the interview transcripts and re-

visited the audio recordings to immerse myself with the data while simultaneously making notes. 

In the second phase, all interview transcripts were imported into NVivo 11 to begin the systematic 

analysis of the data through coding. As suggested by Braun & Clarke. (2012), codes should go be-

yond the descriptive function of what the participants were saying, but also provide an interpreta-

tion about the data content. I went through the interview transcript and assigned both descriptive 

and interpretive codes for potentially relevant data to the RQs. During this stage, a list of 98 codes 

was generated. In the third phase, initial codes were revised, modified, and merged together if 

necessary. After that, emerging themes were identified by reviewing coded data for areas of simi-

larity and overlap between codes. Themes should be distinctive but also need to work together as 

a coherent and compelling narrative to answer each RQ. This is an active process that combined 

both a deductive approach based on the LD conceptual framework by Dalziel (2015) and an induc-

tive approach was used for generating themes. As a result, there were 12 themes emerged: 5 for 

RQ2.1, 4 for RQ2.2, and 3 for RQ2.3. At this point, themes and codes were given explicit definitions 

in a codebook, which served as a guide map for the coding process (Table 26).  
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Table 26. Summary and definition of Study 2 interview codes 

Code Definition of code  

  

Teacher learning design Codes related to how teachers designed learning activities 
and engaged in the learning design process. Statements re-
lated to: 

Institutional factors institutional policies and management decisions influence 
the learning design process of teachers 

Study skills teachers embedded study skills in their learning design  

Student workload teachers considered student workload in their learning de-
sign 

Redesign/Codesign the learning design was based on existing materials/mod-
ules or how learning design was a collaborative effort 

Pedagogy teachers structure learning activities such as readings, case 
studies, collaborations, assessment 

Perspectives on OULDI Codes related to the teacher’s perspective on the OULDI 
framework and its process. Statements related to  

Encouraging reflections, 
conversations, and new 
ideas 

OULDI facilitates teachers reflect on their design, conversa-
tions across stakeholders and new teaching ideas 

Management tool OULDI was used as a management tool with a top-down ap-
proach 

Process issues the process of how OULDI was delivered to teachers such as 
the lack of follow up activities or the timing of the LD work-
shop 

Interpretation issues difficulties in interpreting and using the OULDI taxonomy 

Feedback on LD Codes related to how teachers make use of feedback on 
their module to inform their learning design. Statements re-
lated to: 

Course evaluations teacher’s perspectives on course evaluations  

Tutor feedback teacher’s perspectives on tutor feedback (ALs)  

Analytics feedback teacher’s perspectives on analytics data about students  

 

In the fourth phase, the coding scheme and the emerging themes were reviewed by the supervision 

team. Each team member coded two randomly selected anonymous interviews and compared their 

notes. This phase is essentially about checking the consistency and quality of the codes and themes 

generated. Any disagreements between two coders were discussed and the coding scheme was 

revised accordingly. In the fifth phase, each theme was explicitly defined to capture the essence of 

each theme in a concise and punchy manner. Finally, the analysis was transformed into an inter-

pretable piece of writing with vivid and compelling extracts that form a coherent narrative to ad-

dress each RQ. These narratives were then compared with the quantitative findings from Study 1 

to draw the connections between LD representations and teacher perspectives. The combination 

of members checking and data triangulation with quantitative findings enhance the trustworthiness 

and credibility of the findings. All identifiable information about the participant and the module 

was anonymised in the report to protect participants’ confidentiality.     
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5.3 Results and Discussion 

The first section of the results reported LD figures of the selected modules in Study 2. It provided 

the basis to understand the current LD of these modules and subsequently support the interpreta-

tion of the findings with module chairs. There were missing data for four modules because they 

were recently launched in 2017/2018, which have not been mapped in the Activity Profile tool.  

 

Figure 24. Learning design of 10 modules in the interviews 

Note: Missing data from 4 new modules which were launched since 2017/2018  

The six modules with available data in Figure 24 showed similar LD patterns compared to findings 

from Study 1, in which assimilative activities accounted for the majority of the total workload, fol-

lowed by assessment and productive activities. Communication activities were present in the Psy-

chology, Business, and Arts 1 modules. There were few or no communication activities in the 

Health, Arts 2, and Education module. Interactive activities were used in the Business, Arts 1, and 

Psychology modules. Finding and handling information activities were used with a low frequency in 

all six modules.  

Overall, a total of 383 codes were recorded amongst 12 interviews. Table 27 summarised the fre-

quency of each code applied and the number of interviews (i.e., sources) consisting such code. The 

emerging themes for each RQ will be discussed below. 
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Table 27. Summary of codes 

Code Sources Code fre-
quency 

   
Teacher learning design 12 213 

Institutional factors 10 27 
Study skills 10 38 
Student workload 10 52 
Redesign/Codesign 10 18 
Pedagogy 12 78 

   
Perspectives on OULDI 11 107 

Encouraging reflections, conversations, 
and new ideas 

8 21 

Management tool 8 15 
Process issues 9 36 
Interpretation issues 11 35 

   
Feedback on LD 11 63 

Course evaluations 9 17 
Tutor feedback 9 15 
Analytics feedback 10 31 

Note: Source refers to the number of interviews that consists respective codes. 

5.3.1 RQ 2.1 Results 

Research question 2.1 aims at exploring the underlying factors that influenced the design process. 

The analysis of interview transcripts revealed five major themes, which are discussed below. 

Theme 1: Learning design process was influenced by institutional factors 

A consistent theme emerging through the interviews with module chairs was the influence of man-

agement and institutional policies on the LD process. Many participants reported that the design 

process was kickstarted by decisions from management. 

‘When the head of the department comes and knocks on your door, you know that it's never 
good news. And so I was told that [MODULE CODE] was needed a radical remake. It was 
already in remake, being led by a colleague of mine. And they decided that she wasn't doing 
the right kind of job and took it off her, which was so upsetting she decided to resign. So 
[co-chair] and I was given the role of remaking [MODULE CODE]. In terms of whether or not 
we... When you design a module, you never ever have free rein in what you do. Often the 
design is strongly influenced by the senior team at the beginning stages.’  
(Participant 1, Health) 

‘The learning design, to a large extent, was dictated by university initiative. It had to be 
turned into 60 credits from two 30 credits. It was also done very quickly, as I understand it. 
So not having the blank sheet to start from scratch, it has never really been outcomes.’  
(Participant 6, Arts 1) 
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The influence of management and institutional policies also restricted the autonomy of module 

chairs when making decisions about LD. Many participants mentioned that their LD decisions re-

garding assessment strategies were influenced by the recent change in institutional policy, so called 

single component assessment (SCA). The concept of SCA was first introduced in 2015 to support 

the OU’s strategic objective to improve student retention and progression. Traditionally, OU mod-

ules included both a continuous assessment component such as tutor-marked assessments (TMAs) 

or computer-marked assessments (iCMAs), and an examinable component such as exams or end-

of-module assessment (EMA). 

‘Originally we were told that we should have a portfolio at the end. And for TMA's and a 
portfolio and that this was something that was even, that was passed down from LTI (Learn-
ing & Teaching Innovation). We didn't have much say about it’  
(Participant 3, Education) 

‘It was going to be one or the other, and modules would end with either an exam or an EMA, 
which would be an extended essay. So, very conventional. There had been a faculty decision 
that every module would include iCMAs, so we knew that we would be including an iCMA.’  
(Participant 5, Psychology) 

The SCA initiated an assessment strategy based on single-component assessment, whereby a stu-

dent’s module grade (including pass status) can be determined solely through a straight average of 

all the assessment tasks within one component. That usually means exams or EMA were replaced 

by a continuous assessment type such as TMA. After a few years of piloting, the adoption of SCA is 

made as a default approach for all level 1 and level 2 modules in 201820.  

‘Over the years, we have reduced the number of assessments and now students have 4 
TMAs, which in line with the recent development at the OU (i.e., single-component assess-
ment).’  
(Participant 12, Language) 

 ‘Things to do with retention are big issues at the moment. Getting that information early 
and being able to respond to it is important. The problem is we've just had yet another 
institutional change forced on us in that we've just gone to single component assessment 
module, starting in 18J. I think students will add up how many marks they've got, and they 
will choose not to submit things when they've got accumulated their marks.’  
(Participant 6, Arts 1) 

Theme 2: Learning design process involved redesigning and codesigning 

As part of the OU quality enhancement process, each module follows a life cycle review every 4-5 

years. The purpose of the life cycle review is the review point for making a decision to end, amend 

or extend the life of a module. Most participants indicated that their modules were not designed 

 
20 QAC-2018-03-03 Consolidated policy for single component assessment 
http://css2.open.ac.uk/ecms/get.aspx?object_id=090173b4816f0ad1&format=pdf 
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from scratch, and often involved redesigning an existing module or combining existing modules 

together. Learning materials and contents were often reused and adapted to the new module.  

 ‘The module is [MODULE CODE], kind of the third version of level 1 [subject] language and 
culture module, it was first produced in 1997 I was involved in the very first production of it. 
It was the then remade and now it’s been made again but this time it wasn’t just a revision-
ing but a full remake implementing a lot of curriculum and features.’ 
(Participant 12, Language) 

‘This was a 60-credit module, but we had kept a textbook from a previous 30 credit intro-
ductory module.’ 
(Participant 5, Psychology) 

‘[MODULE CODE] was designed from two existing accredited modules. When the university 
decided to [inaudible 00:05:17] the 30 credits in arts modules and go to a 60-credit pattern. 
It wasn't designed from scratch. Having said that, we needed to knit the two existing mod-
ules together.’ 
(Participant 6, Arts 1) 

‘It was called [PREVIOUS MODULE CODE], which was a 30-credit module, and I was chairing 
that, and then [MODULE CODE] came up as the replacement to turn it into a 60-credit mod-
ule.’ 
(Participant 8, Business) 

 
In some modules, the production process was a joint effort between two module chairs. The pro-

cess of co-designing a module can offer a diverse set of perspective on LD as well as distribute the 

responsibility and workload more equally. Participants positively acknowledged the role of co-de-

signer (i.e., co-chair) in the LD process.  

 ‘I  co-chair with [CO-CHAIR NAME] and that's been really important because having two of 
us working on this module closely has been really productive in terms of trying to address 
issues like retention, progression, and getting beyond the day-to-day issues that come up 
and starting to looking into the future a bit.’ 
(Participant 4, Education) 

‘I don't know whether it's just standard practice in this school or in this faculty, but it's cer-
tainly something that I recommend. I think it's absolutely one of the most important things 
that you can do to ensure that you have a backup, you're meeting your deadlines, and you're 
resolving just tricky problems, is having that other person who is just as invested as you are 
in getting everything ready on time.’ 
(Participant 5, Psychology) 

Theme 3: Developing study skills in learning design 

The OU commits to provide equal opportunities to all students regardless of their background. Most 

undergraduate modules has no formal entry requirements. For this reason, the OU has an incredibly 

diverse population of students from different age groups with a wide variety of prior qualifications 

(Nguyen, Thorne, et al., 2018). Some students need more support than others because they left 
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schools, dropped out many years ago and/or retired. This makes returning to an academic environ-

ment a daunting experience because they may lack appropriate study skills at a university level. 

Therefore, it is essential for LD at level 1 to build up students’ academic skills in preparation for 

their learning journey at the OU. Most interviewed participants acknowledged the diversity of stu-

dent profile and the need to scaffold an inclusive LD for all.   

‘What we're more worried about is the larger number of students for whom they would not 
have been in formal education for any length of time prior to this and may not have had 
sufficient preparation. They need to be able to have assessment tasks that are sufficiently 
demanding but they're accessible and understandable.’ 
(Participant 4, Education) 

We have students who didn't realize that engineering had any maths in it. We have those 
students who did and were scared of it, and still hate it. And then we have those ones who 
are fantastic at maths, so a bit of my role is mitigating the tensions between those three 
groups, because there's one group, “This is easy. I've done this before.” Then you've got 
another group, “I don't know what to do.” So, that's part of it.’ 
(Participant 10, Computing 1) 

‘what we'd been asked to do was to rewrite it in such a way that it better scaffolded students 
who came to the module with few or no previous educational qualifications and would, for 
the first bit, be more of an access course in order to sort of induct them into higher education 
and then take them through. So, by the end of it they were pretty much good level one 
students.’ 
(Participant 2, Health) 

 ‘So, it's tricky in the sense that we have a few different groups of students. We have those 
students who didn't realise that engineering had any maths in it. We have those students 
who did and were scared of it, and still hate it. And then we have those ones who are fan-
tastic at maths, so a bit of my role is mitigating the tensions between those three groups, 
because there's one group, “This is easy. I've done this before.” Then you've got another 
group, “I don't know what to do.” So, that's part of it.’ 
(Participant 11, Computing 2) 

 
Most participants emphasised the need to gradually build up student study skills in parallel to sub-

ject knowledge to help them prepare for education at a university level.  

‘We redesigned the trajectory so that running across the entire module was a skills devel-
opment strategy, in which throughout the module the students were taught how to perform 
a certain skill, and they had activities to perform that skill in the learning guide. So, for ex-
ample, note taking, was one skill in the first block. And the other skill was paraphrasing and 
writing a summary. And so, students were taught to perform these skills, and then the as-
sessment task at the end of the first block would take a piece of writing, and can you take 
notes from it and summarize the writing? Write it in your own words. So really, really ultra-
basic, really, really simple, and what we were trying to do was build up, establish the build-
ing blocks of the components of essay writing.’ 
(Participant 1, Health) 

‘So, we realised quite early on that one of the things we absolutely needed to do was to 
embed study skills into the course and study skills. I mean, you know, academic reading, 
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academic writing, how to write essays, how to find information. And so, we had long dis-
cussions about that in the course team.’ 
(Participant 3, Education) 

‘In terms of the keys things that we wanted to do, is so one thing that was really very much 
in the forefront of our minds was how do we prepare students for level 2 study and in par-
ticular this module was focusing on programming and problem-solving skills.’ 
(Participant 10, Computing 1) 

Participants also underlined the importance of clarity and consistency in instructions for level 1 

modules.  

‘And so those activities tend to follow a fairly predictable sequence, so generally speaking, 
we don't do a lot of mixing it up. We have a strong belief that what a student should do is, 
is know exactly what they're in for week by week.’ 
(Participant 1, Health) 

‘I think I tend to go from the idea that students need to have similar balances from week to 
week. So, I think it's useful for them in order, it's about the rhythm of studying, I think. They 
start one week, they do it, and then they can almost predict what they've got to do the next 
week and I think that can help them with planning.’ 
(Participant 2, Health) 

‘So, in terms of the design, it's making that accessible and very kind of straightforward. So, 
we make the tempo of the module very, very straightforward. We produced kind of read-
ings. As in we wrote the readings, in terms of the material. And we're having an online 
spine.’ 
(Participant 8, Business) 

 

Theme 4: Teachers highlighted workload as a key issue in learning design 

Most participants raised concerns about students having too much workload. The majority of OU 

students have a full-time or part-time job and/or caring commitments in parallel to their study. 

Having too many learning activities or overcomplex activities at the beginning could be very off-

putting to students, who might have just returned to studying after a long time.  

 ‘There's always just, there was too much material. And the usage complexity was extremely 
high. So, the module would bring together several sources of information, all contained in 
different books. So, the student would have to buy two books, and they would also have a 
resource book they'd have to read in addition to learning guide, and they would also have 
a CD, a DVD that they would have to watch.’ 
(Participant 1, Health) 

‘I remember very clearly the day we started. [Co-chair name] and I sat down and actually 
thought, "Well what is it that a student studying [Module title] needs to know?" That was 
what we thought in order to cut down the amount of module content because in its old 
days, it was 24 units I think, so students would get two huge boxes, which can be quite 
intimidating, and we also had a look at the assessment, which within the first week de-
manded that students write an essay, which we thought was too much for students initially.’ 
(Participant 2, Health) 
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‘There were too many questions. I mean the study skills, the, you know, reading for aca-
demic purposes or writing for academic purposes. We were asking maybe 20, 25 activities 
in one study week. Which again, because it was 10 hours, they're often very short activities, 
but students just found that overwhelming.’ 
(Participant 3, Education) 

 
Keeping a balance and consistent study workload is essential to student success at level 1 modules. 

Many participants mentioned that they have deliberately cut down the workload and reduce the 

complexity of instructions when redesigning their modules.  

 
‘So that was one thing, we reduced the learning, the usage complexity, we reduced the 
number of activities the students had to do. So, what they did was that, before, up till that 
point, [MODULE CODE] had quite a frenetic pace. So, at 22 activities per learning guide, the 
students were always moving around doing things and shifting gears. And I think that stu-
dents didn't do the activities as a result. It was just too many for them to do.’ 
(Participant 1, Health) 

‘In the first two [presentations] we wanted to do that. One question per topic, but we quickly 
realised that was too much, and that was producing too much stuff and too much stress for 
both student and tutor. So, we actually changed that within first presentation.’ 
(Participant 9, Science) 

Participants also proactively estimated study workload of their learning materials and keep it con-

sistent throughout the weeks. 

‘We are very much encouraged to have the same workload each week, and I think that’s 
what we have always done and are trying to do. It’s useful to get advice sometimes in the 
middle of writing module. In our early draft, we try to put timing against everything. A while 
ago we even published this to students. This would take you so long etc. We kind move away 
from that because we know that some students take this much time and others take this 
much time so there are lot of variations. We also have developmental testing, a small chunk 
of study materials, and the testers say how long it took them. In early draft, we will put 
timing against activities, and the author brief would be to make the week exactly to that 
length. For example, if we work out that students should take 7 hours a week, then if you 
write a week, then the instruction to the author would be 7 hours, and they are encouraged 
to write suggested time for each activity.’ 
(Participant 12, Language) 

‘So, on the basis of that time we looked at okay so how many hours are then left to actually 
read materials and then we used the reading times that were provided? Because this is level 
1 so it would be, I think 35 words per minute. To calculate a rough estimate of how many 
words there should be in each part. So, then authors were then really instructed to stay 
within that limit.’ 
(Participant 10, Computing 1) 

Theme 5: Learning design varied across modules and disciplines 

Participants indicated a wide range of learning activities were used in their module depending on 

the discipline and the content. For some modules, the learning pattern is relatively traditional. A 



  

 99 

typical week of learning activities often includes readings, listening, watching and activities that 

help student reflect on the learning materials. 

‘So generally, a week of learning would start off with some kind of activity which is designed 
to sensitize a student to a topic area, to place the topic area at the student's fingertips… 
and then there will activities that will involve some kind of assimilative work in which we 
explain an idea or a theory or body of knowledge, so an expository activity. And those ex-
pository activities could be asking them to go and do a bit of reading, or to go off and look 
at a piece of, find some reading on something. And then the flow will lead towards so sort 
of application type activity in which we would ask them to watch a, look at a case study and 
understand, apply a theory they've just read about to that piece of, to that case study.’ 
(Participant 1, Health) 

‘Quite a lot of reflection, quite a lot of, common jamming some ways, you know, old school, 
old style, you activities of, you know, here's a [inaudible 00:09:02], here's an idea from the 
reader chapter, what's your response to it? Typing into a free text box. And then when they'd 
type that up, then comments to the module team had written would come up below that.’ 
(Participant 3, Education) 

Interestingly, the excerpts from the module chairs in Health and Education modules aligned with 

the quantitative figures shown in Figure 23. Both modules used a lot of productive activities (32% 

for Education, and 24% for Health). To put it in perspective, the average percentage of productive 

activities of 37 modules in Study 1 was 17.6% with a standard deviation of 12.4%. That means, the 

Education and Health modules reported here had 0.8 to 1.2 standard deviation higher in productive 

activities than the average.   

In other modules, teachers made use of interactive activities, case studies, brainstorming, or quiz-

zes. The excerpt from the module chair in Business module also aligned with Figure 23, which 

showed that the Business module had the highest percentage of interactive activities (3%) 

compared to the average of 2.2% in interactive activitites reported in Study 1.  

‘It's varieties. It's quizzes, a little bit of analysing new responses to quizzes, it's case studies, 
it's tutor group forum discussions. We also have one case study, which we filmed in Ger-
many, which runs through that whole module. We've got a narrative. So, we say, okay, 
we've got a business here that students can look at, because it's kind of theme-based.... And 
what we thought, it'd be nice to have this case study that we keep on returning to.’ 
(Participant 8, Business) 

 ‘There'll be practical tasks, and home experiments, and interactives, and video content, and 
quizzes, and everything. There is a lot of interactive content in [MODULE CODE] …I think it 
will sort of fit with the skills-based of the module, because generally in the interactives ac-
tivities, the students are doing something. So, they are learning by applying a skill or they 
are learning a skill by doing something. So, I mean you can't deliver that with books, that's 
always been part of the OU core, but I think this way just made a ... Helped make a richer 
experience for the students.’ 
(Participant 9, Science) 

‘We always start with something active, so we wouldn’t start with giving information. It 
would always start with activating prior knowledge or bringing in their own experience. For 
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example, we might ask students to have a quick brainstorm, or what they already know 
about the topic, or engage them in a mini interview. Then we would be very keen to make 
it clear to students how their learning is accumulated, so based on something they have 
learnt in previously.’ 
(Participant 12, Language) 

Collaborative activities remain a challenge for most participants in their LD. While collaborative 

activities were perceived to be useful for student learning, they were not well received by students 

because of concerns about their grades depending on others.  

‘I think there is a problem about students taking up the opportunities to be doing things 
together online. Students don't seem to like very much the collaborative research work that 
they would routinely do somewhere else, particularly if they are concerned that their grade 
depends upon other people in their group performing.’ 
(Participant 5, Psychology) 

‘I mentioned that we had an assessment that was collaborative work [inaudible 00:26:18]. 
That was very badly received by students. They felt that their marks were being made de-
pendent on other people responding… So, we changed the model of the assessment so that 
the mark for the collaborative work was reduced from, I think it was 60% originally, we 
gradually moved it, changed it. We introduced a much more individual component into that 
assessment so that students had 60% of that assessment would be entirely their own work.’ 
(Participant 6, Arts 1) 

One participant also mentioned the resistance from tutors when they introduce collaborative ac-

tivities. Interestingly, this finding also matched with Figure 23, which showed that there were no 

communication activities in the Health module.  

‘Yeah. It's missing because we took it out, and we took it out consciously. So, in the 
2005/2006 version of [MODULE CODE] there was a collaborative activity that was regarded 
as disastrous by tutors, and by the module lead. And because we worked with tutors when 
putting together [MODULE CODE], that was one piece of advice we did listen to. And we 
removed it, and we never put any other genuinely piece of collaborative activity in the mod-
ule... I was aware that the organization of collaborative work was always problematic be-
cause tutors never quite knew who was still registered in the module when it came to or-
ganize collaborative activity and assigning people. In the early days, 50%, sometimes up to 
56% of the students would drop out of the module before the end. And so, if you're trying 
to organize collaborative activities when half your student body has left, it was really, really 
difficult for the tutors.’ 
(Participant 1, Health) 

Other participants acknowledged the importance of collaborative activities in LD. However, they 

expressed that collaboration in distance learning is challenging and there are a lot of work to be 

done to get it right. 

