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Abstract

Globally, Low back pain (LBP) is one of the top three con-
tributors to years lived with disability. Self-management with
an active lifestyle and regular exercises is the cornerstone
for preventing and managing LBP. Digital interventions are
introduced in the recent past to reinforce self-management
where they rely on self-reporting to keep track of the exer-
cises performed. This data directly influence the recommen-
dations made by the digital intervention thus accurate and re-
liable reporting is fundamental to the success of the interven-
tion. In addition, performing exercises with precision is im-
portant where current systems are unable to provide the guid-
ance required. The main challenge to implementing an end-
to-end solution is the lack of public sensor-rich datasets to
implement Machine Learning algorithms to perform Exercise
Recognition (ExR) and qualitative analysis. Accordingly we
introduce the ExR benchmark dataset “MEx”, which we share
publicly to encourage future research. The dataset include 7
exercise classes, recorded with 30 users using 4 sensors. In
this paper we benchmark state-of-the-art classification algo-
rithms with deep and shallow architectures on each sensor
and achieve performances 90.2%, 63.4%, 87.2% and 74.1%
respectively for the pressure mat, the depth camera, the thigh
accelerometer and the wrist accelerometer. We recognise the
scope of each sensor in capturing exercise movements with
confusion matrices and highlight the most suitable sensors
for deployment considering performance vs. obtrusiveness.

Introduction

In the Global Burden of Disease Study 2016 (Abajobir and
others 2017), low back pain (LBP) was the leading cause of
years lived with disability. Clinical guidelines recommend
for LBP patients therapeutic exercise, either as a preven-
tive measure or as part of rehabilitation. At first, exercise
is supervised by a physiotherapist, and thereafter a self-
management programme is created to empower people to
manage their own health conditions. Despite programme ad-
herence being important to achieving a positive patient out-
come, recent studies show that non-adherence is as high
as 70% among self-managing patients (Essery et al. 2017).
Here adherence refers to correct performance of exercises as
well as following advice on exercise frequency. The innova-
tion opportunity for health technologies is to support people

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to effectively self-manage through personalised interactive
feedback that improves adherence.

Evidence suggests that for a successful large-scale im-
pact, digital health intervention programmes must unobtru-
sively monitor adherence (Cooper et al. 2017; Bach et al.
2016). Recent advances in pressure sensing mats (Cheng et
al. 2016), Depth camera & inertial sensors (Chen et al. 2014)
have created new modalities for unobtrusive monitoring, but
none have been used to close the loop between sensing,
monitoring, and feedback to address the problem of poor ad-
herence to physiotherapy programmes (Franco et al. 2015;
Palazzo et al. 2016).

An end-to-end adherence monitoring programme must
consider three main components; exercise recognition, per-
formance quality evaluation and feedback generation. In this
paper we focus on recognition, and critically review ad-
vances made in the related research areas of Human Ac-
tivity Recognition (HAR) (Yao et al. 2017; Ordóñez and
Roggen 2016) and Exercise Recognition (ExR) (Sundholm
et al. 2014; Xiao et al. 2018). The absence of transferable
research between HAR and ExR is noticeable but this is
in part at least attributed to the lack of a publicly available
ExR datasets. It is our aim to address these challenges with
a view to implementing a comprehensive adherence moni-
toring programme. Accordingly in this paper we make the
following contributions:

• present the multi-modal heterogeneous sensor dataset
“MEx” that is publicly available for Exercise Recognition
and Human Activity Recognition research;

• provide benchmark measures using three classification al-
gorithms k-NN, SVM and MLP for comparative perfor-
mance analysis; and

• explore shallow and deep architectures for feature repre-
sentation learning with the MEx dataset.