‘I think that collaborative activity is one of those things which, yeah we just haven't got 
right. I used to say to my colleagues "I can't front up to any manager in [module discipline] 
and say oh no, we never expect students to work as a team," that's really wrong. [Module 
discipline’ work is fundamentally team-based work. You have to communicate and cooper-
ate with other people in order to achieve decent outcomes. And our modules don't do this 
very well.’ 
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(Participant 1, Health) 

‘I don't quite think we got collaboration right. Collaboration between students in online en-
vironment, it's very difficult…They [students] just require to interact with each other. Just 
like discuss things on forums and things like that. And it's just the nature of OU students, I 
mean we have a lot of students who choose to study with the OU, so they don't have to go 
to a university and, you know, meet and even look at other people. And so, a lot of them are 
very adverse to just interacting. And they actually felt that they chose this degree, so they 
didn't have to. And so, for a lot of them, just ordinary communication is quite stressful. So, 
it's difficult because it's a requirement for progression in any scientific discipline ... Well in 
life, to be honest. But in any scientific discipline you have to work with other people. So, it's 
a learning outcome we can't really remove.’ 
(Participant 9, Science) 

In summary, the LD process of module teams was influenced by multiple factors including 

institutional policies, student profile, and co-designing/re-designing. OU teachers scaffolded 

learning activities to build up study skills of their students, while making sure the workload was 

balance and consistent. There was a wide range of pedagogy used across modules and disciplines. 

Nonetheless, most teachers reported challenges in embedding collaborative activities into the 

curriculum due to the negative feedback from students and tutors.  

5.3.2 RQ 2.1 Discussion 

RQ 2.1 explored various factors that influenced how teachers made LD decisions in a distance edu-

cation setting. In line with the existing literature (Bennett et al., 2015; Dalziel, 2015; Griffiths, 2017), 

a key finding that has emerged through all the interviews was the influence of management and 

institutional policies on LD decisions. One of the top institutional priorities at the OU is improving 

retention, which can also be generalised to other UK higher education institutions. As a distance 

education institution with an open entry policy, the OU attracts a large number of students from 

different academic and demographic backgrounds. However, the diverse population of students 

together with the flexibility of distance education resulted in a wide variation in retention rates. 

Rienties and Toetenel (2016b) reported that the pass rate of 151 OU modules ranged between 

34.46% and 100%, with an average of 69.35% (SD = 12.75%). This could be a result of students 

switching modules, students did not complete the module, students failed to achieve the threshold 

for passing a module. Findings from Study 2 suggested three strategies that have been used in LD 

at the OU to address these retention issues: building up study skills, reducing workload, and single 

component assessment.  

Firstly, participants emphasised the importance of building up student study skills at level 1 mod-

ules in parallel with subject knowledge. The OU offers a rich set of resources to develop study skills 

such as how to write an essay, how to find information, how to revise for exams, and computer 
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skills21. These study skills are crucial to the development of OU students in general, but even more 

so with students who lack academic skills or have not been in an academic environment for a long 

time. For example, in a large-scale analysis of 123,916 undergraduate OU students in 205 modules 

from 2015 to 2017, Nguyen, Thorne, et al. (2018) showed that students with no formal qualifica-

tions or less than A-levels were 37%-50% less likely to pass a module than students with A-levels. 

Clearly, the prior educational background had a strong effect on the academic performance of OU 

students. Therefore, it is important to equip students with the necessary study skills to succeed in 

a distance education setting. The focus on developing study skills was also supported by the edu-

cational literature in self-regulated learning, which found that the ability to self-regulate one’s 

learning process (e.g., goal-setting, planning, time management, revising) was positively related to 

academic success (Panadero, 2017; Winne et al., 1998; Zimmerman, 1990). 

Secondly, student workload was another central aspect of LD at the OU (Chambers, 1992; Van 

Ameijde et al., 2016; Van Ameijde et al., 2018; Whitelock, Thorpe, et al., 2015). Module chairs in 

this interview study have highlighted potential problems of having excessive study workload or 

over-complex instructions on level 1 students. This finding was supported by Study 1 which showed 

a large variation in workload both within a module and between modules (Nguyen, Rienties, et al., 

2017a; Nguyen, Rienties, et al., 2017b). To overcome this issue, module chairs have reduced the 

number of learning activities, removed non-essential content, and kept the instructions straight 

forward and consistent throughout the module. This decision was also supported by educational 

literature in cognitive-load theory, which showed a negative effect of information overload on 

working memory and cognitive process (Kirschner, 2002; Paas et al., 2003; van Merrienboer et al., 

2010).  

Thirdly, assessment design has been a core aspect of OU retention strategies which had a wider 

impact on LD decisions at level 1 modules. Participants mentioned that their assessment design was 

driven by the changes in OU’s policy which made a single component assessment (SCA) a default 

approach since 2018 22. The premise of SCA is that students should be assessed in a consistent 

manner, either through continuous assessments or exams. As a result, most modules decided to 

remove the exam or EMA and replaced them with a TMA. The switch to an SCA strategy has been 

well received by the module team because it seemed to improve the retention rate.  

However, the SCA strategy also has some limitations such as students might ‘stop trying’ once they 

reach the minimum average grade threshold to pass the course. The removal of the examinable 

component is controversial regarding what extent it can benefit student learning or it simply 

‘serves’ the university retention figures. Another consequence of removing exams is to what extent 

 
21 http://www2.open.ac.uk/students/skillsforstudy/ 
22 https://help.open.ac.uk/documents/policies/assessment-handbook 
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it would affect the credibility of the degree awarded to OU students. While summative assessment 

might not benefit students during their learning process as much as formative assessment, the for-

mer has an important role in checking a comprehensive understanding of students in a unit of learn-

ing. Removing exams might lower the standard of assessment and put the credibility of OU degree 

at risk, especially when it is compared to other brick-and-mortar universities.   

Study 2 also revealed two unique aspects that are the by-products of the complex module produc-

tion process at the OU namely co-designing and re-designing. The OU LD process is often different 

from a traditional university, where a professor/lecturer usually has full autonomy over the design 

process and the course content. However, module materials at the OU have to undergo a peer-

review process by multiple stakeholders before they are officially used in the LD. Because of this 

long and complex quality assurance process, module materials were often reused until the new 

module cycle review comes in every 4 to 5 years. On the one hand, this process ensures the quality 

and consistency of the learning materials, which is beneficial to OU students. On the other hand, 

the rigidity of this process raised a question to what extent the OU module materials are up-to-date 

or can be updated without significant barriers from the quality assurance process. At the same time, 

because of this complex module production process, the OU module team is often made up of two 

or more academics. This co-design process was perceived to be useful by the participants because 

it offered new perspectives on LD, and progression and retention issues. For some large modules 

with thousands of students and hundreds of tutors, having more than one module chair means that 

the responsibility and workload can be shared amongst team members. However, this codesign 

process perhaps did not occur ‘naturally’ but as a combined result of the complex LD process and 

pressure for accountability from the management.  

In terms of the pedagogy used in LD, there was a wide range of learning activities adopted by mod-

ule chairs across different modules. In line with findings from Study 1, most participants mentioned 

the use of assimilative activities such as readings, listening, watching and productive activities such 

as analysing, reflecting, criticising. In some STEM modules, there were more interactive and expe-

riential activities as the module chairs strongly believed in learning by doing/practising. Collabora-

tive activities were perceived as important but challenging by most participants. Module chairs 

mentioned the resistance from students taking part in collaborative activities because the depend-

encies in grading and the resistance from tutors (ALs) to manage group works which can be time-

consuming. This was again reflected in Study 1, which indicated only a small proportion of LD was 

dedicated to communication and collaborative activities. This is in sharp contrast to findings from 

Rienties & Toetenel (2016), who found that the primary predictor for student retention was com-

munication activities. In other words, what students might enjoy and what is good for them might 

not be related.   



  

 104 

This finding was supported by prior research in collaborative learning and online collaboration 

(Cherney et al., 2017; Kreijns et al., 2003). Some students may be entrenched with passive learning 

strategies and exhibit strong levels of resistance when they are asked to collaborate with each 

other. There are many explanations for this such as miscommunication (Kreijns et al., 2003), ac-

countability problems (Cherney et al., 2017), and cultural differences (Mittelmeier, Rienties, et al., 

2018). In online and distance learning setting such as the OU, the challenges for collaborative learn-

ing is even more salient because the students are complete often strangers coming from different 

background, age groups, communicating through asynchronous channels such as a VLE (Thorpe, 

2002). Simply creating a medium for communication (e.g., opening an online discussion forum for 

a group of students) would not guarantee an effective collaboration experience. There are multiple 

factors such as group cohesion, trust, sense of community, and culture that should be considered 

(Kreijns et al., 2003). While the underlying factors behind successful collaborative learning are out 

of the scope of this thesis, I would direct readers to Cherney et al. (2017); Kreijns et al. (2003) for 

an in-depth review on this issue.  

 

5.3.3 RQ 2.2 Results 

After exploring the underlying factors that affected how teachers design their modules, this section 

will present findings from teacher experience engaging with the OULDI approach.  

Theme 1: OULDI helps teachers to reflect on existing learning design and develop new teaching ideas 

The OULDI framework and workshops have been perceived by many participants to be useful in 

reflecting on their existing instructional practices. The workshop is facilitated by the LD team, which 

takes the module team through a series of activities related to student profiling, module design 

mapping and quality enhancement. The workshop usually takes place at the beginning of the pro-

duction process with the purpose of facilitating discussion amongst practitioners and encouraging 

module teams to think about different aspect of LD.   

‘In terms of the basic principle of learning design, I don't know anyone in the [MODULE 
CODE] team or in other times, that wasn't, that didn't see that these [OULDI] were a good 
thing. And as work through each element of the typology, having a conversation about each 
element of typology, articulating our view on it and how we're going to enact that, is a very 
useful thing for a module team to do.’ 
(Participant 1, Health) 

‘My experience with OU Learning design is from the initial briefings really, where you start 
to analyse the kind of breakdown of the course and the kind of objectives and the types of 
learning which is awesome. I think it's helpful to a degree. For folk who have not... it pro-
vides a very broad architecture, very broad structure, very broad framework, an initial 
framework for people to think about module design.’ 
(Participant 4, Education) 
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‘It's really annoying. Now, I mean that in a positive way, because the time scale that we 
have for producing the module, didn't allow us to reflect. So, the way that we did the learn-
ing design process, we did it right in the beginning.’ 
(Participant 11, Computing 2) 

Some participants also reported that the OULDI workshop was very useful in stimulating conversa-

tions across a wide range of stakeholders involved in the LD process. 

 ‘What module teams really like are the way that learning design pulls in all the key players 
from across the university. They love that. They love it that the TEL designer's there, the 
module chair's there, the library rep is there, the digital design editor is there, they like all 
of that. So that's the strength of the learning design process.’ 
(Participant 1, Health) 

‘I think it's helpful. I think it's helpful to get the team together. And I think it's helpful, it's 
certainly been helpful to me in this next team to think about the team more widely? I think 
there's always been a tension between thinking about the academics and the module team 
and then LTI.’ 
(Participant 3, Education) 

Some participants also indicated that the OULDI framework and workshops help module team to 

consider a wider range of learning activities.  

 ‘The learning design workshop seemed to do was that it was trying to loosen up the few 
members of the module team to think more expansively about learning design. So, it 
seemed to me that one of the purposes of the learning design workshop was almost quite 
basically to think there's much more to teaching than getting students to read material. 
There's a range of things that you can do to help build student understanding.’ 
(Participant 1, Health) 

‘It’s almost very helpful meeting with colleagues from LTI that they bring in expertise that 
is different from ours, expertise in teaching in online medium or they have done research 
university wide how students work with certain activity types. So that’s very interesting for 
us. Which we then try to marry up.’ 
(Participant 12, Language) 

Theme 2: OULDI was used as a management tool 

Despite the perceived benefits of the OULDI approach as indicated in the previous theme, most 

participants voiced their concerns and frustrations about the OULDI process became a managerial 

tool. There was a mismatch between the original vision of OULDI and the actual practice which was 

dictated by the organisational bureaucracy.  Participants expressed frustration towards the practice 

of OULDI as it has become a box-ticking exercise.   

‘Learning design's been extremely controversial in our school. And it's been extremely up-
setting for our colleagues. And they've found themselves forced in a particular direction that 
they've neither endorsed, nor felt happy with. Because of the managerial role of our learning 
design.’ 
(Participant 1, Health) 
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 ‘It becomes a tick box and it becomes something else the module chair has to do, you know, 
on top of an already incredible heavy workload. And you get a situation where you get peo-
ple in LTI sort of saying, you haven't done this, this and this. They very rarely offer any prac-
tical solutions. It's just kind of criticisms of what you haven't done.’ 
(Participant 3, Education) 

‘And the learning design event is such a wonderful idea. Such a wonderful process, but only 
in our fake world, not in a world which is ruled by bureaucracy. It's really, really incredibly 
frustrating that we rarely get the chance to have everyone all sat down in a room. We've 
got everybody sat down in a room, and we've got a chance to do all of this wonderful, cre-
ative process, and what we're doing is filling in, basically using that time, to do contribute 
activities to fill in a form.’ 
(Participant 11, Computing 2) 

As a result, participants found the OULDI too rigid and not flexible, which at times prevented the 

module team from their creative thinking process.  

‘So, you're not actually being creative, what you're doing is you're trying to appease the 
process. I feel the learning design event has been ruined by the fact that you're going oh, I 
like that, and taking bits, and saying well, that's now a requirement.’ 
(Participant 11, Computing 2) 

‘I can work with those categories, but I feel that when I'm working with them, I'm sort of 
ticking a box for other people rather than really designing. And you know, and I, you know, 
I certainly find it quite frustrating if we're been told, right, well you haven't done enough of 
that in one week. Because I think when you're not looking at, you know, when you put things 
in boxes and when you make tax on those, you can often miss the overall picture.’ 
(Participant 3, Education) 

Theme 3: OULDI lacks follow up and practical suggestions 

The OULDI workshop usually takes place at the beginning of the LD process. However, most partic-

ipants indicated that there were no follow up activities after the initial workshop.  

‘I think the thing that is lacking in it, and it's exactly the reason why [co-chair name] and I 
aren't very familiar with it in this module, is that it happens at the beginning of the module. 
And then it doesn't happen again.’ 
(Participant 9, Science) 

‘Because I think it happens at a very early stage at the moment, initial meeting. And actu-
ally, it acts as a stimulus, and a helpful stimulus for thinking about learning design. But 
either a) it doesn't or b) I've just not seen it. I don't know how much it's then used through 
the actual production process. My suspicion is that it drops away then’ 
(Participant 4, Education) 

‘That [OULDI workshop] was great, but completely pointless because we didn't do it again.’ 
(Participant 11, Computing 2) 

Some participants preferred the workshop to be taken place at a later stage in the LD process so 

that the module team has more concrete ideas about what they are going to teach and how they 

are going to teach.  
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‘What we, I think we would have wanted it, actually perhaps is slightly later in the process, 
when we'd had more discussions. So, it was more focused on what [MODULE CODE] was, 
rather than generic learning design.’ 
(Participant 8, Business) 

‘We also have the problem that we did our learning design event before we knew what was 
in the module, because if there was, like the feeding in the module, hadn't been written yet. 
So, we didn't know what point they were going to get to.’ 
(Participant 11, Computing) 

‘Although you always try and write for learning outcomes, and so you're supposed to design 
activities for learning outcomes ... Ultimately, the narrative is in the texts which are about 
the content. The actual material. And it's just all too soon, really, to be able to ascribe num-
bers and time to producing a particular activity. When, you know, you might discover when 
you sit down to write the module, or write that material, that the activity just doesn't work. 
It's a bit of a tangent.’ 
(Participant 9, Science) 

 
Participants also indicated a need for a more personalised approach with practical suggestions 

based on best practices or research rather than generic discussion on LD principles.  

‘We had lots of questions where we would have... it would have been very helpful if some, 
so we say okay, so we want to do this particular thing, what is the best way to do that? We 
had like I said things about how do you combine different medium or efficiently or more 
effectively? What are the studies on that? … We had people basically sitting in on all our 
meetings, what meetings sort of the formal ones, spending two hours. In the end we would 
say we have these and these questions and the next time they came back there were no 
answers.’ 
(Participant 10, Computing 1) 

‘What I would prefer was some, you know, people, you know, from the learning design 
team, be able to come up with some actual practical suggestions. Things that have worked 
on other modules, things that hadn't worked’ 
(Participant 3, Education) 

‘In a way, it might probably better to include some LTI colleagues in the module team early 
on, or to join a discussion at the beginning when we do discuss how we are going to struc-
ture our course into weeks, and having colleagues with that expertise in early meetings 
might be more productive than this big LD meeting.’ 
(Participant 12, Language) 

Because of the early timing of the OULDI workshop and the lack of follow up activities, some par-

ticipants pointed out that there are misalignments between the LD specification at the beginning 

and the actual LD at the end. 

‘My concern about learning design is the way in which when you're planning a module, 
you're having to actually say it's going to be this amount assimilative, this amount produc-
tive, this amount finding and handling, when actually in the writing of the module, that can 
change quite significantly. I think that's one of my issues.’ 
(Participant 2, Health) 
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‘I think when it comes into detail, the modules take on a life of our own. I think learning 
design is a product of a particular way of thinking within the university. It's a reification, but 
it's a very, very generalised reification. It's not a very precise representation of what actually 
goes on and I think that's one of the things that's difficult within university, is to compare 
module design across the piece.’ 
(Participant 4, Education) 

Theme 4: OULDI taxonomy is difficult to interpret 

As discussed in chapter 2, the OULDI learning activity taxonomy categorises learning activities into 

seven groups: assimilative, productive, finding information, interactive, experiential, communica-

tion, and assessment. When asked about their experience using the taxonomy, many participants 

have voiced their concerns about how to interpret the activity categories with regards to their own 

module. Participants indicated that there were a lot of overlaps between categories of learning 

activity and the meaning of each category depended on individual interpretation.  

 
‘The characterisations are quite broadly interpreted, that I don't quite know how your team 
can look at a learning design characteristic and know that communicative activities in 
[MODULE CODE] mean the same thing as communicative activities in [MODULE CODE]. I 
think comparability of learning designs between modules is more problematic than we're 
prepared to. And IET's belief is, well you interpret it the way you want to interpret it. But 
that means that it's very difficult to consider these things more objectively.’ 
(Participant 1, Health) 

‘I think the initial, the learning design workshop, was helpful. I thought, I mean I think you 
share this with me, the sort of discreet categorization into these different types of learning 
activity. I think, I don't think that's necessarily extremely helpful to have these seven cate-
gories. Because they are way too fine-grained and what you get is just a long discussion 
about what each of the categories means. I would much rather think in terms of much more 
high level. In the first instance about what activities are really about doing things by the 
student themselves?’ 
(Participant 10, Computing 1) 

‘What I find really difficult, is actually the distinction. I think it's really quite useful to think 
about these categories, but when you’re putting down the list, I quite often felt repeating 
myself, because for me it's all integrated. If I'm doing something, some of these are as-
sessed, a lot of what we do involves communication, it involves production, it involves ex-
periential activities, I wouldn't put them into "This is an activity, experiential one. Oh, this is 
the one that's being assessed." It's just when you fill in these forms it just does your head in, 
because ultimately, we're working really hard to integrate it all.’ 
(Participant 7, Arts 2) 

Participants also mentioned that the estimation of duration for learning activities was challenging 

and varied across different types of learning activity. 

‘How long does it take a student to write an essay? I don't know, a good student might take 
10 minutes. Another might take it in 10 days. You just don't know. You can come up with an 
ideal. But you can't predict. Things like creative writing, which is included in [MODULE 
CODE]. We're asking students to be creative. You cannot put a timeframe on creativity.’ 
(Participant 6, Arts 1) 
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‘I mean sometimes with some of the activities, if it's word count, you're fine, because we've 
got those norms. But when it's activities, it's a little bit crazy. But then the critical readers 
happen. Some of the critical readers, we specifically point towards and say, actually did it 
take that long. I would rather err on the side of caution and give sufficient time.’ 
(Participant 8, Business) 

In summary, participants showed mixed feelings towards the OULDI. While the participants 

acknowledged some benefits of OULDI in reflecting on their existing practices, they raised many 

concerns about the practical, ontological, political and organisational sides of OULDI.  

5.3.4 RQ 2.2 Discussion 

The second research question of Study 2 explores the affordances and barriers of teachers when 

engaging in the OULDI process. In line with previous findings in the LD literature (Cross et al., 2012; 

Griffiths et al., 2005; Hernández-Leo et al., 2018; Laurillard et al., 2018) teachers found the OULDI 

approach helpful in reflecting on existing the LD and brainstorming on new teaching ideas. Given 

the complex module production process at the OU, participants valued the benefits of having con-

versations across different stakeholders and exchanging expertise from different areas.  

While most studies in the LD literature have reported on the ‘positive’ aspects of their LD frame-

work and tool (Cross et al., 2012; Hernández-Leo et al., 2018; Laurillard et al., 2018), Study 2 made 

new contributions to the LD literature by uncovering the underlying barriers and challenges when 

implementing LD at scale. Module chairs in the interview have voiced their concerns about how the 

OULDI has become a managerial tool. Participants expressed frustrations when LD approach was 

forced down from the faculty level, which was treated as a form-filling exercise instead of thinking 

creatively about LD. The initial purpose of LD specification, which is a descriptive framework, has 

become prescriptive in a sense that faculty management prescribes the type of learning activities 

and the proportion of activities to the module chair.  

This finding resonates with the tension between educational management and teacher autonomy 

proposed by Griffiths (2013, 2017). The author argues that “LD offers a method for specifying the 

way that teaching should be carried out, and, to that extent, it offers a way of reinforcing top-down 

control of teaching activities by policymakers” (Griffiths, 2017, p.123). Findings from Study 2 have 

confirmed this prediction, demonstrating how the OULDI, for some groups of teachers, has turned 

from a support tool to facilitate new teaching ideas to a management tool to ensure module chairs 

follow the module specification.  

The author continues with “It is not argued that LD has in fact led to a reinforcement of authoritar-

ian educational policy, LD has not had sufficient adoption by governments and institutional manag-

ers to be able to bring this about. But it is proposed that teachers resist the extension of control 
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which LD can be seen to imply” (Griffiths, 2017, p.124). Interestingly, the OU is one of the few insti-

tutions in which the LD approach has been adopted across the institution. Results from Study 2 

have supported Griffiths’ argument showing how OU module chairs expressed frustration and re-

sistance towards the use of LD tool as a straitjacket for OU management.   

Participants also mentioned the difficulties in interpreting the OULDI taxonomy because of the 

overlaps between categories. This process of ‘idealisation’ of learning activities as discussed in 

Griffiths (2017) does not aim to provide a comprehensive description of LD. Instead, it prioritises 

certain aspects that were deemed to be the most relevant to the context in which the taxonomy 

was used. However, because the taxonomy was developed by individuals, it also reflects their own 

prioritisation of which aspect in LD is important and should be captured.  

While the OULDI taxonomy was perceived as useful as a generic framework to start with, it was not 

able to provide concrete feedback and practical suggestions to module chairs in terms of designing 

their learning activities. There was also a lack of follow up LD activities after the initial LD workshop 

at the early stage of the production process. As a result, participants did not have the opportunities 

to further refine their LD as the module went through the production process. It is important for 

learning designers to work closely with the module team iteratively throughout the production pro-

cess to identify the specific needs and provide personalised recommendations based on the module 

context.   

Findings from Study 2 have crucial implications for the LD practices at the OU, and perhaps, other 

institutions who wish to adopt LD tools at a large-scale. While there are benefits in making teaching 

practices more explicit using LD tool, there are potential dangers of treating this tool as another 

measurement of teaching effectiveness for management and quality assurance processes. The 

pressure of having evidence of ‘what works’ in education can easily turn LD from a descriptive tool, 

as in its definition, an educational notation to a prescriptive tool ‘what a good LD looks like’, which 

is something that it was not designated for. As highlighted in Study 1 and subsequent studies in this 

thesis, LD visualisations and analysis of student behaviours can help educators narrow down their 

focus on potential problematic elements. These include a lack of collaborative activities, a peak in 

workload, or which learning activity that students were catching up on. However, this thesis does 

not attempt to prescribe what is a good LD, because there are many underlying factors that LD tools 

or LA tools cannot capture through its abstraction and simplification process. Instead, this thesis 

highlights potential problems in LD and encourages teachers to use the findings as a basis for their 

own quest to explore ‘what works’. Educators must resist the temptation to find a silver bullet in 

teaching and learning (if that even exists), or at least, keep a critical stance and continue testing 

and collecting evidence from multiple data sources.     
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5.3.5. RQ 2.3 Results 

After discussing participants perspectives on their own LD and the OULDI, this session will present 

findings on how teachers made use of various channels feedback on their LD. 

Theme 1: Tutors are a main feedback channels on the module, but the quality of feedback varies 

When being asked about the feedback that they received on their module, most participants 

pointed out that tutor forum (i.e., ALs) is one of the key channels. In each module, tutors are as-

signed to a group of students to provide feedback through marking assignments and answer any 

questions a student might have and to provide feedback through marking assignments.. A tutor 

forum is designed to facilitate communication between tutors and module chairs. Having direct 

interactions with students, tutors were able to voice their concerns as well as to provide near real-

time feedback on seemed to works in the LD.  

‘We reviewed that, along with associate lecturers, we set up a focus group. We consulted 
with associated lecturers, we talked to them about what they perceived the issues were and 
we compared that with our own perceptions and where they met, we made interventions.’ 
(Participant 4, Education) 

‘We've got very active AL forums. If there's the slightest hint of something going wrong, the 
ALs will tell us about it automatically. It's a very good avenue. We have two AL reps who 
monitor that forum. They got onto me very quickly if there's something that's perceived as 
being a problem. Even things like a typo in the assessment, the newest assessment. They 
will tell you. We have a very good network of ALs who will feedback.’ 
‘The key channels informally are through the tutor forums, so the key forum. We're very 
present on the tutor forums. We can get kind of real-time feedback about what's working.’ 
(Participant 6, Arts 2) 

However, some participants also were also cautious about how to interpret tutor feedback because 

it was not always helpful and sometimes represent personal opinions, beliefs, and biases.  

‘It [tutor forum] varies immensely in terms of the quality and helpfulness of the feedback. A 
lot of tutors we just don't hear from. You know they're just silent, they're not on the forums 
at all. Some are always providing helpful feedback, others it's just snippy complaints that 
really aren't helpful at all. You know, one or two you think they're just out to try to prove 
themselves, that they know better than we do. There's two that are like that. Then others 
slightly use the forums to chat really, and that's a bit annoying when you have to check their 
posts to see if it's for you.’ 
(Participant 6, Arts 2) 

‘Tutor feedback I feel really ambivalent about. Because I don't think that the feedback that 
we get from tutors is as direct and un-reinterpreted source of feedback. So, tutors, for ex-
ample, would argue that [MODULE CODE] really needs an exam. It's good for students to 
have an exam, the students who go through the exam benefit from it, there are lots of good 
reasons why our module should have an exam. We listened to them and their advocacy of 
having an exam. We put an exam in place, and we lost more students than we should have. 
We removed the exam, we improve retention by 5% automatically, and we subsequently 
learned that if you have an exam, 10% fewer people will even turn up, compared to an EMA. 
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So, tutors have particular beliefs about ideal educational conditions, and they'll advance 
those thinking that they're in the students' favour.’ 
(Participant 1, Health) 

‘However, we also get a lot of information through the tutors. Sometimes that kind of infor-
mation can conflict with the information we get. For example, last year we have very high 
satisfaction rate but the tutor feedback last year, students were struggling, they find it 
hard.’ 
(Participant 12, Language) 

Theme 2: Teachers find open comments in course evaluations helpful, but recognise the potential 

biases in self-report surveys 

Participants pointed out that course evaluations (i.e., SEaM student surveys) are a main source for 

KPIs of module performance. Open comments were perceived by the participants to be more help-

ful than numeric data from SEaM.  

‘I always try and look at the free comments, because I think they're far more telling than 
the responses to the multiple-choice questions, because I think the multiple-choice ques-
tions are designed to elicit certain responses. Which may not be the ones that help us really 
engage with that students like and dislike, and you know, how the world is behaving.’ 
(Participant 6, Arts 2) 

‘I find that actually, on a high-level quantitative feedback, oh it's okay but often it says we're 
doing okay. We can still do better, but we're doing okay because the module has gone well. 
But there... some of the qualitive feedback was helpful, because you can go through and 
identify patterns and see what students are really focusing on.’ 
(Participant 8, Business) 

Some participants find it difficult to navigate through the open comments because of the mixed 

responses from students.  

‘You go to open comments and there are reams and reams and reams, as you can imagine 
[inaudible 00:49:12]. A student might say, "I really enjoyed the way in which the assign-
ments were structured. I really appreciated all the guidance." 25 students might say some-
thing similar. Another 25 students will say, "I hated the assignments. I hated the way it was 
structured. This has no relevance to me whatsoever.’ 
(Participant 4, Education) 

‘So, feedback comes from the SEaM survey. Uptake is relatively low, the questions are rela-
tively broad, the free texts is generally moaning… the negative comments we got we pretty 
much all anticipated…So we are step up in intensity from the introductory modules, we have 
to be. May have to be nice and gentle, they have to be. So, we anticipated they're going to 
say there's too much work. And then, because we do cover five disciplines, there's always 
going to be some students who say, "I don't like this.", "I don't have any interest in that. 
Why do I have to study it?" You know, we knew that was going to happen.’ 
(Participant 9, Science) 

Some participants raised concerns about the credibility of the course evaluations due to low re-

sponse rate. Participants were also cautious about the open comments because they only attract 

students from two extreme ends, either very happy or very upset.  
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‘Let's say we've got 20% of people submit the SEaM survey, and they all say the same thing, 
that's another thing, but when one student says this is too easy, and another students says 
this is too hard, and I'm asked how am I going to deal with both of these, it's just person out 
of the whole thing. Okay, if half of the SEaM survey said it was too easy and half said it was 
too hard, okay maybe we've got a population there, and these are the people at the ends of 
bell curve, and we need to deal with them. When it's just one person out of 400, but they 
think what are you going to say? It's just a waste of time.’ 
(Participant 11, Computing 2) 

‘So, every module review that comes in, nearly every module review that comes in, [tutors] 
will say, will use the same phrase. And that is "the SEaM results must be treated with cau-
tion because the response rates are low." Or they might say something, and I'm sure that 
this will make your ears prick up, "the SEaM results need to be treated with caution because 
they're not significant." They've never done a statistical test on them, they've got no meas-
ure of significance, but once again they say the response rate's too low.’ 
(Participant 1, Health) 

Because the course evaluation results were not available to the module team until the end of aca-

demic year, some participants found it difficult to act on the feedback given the short timeframe. 

‘So even if you get SEaM results in July or August, you have no time to change the module. 
In fact, in the first presentation of a module, so the module will start in October, and then 
by April the following year, you'll need to have an assessment booklet for the next presen-
tation written, before the students have finished the module. Basically, our production cy-
cles and our maintenance cycles are out of sync with module productions. Our presentation 
cycle is completely lacking in agility.’ 
(Participant 1, Health) 

‘What I would like is more direct feedback from all the tools, things like TMA submissions. 
Just for our retention. Retention is still a problem. We often get that information too late to 
really do anything about it.’ 
(Participant 6, Arts 2) 

Theme 3: Teachers found analytics data helpful, but were critical about the data 

Many participants pointed out that they have frequently used analytics data available from the SAS-

VA, a data visualisation tool available to OU staffs which provides information about student pro-

files, module KPIs and engagement data. Examples of data from SAS-VA include number of regis-

trations, number of TMA submission, pass rate from the previous semesters, demographics break-

down of students enrolled in the module.  

‘Well, SAS-VA I tend to use it for who's still registered and TMA completion and that sort of 
thing. I think it's great actually. I'm really, really pleased with it. I think to be able to have 
that at your fingertips rather than, I can't remember the old thing we used to... the module 
performance. Module profile tool was the old thing they used. But, yeah, I think that's a 
really helpful tool and I guess if that could be used for garnering more student feedback, 
that wouldn't be a bad thing as we go along.’ 
(Participant 2, Health) 

‘So, analytics, I'm completely obsessed with it, but and I love it and I get it. I wake myself up 
at 2 o'clock in the morning when the servers refreshed so I can check to see how things have 
changed, that's how obsessed I am with it.’ 
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(Participant 11, Computing 2) 

‘In the early weeks, as part of the PDP, the personal development planning, there's an ac-
tivity which includes a questionnaire and that questionnaire then leads on to the completion 
of learning journal number one. Okay? Through the dashboard, through the SAS-VA go in 
at week four and look to see how many students have completed it. And just that single bit 
of data gives us really, really concrete sense of the level of engagement that students are 
having with the module.’ 
(Participant 4, Education) 

Some participants indicated that they want more fine-grained analytics data on their module 
 
 

‘The visual analytics for me is probably the most important. What it doesn't do, and what I 
can't pull out of it myself, though I'm sure somebody somewhere could. One of the things 
that's concerned me is the number of students who don't engage with exam preparation 
rules. Something like a quarter of students actually go online and look at the exam prepa-
ration materials, and what I want to find out is where are the other 75%, and why aren't 
they engaging, and hits on a database, you know, on an online website, tell me that.’ 
(Participant 6, Arts 2) 

‘I think the amount of analytic data we have available is amazing. I know colleagues at other 
universities that would kill to have the amount of knowledge of students that we do. There 
are things I'd like that we don't have. I'd like it to be a lot easier to see what individual 
students are doing. So especially as we're very ... There are so many different parts through 
our module. And there's so many different topics. I want to know where the students are 
studying every topic. I want to know where the students are studying all of the earth sci-
ences topics, or whether they're not. And that's very difficult to get. In fact, I don't think it's 
possible currently.’ 
(Participant 9, Science) 

While most participants found analytics data useful, some participants were cautious about the 

quality of data and how to interpret the analytics.  

‘Yeah, and also, are those hits that website, yes, they are logged as individual hits, but are 
they, actually, individual students who are spending a certain amount of time engaging with 
that visual, or are they sitting on it and going away?’ 
(Participant 9, Science) 

 ‘The analytics is pretty much real time, but you need to be able to interpret the analytics in 
relation to student behaviour. So, you should never ever check TMA submission rates the 
day after the TMA is due, because there's always a three-week lag that will pick up 50% of 
the students. The SEaM survey results, so the module will end in July, SEaM survey won't 
appear until August or September. ‘ 
(Participant 1, Health) 

 
One participant was particularly concerned about the quality of learning analytic algorithms and 

want to have the ability to dissect the data himself. 

‘No, because I don't trust [predictive modelling]. I only trust it if I do it myself. Because then, 
there's so much in OU Analyse which is hidden compared to what not hidden, so I can't then 
decide what he's saying, there's not. There's so many things in terms of the statistics that 
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OU uses, which is horrendously poor, that I don't trust the statistics that anyone might have 
done if they're going to hide the statistics from me.’ 
(Participant 11, Computing 2) 
 

5.3.6. RQ 2.3 Discussion 

The third research question of Study 2 investigated how teachers made use of different feedback 

sources on their module design. Three channels of feedback were identified, namely course evalu-

ations, tutor feedback, and analytics data.  

While course evaluations provided important KPIs on the module, they also received a lot of criti-

cism from the participants regarding response rate and the interpretation of open comments. The 

limitations of self-report for course evaluations have been extensively discussed in educational lit-

erature (Richardson, 2004, 2005). A major problem with the course evaluations is that they only 

represent the output of learning, while giving limited insight into the process (what, how, when 

students study). This problem becomes even more prominent in an online learning environment, 

in which face to face interactions are much more limited. Open comments of course evaluations 

were perceived to be more useful than numeric data by the participants. However, there are chal-

lenges in analysing the open comments because of time constraint, as well as the interpretation 

issues. Recent developments at the OU have tested machine learning approaches to support teach-

ers analyse open comments from course evaluations (Ullmann et al., 2018).  

Tutor feedback was another major source of information on module design. Because tutors interact 

with students frequently, they were able to detect problems in “real-time” and communicate these 

problems directly to the module team via a tutor forum. Most participants highly valued the quality 

of tutor feedback. However, module chairs also recognised potential biases in tutor feedback as it 

could reflect personal opinions and beliefs.   

All participants found analytics data helpful in managing their module because they provide a direct 

channel between the module team and the students. Most participants actively made use of SAS-

VA to check submission rate or check the level of engagement on a particular learning activity. This 

finding resonates with recent evaluation studies of OU Analyse which showed a positive impact of 

LA tool on student retention (Herodotou, Hlosta, et al., 2019; Herodotou et al., 2017; Herodotou, 

Rienties, et al., 2019). Some module chairs also expressed their demand for a more fine-grained 

analysis of student learning patterns. These findings are well aligned with the rationale for the next 

studies in this thesis, which connected LD with learning behaviour at a fine-grained level.  

5.5 Conclusion 

In conclusion, Study 2 has explored the teacher’s perspective on the LD process, OULDI framework, 

and analytics data based on 12 semi-structured interviews with level 1 module chairs at the OU. 
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The study offers unique contributions because it triangulated findings from a teacher perspective 

(qualitative) and LD representations (quantitative, Study 1) to understand how teachers design for 

learning in distance education. In addition, Study 2 took a further step to not only explore the af-

fordances but also barriers when LD approaches were implemented at scale. It provides valuable 

lessons for the OU to refine their LD practices and for other institutions who wish to implement LD 

in the future.  

There are some limitations of Study 2 which should be mentioned. Firstly, Study 2 took place at a 

distance education institution and focused on a small number of level 1 modules. Therefore, read-

ers should take a critical stance when generalising their findings. Secondly, the findings of Study 2 

reflect the researcher’s own biases in interpreting the data. Thirdly, because most modules in Study 

2 were produced in 2015, the findings might reflect participants experience at the time, which 

might or might not applicable to recent developments in the OULDI practices.  

Study 1 and Study 2 together have laid out the foundation to understand how teachers design for 

learning at the OU. These two studies have provided empirical evidence on the overall patterns of 

LD at the OU as well as the underlying factors that influenced teacher design decisions. However, 

an important missing piece of the puzzle remains is how students engage with LD because that is 

where learning happens. As argued in chapter 2, the connection between LD and LA could help 

teachers validate their assumptions in the LD, to compare ‘what teachers expect students to do’ 

versus ‘what students actually do’.  

The next chapters will take a step forward by linking LD with student learning behaviour. The next 

studies are important because they provide empirical evidence of how students learning behav-

iours were influenced by the way teachers design their modules. Study 3 presents a large-scale 

analysis of 37 module designs and behavioural patterns of 45,190 undergraduate students at a 

weekly level. Study 4 showcases a deeper analysis into the relationship between the timing of en-

gagement and academic performance of 289 students in one module replicated over two semes-

ters.   
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Chapter 6 - Study 3 Impact of learning design on student engagement, satisfac-

tion, and pass rate 23 

Study 1 and 2 have provided empirical evidence of how teachers designed their modules at the OU. 

Study 3 takes a step further by examining how LDs influence students’ behavioural engagement in 

a virtual learning environment. Section 6.1 – Introduction summarises the rationale of the study 

and presents its research questions. Section 6.2 – Methods describes an overview of the specific 

methods used in Study 3, including information about the setting, participants, instruments and 

data analysis approach. Section 6.3 – Results presents the findings in relation to each research ques-

tion. Section 6.4 – Discussion discusses the implications as well as limitations of Study 3 and pro-

vides connections to the subsequent studies.  

6.1 Introduction 

Recent years have witnessed an increased interest to leverage Learning Analytics (LA) to inform and 

support Learning Design (LD) (Lockyer et al., 2013; Mor et al., 2015; Persico et al., 2015). One of the 

main benefits of aligning LA with LD is that LA could act as a reflective resource on how students 

actually behave compared to teachers’ assumptions embedded within their LD, which has been 

echoed by many scholars (Dalziel et al., 2016; Gašević et al., 2016; Mangaroska et al., 2018; Mor et 

al., 2015; Rienties et al., 2017). For example, Persico et al. (2015) argued that the learning process 

should not only depend on experience, or best practice of colleagues but also pre-existing aggre-

gated data on students’ engagement, progression, and achievement. In a similar manner, Mor et 

al. (2015) suggested that LA could facilitate teacher inquiry by transforming knowledge from tacit 

to explicit, and perceive students and teachers as participants of reflective practice. Griffiths (2017) 

viewed LD and LA as process that both create and implement models of learning processes, in which 

LD models teaching practices and LA models student activities.  

Several conceptual frameworks aiming at connecting LA with LD have been proposed. For example, 

Persico et al. (2015) discussed three dimensions of LD that can be informed by LA: representations, 

tools, and approaches. Lockyer et al. (2013) introduced two categories of analytics applications: 

checkpoint analytics to determine whether students have met the prerequisites for learning by as-

sessing relevant learning resources, and process analytics to capture how students are carrying out 

their tasks. In the LAK conference 2016, Bakharia et al. (2016)  proposed four types of analytics 

(temporal, tool-specific, cohort, and comparative), and contingency and intervention support tools 

 
23 The empirical investigation undertaken for this chapter has now published as:  
Nguyen, Q., Rienties, B., Toetenel, L., Ferguson, R., & Whitelock, D. (2017). Examining the designs of 
computer-based assessment and its impact on student engagement, satisfaction, and pass rates. Computers 
in Human Behavior, 76, 703-714. 
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with the teacher playing a central role. All of these conceptual frameworks pointed towards the 

importance of embedding student data into the LD process, which is the rationale of Study 3. 

Although there are numerous conceptual discussions on the link between LA and LD, the number 

of empirical studies on this topic has been rather limited (Mangaroska et al., 2018). For example, in 

a large-scale study of 151 modules and their 111,256 students at the OU, Rienties and Toetenel 

(2016b) found significant relations between LD and VLE behaviour, along with student satisfaction, 

and retention. The findings showed that by taking the context of LD into account could increase the 

predictive power of student behaviour by 10-20%. Gašević et al. (2016) compared the predictive 

power of trace data on academic performance of 4,134 students following nine first-year courses 

from a public research-intensive university in Australia and showed that the effect of learning be-

haviour on academic performance varied significantly across different instructional conditions.  

While these studies have provided important markers to the field of LA and LD, they have not con-

sidered the temporal characteristics of LDs and student behaviour. As illustrated in Study 1, LD is a 

dynamic process changing over time with a wide variation in workload and learning activity types. 

One of the unique advantages of trace data is the ability to track learning activities with a 

timestamp, which makes it suitable for investigating temporal learning process of students (Chen 

et al., 2018; Knight, Friend Wise, et al., 2017a).  

Moreover, Study 3 contributes to the data triangulation of LD. Study 1 examined LD from a data 

visualization perspective, Study 2 explored LD from a teacher’s perspective, and Study 3 will inves-

tigate LD from a student’s perspective. By triangulating three different sources of data, Study 3 

contributes to the holistic understanding of LD and the robustness of the findings.  

Therefore, Study 3 addresses the following research questions: 

RQ3.1. How do learning designs influence student behavioural engagement over time?  

RQ.3.2 How do learning designs influence student satisfaction and pass rate?   
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6.2 Methods 

6.2.1 Setting and Participants 

Study 3 took place at the OU, as did all the other studies which are reported in this thesis. The OU 

is the ideal context to answer Study 3’s RQs because it has a wealth of data about a) student per-

formance, demographics, and online behaviours and b) extensive information about LD as illus-

trated by Studies 1 & 2. Furthermore, by operating in the same context, Study 3 will support the 

data triangulation process with Studies 1 & 2. Further details about the OU as a study context can 

be found in section 3.3.1.  

To answer RQ3.1, two data sources were needed namely LD data and student engagement data at 

a weekly level, which will be described in detail in Section 6.2.2. Firstly, the LD data were based on 

Study 1, which consisted of 37 undergraduate modules. Secondly, the student data were collected 

based on the LD data from 37 modules, which resulted in 45,190 registered students in these 37 

modules. There were more female students (57 %) than male students (43 %) studying these 37 

modules. The majority of these students were from the UK (96%) and declared their ethnicity to be 

‘white’ (87%). Students varied considerably in age, with 27% under 25 years old, 35% aged 26-35, 

20% aged 36-45, 12% aged 45-55, and 6% aged 56 and over.  

More than half of the students were working full-time (52%), while 19% were working part-time, 

8% were looking after the home/family, and 6% were unemployed and looking for a job. Regarding 

students’ qualifications, there are no formal academic entry requirements at the undergraduate 

level at the OU. In Study 3, 41% of the students had A levels or equivalent (suggesting they had two 

or more years of post-compulsory schooling), 33% had less than A levels (suggesting they had not 

progressed beyond compulsory schooling), 20% had higher education degrees, 4% had a postgrad-

uate qualification, and 3% had no qualifications. On average, 10% of the students had a reported 

disability.  

6.2.2 Instruments 

LD mapping 

The LD data were retrieved from Study 1, which grouped learning activities into seven categories: 

assimilative, productive, communication, finding information, interactive, experiential, and assess-

ment. The seven types of learning activity were measured in terms of the duration in hours that 

was allocated for each type of activity. For a detailed description of the mapping process and relia-

bility of this approach, see section 4.2.2 and 3.2.2.  
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Online behavioural engagement 

In Study 3, the time spent on the VLE (i.e., Moodle) was used as a proxy of student online behav-

ioural engagement (see section 3.3.3. for the rationale and limitations of this measurement). The 

average time spent was calculated from the trace data, which were retrieved from the data ware-

house at the OU. This is a central database that stores all information related to OU students such 

as demographics, performance, finance, and online behaviour. In this dataset, the system recorded 

the time spent and the number of visits for each student on a daily basis. There were more fine-

grained data available, such as information about the type of content, learning materials, device 

accessed, which will be explored in Study 4. However, the focus of Study 3 was to conduct analyses 

at a macro level across 37 modules. In order to link LD data with engagement data, the measure-

ments needed to be on the same level of analysis (e.g., weekly). Based on this, two measurements 

of behavioural engagement were generated:  

• VLE per week: Average time spent on the VLE per week (in minutes) 

• VLE per visit: Average time spent per visit on the VLE (in minutes) 

Study 3 extracted data from the week -3 until week 40 (data streams typically start three weeks 

before the official start of the module) in order to merge with the LD data. While the use of time-

on-task is common in LA research (Kovanovic et al., 2016), there are many caveats with this type of 

data that should be acknowledged, which are discussed in section 6.5 Conclusion.  