Rest of the paper is organised as follows. Related Work
section discusses current research in the domain of ExR
and next we detail the dataset with pre-processing recom-
mendations in Section “MEx Dataset”. In Section “Exercise
Recognition with MEx” we present the benchmark perfor-
mance analysis including evaluation methodology and re-
sults and confusion matrices. Finally conclusions with future
plans appear in Section “Conclusions”.
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Related Work

Research in Exercise Recognition (ExR) spans a number
of application areas such as callisthenics, weight exercises,
yoga and sports. Inertial Measurement Units (IMUs) sen-
sors are widely used in literature (Velloso et al. 2013; Burns
et al. 2018; Guo, Wang, and Yang 2018), but some have ex-
plored sensors such as Pressure mats (Sundholm et al. 2014;
Zhou et al. 2016), Channel State Information (Xiao et al.
2018) and Electrocardiograms (Qi et al. 2018). ExR is of-
ten viewed as classification of many discrete labels given a
sensor data stream. Often these recognition algorithms use
a manual feature extraction pipeline followed by a clas-
sification algorithm such as k-NN (Sundholm et al. 2014;
Xiao et al. 2018), Random Forest (Velloso et al. 2013), De-
cision Trees (Zhou et al. 2016) or HMM (Qi et al. 2018).

While Deep Learning methods (CNN and LSTM) are
the state-of-the-art in HAR (Yao et al. 2017; Ordóñez and
Roggen 2016), literature suggest that these methods are
rarely considered with ExR (Burns et al. 2018). For instance,
authors of (Burns et al. 2018) use a recurrent architecture to
recognise shoulder rehabilitation exercises with wrist worn
IMU data streams and achieve 88.9% accuracy; their dataset
is not publicly available and their methods cannot be trans-
ferred to other exercise domains due to lack of sensors that
capture movements from other body parts except the wrist.
This proprietary nature of research in ExR domain (algo-
rithms and data) results in non-transferable knowledge and
is a barrier to advancing the state-of-the-art.

MEx Dataset

MEx is a sensor-rich dataset collected for 7 exercises with
four sensors publicly available at the UCI Machine Learn-
ing Repository1. In this section we will present details on
data collection protocol, sensor specifications, exercises and
recommended pre-processing steps.

Data Collection Protocol

The data collection task included 30 participants. 60% of
the participants were female and 40% were male. 47% of
the group were in the 18-24 age category and the rest were
dispersed among the ages from 24 to 54. 8 of the 30 partici-
pants had a good understanding of the exercises as they were
either physiotherapists or physiotherapy students. A Physi-
cal Activity Readiness Questionnaire (PAR-Q) evaluated the
physical fitness of each participant prior to data collection.
Seven exercises were selected by a physiotherapist for this
data collection; 1-Knee Rolling, 2-Bridging, 3-Pelvic Tilt,
4-Bilateral Clam, 5-Repeated Extension in Lying, 6-Prone
Punch and 7-Superman. They are frequently used for the
prevention or self-management of LBP (Figure1).

At the start of the session, the user was given a sheet with
instructions for each exercise. Each exercise is described
with a starting position and set of actions. During the ses-
sion, the researcher demonstrated an exercise to the user
and then the user performed the exercise for approximately
60 seconds while being recorded with four sensors. During

1https://archive.ics.uci.edu/ml/datasets/MEx

Figure 1: Exercises in the MEx dataset

the recording, the researcher did not provide any advice or
counting to enforce rhythm. For exercises where it was sug-
gested to hold a position for 5 or 2 seconds, the user was
instructed at the beginning to keep count by themselves to
preserve their natural rhythm. Our goal was to capture in-
dividual nuances of each user which replicates a scenario
where a patient performs these exercises at home without
the guidance of the physiotherapist.

Sensors

We explored the state of the art sensor technologies and were
advised by our health partners to select three sensor modali-
ties to capture these movements; Obbrec Astra Depth Cam-
era 2, Sensing Tex Pressure Mat 3 and Axivity AX3 3-Axis
Logging Accelerometer 4. The goal is to explore their capa-
bilities to capture exercises independently as well as an en-
semble while considering the obtrusiveness when deploying
sensors in the real-world. Accordingly we select the follow-
ing placements for sensors; two accelerometers on the wrist
and the thigh of the user; the pressure mat was used as a ex-
ercise mat where the user lays on to perform the exercises;
the depth camera was placed above the user facing down-
words recording an aerial view. In addition, the top of the
depth camera frame was aligned with the top of the pressure
mat and the user is asked to position their shoulders such that
the face is not recorded in the depth camera or pressure mat
data. The tri-axial accelerometers record data at 100Hz fre-
quency within the range of ±8g. The pressure mat and the
depth camera record gray scale frames at 15Hz frequency
and frame sizes are 32×16 and 240×320 respectively. Fig-
ure 2 shows a visualisation of each sensor data type. The
four sensors, the thigh accelerometer, the wrist accelerome-
ter, the pressure mat and the depth camera will be referred
as ACT, ACW, PM and DC in the rest of this paper.

Pre-processing for Supervised Learning

A sliding window method is applied on an individual sensor
data stream to create train and test data instances for super-
vised learning. We use the window size of 5 seconds and
an overlap of 3 seconds where each window forms an in-
stance and is labelled with the exercise class. This results in
a dataset of 6240 instances (208 instances per user and 30
users) on average per sensor.

2https://orbbec3d.com/product-astra-pro/
3http://sensingtex.com/sensing-mats/pressure-mat/
4https://axivity.com/product/ax3
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(a) Accelerometer data - Thigh and Wrist

(b) Depth camera video

(c) Pressure mat data

Figure 2: Raw data visualisation

Additionally, we recommend a set of pre-processing
steps for each sensor modality. A reduced frame rate of 1
frame/second is used with DC and PM data and the DC data
frames are compressed from 240 × 320 to 12 × 16. The in-
ertial sensor data from ACW and ACT are pre-processed us-
ing the Discrete Cosine Transformation (DCT); known to
out-perform other feature-transformation methods (Sani et
al. 2017). DCT decomposes a signal into constituent cosine
waves and returns the ordered sequence of frequency co-
efficients representing each wave. DCT is applied to each
axis of the accelerometer data and the final feature vec-
tor of length 180 is formed by appending the 60 most sig-
nificant coefficients from the 3 axes x, y and z. Above
hyper-parameters are recommended following an initial ex-
ploratory study 5 while considering performance and com-
putational memory requirements.

Exercise Recognition with MEx

In this section we study the role of both shallow and deep
features for classification algorithms for Exercise Recogni-
tion (ExR). Accordingly we compare a number of state-of-
the-art classification algorithms and feature representation
methods for the task of ExR. The three classification algo-
rithms used for this purpose are:
kNN: K-Nearest Neighbours algorithm; we present results

with k=1 and k=3;
SVM: Support Vector Machine classifier with a Radial Ba-

sis Function kernel; and
MLP: Multi-layer Perceptron as the classifier with a feature

representation method followed by a softmax activation
layer.
The aim of our evaluation is to find the most optimal fea-

ture representation method for each sensor modality. Ac-
5https://arxiv.org/abs/1908.08992

Figure 3: Auto-encoder Architecture

(a) Shallow ANN

(b) Deep ANN

Figure 4: ANN Architectures

cordingly we conduct a comparative study with a compre-
hensive list of shallow and deep feature representation meth-
ods that are recognised as the state-of-the-art in recent Deep
Learning Literature.
Raw: Raw sensor data (flattened if required)
DCT: For ACT and ACW, the 3 axial inertial data are con-

verted in a DCT feature vector (as described in Section ).
AE: For PM and DC visual data, an Auto-encoder (AE)

(Figure 3) model learns to reconstruct itself and the mid
hidden layer with the lowest dimension is used as the fea-
ture representation. Here AE produces an abstract feature
vector of size 64.

ANN: Artificial Neural Network, comprised of a single or
multiple layers of densely connected hidden layers. Each
hidden layer is followed by a Batch Normalisation layer to
normalise the output and to avoid over-fitting. Both varia-
tions below output a feature vector of size 100.
• Shallow-ANN: Consist of one hidden layer densely

connected with 100 hidden units and “Relu” activation
function (Figure 4a).

• Deep-ANN: Consist of five hidden layers as in Fig-
ure 4b.

CNN: Convolutional Neural Networks consist of a se-
quence of blocks where each block is formed by a convo-
lution layer, a max pooling layer and batch normalisation.
We explore three variations (that create output vectors of
size 100), to suit different sensor modalities as follows:
• DCT-1D: For ACT and ACW; 1-dimensional convolu-

tions (kernel size 5) where the number of channels is
1 and the input is DCT features of length 180. (Fig-
ure 5a).