Satisfaction 

Since its foundation nearly 50 years ago, the OU has consistently collected student feedback in 

order to improve the students’ learning experience and subsequently improve LDs. This work is 

embedded within the quality assurance and quality enhancement procedures of the OU. The Stu-

dent Experience on a Module (SEaM) survey was employed as part of the quality assurance process 

(Li et al., 2017a), just as with other student satisfaction instruments (Onwuegbuzie et al., 2007; 

Zerihun et al., 2012). This standard questionnaire is sent to all students who are still registered at 

the end of the module.  

Following a previous study of key drivers of the learning experience of 115,000 students (Li et al., 

2017b) who found significant relations between overall course satisfaction and factors related to 

LD, Study 3 used the aggregate scores of five core items (out of 40) from the SEaM survey that have 

been shown to drive student satisfaction. These five items measured students’ satisfaction with 

regard to (1) teaching materials, (2) assessment on module studied, (3) advice and guidance pro-

vided for module study, (4) integration of materials, and (5) career relevance, scaling from one to 

five in which one means “definitely agree”, and five means “definitely disagree”.  
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Pass rate 

The pass rates for each of the 37 modules were calculated as the percentage of registered students 

who completed and passed the module.  

6.2.3 Data analysis 

The main purpose of the analysis is to identify any statistical relationships between LD and student 

engagement. A naïve approach would be to run a normal regression with student data (i.e., engage-

ment) as dependent variables and LD data as independent variables. However, as shown in Gašević 

et al. (2016) and discussed in section 2.3.2, the effect of learning behaviour on student outcome 

varies from courses to courses. Therefore, it is important to control for the heterogeneity between 

different modules. For this reason, a fixed-effect regression model was used in Study 3. 

A fixed-effect model is a common statistical technique often used to analyse panel data, in this case, 

37 modules over 34 weeks. The idea of a fixed-effect model is to control for the time-invariant 

heterogeneity between modules by incorporating a dummy variable for each module. In other 

words, the model controlled for fixed characteristics of each module that do not change over time 

such as the number of credits, module-level of study, etc. This can be formalised as follows: 

Engagementit = αi + β1 * Assimilativeit + β2 * Productiveit + … + εit 

• Engagementit is the level of engagement of module i in week t  

• αi (i=1…37) is the unknown intercept for each module (37 module-specific intercepts) 

• Assimilativeit is a level of assimilative activities of module i in week t 

• β1 is the coefficient for Assimilative  

• εit is the error term 

In preparation for the fixed-effect model, a Hausman test was used to differentiate between a fixed 

effect and a random-effects model. This test checks whether the coefficients estimated by the ran-

dom effects estimator are the same as the ones estimated by the consistent fixed effects estimator 

(Hausman, 1978). The results supported the assumption of correlation between observation errors 

and predictors. For this reason, a fixed-effects model was used as it removes the effect of time-

invariant characteristics to assess the net effect of the predictors on the outcome. 

Variance inflation factor (VIF) was computed after each model to check for multicollinearity. All VIFs 

for the predictors were smaller than 2.00, indicating there was no significant correlation among the 

independent variables. In other words, there was a little overlap of measurements among seven 

types of learning activity. Study 3 report unstandardized coefficients because all the explanatory 

variables were measured in the same unit (hours). Thus, it was more informative to report the orig-

inal metrics. The analysis and visualizations were performed using Stata 13 and Tableau 10.1. 
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6.3 Results 

6.3.1 Learning design and engagement 

Figure 25 visualised the average time spent on VLE per week against the expected time spent on 

seven learning activity types. In line with Study 1, the overall patterns demonstrated the dominance 

of assimilative (orange), assessment (blue), and productive (grey) activities. What was new in this 

visualisation was the time spent on VLE by students. On average, students spent 116.3 minutes on 

the VLE on a weekly basis (SD=66.35) (Table 28). In each visit, students spent on average 22.9 

minutes (SD=8.61). There was a sharp decline in week 11 and 12 which represented the Christmas 

breaks. The level of engagement also decreased in week 27, which was an Easter break. The overall 

engagement pattern seemed to follow with the changes in LD workload over time.  

 

Figure 25. Longitudinal visualization of hours per week allocated for different activities in the learn-
ing design (coloured blocks) and students’ average engagement in minutes per week on the VLE 
(red line) for 37 modules over 34 weeks 

Table 28. Descriptive statistics of LD data and VLE data 

  N Minimum Maximum Mean Std. Deviation 

Assimilative (hrs) 1088 0.0 15.0 3.9 3.37 
Information (hrs) 1088 0.0 13.0 0.2 0.72 
Communication (hrs) 1088 0.0 11.0 0.2 0.72 
Productive (hrs) 1088 0.0 12.5 1.3 1.72 
Experiential (hrs) 1088 0.0 9.0 0.1 0.49 
Interactive (hrs) 1088 0.0 19.1 0.2 0.83 
Assessment (hrs) 1088 0.0 20.0 1.9 3.42 
VLE per week (mins) 1088 6.5 577.0 116.3 66.35 
VLE per visit (mins) 1088 2.8 51.0 22.9 8.61 

N=number of data points collected from 37 modules over 34 weeks 
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Table 29 reported the correlation matrix between seven activity types and the time spent on VLE. 

The time spent on VLE per week was positively correlated with assessment (r=0.20, p<0.01), com-

munication (r=0.27, p<0.01), and interactive activities (r=0.16, p<0.01). The average time spent per 

visit was positively correlated with assessment (r=0.12, p<0.01), assimilative (r=0.10, p<0.01), com-

munication (r=0.22, p<0.01), and interactive (r=0.09, p<0.01) activities. Overall, the assessment and 

communication activities had the strongest correlations with time spent on VLE.  

Table 29. Pearson’s correlation matrix of learning design and VLE engagement at a weekly level 

Variables 1 2 3 4 5 6 7 8          
1. Assessment  

       
2. Assimilative -.46**  

      
3. Communication -.12** .17**  

     
4. Information -.12** .08** .17**  

    
5. Productive -.29** .16** .13** .17**  

   
6. Experiential -.06* .02 -.02 -.02 .00  

  
7. Interactive .00 .02 .05 .01 .01 .01  

 
8. VLE per week .20** .01 .27** .05 .01 .01 .16**  

9. VLE per visit .12** .10** .22** .04 .07* .04 .09** .84** 

N = 37 modules (1,088 data points) 

* p < .05, ** p < .01 

Fixed effect models were conducted with the average time spent on VLE per week (Table 30) and 

per visit (Table 31) as dependent variables. For each predictor, four models were applied. First, I 

ran a normal OLS regression model. Second, I used the fixed-effect model to control for the unob-

served heterogeneity of time. Third, I controlled for the fixed effect between modules. Finally, I 

controlled for the fixed effects of both time and modules. Since assimilative activities account for 

most of the workload, they were set as the baseline. Therefore, the following results should be 

interpreted relative to assimilative activities.  

Table 30 shows that assessment activities were positively and significantly related to the average 

time spent in the VLE per week in all four models. In Models 1 and 2, the effect of assessment 

activities was almost the same (B = 4.98, SE = 0.57, p < 0.01 and B = 5.09, SE = 0.59, p < 0.01 respec-

tively). The effect of assessment activities became smaller in Model 3 and Model 4 when differences 

between modules were taken into account. On average, an additional hour allocated for assess-

ment activities was associated with 2.47 (SE = 0.47, p < 0.01) and 2.80 (SE = 0.47, p < 0.01) minutes 

increase in the average time spent on the VLE per week in Model 3 and Model 4 respectively. 

 

 

 

 Table 30. Fixed effect model of VLE engagement per week predicted by learning design activities 
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DV = VLE per week Unstandardized coefficients 

 (1) (2) (3) (4) 
MODELS OLS FE_week FE_module FE_module_week 

     
Assessment 4.98** 5.09** 2.47** 2.80** 
 (0.57) (0.59) (0.47) (0.47) 
Information 2.40 3.23 -0.72 0.15 
 (2.64) (2.60) (1.98) (1.94) 
Communication 26.29** 26.29** 16.54** 17.44** 
 (2.66) (2.62) (2.16) (2.11) 
Productive 1.75 1.73 -1.84 -1.83 
 (1.14) (1.12) (1.04) (1.03) 
Experiential 3.57 4.49 -2.07 -0.99 
 (3.83) (3.78) (2.98) (2.91) 
Interactive 11.57** 11.25** -0.33 -0.46 
 (2.23) (2.20) (1.81) (1.78) 
Constant 95.66** 95.30** 110.6** 172.1** 
 (2.91) (2.85) (2.46) (10.50) 
     
Observations 1,088 1,088 1,088 1,088 
Adjusted R-squared 0.15 0.19 0.55 0.58 

Standard errors in parentheses. * p < .05, ** p < .01 
Baseline: assimilative 

Communication activities were also positively associated with the time spent on VLE per week in all 

four models. For every hour increase in communication activities, the time spent on VLE per week 

increased by 17.44 minutes (SE = 2.11, p<0.01). The effect of communication activities was the 

strongest amongst all other learning activity types.  

Interactive activities were positively correlated with time spent on VLE in Model 1 and Model 2. 

However, the effect of interactive activities became non-significant when the differences between 

modules were taken into account (Model 3 & Model 4).  

Overall, LD activities explained up to 58% of the variability in student engagement in the VLE per 

week when controlling for the heterogeneity between modules.  

In terms of time spent on the VLE per visit (Table 31), assessment, productive, and experiential 

activities had strong and positive effects in Models 1 and 2 but became insignificant in Models 3 

and 4. Model 2 implied that an additional hour allocated for assessment activities was, on average, 

associated with a 0.48 minute increase in the time spent in the VLE per visit (SE = 0.07, p < 0.01). 

However, the effect became insignificant when controlling for the differences between modules. 

Additionally, communication activities were positively associated with time on VLE per visit in all 

models, while productive, experiential, and interactive activities had a significant effect in Models 

1 and 2 only. Overall, by taking into account the heterogeneity within and between modules, LD 

was able to explain 69% of the variability in time spent on the VLE per visit (Model 4). 
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Table 31. Fixed effect model of VLE engagement per visit predicted by learning design activities 

DV = VLE per visit Unstandardized coefficients 

 (1) (2) (3) (4) 

MODELS OLS FE_week FE_module FE_module_week 

     
Assessment 0.46** 0.48** 0.02 0.05 
 (0.07) (0.08) (0.05) (0.05) 
Information 0.13 0.20 -0.29 -0.21 

 (0.35) (0.35) (0.22) (0.21) 
Communication 2.76** 2.78** 0.96** 1.06** 
 (0.35) (0.35) (0.24) (0.23) 
Productive 0.46** 0.46** -0.17 -0.16 
 (0.15) (0.15) (0.11) (0.11) 
Experiential 1.04* 1.09* 0.52 0.60 
 (0.51) (0.51) (0.33) (0.32) 
Interactive 0.79** 0.72* -0.34 -0.39 
 (0.30) (0.30) (0.20) (0.20) 
Constant 20.56** 24.15** 21.00** 24.66** 
 (0.39) (1.37) (0.91) (1.18) 
     

Observations 1,088 1,088 1,088 1,088 
Adjusted R-squared  0.08 0.10 0.67 0.69 

Standard errors in parentheses. * p < .05, ** p < .01 Baseline: assimilative 

To further explore the relationship between LD and student engagement, I visualised two 

exemplary modules in Arts and in Languages (Figure 26). These two modules had a relatively similar 

design but the level of VLE engagement seemed to be very different. In the Arts module, we can 

see a peak in VLE activity in week 8-9 due to the increase in workload. The level of engagement 

then decreased during the Christmas breaks and sharply increase just before the Easter break in 

week 26. On the other hand, the level of engagement in the Language module was relatively 

constant throughout the module, with the exception during Christmas breaks. The level of 

engagement in both module slightly increased in assessment weeks, which confirmed the findings 

from the fixed-effect models.  
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Figure 26. Learning design and VLE activity of two modules in Arts and Languages 

6.3.2 Learning design, satisfaction, and pass rate 

The correlational analysis in Table 32 suggested that finding information and communication activ-

ities were negatively correlated with satisfaction score. There was no statistically significant corre-

lation between satisfaction and pass rate.  

Table 32. Pearson's correlation between pass rate, satisfaction, and seven types of learning activity 

  Pass rate Satisfaction 

Pass rate 1 -.139 
Satisfaction -.139 1 
Assimilative -.247 -.059 
Information .102 -.375* 
Communication .175 -.470** 
Productive -.009 -.133 
Experiential -.173 .154 
Interactive -.097 -.246 
Assessment .042 -.141 

N = 37 modules, * p<0.05        ** p < 0.01 

Following the correlational analysis, a multiple regression was run with satisfaction as the depend-

ent variable and seven learning activity types as independent variables. A backward elimination 

process was carried out on the seven learning activity types, to determine which activity type has 

the strongest impact on satisfaction rate. Communication activities were negatively associated with 

satisfaction score in all models and explained up to 19.8% of the variation in satisfaction. For each 

standard deviation increase in communication, satisfaction score decreased by 0.47 standard devi-

ation (p<0.05). The results shown in Table 33 indicated that communication activity type was the 
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strongest predictor of satisfaction, while other six activity types did not improve the model perfor-

mance (i.e. Adj-R2 increased slightly from 19.8% to 20.7% and decreased to 15.3% as more activity 

types were added into the model). There were no statistically significant correlations between sat-

isfaction and the other six learning activity types. 

Table 33: Multiple regression of satisfaction and seven learning activity types 

 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 

DV = Satisfaction        

Communication -.470* -.602* -.494* -.457  -.442 -.447 -.448 
Assessment  .220 .295 .261 .205 .219 .224 
Information   -.220 -.211 -.275 -.250 -.237 
Interactive    -.142 -.151 -.154 -.157 
Assimilative     .165 .134 .121 
Experiential      .091 .095 
Productive       -.030 
        
Observation 37 37 37 37 37 37 37 
Adj R-squared .198 .207 .207 .204 .198 .180 .153 

Standardised coefficients. * p <0.05  

To further understand the relationship between communication activities and satisfaction, a scat-

ter plot was generated (Figure 27). In line with findings from Study 1, most modules used little to 

no communication activities. The satisfaction score for these modules varied from 70% to 90%. 

However, modules with more than 5 hours of communication activities such as discussion forums, 

online group work started to see a downward trend in satisfaction as the number of communica-

tion activities increased.  

 

Figure 27. Scatter plot between communication activities and student satisfaction 
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Regarding the relationship between pass rate and LD, assimilative activities were negatively asso-

ciated with the pass rate in all models (Table 34). For each standard deviation increase in assimila-

tive activities, the pass rate decreased by 0.432 standard deviations (p<0.05). Assimilative activities 

explained for 9.1% of the variation in pass rate between modules.   

Table 34. Multiple regression of pass rate and seven learning activity types 

   Model 1 Model 2 Model 3 Model 4 Model 5  Model 6 

DV=Pass rate  
     

Assimilative -.432* -.492* -.497* -.501* -.486* -.498* 
Information .338 .416 .271 .272 .255 .247 
Productive  -.169 -.171 -.190 -.184 -.188 
Communication   .215 .242 .242 .229 

Interactive    -.146 -.143 -.138 

Experiential     -.046 -.042 

Assessment       .039 

       

Observation 37 37 37 37 37 37 
Adj R-squared .091 .089 .088 .082 .054 .022 

Standardised coefficients. * p <0.05 

While the regression model suggested a negative relation between assimilative activities and pass 

rate, Figure 28 showed an inconclusive pattern between the two variables. There was a large vari-

ation in pass rate 50% - 80% and this range did not seem to decrease as assimilative activities in-

creased. The exception was the two modules with extremely high assimilative activities (300 hours) 

which had around 55% pass rate. This finding implies that an excessive amount of workload had a 

negative effect on the pass rate.  

 
 
Figure 28. A scatter plot between pass rate and assimilative activities 
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6.4 Discussion 

Study 3 has investigated the effect of LD on student engagement, satisfaction, and pass rate of 37 

modules over 30 weeks. The first finding indicated that the level of engagement on VLE was posi-

tively associated with assessment and communication activities, which was in line with previous 

empirical results at the OU (Jordan, 2012; Rienties & Toetenel, 2016b) and in a broader education 

literature (Cherney et al., 2017; Holmes, 2017). The new contribution of Study 3 was the use of 

behavioural measurements captured from the beginning to the end of a module, as opposed to the 

use of self-report measures in previous studies (Cherney et al., 2017).  

The engagement pattern of students found in Study 3 showed similarities with the findings of 

Holmes (2017), which found sharp increases in VLE engagement in weeks of assessment deadlines. 

One possible explanation for the positive effect of assessment on student engagement on VLE could 

be that students put more effort in preparation for their assessments by revisiting prior learning 

materials, which in turn increased their time spent on VLE. As a result, modules with a higher num-

ber of assessments would have a higher level of student engagement. Findings from Study 3 are 

closely linked with the findings from Study 1 and Study 2, which showed that teachers put a strong 

emphasis on assessment design. The implementation of single component assessment strategy at 

all level 1 and level 2 modules since 2018 signalled that assessment design is one of the top priori-

ties at the OU. 

While Study 3 provided empirical evidence at a macro level across a large number of modules and 

students, its broad categorisation of assessment perhaps did not capture the full complexities of 

assessment design such as the types of assessment as well as the timing of assessment (Earl et al., 

2006; Hattie et al., 2007). Broadly speaking, there are three main types of assessment. These in-

clude summative assessment (i.e., assessment of learning), formative assessment (i.e., assessment 

for learning), and self-assessment (i.e., assessment as learning) (Earl et al., 2006; Hattie et al., 2007; 

Torrance, 2007). While formative assessment and self-assessments were found to positively impact 

student engagement and motivation (Bennett, 2011; Jordan, 2012; Panadero et al., 2018; Panadero 

et al., 2017; Tempelaar et al., 2013), findings on summative assessment showed mixed results 

(Harlen, 2006; Trotter, 2006).  

The timing of engagement also plays an important role, in which continuous assessment, which is 

often associated with self-assessment, was found to increase student engagement more than sum-

mative assessment (Holmes, 2017; Jordan, 2012). Therefore, it is recommended for the future de-

velopment of LD practices, to account for different types of assessment in their taxonomy, such as 

the LD pattern languages by Law et al. (2017) as described in section 2.2.2. By doing so, it would 

allow researchers and practitioners to validate the effectiveness of each assessment type as well as 

provide pedagogical advice on how to better design assessment activities.  
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Although assessment activities were found to be positively correlated with student engagement, 

the strongest predictor of student engagement was communication activities, as shown in Table 30 

and Table 31. One possible explanation is that communication activities often took the form of 

online discussion forums, which required students to engage with the VLE. Compared to assess-

ment activities, communications activities were unlikely to be graded. Therefore, students engaging 

with communications activities perhaps came from an intrinsic motivation rather than an extrinsic 

motivation (Ryan et al., 2000).  

While communication was positively correlated with VLE engagement, it was found to have a neg-

ative effect on module satisfaction score, which is in line with Rienties and Toetenel (2016a). This 

finding also resonates with the teachers’ perceptions of collaboration activities in Study 2, which 

demonstrated some tensions between what teacher’s pedagogical belief and the resistance from 

students and tutors against collaboration activities. An explanation could be that communication 

activities required extra effort from students to engage with their peers through online forums, 

hence the time spent on VLE increased. However, students might not enjoy collaborating with oth-

ers online, fearing that their grades will be influenced by their peers. Collaboration in online settings 

could also be frustrating to the students due to the lack of trust and rapport without face-to-face 

interactions. Therefore, students who dislike collaboration activities will more likely to fill in the 

course evaluations to express their frustrations.  

Although communication activities were found to be negatively associated with satisfaction in 

Study 3, it is important to emphasise that this broad categorisation did not capture the complex 

factors associating with the design of communication and collaboration activities. For example, 

Salter et al. (2015) found that structured discussion forums had a higher level of engagement as 

well as using feedback more than an unstructured discussion forum. Other factors could influence 

student experience engaging in collaboration activities are group cohesion, trust, sense of commu-

nity, and culture (Kreijns et al., 2003). Therefore, it is implied that teachers should carefully consider 

the design of online communication activities because they could have a strong (positive or nega-

tive) impact on student engagement as well as satisfaction.  

Another key finding of Study 3 was the synergy between module workload and student engage-

ment. The results showed that 69% of the variation in time spent on VLE could be explained by the 

seven learning activity types. The level of engagement followed the ups and downs in workload, 

which increased in assessment weeks and decreased during Christmas and Easter breaks. This find-

ing implies that the way teachers design their module had a strong influence on how students learn 

and the amount of effort they put in. The other 31% of the variation in student engagement could 

be explained by differences in student characteristics, which include demographics, cognitive strat-

egies, self-regulation strategies, the use of feedback, or learning motivations and emotions.  
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Since the level of engagement is heavily dependent on study workload, it is important for teachers 

to keep a balance and consistent amount of workload over time (Van Ameijde et al., 2016; 

Whitelock, Thorpe, et al., 2015). As shown in two exemplary modules, a sudden increase in work-

load in the Arts module led to an increase in engagement. However, students could feel over-

whelmed and decreased their engagement in the long run. In comparison, the Language module 

had a relatively consistent workload in all weeks, which resulted in a consistent level of engagement 

throughout the module. This finding was also supported by the negative relation between assimi-

lative and pass rate. Modules with extremely high workload had a low pass rate. The quantitative 

findings are in line with the qualitative findings from Study 2, which showed that teachers deliber-

ately reduced study workload when redesigning their modules.  

Study 3 contributes to the connection between the field of LA and LD by linking trace data of stu-

dent behavioural engagement with LD representations. The novelty of Study 3 is the exploration of 

how student behaviours align with LD over a long period of time. The aspect of time is crucial in 

educational research as it allows us to unpack the complexities and dynamics of learning behaviour 

during the learning process. Future research is encouraged to collect and analyse data at a longitu-

dinal level to account for the temporal changes in learning processes (Chen et al., 2018; Knight, 

Friend Wise, et al., 2017a). An implication for researchers working on the intersection of LA and LD 

is that data should be collected on the same level of specification for integration purposes. Other-

wise, it is difficult to connect two data sources which were collected at different levels, for example, 

LD data at a module level and LA data at a daily level.  

In line with recent reviews of LA (Ferguson et al., 2016; Papamitsiou et al., 2014, 2016), researchers 

are encouraged to look beyond “cold” LA data such as the number of clicks, time spent. Without a 

good understanding of the instructional context, it is difficult to interpret student behaviour and 

create meaningful changes in the curriculum. The implication for LA and LD research is the collec-

tion of multiple data sources for data triangulation. As shown in the three studies so far, simple 

visualisation of LD or description of teacher perspectives or student behaviour alone in itself may 

not be able to capture the nuances of complex processes of LD and student engagement. By taking 

into account the differences in instructional conditions between modules, Study 3 showed a con-

siderable increase in the model performance, with an increase in R-squared from 10% to 69%.  

In terms of practical implications, assessment and feedback are high on the priority list for students 

and educators, as they are linked to student success and to the success of a course, programme, 

faculty and university (Hattie et al., 2007). Some policymakers have already made moves intended 

to improve the effectiveness of teaching (Ferguson et al., 2016). For example, a Teaching Excellence 

Framework has been introduced in the UK, and it is likely that measures related to assessment will 

be used as key indicators. In order to explain how satisfaction and assessment activities are linked 



  

 133 

and which elements of assessment (balance of activities, spread through module material or as-

sessment methods) have a significant impact on student outcomes, we need to combine research 

data and institutional data and work together in order to solve this complex puzzle.  