• Raw-1D: Comprised of 1-dimensional convolutions
(kernel size 5) as in Figure 5a. For ACT and ACW, the
input is a raw data stream of length 500 (5 second win-
dow with 100Hz frequency) with 3 channels (x, y and

349



(a) 1D convolution model

(b) 2D convolution model

Figure 5: CNN Architectures

Figure 6: LSTM Architecture

z). For PM and DC data, a frame from each time stamp
is flattened and appended together to create the input
feature vector with 1 channel.

• 2D: For PM and DC data; 2-dimensional convolu-
tions (kernel size 3 × 3) (Figure 5b). Frames within a
time window are appended to form a 2D vector with 1
channel.

LSTM: The Long-short Term Memory Neural Network; as
with the ANN and CNN use Batch Normalisation for reg-
ularisation. Additionally a convolutional low-level feature
representation is learnt. Specifically we refer to this as a
time distributed block where the enclosing “conv” em-
bedding is applied to each frame within the time window
simultaneously. Each frame, now represented by these
CNN feature representation is the input to the LSTM layer
one at a time helping to learn the temporal dependencies
within the time window as in Figure 6. Given the dif-
ferences between our modalities we explore three LSTM
variations as follows.

• DCT-1D-CNN: Time distributed 1D Convolution ar-
chitecture (similar to Figure 5a) for the DCT features
of ACT and ACW.

• Raw-1D-CNN: Time distributed 1D Convolution ar-
chitecture (similar to Figure 5a) suited for all sensor
modalities.

• 2D-CNN: Time distributed 2D Convolution architec-
ture (similar to Figure 5a) for PM and DC data.

Evaluation

We adopt the Leave-One-Person-Out (LOPO) evaluation
methodology where each fold consists of an individual per-
son’s data. Accordingly we train a model with 29 user data
and test with 1 user data and repeat for 30 folds. This
methodology emulates a real-life deployment setting where
end-user data is not available during training. The Mean
Macro F1-score (i.e. dataset is class balanced) averaged

Classifier Embedding ACT ACW DC PM

1-NN
DCT 76.1 45.2 - -
Raw - - 68.2 56.9
AE - - 72.4 40.9

3-NN
DCT 76.3 46.5 - -
Raw - - 67.4 56.5
AE - - 73.4 37.1

SVM
DCT 84.7 47.7 - -
Raw - - 73.3 38.3
AE - - 78.2 70.0

MLP-ANN
ShallowANN 86.7 56.5 61.8 63.9

DeepANN 84.4 54.1 66.8 67.1

MLP-CNN
DCT-1D 87.9 56.1 - -
Raw-1D 72.7 40.1 82.4 70.6

2D - - 87.2 69.4

MLP-LSTM
DCT-1D-CNN 90.2 63.4 - -
Raw-1D-CNN 70.4 40.2 83.6 74.1

2D-CNN - - 78.2 70.8

Table 1: Results: F1-score(%) for ExR

across all 30 folds is presented as the performance measure.
We test for statistical significance at 95% confidence level
with Wilcoxon signed-rank test when selecting the best per-
forming architecture.

All MLP and AE models were implemented using Keras
and TensorFlow libraries for Python. MLP models are
trained end-to-end for 50 epochs, minimising the loss of
Categorical Cross-entropy using the AdaDelta optimiser.
AE models are trained for 100 epochs, minimising the
loss of Mean Squared Error using the AdaDelta optimiser.
The kNN, SVM models are implemented using scikit-learn
Python libraries.

Results

Table 1 presents the F1-score(%) results for the classifier
and feature representation method combinations, obtained
by individual sensors. In general MLP classifiers achieved
the best performance across different feature representation
methods compared to k-NN and SVM. In addition, MLP
with deep features performed comparatively better than the
shallow features. Overall best performances for ACT, ACW
and PM sensors were obtained with the 1D-CNN-LSTM ar-
chitecture, and for DC sensor with the 2D-CNN architec-
ture (highlighted in bold text). DC which is predominantly
a visual sensor as expected benefited from having feature
representations that are extracted by the 2D-CNN architec-
ture compared to the 1D-CNN or LSTM architectures. In
contrast ACW and ACT sensors with time-series data found
learning temporal dependencies with 1D-CNN to be more
advantageous. PM data surprisingly had sensor preferences
that were closely aligned with ACT and ACW sensors rather
than to the DC (despite the similarities with DC data).

Recognition with ACT and ACW data were best with the
1D-CNN-LSTM architecture (with 95% confidence). As ex-
pected learning temporal dependencies with LSTM results
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Figure 7: Confusion Matrices

in better feature representation for accelerometer data. Note
also with the DCT vs. raw accelerometer data, we found
deep architectures using DCT data to significantly outper-
form those using just the raw data (an increase of 19.71%
and 23.19% with LSTM and an increase of 15.20% and
15.92% with CNN respectively for ACT and ACW). These
results further confirm the evidence seen in literature com-
paring raw vs. transformation based feature representation
methods (Sani et al. 2017).

Best performances for DC and PM data were achieved
with 2D-CNN and 1D-CNN-LSTM architectures respec-
tively where they significantly outperformed (with 95% con-
fidence) all other architectures. k-NN and SVM performs
poorly with DC and PM data suggesting the importance of
learning feature representations with visual data compared
to raw data. DC data achieved a significant performance im-
provement with the AE reconstruction method over raw data
for 1-NN, 3-NN and SVM by 4.20%, 6.02% and 4.95% re-
spectively. For PM data we observe mixed results where a
significant performance improvement (31.71%) is seen with
SVM but not with kNN. When comparing Deep and Shal-
low ANN, the results affirm that visual sensor data are best
learned with deep architectures.

Confusion Matrices

A confusion matrix visualise the effectiveness of a classifi-
cation algorithm. We present the confusion matrices for the
best performing algorithm for each individual sensor in Fig-
ure 7. Each raw represent an exercise class and the correct
predictions are on the diagonal. It is not surprising that the

ACW sensor is unable to differentiate between exercises 1,
2 and 3 where wrists are kept stationary. Similarly PM and
DC sensors find exercise pairs 2, 3 and 6, 7 hard to differen-
tiate because of the similar movements of torso and hands. In
contrast, we observe that ACT sensor performs significantly
better among all exercise classes. We note with exercise 6,
although the thigh remains stationary, it has movements that
are unique compared to the other exercise, and so ACT per-
formance is not penalised (compared to ACW sensor).

In summary ExR results emphasised the classification al-
gorithms and feature representation methods that are opti-
mal for each sensor. Importantly we note that sensor modal-
ities with data heterogeneity prefer different feature repre-
sentation methods to highlight their inherent characteristics
that may get overlooked with generic functions. Confusion
matrices highlighted the capacity of each sensor to perform
ExR as a standalone sensor. ACT sensor successfully identi-
fied all seven exercises with high precision but we highlight
that the performance may get penalised with a different set
of exercises. Considering the obtrusiveness in deployment,
DC sensor is the most invasive sensor when installing at
a home environment, but wearable sensors and PM sensor
which is similar to a yoga mat does not introduce much ob-
struction. Considering all these factors, we realised the need
to reason with multiple sensors simultaneously. Accordingly
in future we will look at multi-modal sensor fusion methods
to recognise exercises with the MEx dataset.
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Conclusions

This paper presents the MEx: Multi-modal Exercises
Dataset for Human Activity Recognition and benchmark
performance on standard classification algorithms. This
dataset was presented with en route to implementing an end-
to-end digital intervention for exercise adherence monitor-
ing. The dataset contains 7 exercises recorded with four sen-
sors of heterogeneous data types. Our comparative study
suggests that Deep LSTM and CNN models achieve best
performances. In addition with confusion matrices we ex-
plore the capacity of each sensor to perform independently
and highlight the need for sensor fusion methods. Next we
plan to explore multi-modal sensor fusion methods with at-
tention mechanisms to improved performance while pre-
serving unobtrusiveness in the sensor setup. This work is
contributing towards implementing an exercise recognition
algorithm with multiple sensors and further more towards
performance quality assessment by comparing exercise per-
formances with recommended guidelines.
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