6.5 Conclusion 

In conclusion, Study 3 has provided empirical evidence at a large scale of how LD influences student 

engagement, satisfaction, and pass rate by combining LD data of 37 modules with trace data of 

45,190 undergraduate students. The findings indicated that assessment and communication activ-

ities had a positive correlation with student time spent on VLE. However, communication activities 

were negatively correlated with satisfaction scores and assimilative activities were also negatively 

correlated with module pass rate.  

There are some limitations of Study 3 that should be acknowledged. Firstly, one caveat of trace data 

is the problem with interpretation. Trace data might not be representative of the actual studying 

process, which could take place outside the learning management systems. For example, students 

could download a PDF offline, searching for information in another browser, or write an essay in 

Word. These activities are not captured by the system. Another limitation of time-on-task could be 

that we are not able to tell whether students were cognitively engaging with the learning activities 

on VLE. Behavioural engagement does not always equal cognitive engagement. Students could 

open a browser for a long period of time but not cognitively engaged with the learning process (i.e., 

checking Facebook, have a cup of tea, distracted by the external environment.  

The second limitation of Study 3 is the issue of self-report satisfaction. For example, the response 

rate for course evaluations was low and not representative of the true population. Furthermore, 

there might be a sampling bias in the respondents to the surveys. For example, only students who 

performed really well or really poorly will be more likely to respond to the satisfaction survey. 

The third limitation of Study 3 is the crude measurement of student engagement at a weekly level 

as there will always be a trade-off between the sample size and the level of granularity in analyses. 

The analysis at a weekly level omitted the individual characteristics of students such as de-

mographics, which were explored in another study (Nguyen, Thorne, et al., 2018). There are also 

many hidden insights underneath the aggregated measure of time spent per week such as which 

materials did students access, when do they engage with these materials, are they falling behind or 

ahead of schedule. For this reason, Study 4 will unpack the complexity in learning behaviour in 

details by examining the relationship between the timing of engagement with LD and academic 

performance.   
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Chapter 7 - Study 4 The alignment between learning design and student behav-

iour, and its impact on academic performance 24 

Study 1 has explored the overall LD patterns through data visualisation and network analysis. This 

was followed by Study 2, which further unpacked the complexity of LD through a qualitative study 

of teacher’s perspectives. Study 3 added new insights from student engagement and its relation to 

LD data on a large scale across 37 modules and 45,190 students over 30 weeks. These three studies 

so far have contributed to the holistic understanding of how teachers design their modules, and 

how their LD decisions influence student behaviour on a large scale. Study 4 will progress this work 

by examining the temporal characteristics of student engagement and its relations to LD and aca-

demic performance at an individual level.  

Section 7.1 – Introduction summarises the rationale of the study, and why the temporal engage-

ment process is being investigated, followed by the background literature, and the research ques-

tions. Section 7.2 – Methods describes an overview of the specific methods in Study 4 including 

information about the setting, participants, instruments and data analysis approach. Section 7.3 – 

Results presents the findings in relation to each research question. Section 7.4 – Discussion relates 

the implications for research and practitioners. Section 7.5 – Conclusion discusses some limitations 

and future research directions.  

7.1 Introduction 

Previous chapters have demonstrated the importance of linking LA with LD (Lockyer et al., 2013; 

Mor et al., 2015; Persico et al., 2015). Although substantial progress has been made within the LAK 

community to link how teachers’ LD decisions with what students are doing (Bakharia et al., 2016; 

Lockyer et al., 2013; Nguyen, Rienties, et al., 2017b; Rienties & Toetenel, 2016b; Rienties et al., 

2015), one major methodological challenge that is often ignored is the granularity of analysis be-

tween LD and LA. Most LD activities are conceptualised at a course level, or at a weekly level 

(Nguyen, Rienties, Toetenel, et al., 2017). However, the actual behaviour of students occurs on a 

much finer, hours by hour or even second by the second level. It is inevitable that this will lead to 

discrepancies between intended and actual observed learning behaviours. In other words, there 

remains a paucity of empirical evidence on the magnitude and temporal characteristics of 

 
24 The empirical investigations undertaken for this chapter have now published as:  
Nguyen, Q., Huptych, M., & Rienties, B. (2018). Linking students' timing of engagement to learning 
design and academic performance (best full paper award). In proceedings of the 8th International 
Learning Analytics & Knowledge Conference, Sydney, Australia. 141-150 

Nguyen, Q., Huptych, M., & Rienties, B. (2018). Using Temporal Analytics to Detect Inconsistencies 
between Learning Design and Student Behaviours. Journal of Learning Analytics, 5(3), 120-135. 
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behavioural differences in online environments, and how differences in behavioural patterns of 

students might vary across different levels of academic performance.  

Time management in learning 

Time management has been well-documented and empirically tested in educational literature as 

one of the key predictors in academic performance (Broadbent et al., 2015; Claessens et al., 2007; 

Kim et al., 2015). Time management in educational settings describes students’ effort to effectively 

make use of their time to achieve certain educational goals within a given period of time (Britton 

et al., 1991; Macan et al., 1990). Time management can be viewed as a part of the self-regulated 

learning framework in which it reflects the planning and goal setting process of learning when work-

ing on a task (Winne et al., 1998). A recent systematic review of 12 studies by Broadbent et al. 

(2015) suggested that the strategies of time management, metacognition, effort regulation, and 

critical thinking were positively correlated with academic performance in an online setting. Numer-

ous studies have confirmed that students who manage their time ineffectively (e.g., procrastinat-

ing, cramming for an exam ) performed poorly  on academic tasks (Cerezo et al., 2017; Kim et al., 

2015; Whitelock, Thorpe, et al., 2015). For example, Wolters et al. (2017) found that time manage-

ment is a key aspect of self-regulated learning and can extend our understanding in how students 

procrastinate their academic work.  

Although the subject of time management has been extensively studied in the past, there remain 

three gaps in the literature. Firstly, many studies on time management have mainly relied on self-

reported measures (Claessens et al., 2007), such as the time management behaviour scale (TMBS) 

(Macan et al., 1990), the time structure questionnaire (TSQ) (Bond et al., 1988), and the time man-

agement questionnaire (TMQ) (Britton et al., 1991). As a result, some key aspects of time manage-

ment (what, when, and for how long students engage) have not been fully understood. Secondly, 

several studies have used classroom observational measures of academic engagement, such as 

scoring systems according to a coding scheme, or an observer recording the time interval of a pre-

defined category of behaviours. However, such classroom observations are time-consuming, lim-

ited in scale (i.e., online learning with a large cohort), and subject to observers’ bias and possibly 

errors if poorly trained. Thirdly, the role of learning design in how students manage their time has 

received limited attention. From a self-regulated learning perspective, the conditions in which 

learning take place influence how students operate (e.g., time management). Therefore, it is crucial 

to understand how teachers design their course and its influence on what, when, and for how long 

students studied.   
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Temporal analytics 

Learning occurs over time. The concept of time in educational studies can take many forms such as 

longitudinal study over years, learning gains across modules, lessons within a course, activities 

within a lesson, and how students navigate within each activity. Advances in technology allow re-

searchers to capture fine-grained digital footprints of student behaviours (what, when, and for how 

long students study). Learning analytics as a field has been progressing towards temporal analysis 

both conceptually and methodologically  (Chen et al., 2018; Knight, Friend Wise, et al., 2017b). As 

highlighted in the two recent special issues of the Journal of Learning Analytics, there remain some 

discrepancies between how learning constructs are conceptualised with respect to time and how 

they are represented in data (Chen et al., 2018; Knight, Friend Wise, et al., 2017b). Research in time 

management, by nature, is closely coupled with temporal analytics. For example, Tabuenca et al. 

(2015) used a combination of the Validity and Reliability of Time Management Questionnaire 

(VRTMQ), Online Self-Regulated Learning Questionnaire (OSLQ), and a mobile track tool. The au-

thors found positive effects of tracking time on time management skills. In a similar direction, 

Manso-Vázquez et al. (2016) proposed a comprehensive solution to use SRL criteria to select and 

display data focusing on time management.  

Another construct that closely relates to time management and temporal analytics is engagement. 

Time management can be represented by what, when, and for how long students engage in learn-

ing activities. While engagement is a frequently used term by both researcher and practitioners in 

education, the conceptualization of engagement and its measurements has not reached a consen-

sus. Engagement is a multi-dimensional construct ranging from behavioural engagement, emo-

tional engagement, cognitive engagement, and agentic engagement (Azevedo, 2015; D'Mello et al., 

2017; Gobert et al., 2015; Greene, 2015; Miller, 2015; Sinatra et al., 2015). As highlighted in the 

special issue of Educational Psychologist, Sinatra et al. (2015) recommended that engagement 

should be considered on a continuum from person-centred to context-centred orientation. Based 

on this continuum, temporal analytics is placed towards the person-oriented direction. At this end 

of the continuum, measurements of engagement consist of trace data, or physiological indicators 

such as eye-tracking, heart rates, etc.  

Chen et al. (2018) discussed two features of temporal analytics. The first relates to the passage of 

time (how long, how often students engage). The second refers to the sequential order in which 

these activities take place (Molenaar et al., 2014). Both features are influenced by students’ instruc-

tional conditions (i.e., learning design). Teachers often allocate a certain amount of time to each 

learning activity and organize a series of learning activities in an order that they find optimal. For 

example, students are guided to read chapter 1 in one hour, following by some open-ended ques-

tions for 20 minutes, and then join the discussion forums for 10 minutes to discuss what they have 
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learnt with peers. As a result, LD is crucial to temporal analytics as it provides a reference point to 

interpret and develop measures for engagement.  

Research questions 

When teachers design for learning, they often estimate the workload of each activity and the cor-

responding time period for each activity (e.g., take 3 hours to read chapter 2 in week 2). LD is often 

embedded in the course syllabus and acts as a guideline for students to self-regulate their learning 

process (Biggs et al., 2007; Dalziel, 2015; van Merriënboer et al., 2002). However, students as agents 

consciously, and perhaps opportunistically, make decisions on what, how, and when to engage in a 

particular range of learning activities (Winne, 2017). While teachers might think that a student will 

read chapter 2 in week 2, perhaps some students are already pre-reading materials from week 4, 

while other students may not have watched the introduction video of week 1. Therefore, by having 

a better understanding of how much time students spent on respective learning materials and, 

more importantly for Study 4, when in time they studied these learning materials, this may enhance 

our intertemporal understanding of how students make complex study decisions.  

While previous research has shown a strong correlation between the LD and student behaviour on 

the VLE (Nguyen, Rienties, et al., 2017b; Nguyen, Rienties, Toetenel, et al., 2017; Rienties & 

Toetenel, 2016b), the collapse of the time spent on all activities under a module or a week remains 

a problem for interpretation. For example, not all activities on the VLE are relevant and comparable 

to the LD (e.g., personal site, library service, accessibility service). Secondly, the timing of studying 

has not been fully understood (e.g., studying all materials of week 2 on day 8, 9, or 13). For instance, 

students could study the learning materials before or after the assigned week. Therefore, Study 4 

takes a further step to investigate the time spent on each individual activity and when the students 

engage in these activities.  

RQ4.1: How does students’ timing of engagement align with learning design? 

Furthermore, many LA studies have indicated that trace behaviours are significantly related to their 

academic performance (Macfadyen et al., 2010; Tempelaar et al., 2015). In addition, extensive re-

search has shown that the ability to plan study time and tasks (time management) was found to be 

a significant predictor of academic performance (Broadbent et al., 2015; Häfner et al., 2014). It has 

been widely acknowledged that students with better learning strategies and self-regulation strate-

gies are more on track with managing their study choices, while students who end up behind the 

course schedule might struggle to effectively perform over time (Järvelä et al., 2013; Vermunt et 

al., 2004). Thus, Study 4 hypothesizes that high-performing students spend more time studying the 

learning materials in advance, or in line with the LD, while low-performing LD students spend more 

time in catching up in their study.   
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RQ4.2: How does students’ timing of engagement relate to academic performance? 

By understanding the relationship between student engagement and academic performance, 

teachers could provide appropriate support to students who were struggling with catching up with 

the module activities. 

7.2 Methods 

7.2.1 Setting and Participants 

Study 4 took place at the Open University UK. The context of the study is a level 2 module, 30 

credits, which corresponds to the 2nd year course at normal face-to-face universities, focusing on 

Environmental Studies. Firstly, this module was selected because of the availability of trace data at 

a fine-grained level. These included over a million records of URLs which contained all learning ma-

terials and learning activities that students engaged with, together with student id and a timestamp 

of when each student accessed these materials/activities. This type of fine-grained data plays a 

critical role to answer RQ4.1 and RQ4.2 because they allowed me to compute new engagement 

metrics of the individual student based on both the duration and the timing of their engagement. 

These new metrics will be described in detail in section 7.2.2. Compared to Study 1 and Study 3, 

which used an aggregated measurement of student engagement at a weekly level, Study 4 aims to 

analyse student engagement at a much finer granularity.  

The second reason for choosing this module was because of its LD. Given RQ4.1 and RQ4.2, which 

focused on comparing teachers’ assumptions and actual student behaviour, it is crucial to ensure 

an accurate representation of the actual learning activities. Therefore, this module was selected 

because the majority of its learning activities took place online on the VLE, in this case, a Moodle 

platform. This allowed us to capture a more reliable representation of actual online learning behav-

iour than other modules at the OU, whereby learning activities could take place outside of the VLE 

(e.g., printed materials, blended learning) (Toetenel et al., 2016a). A web-scraping process was car-

ried out to extract the URL of each learning activity, together with a deadline in which the learning 

activity should be finished. For example, if activity A was assigned in week 1, then its deadline will 

be the first Monday of week 2. These data were then combined with student trace data to deter-

mine whether a student was engaging before or after the deadline. More details are provided in 

section 7.2.2.  

Study 4 collected data from 268 and 267 registered students in two consecutive semesters (Fall 

2015 and Fall 2016 respectively) for replication purposes. However, since the research questions 

focus on exploring the study patterns across different groups of performance (based on final 

scores), the analysis in Study 4 only took into account students who had completed the course. 

Thus, the analysis was conducted on 182 and 198 students in Fall 2015 and Fall 2016 respectively. 
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Regarding demographics, there were more male (62%) than female students. The majority of the 

students were from the UK (92%) and of white ethnicity (88%). In contrast with typical university 

student profiles, only 14% of the students were under 25 years old, while 44% were from 26 to 35, 

27% from 36 to 45, 10% were from 46 to 55, and 5% were over 56. Most students had a full-time 

job (64%), or a part-time job (16%) while taking the course. The prior educational qualification of 

students in this module was also diverse, with 29% less than A levels, 39% with A-levels or equiva-

lent, and 28% with a higher education qualification. The demographics figures stayed consistently 

between 2015 and 2016 semesters. 

7.2.2 Instruments 

Learning design mapping 

Similar to Study 1, 2, and 3, Study 4 collected LD data from the Activity Planner profile tool based 

on the OULDI learning activity taxonomy. The seven types of learning activity (assimilative, produc-

tive, communication, experiential, interactive, finding information, and assessments) were meas-

ured in terms of the duration (in hours) that was recommended for each type of activity in a partic-

ular week (Figure 29). The purpose of the recommended time spent is to support students in time 

management in self-regulated learning. The number of credits to be gained determined the total 

workload of each module, which is the sum of the time allocated for all seven types of learning 

activity. Each credit is associated with 10 hours of study (so 30 credits = 300 h and 60 credits = 600 

h). However, the actual workload can be different and depends on each module's implementation, 

student characteristics, and student abilities.  

 

Figure 29. Example of time allocation for each learning activity 

In this target module (Figure 30), there were five different types of learning activity, whereby three 

types of activities (assimilative, productive, assessment) accounted for 91.64% of the total work-

load, which was included for comparison purposes. This was due to the difficulty in capturing the 

actual time spent on finding and handling activities since students could go outside of the VLE for 
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searching information (Knight, Rienties, et al., 2017). At the same time, measuring time spent on 

communication was troublesome, as the compulsory communication activities designed to support 

certain tasks, and the optional communication activities (e.g., social, café talk) were collapsed un-

der one discussion forum.  

On average, students in this module were expected to spend 7 hours each week for assimilative, 

productive, and assessment activities combined. Assimilative activities were allocated on average 

of 4.05 hours per week (SD=3.32), followed by productive activities (M=1.47, SD=1.24), and assess-

ment activities (M=1.49, SD=2.88). Even though the LD remained almost the same between the two 

semesters, there were two small changes. First, there were only two tutor-marked assignments 

(TMAs) in 2016 instead of three assignments in 2015. Second, the study materials of week 12 and 

13 were combined in 2015, while they were separated for each week in 2016. 

 

Figure 30. Learning design over two semesters 

VLE engagement 

The second dataset consisted of clickstream data of individual students from the VLE and was re-

trieved using SAS Enterprise 9.4. The data were captured from four weeks before the start of the 

module until four weeks after the end of the module. Learning activities were planned for over 30 

weeks. Data were gathered in two semesters (Fall 2015 and Fall 2016) in order to validate the find-

ings from two independent implementations. First, the student behaviour record includes all stu-

dents' VLE activity. In other words, ‘the time spent ‘ is determined as the time between any two 

clicks of a student, regardless of a course and a type of the VLE activity. Further, not each click can 

be associated with studying time; for instance, there are clicks related to downloading of some 

material. We have this information about an action type which is connected with the click. Thus, I 

can determinate that a click with the connected action ‘download’ was not included in the spent 
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time of student in the analysis. Nonetheless, I can assume that the time of a click with the connected 

action ‘view’ is associated with the time of learning of a study material for which the click is logged. 

To compare the LD with the actual student behaviour, time spent on task was calculated as the 

duration between clicks. As pointed out by previous research (Kovanovic et al., 2016), this metric 

could be problematic due to (1) the inability to differentiate between active time and non-active 

time (students leave the respective web page open and go for a coffee), and (2) the last click of the 

day is followed by a click next day), which makes the duration excessively long. Any attempt to set 

an arbitrary cut-off value would pose a threat in underestimating or overestimating of the actual 

engagement time.  

Taking into account the context and LD of a module could produce a more informed cut-off value. 

Ideally, this cut-off value should be tailored to the design and context of each individual activity. 

For example, the cut-off value should be different between a 20 minutes activity and a 1-hour ac-

tivity. While Study 4 does not fully address the aforementioned problems, it leveraged the design 

of learning activities based on discussion between researchers and designers to set a cut-off value 

at 1 hour for all activity (e.g., any activity goes beyond 1 hour will be set as 1 hour).  

Since my research question aims at examining to what extent students’ timing of engagement aligns 

with teacher LD, two types of study patterns were computed which capture how much time a stu-

dent spent on studying a particular study material:  

• in advance – material x assigned to week t was studied during or before week t 

• catching up and revise – material x assigned to week t was studied after week t  

For example, Figure 31 visualised the time spent on week 8’s learning activities. Evidently, students 

spent the highest amount of time engaging in week 8’s activities in week 8. However, students also 

spent a small amount of time studying week 8’s materials before and after week 8 (week 6-10).  

 

Figure 31. Time spent on week 8's learning activities 

In advance Catch up or revise 
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In the second research question, I am interested in understanding how these two patterns of learn-

ing behaviours varied across three different groups of performance, which was measured as the 

average of all tutor-marked assignments (TMAs) and final exams:  

• Failed (average score < 40% or final exam score < 40%),  

• Passed (40% < average score < 75% and final exam score >= 40%), and  

• Excellent (average score > 75% and final exam score >= 40%).  

This categorization builds on previous predictive analytics research (Kuzilek et al., 2015), which es-

timated these three categorizations of students across large numbers of students. Of all students 

completed who the course, there were 52 failed students (M=21.2 %, SD=16.7 %), 106 passed stu-

dents (M=63.6 %, SD=7.5 %), and 31 excellent students (M=79.5 %, SD=3.7%) in 2015, and 50 failed 

students (M=25.4 % SD=15.9), 119 passed students (M=63.1 %, SD=8.0 %), and 29 excellent stu-

dents (M=79.7 %, SD=3.2 %) in 2016. We also controlled for the initial level of performance, which 

was calculated as the average scores of all courses that a student took prior to this course.  

7.2.3 Data analysis 

Visualizations 

To address the first research question, I visualised actual study patterns against the LD over 30 

weeks. Next, I visualised the study patterns for respective individual study materials across excel-

lent, passed, and failed group. The visualizations were done using Jupyter Notebook and Tableau.  

Mixed-effect model 

In order to compare study patterns across three groups of performance over time, I used a multi-

level modelling (MLM) (or mixed-effect modelling) approach (week t is nested within student i). 

Compared to the traditional repeated measure ANOVA approach, MLM has less stringent assump-

tions (homoscedasticity, compound symmetry, and sphericity), allows for missing data, tolerates 

differently spaced waves of data (e.g., due to Christmas breaks, Easter breaks), accounts for auto-

correlation of residuals, and allows for nonlinear relations (Quené et al., 2004). First, I started with 

a random intercept model (weeks are nested within students) as the baseline (not reported here). 

To address RQ4.2, I composed two models. The first model (M1) focused on comparing three 

groups of performance (baseline = passed students) over time with the time spent on studying ‘in 

advance’ and ‘catching up’ as the outcomes.  

log( 1 +  𝑦𝑡𝑖) =  𝛽0𝑖 + 𝛽1𝑖𝑤𝑒𝑒𝑘𝑡 +  𝛽2𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡𝑖 +  𝛽3𝐹𝑎𝑖𝑙𝑖 +  𝑒𝑡𝑖 

𝛽0𝑖 =  𝛽0 +  𝜇𝑖  

𝛽1𝑖 =  𝛽1 +  𝜇𝑖 
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The second model (M2) took into account individual student characteristics (age, gender, educa-

tion, occupation) and time-variant characteristics (the designs of assimilative, productive, assess-

ment activities). However, since demographics did not improve the overall fit of the model (based 

on the likelihood ratio test) (Quené et al., 2004), they were excluded in the end.  

log( 1 +  𝑦𝑡𝑖) =  𝛽0𝑖 +  𝛽1𝑖𝑤𝑒𝑒𝑘𝑡 + 𝛽2𝐸𝑥𝑐𝑒𝑙𝑙𝑒𝑛𝑡𝑖 +  𝛽3𝐹𝑎𝑖𝑙𝑖 +    𝛽4𝐴𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑣𝑒𝑡 +

 𝛽5𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑒𝑡 + 𝛽6𝐴𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡𝑡 +  𝑒𝑡𝑖  

𝛽0𝑖 =  𝛽0 +  𝜇𝑖  

𝛽1𝑖 =  𝛽1 +  𝜇𝑖 

Where outcome y was in advance time or catchup time. Week t was nested within individual i 

The analysis was done using the lme4 package (Bates et al., 2015) in R v.3.3.2 statistical package. 

Given the moderate sample size and balanced data, p-values were calculated using Type II Wald 

chi-square tests. A log transformation on the dependent variables (in advance time, and catchup 

time) was performed after examining the normality of the residuals. The assumptions of homosce-

dasticity, multicollinearity, residuals auto-correlation, and non-linearity were checked in all models 

which indicated there were no severe violations of these assumptions.   

7.3 Results 

7.3.1 Learning design and timing of engagement 

 Figure 32 illustrates the total time that students spent on study materials in the assigned week 

against the time recommended from the LD for the same study materials. Compared to the LD (grey 

line), students in both semesters on average spent much less time studying in the VLE per week 

(M=3.59, SD=5.29 for 2015; M=3.17, SD=4.55 for 2016). In line with previous work (Nguyen, 

Rienties, et al., 2017b; Nguyen, Rienties, Toetenel, et al., 2017), the actual study patterns seemed 

to follow the same trends in the LD. Overall, students in both semesters spent on average more 

time studying the materials after the assigned week (catching up and revise) (M=2.14, SD=4.05 for 

2015; M=1.91, SD=3.48 for 2016) than before the assigned week (in advance) (M=1.45, SD=3.09 for 

2015; M=1.26, SD=2.82 for 2016), except for studying the materials in week 8, week 18, and week 

27 (in Fall 2015), which was a tutor-marked assignment (TMA).  
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 Figure 32. Time spent on study materials per week against the time recommended by teachers 

A closer look at the study patterns across the three different groups of performance (failed, passed, 

and excellent) was shown in Figure 33 & Figure 34. Overall, given the same study materials, the 

passed and the excellent group of students spent more time on studying in advance and catch up 

than the failed students in both semesters (Figure 33 & Figure 34). In Fall 2015, passed and excellent 

students spent on average each week 1.81 hours (SD=3.43), and 2.3 hours (SD=3.52) on studying in 

advance, compared to failed students with an average of 0.22 hours (SD=1.05). Similar trends in the 

time studying in advance across the three groups was also presented in Fall 2016. In Fall 2015, 

passed and excellent students followed a similar pattern studying in advance. However, in Fall 2016 

passed and failed students portrayed a similar pattern for all study materials from week 1 to week 

12. From week 13 onwards, passed students spent more time studying in advance than failed stu-

dents. A lot of time was spent on studying in advance in week 8, 18, and 27 (for Fall 2015) because 

of the respective assessments (TMAs) in these weeks (Figure 33).  
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Figure 33. Number of hours spent on studying in advance 

 

Figure 34. Number of hours spent on studying catching up and revising 

Two study materials in weeks 9-10 (block 2.1) and weeks 12-13 (block 2.3) represented red-flags of 

overwhelming workloads since they were associated with an increase in both studying in advance 

and catch up time (Figure 33 & Figure 34). In Fall 2015, the passed and excellent students spent 

much more time to catch up on both of the materials, while the gap was smaller in 2016. 

While excellent and passed students consistently spent more time studying both in advance and 

catch up than failed students, the relative frequencies revealed a different picture. In both semes-

ters, all three groups of students spent a similar percentage of their time studying in advance in 
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weeks which had a TMA (week 8, 18, 27). However, in Fall 2015 failed students spent a higher pro-

portion of their time on catching up activities (61% on average) than passed (56%) and excellent 

students (55%) in almost all weeks (Figure 35). 

In Fall 2016, the three groups shared a similar percentage of study time on catching up from week 

1 to week 12. After week 12, failed students spent on average much higher proportion of their time 

on catching up activities compared to passed and excellent students. Towards the end of the 

course, the gap between failed and passed/excellent students increased considerably (Figure 35).  

In other words, the initial visualisations of Study 4’s results indicated that student engagement on 

VLE was lower than the suggested time spent in LD. High-performing students, who achieve a pass 

or excellent grade shared similar patterns of engagement. However, low-performing students spent 

the least amount of time on VLE and the highest proportion of their studying time on catching up 

and revising activities. While these visualisations were useful for exploring the overall trends, the 

followed-up statistical modelling will provide a robust conclusion and quantify the effect of timing 

of engagement on academic performance.  

 

Figure 35. Percentage of time spent on studying catching up 

7.3.2 Academic performance and timing of engagement 

Compared to passed students, failed students spent significantly less time on studying in advance 

(B= -0.23, SE = 0.03, p<0.001) in 2015, while there was no statistically significant difference with 

excellent students (Table 35). A similar pattern was observed in 2016 for failed students (B= -0.14, 

SE = 0.03, p<0.001) while excellent students spent significantly more time on studying in advance 

(B = 0.12, SE = 0.03, p<0.001) (Table 35). Since I performed a log-transformation with the dependent 

variable, the coefficients should be exponentiated for meaningful interpretations. In other words, 

compared to passed students, the time spent on studying in advance will be 13.06% lower for failed 
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students, and 12.75% higher for excellent students. After adding the LD (Model 2), the relations 

between different groups of performance and the time spent on studying in advance remained the 

same. In 2015, the higher the time designed for assimilative and assessment activities, the higher 

the time spent on studying in advance. A negative relation was found between productive activities 

and the time spent on studying in advance. In 2016, the effects of assimilative and productive on 

the time spent on studying in advance were no longer significant. In other words, for each hour 

increase in assessment activities, there is a 3-4% increase in the time spent on studying in advance. 

Table 35. Mixed effect model of time spent on studying in advance 

 Fall 2015 Fall 2016 

 

Model 1 

B(SE) 

Model 2 

B(SE) 

Model 3 

B(SE) 

Model 1 

B(SE) 

Model 2 

B(SE) 

Model 3 

B(SE) 

Fixed       

 Intercept .30(.02) .30(.03) .02(.09) .26(.02) .20(.02) -.01(.08) 

 Week -.00(.00)** -.00(.00)*** -.00(.00)*** -.00(.00)*** -.00(.00)*** -.00(.00)*** 

 Fail -.23(.03)*** -.23(.03)*** -.19(.03)*** -.14(.03)*** -.14(.03)*** -.11(.03)*** 

 Excellent .07(.04) .07(.04) .04(.04) .12(.03)*** .12(.03)*** .11(.04)*** 

Assimilative  .00(.00)* .00(.00)*  .00(.00) .00(.00) 

Productive  -.02(.00)*** -.02(.00)*** 
 .00(.00) .00(.00) 

Assessment  .03(.00)*** .03(.00)***  .04(.00)*** .04(.00)*** 

Initial Level   .00(.00)***   .00(.00)*** 

       

Random       

 Students .06(.24) .06(.24) .05(.23) .05(.22) .05(.23) .05(.22) 

 Week .00(.01) .00(.01) .00(.01) .00(.01) .00(.01) .00(.01) 

  
     

LogLik -470.8 -198.5 -173.4 -550.2 -122.1 -143.3 

Obs 5103 5103 4968 5148 5148 4966 

Students 189 189 184 198 198 191 

*p<0.05; **p<0.01; ***p<0.001 

Log-transformation on in advance time. Baseline = Passed students 

Standard errors in parentheses for Fixed estimators 

Standard deviation in parentheses for Random estimators 

In line with the previous visualization (Figure 35), compared to passed students, failed students 

spent significantly less time on studying catching up (B= -0.20, SE = 0.03, p<0.001), while excellent 

students spent significantly more time (B= 0.08, SE = 0.03, p<0.001) (Table 36). In other words, 

compared to the passed students, the time spent on catching up study was 22.14% lower for the 

failed students, and 8.33% higher for the excellent students. This catching-up could also be re-

garded as repeating particular learning activities, whereby a vast body of cognitive learning re-

search has found that learning requires repetition. In a similar trend, in Fall 2016 compared to 

passed students, the time spent on catching up study was 12.75% lower for failed students, and 

10.52% higher for excellent students. All three types of learning activity had a significant relation 
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with time spent on catching up. While the effect of assimilative and assessment activities was rela-

tively small, one hour increase in productive activities was associated with a 7.25% increase in the 

time spent on catching up.  

Table 36. Mixed effect model of time spent on studying catching up and revise 

 Fall 2015 Fall 2016 

 

Model 1 

B(SE) 

Model 2 

B(SE) 

Model 3 

B(SE) 

Model 1 

B(SE) 

Model 2 

B(SE) 

Model 3 

B(SE) 

Fixed       

 Intercept .46(.02) .23(.03) .09(.08) .40(.02) .15(.02) .02(.08) 

 Week -.01(.00)*** -.00(.00)*** -.00(.00)*** -.01(.00)*** -.00(.00)*** -.00(.00)*** 

 Fail -.20(.03)*** -.20(.03)*** -.18(.03)*** -.12(.03)*** -.12(.03)*** -.11(.03)*** 

 Excellent .08(.03)** .08(.03)** .06(.03) .10(.03)** .10(.03)** .09(.04)* 

 Assimilative  .01(.00)*** .01(.00)***  .01(.00)*** .01(.00)*** 

 Productive  .07(.00)*** .08(.00)***  .09(.00)*** .09(.00)*** 

 Assessment  -.00(.00)** -.00(.00)*  .01(.00)*** .01(.00)*** 

 Initial Level   .00(.00)   .00(.00) 

       

Random       

 Students .07(.26) .07(.27)  .05(.22) .05(.22)  

 Week .00(.01) .00(.01)  .00(.01) .00(.01)  

       

LogLik -1222.8 -857.1 -836.8 -1183.3 -711.5 -711.7 

Obs 5103 5103 4968 5148 5148 4966 

Students 189 189 184 198 198 191 

*p<0.05; **p<0.01; ***p<0.001 

Log-transformation on catchup time. Baseline = Passed students 

Standard errors in parentheses for Fixed estimators 

Standard deviation in parentheses for Random estimators 

After examining the relationship between the timing of engagement and academic performance, I 

created heatmaps to visualise how students spent time catching up with each study block in the 

curriculum. This will help educators to pinpoint the exact study materials that students were 

struggling with. The darker the colour on the heatmap, the more time that students spent on a 

respective learning activity in that week. A heatmap was created for each group of performance 

for comparison purposes (Figure 8 - 13). Visual inspections of the heatmaps suggested that stu-

dents who failed the module spent much less time studying in advance compared to the excellent 

and passed group. However, all the groups spent time on revising study materials during the last 

four weeks of the module, as a preparation for the final assessment. What is more interesting is 

that there were three particular study materials that all the three groups of students spent a lot of 

time catching up with: Block 2 Part 1, and Block 2 part 2, and Block 2 part 3: case study 1 (Figure 

10-13). This implied that students might be struggling with these three topics or the structure of 

the subsequent activities required students to revisit these three topics frequently. 
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Figure 36. Excellent students spent time studying in advance 

 

Figure 37. Pass students spent time studying in advance 

 

Figure 38. Failed students spent time studying in advance 
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Figure 39. Excellent students spent time on catching up activities 

 

Figure 40. Passed students spent time on catching up activities 

 

Figure 41. Failed students spent time on catching up activities 
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7.4 Discussion 

RQ4.1 How does students’ timing of engagement align with learning design? 

Findings from Study 4 indicate the way teachers design for learning significantly influenced how 

student spent time on VLE, which is in line with previous work (Nguyen, Rienties, et al., 2017b; 

Nguyen, Rienties, Toetenel, et al., 2017; Rienties & Toetenel, 2016b). While in general the intended 

LD and actual behaviours followed a similar trend over time, there remained substantial discrepan-

cies between what teachers recommended or expected and the actual time spent on respective 

learning activities by students. In most weeks, students spent less time (nearly a half) studying the 

assigned materials on the VLE compared to the number of hours recommended by teachers. One 

potential explanation could be that the time spent on the VLE only partially represented the actual 

time spent overall since students could study the same materials outside of the VLE (e.g., down-

loading PDF files, using other browsers). At the same time, in certain weeks the actual time spent 

on the assigned materials was equal or above the time recommended by teachers (i.e., week 9, 10, 

12, 13). Given that the time spent on the VLE only partially reflected the total time spent on the 

assigned materials, these discrepancies could signal a major underestimation of the actual work-

load of the assigned materials. This could potentially discourage and stress out students, given that 

most of the students in this course also had a part-time or full-time job, as well as potentially other 

responsibilities (i.e., family, caring responsibilities).  

By comparing the assumptions in LD made by teachers with actual student behaviour, LA could act 

as a reflective resource and provide actionable feedback. For example, teachers could adjust their 

expected workload of study materials in week 9, 10, 12, 13 and redistribute the workload more 

equally. At the same time, teachers could examine whether they overestimated the actual work-

load in week 16, as the LD allocated 13.13 hours while the actual time spent on the same materials 

on VLE was only 2.89 hours on average. However, adjusting the course schedule might not feasible 

in certain institutions, which require teachers to provide a detailed schedule in advance for quality-

assurance purposes.  

Secondly, the analyses have pointed out that the students’ actual timing of study engagement could 

be substantially different from the assigned week. In particular, most students spent more time 

studying the materials after the week which they were assigned for. Therefore, given most students 

were also working in parallel to their study, LD should allow for more flexibility in the timing of the 

study. Moreover, teachers should consider the whole learning process (planning, enacting, and re-

vising) for each learning activity, rather than looking at a learning activity as a single entity occurred 

only in its assigned week.  
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One potential implication of Study 4 could be that if students tend to spend more time on catching 

up on particular learning material, the teachers could check whether the material was clearly ex-

plained and provide a quick recap or Q&A for the material in the subsequent weeks. For instance, 

students across all three groups of performance spent a lot of time catching up on the study mate-

rials in week 13, which was a case study. Students continuously spent time catching up on this case 

study for five weeks after week 13. One explanation could be that many study activities after week 

13 were based on this case study, therefore students tended to revisit that salient study material. 

Alternatively, they could revisit this case study as a part of the preparation for their TMA which was 

taken place in week 18. Finally, it could be due to the high workload or difficulty level in this case 

study which required several attempts to complete the task. In either way, the teachers could use 

this information to support their LD practice.  

RQ4.2 How does students’ timing of engagement relate to academic performance? 

Not only did students exhibit different study patterns compared to the LD, but these study patterns 

also varied significantly across the three groups of performance. My analysis suggested that excel-

lent students spent the highest amount of time studying both in advance and catching up/revising 

on the VLE, followed by passed students and failed students. One obvious interpretation could be 

that the more effort one puts in, the higher the respective learning results will be. However, since 

the time spent on the VLE only partially captured the total effort, another explanation could be that 

students who studied on the VLE had better results than the students who studied on other plat-

forms (e.g., off-line, Google).  

Even though this order of engagement intensity across the three groups remained the same in both 

in advance and catching up study patterns, their relative frequency revealed a different story. Given 

the same study materials, excellent students spent a large amount of time studying in advance, 

while failed students spent a large proportion of their study time on catching up. These differences 

became even more prominent towards the end of the course, in which 80-100% of the time spent 

on the material by failed students was catching up activities, compared to 40-60% for passed and 

excellent students (Figure 39-41). Interestingly, for the first 10 weeks failed, passed, and excellent 

students spent roughly the same percentage of study time on catching up. An important implication 

of this could be that teachers should pay careful attention to students with a high percentage of 

catching up behaviour from week 10 onwards, as that could be a signal of the students falling be-

hind with their study. Alternatively, providing different pacing or study breaks for students might 

allow “failing” students to catch a breath, and continue successfully afterwards.  

Furthermore, each type of learning activities could significantly influence how much time students’ 

study in advance or catching up. For instance, for assessment activities (such as TMAs), all the three 

groups of students spent 80-100% of their time studying in advance, with the exception in week 18 
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in 2016 (Figure 36-38) when failed students spent on average only 60% of the time studying in 

advance for assessments. However, for productive activities, students were more likely to delay 

their action (one hour increase in productive activities was associated with a 7.25% increase in the 

catching up time). Therefore, teachers in this course could re-examine the design of productive 

activities.  

While the analysis has shown significant relations between different types of learning activity, dif-

ferent study patterns, and different groups of performance, readers also need to keep in mind that 

students are agents. Given the same demographics (age, sex, gender, occupation, education) and 

the same study pattern, different students might still end up with different results. For example, 

there was a 5-6% random variance across individuals with a standard deviation ranging from 24-

30% (Table 36Table 36. Mixed effect model of time spent on studying catching up and revise). In 

other words, if student A who spent 30% more or less on studying in advance or catching up than 

student B, both could still achieve the same outcome (pass the course) in the end.  

Finally, Study 4 demonstrated the potential of using LD-informed analytics to generate actionable 

feedback to help teachers refine their curriculum. Simple analytics based on demographics or be-

havioural data alone might be limited in what actions can be taken (Tempelaar et al., 2017). For 

example, Study 4 located three specific blocks of study materials that students might be struggling 

with. Using this information, teachers can go back and double-check these three learning materials 

or get some feedback from students on whether they have any problems understanding these three 

topics.  

7.5 Conclusion 

In conclusion, Study 4 investigated how students study patterns compare to the initial study regime 

produced for the LD, together with how different groups of performance and LD were related to 

these study patterns. The analyses were conducted using trace data from the VLE longitudinally 

over 28 weeks, with  387 participating students, and replicated over two semesters in 2015 and 

2016. The findings indicated that there were discrepancies between how teachers designed for 

learning and how students studied in reality. In particular, the time spent on the VLE was on average 

less than the number of hours recommended by teachers in most weeks. The analysis also pointed 

out that the timing of the study could take place before, during, or after the assigned week. The 

actual study patterns also varied across different groups of performance. Excellent students on av-

erage spent more time studying both in advance and catching up than passed and failed students. 

At the same time, the percentage of time spent on catching up activities was higher for failed stu-

dents compared to passed and excellent students. Finally, different types of learning activity could 

influence how students studied in advance or catching up. The findings also pointed out a large 

variance between students’ engagement in the same performance group. While there were some 
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consistent differences in how different groups of students engaged in learning, there was no 

‘golden’ recipe of how one should study. This suggested that the “design for the average” approach 

can easily miss out the complexities of how each individual student learn in an online environment.  

From a research perspective, Study 4 contributes to the literature by providing empirical evidence 

of how and when students study compared to the recommended path designed by teachers. The 

findings reinforced the vital position of LD in the context of LA. Firstly, it is important to incorporate 

the LD for methodological purpose as it could support LA researchers to refine their measurements 

(i.e., time-on-task estimation). Although Study 4 only partially addressed this issue of measure-

ment, I encourage future scholars to tailor their duration limit of time-on-task to the content and 

design of individual activity. Secondly, the inclusion of LD in LA model could help both researchers 

and practitioners to better interpret the results, which supported the arguments from previous 

studies (Gašević et al., 2016; Lockyer et al., 2013; Rienties & Toetenel, 2016b). Thirdly, Study 4 

showed the importance of temporal characteristics of engagement in LA research, as this could 

provide a deeper understanding of the learning processes compared to studies with aggregated 

engagement metrics.  

From a teacher perspective, Study 4 makes a step forward to translate LA findings into actionable 

feedback (Tempelaar et al., 2017). By having a better understanding of how, when students study 

on which materials, and how these behavioural patterns connected to LD, teachers may be in a 

much better position to reflect and adjust their teaching practices. By explicitly pointing out which 

study materials were under or over-used, teachers can act on these materials. This information can 

be fed back into a LA dashboard, which would support teachers and learning designers to track how 

the students progressed through each individual study material (on-track or lagging behind). Teach-

ers can use this information to adjust the study workload and re-arrange the structure of learning 

activities accordingly. Our findings also emphasize the need to keep in mind the whole learning 

process for each learning activity when designing their course, rather than seeing each activity as a 

single occasion in its assigned week.  

From a student perspective, visualizations of the timing of engagements of peers could act as prac-

tical guidelines for students with different learning preferences, and support them to self-regulate 

their learning (e.g., plan their study time) more efficiently. For example, if the previous cohort spent 

a lot of time catching up on a particular week or study material, then a new cohort of students can 

either start studying the materials earlier or reserve more time for catching up in the following 

weeks. Moreover, students can make use of their own LA visualizations to keep track of their study 

plan. For instance, students could set up their own study plans (how much time do I spend on this 

material, what is my deadline, etc.) and use LA visualizations of their actual study behaviour to 



  

 155 

continuously reflect on their study plans (do I overestimate or underestimate the actual workload, 

am I following or falling behind with the course schedule, etc.).   

Finally, there are some limitations of the current study that should be  kept in mind for future re-

search. Firstly, Study 4 was conducted within the context of one online module, which could restrict 

the generalizability of the study to another context. Our findings can be generalised to most courses 

at OU and other online courses with a similar design, which is assimilative-oriented and carefully 

scaffolded. The student population at the OU is unique compared to those at traditional universi-

ties. We have an adult population on average, with varying degrees of prior educational back-

grounds and often have a full-time or part-time job while studying at the OU. While the first finding 

might change depending on the context, level of difficulty, and LD of a course, I expect the second 

finding would remain consistent across different contexts (e.g., high-performing students engage 

in a timely manner, and low-performing students spend a large portion of their time catching up).  

Study 4 only considered students who completed the course for comparison purposes, while stu-

dents who withdrew might offer additional insights into the findings. While the LD taxonomy has 

been developed and implemented at the OU for a long period, it could over-simplify the actual LD 

(i.e., multiple types of assessment such as formative, summative, self-assessment were collapsed 

into one category). At the same time, keeping a taxonomy concise to be able to generalise to other 

contexts, yet, detailed to separate different types of learning activity remains a challenging task. 

Finally, it is important to acknowledge the caveats of using trace data on VLE. While the student 

behaviour on VLE has contributed to the increasing accuracy of the predictive algorithm of student 

performance, of course, it does not capture student behaviour outside of VLE or offline.  

Study 4 has pointed out some potential issues that teachers could pay attention to. However, fur-

ther qualitative research is needed (interview with teachers and students), in order to identify the 

underlying reasons behind these inconsistencies between LD and actual behaviours. Study 4 has 

implicitly implied that LD ‘causes’ student engagement. However, the causal relationship between 

LD and student engagement should be further investigated in future research using quasi-experi-

mental interrupted time-series designs or instrumental variables. Furthermore, while a mixed-ef-

fect model allows for dependency between an individual’s observations, there might be some de-

pendencies of residuals between individual’s observations, or there may exist a non-linear relation-

ship between week and time-on-task. Therefore, future studies should consider autocorrelation 

issues in time-series using autoregressive–moving-average (ARMA) models. Nonetheless, this re-

search clearly points towards the need for LA researchers to take time into consideration when 

modelling LA with  LD.  
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Chapter 8 - General Conclusion and Discussion 

The previous chapters have presented findings from four empirical studies that set out to investi-

gate how teachers design for learning, and the impact of learning design on student engagement 

in a distance learning setting – The Open University UK. This final chapter provides general conclu-

sions and discussions in relation to the research questions and gaps in the current literature. Section 

8.1 summarises the overarching objective of the research. Section 8.2 highlights the novel contri-

butions to knowledge to which the studies have contributed. Section 8.3 describes the methodo-

logical contributions of this research. Section 8.4 discusses the research limitations, followed by 

implications for practitioners in Section 8.5. Finally, section 8.6 puts forward suggestions for future 

research in the domain of LA and LD.  

8.1 Introduction 

The role of teachers in the 21st century has shifted from delivering information to facilitating and 

designing learning experience goals (Goodyear, 2015). The increasing development in online and 

distance education has provided researchers with an unprecedented amount of data generated by 

both students and educators (Buckingham Shum, 2012). This provides new opportunities to opti-

mise the student learning experience, to improve teaching practices, and to push the boundaries 

of learning sciences. Learning analytics in the last 10 years has seen tremendous growth in both 

scholarly research as well as practical applications and policies (Dawson et al., 2019; Viberg et al., 

2018). By shedding light into the learning process of students, LA helps teachers to verify their ex-

isting assumptions in module design using authentic digital traces of learning activities. At the same 

time, by capturing and visualising sequences of learning activities designed by teachers, LD provides 

a contextual overlay to better interpret LA findings (Gašević et al., 2016; Mor et al., 2015; Persico 

et al., 2015). The connection between LA and LD provides a bridge between data-driven LA research 

and educational theories (Gašević et al., 2015; Mangaroska et al., 2018; Wise et al., 2015). Without 

the pedagogical contexts such as LD, it is difficult to interpret analytics findings and offer meaningful 

insights to teachers and students. By aligning LA with LD, researchers can provide a narrative behind 

their numbers to translate LA findings into actionable feedback (Rienties & Toetenel, 2016b). 

This thesis was built upon the synergy between LA and LD to unpack temporal characteristics of 

how teachers design for learning and how LD influences student engagement in distance education. 

In doing so, the thesis has addressed the following research questions: 

• RQ1.1 What are the temporal characteristics of learning design? 

• RQ1.2 How do different types of learning activity interact with each other? 

• RQ2.1 What are the driving factors behind teachers’ design decisions? 

• RQ2.2 What are the barriers and affordances of learning design adoption at the OU? 
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• RQ2.3 How do teachers make use of feedback on their module to support learning design? 

• RQ3.1 How do learning designs influence student behavioural engagement over time? 

• RQ3.2 How do learning designs influence student satisfaction and pass rate? 

• RQ4.1 How does students’ timing of engagement align with learning design? 

• RQ4.2 How does students’ timing of engagement relate to academic performance? 

The first half of this thesis (Study 1 & 2) captured a dynamic picture of the LD practices at the OU 

through the lens of LD representations and teachers’ perspectives. As discussed in section 2.2.3, 

there was a lack of research into how LD representations can help us understand how teachers 

design their courses in an authentic environment (Dagnino et al., 2018). There was also a paucity 

of empirical studies exploring the time dimension in LD, such as the temporal aspects of LD through-

out a module, and how teachers combine different sequences of learning activities over time (Chen 

et al., 2018; Knight, Friend Wise, et al., 2017a). The OU is one of the few institutions which has 

implemented LD practices on a large scale and therefore, it provides an ideal opportunity to answer 

these questions. Study 1 filled in this research gap by uncovering how LD representations of 37 

undergraduate modules changed over time and the interplay between different types of learning 

activities. Another gap in the literature was the shortage of studies exploring LD from teacher per-

spectives and the affordances as well as barriers in adopting LD practices (Dagnino et al., 2018). 

Through a series of interviews with 12 module chairs, Study 2 unpacked the complex factors related 

to students, institution, OULDI, and analytics that influenced the LD practices at the OU. By employ-

ing a mixed-method research design, the findings from both studies were triangulated which pro-

vided robust and unique contributions to the LD literature.  

The second half of this thesis (Study 3 & 4) showcased how LDs influenced student behavioural 

engagement over time. As pointed out in the literature review section 2.2.3, there remains a short-

age of longitudinal studies that connect LD with student behaviour, satisfaction, and performance. 

Study 3 addressed this gap through a large-scale analysis of 37 modules and weekly engagement of 

45,190 undergraduate students at the OU. By comparing weekly design decisions with weekly en-

gagement patterns, Study 3 offered important and unique insights into the dynamic temporal rela-

tionships between teacher design and student behaviour.  Study 4 took a further step to examine 

student’s timing of engagement and its relation to LD and academic performance. In doing so, Study 

4 revealed substantial inconsistencies between student engagement and module design. On aver-

age, students spent less time studying on the VLE compared to the suggested workload in their 

module guide. Moreover, Study 4 shed new light onto the relationships between timing of engage-

ment and academic performance. High-performance spent more time and followed the module 

timeline, whereas low-performing students spent a large proportion of their studying time on 

catching up and revisiting previous materials.  
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The four studies together formed a comprehensive understanding of LD from three different per-

spectives: LD representation, teacher perspectives, and student behaviour. The studies provided 

unique insights through unpacking the temporal changes in LD and behavioural engagement over 

time. A summary of the main findings of this thesis can be found in Table 37. 
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Table 37. Summary of thesis findings 

Study Sample Methods Research Questions Findings 

Study 

1 

37 modules 

over 30 

weeks 

Visualiza-

tions 

Network 

analysis 

RQ1.1 What are the temporal charac-

teristics of learning design? 

• Assimilative, productive, assessment activities were used the most while inter-

active and communication activities were underused 

• A negative correlation between assessment activities and other activity types 

• There was a lot of fluctuations in workload within and between modules 

RQ1.2 How do different types of learn-

ing activity interact with each other? 

• Strong ties between assimilative and productive activities 

• Assimilative activities combined words and figures together 

Study 

2 

12 teachers 

(module 

chairs) 

Semi-

structured  

interview  

RQ2.1 What are the driving factors be-

hind teachers’ design decisions? 

• Teachers decisions were influenced by management and institutional policies 

• Teachers tried to maintain a balanced workload 

• Teachers aimed to build up study skills of students 

• Teachers involved in co-design and re-design 

• Teachers valued collaborative activities but found it challenging to implement 

RQ2.2 What are the barriers and af-

fordances of learning design adoption 

at the OU? 

• Teachers found OULDI useful for reflection 

• Teachers found OULDI becoming a management tool 

• Teachers found OULDI difficult to interpret 

• Teachers needed more follow-up activities & practical suggestions from OULDI 

RQ2.3 How do teachers make use of 

feedback on their module to support 

learning design? 

• Teachers valued feedback from tutors 

• Teachers were sceptical about course evaluations 

• Teachers found analytics data useful and wanted a more detailed analysis 



  

 160 

Study 

3 

37 modules 

and 45,190 

students 

Fixed - 

effect  

modelling 

RQ3.1 How do learning designs influ-

ence student behavioural engagement 

over time? 

• LD explained up to 69% of the variance in student engagement 

• Communication and assessment were positively correlated with engagement 

RQ3.2 How do learning designs influ-

ence student satisfaction and pass rate? 

• Communication was negatively correlated with satisfaction 

• The excessive workload was associated with a decrease in the pass rate 

Study 

4 

1 module, 

387 stu-

dents, repli-

cated over 

two semes-

ters 

Multi-level  

modelling 

RQ4.1 How does students’ timing of en-

gagement align with learning design? 

• Students’ time spent on VLE was half of the expected workload by teachers  

• Students could engage in advance or catch up and do not always follow the 

course timeline 

RQ4.2 How does students’ timing of en-

gagement relate to academic perfor-

mance? 

• High-performing students spent more time studying than low-performing 

• High-performing students spent less proportion of their time catching up than 

low-performing students 
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8.2 Theoretical Contributions 

8.2.1 Learning Design 

Contribution 1: Understanding of the temporal changes of LD over time 

The field of LD has seen an increasing number of tools and frameworks developed to represent 

teaching practices and help teachers reflect on their LDs (Cross et al., 2012; Dalziel, 2003; 

Hernández-Leo et al., 2018; Koper et al., 2004; Laurillard et al., 2018; Law et al., 2017). However, 

few studies have considered the use of LD representations to explore common trends and varia-

tions in LD across modules and disciplines (Toetenel et al., 2016a, 2016b). Previous work has also 

treated LD as a static entity (AUTCLearningDesign, 2002; Toetenel et al., 2016a), without taking into 

account the temporal changes in how teachers design for learning over time. By incorporating a 

longitudinal study design of 37 modules over 30 weeks, this thesis shed new lights on the dynamic 

temporal characteristics of LD.   

Findings from this thesis showed that assimilative activities, such as reading, watching, and listening 

were predominantly used at the beginning and throughout the module. Assimilative activities were 

often accompanied by productive activities which required students to reflect on the information 

they assimilated. Assessment activities were typically introduced every three to four weeks 

throughout the modules as TMAs, and at the end of the module as an EMA. Assessment activities 

were negatively correlated with all other activity types, which implied that teachers deliberately 

reduced the total study workload to ensure students had sufficient time to prepare for their assign-

ments. The assessment strategies varied from module to module. While some modules used a con-

tinuous assessment strategy with quizzes every week, others stayed with the standard approach, 

which included three to five TMAs followed by an EMA or a final exam. Furthermore, the study 

workload varied from modules to modules and fluctuated considerably from weeks to weeks.  

These findings highlighted a mismatch between educational literature, institutional policies, and 

the actual LDs. Previous research suggested that a balanced and consistent study workload is es-

sential to student success (Bowyer, 2012; Whitelock, Thorpe, et al., 2015). This idea was also re-

flected in the notional learning time by the Higher education credit framework for England, which 

suggested 10 hours of learning time per credit25. However, in practice the study workload is difficult 

to estimate due to the quantity and variety of learning activities used by teachers. The effect of 

inconsistent workload could be even more detrimental to OU students because the majority of 

 
25 https://www.qaa.ac.uk/docs/qaa/quality-code/explaining-student-workload.pdf?sfvrsn=7f45f981_8 
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them are engaged in either a full-time or part-time employment in parallel to studying. By visualis-

ing LD on a week by week basis, teachers can reflect on the (im)balance of workload in their module 

and improve their LDs.       

Contribution 2: Understanding the interplay between different activity types 

The second contribution of this thesis to the LD literature was the consideration of how different 

learning activity types were combined within an LD. Through network analysis, the findings demon-

strated the complexities of how teachers mix and match different types of learning activity across 

modules. These nuances were perhaps hidden under the current LD representations at the OU be-

cause learning activities were mapped into separate categories (Toetenel et al., 2016a, 2016b). The 

combination of assimilative and productive activities was the main repertoire of practices across 37 

modules. Students were given readings, audios, and videos to acquire new knowledge, followed by 

open questions to facilitate reflections and knowledge transfer of what they have learnt. The use 

of collaborative and interactive activities was at a minimum in most modules.  

This thesis emphasised the importance of going beyond a basic description of learning activities and 

to recognise each learning activity as an integrated entity within a larger network of resources and 

pedagogies. Given the same access to resources, each teacher has his/her own interpretation of 

what constitutes a good LD, and this was reflected through the way each teacher orchestrated 

learning activities in his/her modules, as indicated in Study 1 and Study 2. Even though all modules 

put a strong emphasis on assimilative activities type, each module utilised it with other learning 

activities in different ways. Taking the analogy of cooking, what makes a great dish is a combination 

of quality ingredients and how the chef combines these ingredients together. Similarly, effective LD 

is made up of rich resources (i.e., up-to-date learning contents, state-of-art facilities) and good de-

sign principles following evidence-based pedagogy.     

Contribution 3: Triangulation of teacher perspective with actual LD practices 

The third contribution of this thesis is the triangulation of teacher beliefs and experience in LD pro-

cess with their actual LDs. It was clear from the findings that the LD process at the OU was unique 

because of its complex protocols as well as the influence from multiple stakeholders, such as de-

partment heads, institutional policies, student feedback through course evaluation, tutor feedback, 

and analytics data. The combination of qualitative and quantitative evidence highlighted the ten-

sions between what teachers valued as good pedagogy and the practical constraints that shaped 

the products of their LDs.  

For example, the visualisation of LDs in Study 1 pointed out a lack of interactive and collaborative 

activities in LDs. The interviews in Study 2 unpacked some of the underlying reasons behind this 

issue which was due to resistance from students and tutors as well as the lack of guidelines to 
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design effective online collaboration activities. Furthermore, Study 1 showcased inconsistencies in 

study workload within modules. At the same time, Study 2 showed that teachers were aware of 

this problem and deliberately reduced the number of learning activities, moved to a single compo-

nent assessment strategy, and simplified their instructions. The use of analytical methods such as 

network analysis and time-on-task estimation based on digital trace data provided a valuable tool 

to compare and contrast qualitative findings, which supports mixed methods research in education 

(Creswell & Clark, 2017).  

Study 2 also revealed the affordances and barriers that teachers faced when engaging in the LD 

process at the OU. For example, there were tensions between the teacher’s autonomy and the 

influence of management and institutional policies during the design process, and how the OULDI 

tool was implemented in practice. This is an important contribution to the field of LD because no 

other study has explicitly explored the barriers to adoption of LD in an authentic setting (Dagnino 

et al., 2018). The OU is one of the leading institutions that has implemented LD practices across a 

large number of modules since 2013 (Rienties et al., 2017). As demonstrated in the findings of Study 

2, the LD practices over the years have shifted from a descriptive function to support the LD process 

to a prescriptive function to manage the LD process. While practitioners perceived some benefits 

of LD in facilitating conversations among experts and brainstorming on new teaching ideas, the 

managerial function of LD tools has caused tensions amongst practitioners as they expressed frus-

trations towards the use of LD as a box-ticking exercise instead of a creative process. The findings 

provided empirical evidence to support the prediction of Griffiths (2017) which highlighted how LD, 

as well as LA, could disturb the balance between teacher autonomy and educational management.  

8.2.2 Learning Analytics 

Contribution 1: Combining LD information with student behaviour to detect whether students were 

following the course timeline, or falling behind, and correlated different patterns of engagement 

with academic performance 

Previous studies have proposed that LD could inform LA findings by providing a pedagogical context 

behind numbers (Lockyer et al., 2013). Yet, there is a scarcity of empirical studies that have exam-

ined how learning behaviour is shaped by teacher design decisions, especially in longitudinal study 

design. In light of recent criticism of the gap between LA research and instructional theories 

(Gašević et al., 2015; Wise et al., 2015), it is important to provide empirical evidence of whether LD 

could actually improve LA models.  

This thesis has substantially contributed to this reported gap by providing large-scale empirical ev-

idence suggesting that LD-informed analytics models explained up to 69% of the variance in student 

behavioural engagement in a distance learning setting. This contribution is an important bricolage 



  

 164 

between the field of LA and LD by showcasing that temporal engagement patterns were largely 

driven by how the courses are designed. By incorporating LD elements into predictive models of 

student behaviour, LA research can improve model accuracy, and more importantly, it enhanced 

the interpretability of the findings. Moreover, assessment and communication activities were found 

to be positively correlated with the duration spent on VLE by students. However, communication 

activities were negatively correlated with course satisfaction. This confirmed the tensions ex-

pressed by teachers that highlighted a potential trade-off between student engagement and stu-

dent satisfaction when introducing collaborative activities in a distance learning environment. 

Therefore, it is important to provide teachers with clear guidance based on research in learning 

sciences and use LA as a test of effectiveness for each LD decision instead of solely depending on 

course evaluations.  

There have been many studies in LA research examining the relationship between time-on-task and 

academic performance (Kovanovic et al., 2016; Tempelaar et al., 2015). However, previous litera-

ture in time management in education also suggested that not only the intensity of engagement 

(i.e., how much time spent) but also the timing of engagement (i.e., when to engage) will affect 

academic performance (Claessens et al., 2007; Wolters et al., 2017). This thesis addressed this gap 

by combining LD information with student behaviour to detect whether students were following 

the course timeline, or falling behind, and correlated different patterns of engagement with aca-

demic performance.  

For example, compared to the low-performing group, the high-performing students were found to 

not only study ‘harder’ by spending more time but also ‘smarter’ by engaging more in line with the 

course timeline. Although flexibility in studying is a prominent feature of distance education, stu-

dents who were constantly behind the course schedule were more likely to achieve lower perfor-

mance. Therefore, it is important to design sufficient checkpoints throughout the module to sup-

port students who were falling behind before they disengaged with the course and dropped out. 

This finding has an important implication for LA research by contributing to the development of 

temporal LA research.  

This contribution makes a substantial step forwards to translate learning analytics findings into ac-

tionable feedback. By having a better understanding of how and when students study on which 

materials, and how these behavioural patterns of students connected to learning design, teachers 

are in a better position to reflect and adjust their teaching practices. By explicitly pointing out which 

study materials were under- or over used by students, teachers can take evidence-based and data-

informed action on these materials. My findings also emphasize the needs to keep in mind the 

whole learning process for each learning activity when designing their course, rather than seeing 

each activity as a single occasion in its assigned week. 
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Contribution 2: Understanding of how LA informed by LD can provide actionable feedback to 

teachers 

This thesis showed that LD plays an important role in LA research by not only improving its model 

accuracy by taking into account the contextual heterogeneity across modules but also offering con-

crete and actionable feedback to teachers. As shown in Study 4, the level of engagement on VLE by 

students was lower than the expected workload by teachers in most weeks throughout the course 

timeline. What is more important was LA models informed by LD can help teachers to identify prob-

lematic learning activities in which students spent an excessive amount of time revisiting or when 

did students start to fall behind the course timeline.  

The field of LA has matured to the point that simple prediction models based on demographics and 

student behaviour only may not be sufficient to make meaningful changes in curriculum design 

(Dawson et al., 2019; Gašević et al., 2016; Tempelaar et al., 2017). Many studies in LA have solely 

focused on optimising model accuracy and applying complex algorithms without thinking about 

what teachers can do with these predictions. For example, a prediction such as “student X, white 

male, age 52, who did not submit the 1st assignment, with a low level of engagement, will be likely 

to fail the course” does not really suggest what actions can be taken by teachers to help this stu-

dent. We need to go beyond this kind of simple prediction, although it is accurate, to ask the real 

important questions, such as which concept or learning activity student X was struggling with, and 

since when student X started falling behind on these activities. Other specific questions about the 

LD could be asked, such as whether students engaged in material X, how long students spent on 

learning activity Y, and how often students revisited concept Z. The type of fine-grained analysis 

illustrated in this thesis allows researchers to ask and answer some of these meaningful questions.    

As the LA field is gradually moving towards student-centred analytics by for example providing a 

dashboard to support student self-regulate their own learning process (Bodily et al., 2017; Matcha 

et al., 2019), this thesis has some potential implications to the development of future LA dash-

boards. As shown in Study 3 and Study 4, the behavioural engagement patterns of students were 

largely driven by the pedagogical context in which the learning activities occurred. Therefore, LA 

dashboard could embed LD as part of the dashboard’s features. For example, the LA dashboard 

could show which learning activities students have(not) completed and whether they are on-track 

with the course schedule, or falling behind. Furthermore, recommendations can be given to stu-

dents based on historical data from previous cohorts. For instance, students can plan their studying 

time based on information about how much time a previous cohort of students spent each week 

on learning activities. The dashboard can also highlight key learning materials that high-performing 

students tend to visit, or the tricky topics that most students revisited many times. As a result, the 



  

 166 

incorporation of LD into an LA dashboard can reveal a wide range of features that could provide 

concrete feedback to help students self-regulate their own learning process.     

8.3 Methodological Contributions 

In addition to contributing to the current knowledge in LD and LA, this research also made several 

methodological contributions which are outlined as follows. 

Contribution 1: Application of network analysis in LD 

The application of network analysis in educational research has primarily focused on modelling net-

work structure between students (Cela et al., 2015; Rienties et al., 2018; Wise et al., 2018). How-

ever, little attention has been paid to the use of network analysis to model sequences of learning 

activities (Hora et al., 2013). This thesis showcased a novel application of network analysis to the 

model “hidden” structure of learning activities and their interactions within an LD. The advantage 

of using network analysis compared to normal visualisation techniques, such as bar/pie charts 

(Laurillard et al., 2018; Law et al., 2017), is the consideration of the interplay between different 

factors in designing a learning task. This entails the type of learning activities (as shown in Study 1) 

but can also be extended to the learning resources (i.e., library, guidelines, tutors) and the medium 

to deliver these learning activities (i.e., computer, book, field experiment). The flexibility of network 

analysis can offset the limitation in learning activity taxonomy, which is restricted by a fixed number 

of categories that teachers must follow. Network analysis share some similarities with a path dia-

gram which specifies the direction from one activity to the next one, such as the LAMS system de-

veloped by Dalziel (2003). However, network analysis provides not only graphical visualisations but 

also numerical network metrics, such as the degree of centrality or betweenness (Borgatti et al., 

2009), that could be useful for the interpretation of the results. These network metrics can also be 

incorporated into statistical models of LA research as part of the LD features.  

This method can be particularly useful for comparison across different LDs, such as identifying sim-

ilarities between two LDs, or detecting cluster of modules that share the same LDs (Holmes et al., 

2019). The method can also be extended to two-mode network modelling to combine a network of 

students with a network of learning activities to answer, for example, do students in the same group 

engage in similar learning activities. More sophisticated network models can be used to explore the 

complex change of network structure of LD in time-series models, such as relational event model-

ling (Butts, 2008) and exponential random graph models (Snijders et al., 2006).  

Contribution 2: Application of LD to create new LA measurements 

The second methodological contribution of this thesis is the development of new LA measurements 

to better understand student behavioural engagement with LD as a reference point. Study 4 ele-

gantly illustrated two very simple but meaningful measurements of engagement, namely ‘catching 
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up’ and ‘in advance’ studying patterns. This simple temporal metric can be extended to more so-

phisticated ones such as different phases of learning (i.e., planning, operating, revising). The meas-

urement for the timing of engagement is important for future research in temporal LA as well as 

research in time management and procrastination in education. The incorporation of pedagogical 

context as a frame of reference into LA models allows new questions to be asked and therefore, 

creates new measurements that are not available from trace data alone.    

Contribution 3: Application of multi-level modelling on the hierarchical data structure to model 

temporal changes in learning behaviour while incorporating module characteristics 

The final methodological contribution is the application of multilevel modelling to explore the effect 

of LD on student behaviour. Since LA data are often collected at the student level and LD data are 

collected at the module level, integrating these two types of data together requires the use of mul-

tilevel modelling (MLM). As shown in this research, MLM accounted for the differences between 

modules while allowing for variation between individual students. Compared to the traditional lin-

ear regression model, MLM is a more robust approach with higher accuracy by allowing for missing 

data, controlling for autocorrelation, and accounting for heterogeneity between groups. Future re-

search in the intersection of LA and LD should consider the hierarchical data structure using MLM.  

8.4 Practical Implications 

My findings have direct implications for the learning designer, teachers, and managers in the future 

development of LD and LA. These recommendations are based on my personal reflections as well 

as extensive research activities in the domain of LA and LD during the last three years.  

For learning designers 

1. Consider mapping and visualising LD at a weekly level  

Findings from this thesis have shown the dynamic temporal changes in LD over time and 

demonstrated how LD visualisation using longitudinal data can help identify potential prob-

lems in workload consistency. The use of weekly LD data also supports the comparison with 

student behaviour using trace data, which are often collected with timestamps.   

2. Have follow-up activities with teachers throughout the module production process 

From the 12 interviews with OU module chairs, this thesis indicated that only having an LD 

workshop at the beginning of the module production process might not be effective be-

cause teachers need more time to develop a concrete idea about what they want to teach, 

before thinking about how they are going to teach. Therefore, having follow-up LD activities 

throughout the module production process will put teachers in a better position to reflect 

on their pedagogy and resolve emerging issues as the LD process unfolds.  

3. Combine LD visualisations with analytics of student behaviour 
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As illustrated in this thesis, aligning LD with student behaviour is a powerful approach to 

help both learning designers and teachers test their existing assumptions in LD using real 

data from students. This will utilise the existing LD representations and show teachers what 

they can do with this visualisation of LD and how these LD representations can tell teachers 

something they did not know before.  

4. Carry out an objective evaluation to reflect on existing LD practices 

Findings from this thesis demonstrated that there are complex underlying factors such as 

management influence or the timing of LD workshops that influence LD decisions and how 

teachers engage with LD practices. Having an objective evaluation study (as opposed to 

small scale “anecdotal” evidence) will help learning designers understand the affordances 

and barriers that teachers face when engaging in LD practices. By doing so, learning design-

ers can reflect on their own practices and determine how to best support teachers in their 

LD process.  

5. Have a clear guideline about the use of LD taxonomy  

This thesis has pointed out that while teachers perceived the LD taxonomy to be useful as 

a frame of reference, there is ambiguity in interpreting and using the LD taxonomy. There-

fore, it is important to provide teachers with a clear guideline of the LD taxonomy, its meas-

urements as well as its limitations. Learning designers can carry out inter-rater reliability 

test by having multiple learning designers mapping the same content and compare the con-

sistency in figures. Learning designers should also keep in mind that there are on-going 

developments of other LD taxonomies in the field as shown in section 2.2.2.    

6. Have a better data management process of LD representations.  

This recommendation is based on my own personal reflection as a researcher who has been 

working on connecting LA with LD. The current platform (www.learning-de-

signer.open.ac.uk) contains a lot of duplicated and messy LD data created by different peo-

ple with a wide range of quality. To process these data, I had to manually go through the 

data, while carried out cross-checking with the online module guide and had multiple con-

versations with the learning designers to make sure the selected set of data is reliable. This 

is a time-consuming process and could be improved. There should be a systematic data 

management practice to ensure the data were entered in a consistent manner. A guideline 

created to help navigate through the LD data and understand its limitations will be valuable 

for future research in LD at the OU.   

For teachers 

1. Compare pedagogical decisions with actual student behaviour 

This thesis has shown that while student engagement was largely driven by LD, there are 

many potential misalignments between what teachers think students do and what they 
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actually do. By having a ‘reality check’ based on actual student behaviour, teachers can 

identify potential problems in their LD and make appropriate adjustments. However, teach-

ers should also take the time to understand where these LA metrics come from and be 

cautious about what they can and cannot inform them. 

2. Create multiple checkpoints with students throughout the course  

Findings from Study 4 illustrated that low-performing students gradually fell behind with 

the course schedule and spent a lot of time catching up on previous learning materials. 

Therefore, it is important to have frequent check-ins with students not only on the desig-

nated assignment (TMA) date but throughout their learning process. It might be too late to 

intervene by the time a student appears as ‘at-risk’ on the LA system. 

3. Collaborative activities increase student engagement but need careful design 

The empirical evidence in this thesis suggested that collaborative activities were positively 

correlated with student engagement but there might be a short-term trade-off in satisfac-

tion scores. Designing collaborative activities in an online learning environment is challeng-

ing to say the least. Simply assigning students into groups will not guarantee an effective 

learning experience. Teachers should consult the extensive literature in online collabora-

tive learning and understand the factors that could influence the student experience in col-

laborative learning such as trust, group cohesion and demographics as well as cultural back-

ground. 

4. Assessment activities have a strong impact on student engagement 

Another important finding from this thesis was that assessment activities strongly pre-

dicted student engagement. Therefore, the design of assessment activities requires careful 

consideration of different types of assessment (of, for, and as learning) (Earl et al., 2006; 

Torrance, 2007) and the timing and frequency of assessment that optimise the level of en-

gagement without overloading students. 

For managers 

1. Make analytics more fine-grained and more accessible to teachers 

Findings from this thesis suggested that teachers actively seek out information about how 

their students are engaging with the module materials. Teachers valued easy access to im-

portant KPIs such as TMA submission rate or the number of students accessing certain 

learning materials. This thesis also demonstrated that LA should go beyond simple click 

count with more fine-grained metrics such as the duration student spent on each learning 

activity and whether students are on-track or falling behind. This type of fine-grained anal-

ysis tightly linked to LD could provide important new insights to teachers, and may help 

them to effectively intervene where necessary.   

2. Continuously conduct large-scale testing of pedagogical decisions 
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This thesis indicated that communication and assessment activities are the two main driv-

ers of student engagement. However, more testing should be carried out with large sample 

size and robust research design (e.g., longitudinal design, mixed-method, RCTs, quasi-ex-

perimental) to draw any conclusions about the cause and effect of each pedagogical deci-

sion. For example, the use of a single assessment component strategy should be evaluated 

using a combination of student performance, behaviour, and satisfaction. Management 

must refrain from relying on anecdotal evidence and quick metrics in making pedagogical 

decisions.  

 

3. Aware of the unintended consequences when a supportive tool becomes a management 

tool 

The famous Goodhart’s law states that: "When a measure becomes a target, it ceases to be 

a good measure". As shown in this thesis, teachers expressed concerns about how LD met-

rics were used to manage the design process, as opposed to its original objective, which 

was mainly supportive of the design process. This lesson can be applied to future LA metrics 

as they become a part of standard practices across institutions. A balance must be retained 

between the autonomy of teachers when they engage in new LD/LA tools and the desire to 

use new metrics to evaluate teaching effectiveness.  

For the OU and the wider UK HE sector 

The results of this thesis shed substantial new and unique lights on learning design patterns at the 

OU, and the extent to which students’ behaviours align with the course design. By incorporating 

module characteristics and their respective design patterns into learning analytics models, OU 

teachers can substantially improve their reflections on their courses as well as evaluate the effec-

tiveness of each learning activity or material. This type of design-informed learning analytics model 

can be used in conjunction with predictive learning analytics models (e.g., OU Analyse) to provide 

targeted interventions to support at-risk students. For example, when a student was flagged as ‘at-

risk’ by OU Analyse, teachers can take a closer look at this student’s engagement patterns (i.e., 

time-on-task) and identify which learning activities that the student was struggling with. Using this 

information, teachers can personalize the intervention messages to any at-risk students according 

to their own learning patterns. For example, if students have not engaged with a key learning con-

cept, an automated reminder could be crafted as “Have you looked at concept A?”. If students have 

engaged with certain activities but seemed to struggle to get through them, a message could be 

tailored as “You seem to spend a lot of time catching up on activities A, B, and C, what can we do 

to help?”. Continued efforts are needed to make learning analytics findings more actionable using 

insights from learning design.  
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By reflecting on the existing engagement patterns with module activities, OU teachers can get a 

more realistic estimation the actual workload and time spent by students on each learning activity, 

and possibly identify sub-groups of students who might need more or less time to complete say 

activity A. Teachers can use this information to update the workload of their learning activities in 

the next presentation. For instance, instead of having a subjective estimation that activity A is going 

to take 20 minutes, we could provide a 95% confidence interval of the actual workload exhibited 

by the previous cohort, such as “Last-year students spent on average 5-10 minutes on this activity”. 

A more accurate workload estimation will be of great importance to the planning and time man-

agement of OU students, and help them avoid being overwhelmed because of an unexpected vol-

ume of work. Teachers can investigate which learning activity has (not) been used by students, and 

make appropriate adjustment, such as drawing more attention to key concepts which may have 

been overlooked, or removing non-essential learning activities that took a lot of time for some 

groups of students.   

Furthermore, study recommendations can be made based on common learning patterns amongst 

successful students in the previous type of information not only be beneficial to both ‘at-risk’ stu-

dents and those who are not at-risk, who might just want to study more efficiently or really want 

to obtain a deep insight into a particular topic. The current state of learning analytics at the OU, 

and perhaps across UK higher education, has largely been driven by retention priorities. As a result, 

there seems to be a greater emphasis on supporting those who are at-risk of failing or dropping 

out, while limited attention has been paid to helping non-at-risk students to make further improve-

ments. The combination of students’ behaviour, design patterns, and academic performance as 

shown in this thesis can pave a way forward to make improvements across the board of students, 

and to meet each student’s learning need.  

As we move forwards to the future, a natural progression of this work is to ensure that these find-

ings are fed back to teachers and students. Current research at the OU have rolled out predictive 

analytics models (e.g., OU Analyse) across a large number of modules and provided analytics in-

sights to support teachers and practitioners (Herodotou, Hlosta, et al., 2019; Herodotou et al., 2017; 

Herodotou, Rienties, et al., 2019). However, more work needs to be done to incorporate learning 

design elements into the development of statistical/machine learning models, and to provide feed-

back to teachers tailoring to the design of each module. In addition, we should extend the applica-

tion of LA to OU students and test the extent to which analytics can help students self-regulate their 

own learning processes in line with recommendation by Ferguson et al. (2017).  

Further work should be carried out to establish causal inference through A/B testing or quasi-ex-

perimental design in LD. While this thesis has established correlation findings between certain types 

of learning activities and student engagement on VLE, more work needs to be done to determine 
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causal links between changes in the course design and student engagement as well as performance. 

The OU has a great potential to be one of the largest experimental laboratories in higher education 

sector because of the amount data we are collecting. Furthermore, a major strength of the OU is 

the diverse population of students, which would allow the OU to test diverse LA recommendations 

to meet the unique learning needs of different groups of learners. Recommendations for learning 

design should be rigorously tested using a combination of quantitative and qualitative methods 

before being implemented across the board. There are many great examples of large-scale experi-

ments that the OU could learn from (Kizilcec, 2017, 2019, Chaturapruek, 2018).  

8.5 Research Limitations  

This research used a mixed-methods approach on longitudinal datasets to unpack the temporal 

characteristics of the LD process and student engagement on a large scale in one distance learning 

setting, namely the OU. In doing so, there are some limitations to the research methods and choices 

adopted that worth noting.  

Firstly, the context of all empirical studies in this research was within the OU UK. As noted previ-

ously, the OU has a distinctive population of students that might not be generalisable to a tradi-

tional population of university students at a face-to-face learning setting, or to any of the diverse 

distance learning settings. The LD process at the OU was also atypical compared to other universi-

ties, in which teachers have some autonomy over the design and production of the LD process and 

learning materials. Therefore, it would be useful for future research to replicate or validate these 

findings in a different context.  

Secondly, this research explored a large number of LDs with the intentions of describing common 

patterns and variations across modules. However, this research did not attempt to prescribe which 

LD or which pedagogy was most effective in this context. To answer this question, the research re-

quires a quasi-experimental design or a randomised control trial, which could take several years to 

complete,  and was beyond the scope of this PhD.  

Finally, this research did not ‘close the loop’ by circling the findings back to students and teachers. 

While the findings from this research have been used in internal reports and informally presented 

to practitioners through various presentations, there were no formal studies to evaluate the use-

fulness of these findings and how it could be applied to practices. Similarly, the findings have not 

been validated by students. Future research is encouraged to embed the methods and findings of 

this research as part of the interventions and institutional LA initiatives such as OU Analyse. 

8.6 Future Research Directions 

There are several research directions that could extend the work outlined in this thesis. Firstly, 

Study 2 from this thesis only considered module chairs as the participants. However, as illustrated 
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in Study 2, the LD process at the OU involves several stages with multiple stakeholders. Therefore, 

future research should consider the use of an ethnographic approach to explore the dynamics be-

tween stakeholders such as learning designers, ALs, curriculum manager, library support, and tech-

nicians during the LD process.  

Secondly, this research revealed new insights into the temporal processes in LD and student en-

gagement within the duration of 30 weeks (i.e., a semester). However, little is known about the 

changes in LD practices and student engagement over a longer period of time, such as semesters 

or years. Therefore, future research should consider extending the longitudinal design, such as ex-

amining the changes in LD of the same module over different semesters, the changes in engage-

ment pattern of the same student as they progressed through different LDs, and the changes of LD 

in the same discipline/qualification from level 1 to 3.  

Thirdly, this thesis has demonstrated the advantages of aligning LA with LD. Future research in LA 

should consider the pedagogical context and the differences between modules when building pre-

dictive models using panel datasets (i.e., using multilevel modelling). Future research in LD should 

embed student demographics, feedback, and behaviour as part of the reflection process to validate 

their existing assumptions about students.  

Finally, there is a lack of studies on how LD-informed LA could be beneficial to students learning 

progress. For example, recommendation systems could be built based on patterns of engagement 

of the previous cohort of students to support the subsequent cohorts. Students could use insights 

from the previous cohort to plan and self-regulate their own learning process such as how much 

time should they expect to spend on certain learning activities, which concept that students from 

previous years struggled with, and how high-performing students engaged throughout the course.  

Nonetheless, the empirical works carried out in my thesis have demonstrated a strong impact on 

the development of LA as a field as evidenced by two best paper awards at HCI International 2017 

and LAK18. My research in collaborations with OU practitioners has provided important contribu-

tions to the teaching and learning practices at the OU, as evidenced by a Research Excellence Award  

2018 (runner up) - Impact of Research on OU Teaching & Learning, Curriculum and Students. 

 

8.7 Concluding Remarks  

This thesis has investigated the temporal characteristics of LD and student behavioural engagement 

in a distance learning setting using a mixed-method design on longitudinal datasets of 37 modules 

and 45,190 undergraduate students over 30 weeks together with interviews of 12 teachers. This 

work has argued for the benefits of aligning LA with LD which helped uncover new insights and 

discrepancies between teacher LD and student behaviour. Findings from this research highlighted 
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the need to account for the temporal changes of teaching and learning practices over time and how 

LD can help translate LA findings into meaningful insights. It is time to go beyond simple predictions 

based on student data and provide actionable feedback to teachers and students using both LD and 

LA data and insights.   
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Appendix 1: Ethics approval for learning analytics 

 

Human Research Ethics Committee (HREC) 

From Dr Louise Westmarland 

The Open University Human Research Ethics Committee 
Email louise.westmarland@open.ac.uk 
Extension (6) 52462 

To Quan Nguyen 

 
Project title Unravelling the dynamics of learning design within and between disciplines in 

higher education using learning analytics 

HREC ref HREC/2584/NGUYEN 

AMS ref 

Memorandum 
Date application submitted: 18/05/2017 
Date of HREC response: 22/05/2017 

 
 

This memorandum is to confirm that the research protocol for the above-named research project, 

as submitted for ethics review, has been given a favourable opinion by HREC Chair’s action. 

Please note the following: 

1. You are responsible for notifying the HREC immediately of any information received by you, or 
of which you become aware which would cast doubt on, or alter, any information contained in 
the original application, or a later amendment which would raise questions about the safety 
and/or continued conduct of the research. 

 
2. It is essential that any proposed amendments to the research are sent to the HREC for review, 

so they can be recorded and a favourable opinion given prior to any changes being 
implemented (except only in cases of emergency when the welfare of the participant or 
researcher is or may be effected). 

 
3. Please include your HREC reference number in any documents or correspondence, also any 

publicity seeking participants or advertising your research, so it is clear that it has been 
reviewed by HREC and adheres to OU ethics review processes. 

 

4. You are authorised to present this memorandum to outside bodies such as NHS Research 
Ethics Committees in support of any application for future research clearance. Also, where 
there is an external ethics review, a copy of the application and outcome should be sent to the 
HREC. 

 

5. OU research ethics review procedures are fully compliant with the majority of grant awarding 
bodies and where they exist, their frameworks for research ethics. 

 

6. At the conclusion of your project, by the date you have stated in your application, you are 
required to provide the Committee with a final report to reflect how the project has progressed, 
and importantly whether any ethics issues arose and how they were dealt with. A copy of the 
final report template can be found on the research ethics website - 
http://www.open.ac.uk/research/ethics/human-research/human-research-ethics-full-review- 
process-and-proforma#final_report 

 

Best regards 

 
Dr Louise Westmarland 
The Open University Human Research Ethics Committee 

 
 

www.open.ac.uk/research/ethics/ January 2017 
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Appendix 2: GDPR training certificate 
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Appendix 3: Ethics approval for interviews 

 

 

Human Research Ethics Committee (HREC) 

From Dr Louise Westmarland 

The Open University Human Research Ethics Committee 
Email louise.westmarland@open.ac.uk 
Extension (6) 52462 

To Quan Nguyen 

 
Project title Unravelling the dynamics of learning design within and between disciplines in 

higher education using learning analytics 

HREC ref HREC/2693/Nguyen 

AMS ref 

Memorandum 
Date application submitted: 06/10/2017 
Date of HREC response: 20/10/2017 

 
 

This memorandum is to confirm that the research protocol for the above-named research project, 

as submitted for ethics review, via a Human Research Ethics Committee Project Registration and 

Risk Checklist, has been given a favourable opinion by HREC Chair’s action. 

Please note the following: 

1. You are responsible for notifying the HREC immediately of any information received by you, or 
of which you become aware which would cast doubt on, or alter, any information contained in 
the original application, or a later amendment which would raise questions about the safety 
and/or continued conduct of the research. 

 
2. It is essential that any proposed amendments to the research are sent to the HREC for review, 

so they can be recorded and a favourable opinion given prior to any changes being 
implemented (except only in cases of emergency when the welfare of the participant or 
researcher is or may be effected). 

 
3. Please include your HREC reference number in any documents or correspondence, also any 

publicity seeking participants or advertising your research, so it is clear that it has been 
reviewed by HREC and adheres to OU ethics review processes. 

 

4. OU research ethics review procedures are fully compliant with the majority of grant awarding 
bodies and where they exist, their frameworks for research ethics. 

 
 

Best regards 
Dr Louise Westmarland 
The Open University Human Research Ethics Committee 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
www.open.ac.uk/research/ethics/ January 2017 
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Appendix 4: Interview consent form 

  

 
Interview Consent Form 

 

Research project title: Unravelling the dynamics of learning design within and between 

disciplines in higher education using learning analytics  

Principal Investigator: Quan Nguyen, Institute of Educational Technology, Open Univer-

sity 

Thank you for reading the information sheet about the interview sub-study. If you are happy 
to participate then please complete and sign the form below. Please initial the boxes below 
to confirm that you agree with each statement: 

 

Please Initial box: 

I confirm that I have read and understood the information sheet dated 

[DD/MM/YYYY] and have had the opportunity to ask questions. 

 

 

I understand that my participation is voluntary and that I am free to withdraw at 

any time within 30 days after the interview without giving any reason and without 

there being any negative consequences. In addition, should I not wish to answer 

any particular question or questions, I am free to decline.  

 

 

I understand that my responses will be kept strictly confidential. I understand that 

my name will not be linked with the research materials and will not be identified or 

identifiable in the report or reports that result from the research.  

 

 

I agree for this interview to be tape-recorded. I understand that the audio recording 

made of this interview will be used only for analysis and that extracts from the 

interview, from which I would not be personally identified, may be used in any 

conference presentation, report or journal article developed as a result of the re-

search. I understand that no other use will be made of the recording without my 

written permission, and that no one outside the research team will be allowed ac-

cess to the original recording. 

 

 

I agree that my anonymised data will be kept for future research purposes such 
as publications related to this study after the completion of the study. 

  

 

 

I agree to take part in this interview. 
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________________________ ________________         ___________________ 

Name of participant Date                                     Signature 

 

_________________________ __________________         _____________________ 

Principal Investigator Date                                     Signature 

Contact Information  

This research has been reviewed and approved by the Open University Research Ethics 

Board. If you have any further questions or concerns about this study, please contact:  

Name of researcher: Quan Nguyen 

E-mail: quan.nguyen@open.ac.uk 

You can also contact the researcher’s supervisor: Prof. Bart Rienties 

E-mail: bart.rienties@open.ac.uk 

What if I have concerns about this research?  

If you are worried about this research, or if you are concerned about how it is being con-

ducted, you can contact Research ethics at The Open University. 

Tel: +44 (0)1908 654858 

Email research-ethics@open.ac.uk 

 

  

mailto:research-ethics@open.ac.uk?subject=Research%20website%20contact
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Appendix 5: Interview Participant Information Sheet 

 

Introduction 

Hi, my name is Quan Nguyen, a Ph.D. candidate at the Institute of Educational Technology. 

I would like to invite you to participate in an interview about your experiences when design-

ing your module and using data in teaching and learning. This study seeks to gain a better 

understanding of the underlying thought process when teachers design their module in an 

online learning environment, and how they perceive the use of data in decision making. I 

believe your experience and expertise as a module chair would provide invaluable insights 

to this study.  

How will this interview be conducted? 

The primary researcher (Mr. Quan Nguyen) from the Institute of Educational Technology, 

Open University will meet with you in person or via Skype voice call. The interview will last 

approximately 60 minutes. You can expect to be asked questions about your previous ex-

periences in designing your module and your perspective about the use of data in teaching 

and learning. You will also be given some visualizations of your module’s learning design 

to consider and discuss. The interview will be held in English and will be recorded for anal-

ysis. 

What other data about me will you receive? 

Basic demographics data such as gender, age, years of teaching will also be collected as 

part of the process.  

Are my answers confidential? 

Yes. Your name, your module name, module code and any identifying information will be 

removed from all data. Only the primary researcher (Mr. Quan Nguyen) will have access to 

the original data. All data will be anonymized before sharing with other research members 

and will be stored in an encrypted drive. 

Who has access to my interview answers? 

Only the primary researcher and his supervision team will have access to the anonymized 

transcript of your interview. We may use excerpts from your interview in the presentation of 

our findings, both internally at the Open University, and externally, such as in a research 

journal article. However, you and your associated module will never be referred to by name 

and all identifying information will be removed. 

Am I required to participate? 

No. Participating in an interview is entirely optional and you retain the right to withdraw from 

the study at any time. You may also request to have all, or part of your responses removed 

from the record up to 90 days after the interview. 

Can I change my mind about participating? 

Yes. You may cancel your appointment at any time with no consequences. You may also 

choose to recant part or all of your interview up to 90 days afterwards. To do so, you can 

contact Quan Nguyen at the contact information listed below. 

Are there benefits to participating? 
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You will receive a copy of the report of the findings from the study, which may serve as a 

tool for reflection on your teaching practice. 

Who can I contact with questions? 

You can contact the following members of our research team with questions: 

 

Quan Nguyen      Prof. Bart Rienties  

quan.nguyen@open.ac.uk      bart.rienties@open.ac.uk  

Prof. Denise Whitelock      

denise.whitelock@open.ac.uk      

 

What if I have concerns about this research?  

If you are worried about this research, or if you are concerned about how it is being con-

ducted, you can contact Research ethics at The Open University. 

Tel: +44 (0)1908 654858 

Email research-ethics@open.ac.uk 

 

  

mailto:quan.nguyen@open.ac.uk
mailto:bart.rienties@open.ac.uk
mailto:denise.whitelock@open.ac.uk
mailto:research-ethics@open.ac.uk?subject=Research%20website%20contact
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Appendix 6: Semi-structured interview questions 

Research project title: Unravelling the dynamics of learning design in an online learning 

environment using learning analytics  

Principal Investigator: Quan Nguyen, Institute of Educational Technology, Open Univer-

sity 

Total Time 60 minutes 

The interview will take place at the participant’s office, or a meeting room at the Open Uni-

versity UK. A laptop will be used to display data visualizations. No additional equipment is 

required.  

Introduction (2 mins) 

- Self-introduction 

- Explain the purpose of the interview 

- Asking for permission to start recording 

Warm up (3 mins) 

- Could you please briefly describe your role at the OU? 

- Could you please briefly describe the module (who is it for, what is it aiming to 

achieve) 

Theme 1 – Alignment between pedagogy and LD (15 mins) 

- What do you want your students to learn from this module?  

- How do you structure the module? Why? 

- What kinds of learning activities have you designed in this module? 

- Why did you choose these activities? 

- Who were involved in the module’s design process? 

Theme 2 – Alignment between OULD mapping and learning design intentions (15 

mins) 

- What are your first thoughts about this LD representation? 

- How does this representation capture your design intentions? 

- Is there anything in this representation different from your expectations? 

Theme 3 – Perceptions on LA to inform LD (15 mins) 

- What kinds of feedback or data that you received on your module?  

- What are your thoughts about receiving this information? 

- How useful this information is? What did you with it/Any changes with the module? 

- Is there any additional information that you would like to receive about the mod-

ule? 

Wrap-up (5 mins) 

- Are there any other thoughts or experiences that you would like to share? 

- Do you have any further questions? 

 
 


