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Abstract 18 

Fungi-associated phytoremediation is an environmentally friendly and cost-efficient 19 

approach to removal potential toxic elements (PTEs) from contaminated soils. Many 20 

fungal strains have been reported to possess PTE-biosorption behaviour which 21 

benefits phytoremediation performance. Nevertheless, most studies are limited in rich 22 

or defined medium, far away from the real-world scenarios where nutrients are 23 

deficient. Understanding fungal PTE-biosorption performance and influential factors 24 

in soil environment can expand their application potential and is urgently needed. This 25 

study applied attenuated total reflection Fourier-transform infrared (ATR-FTIR) 26 

coupled with phenotypic microarrays to study the biospectral alterations of a fungal 27 

strain Simplicillium chinense QD10 and explore the mechanisms of Cd and Pb 28 

biosorption. Both Cd and Pb were efficiently adsorbed by S. chinense QD10 29 

cultivated with 48 different carbon sources and the biosorption efficiency 30 

achieved >90%. As the first study using spectroscopic tools to analyse 31 

PTE-biosorption by fungal cells in a high-throughput manner, our results indicated 32 

that spectral biomarkers associated with phosphor-lipids and proteins (1745 cm-1, 33 

1456 cm-1 and 1396 cm-1) were significantly correlated with Cd biosorption, 34 

suggesting the cell wall components of S. chinense QD10 as the primary interactive 35 

targets. In contrast, there was no any spectral biomarker associated with Pb 36 

biosorption. Addtionally, adsorption isotherms evidenced a Langmuir model for Cd 37 

biosorption but a Freundlich model for Pb biosorption. Accordingly, Pb and Cd 38 

biosorption by S. chinense QD10 followed discriminating mechanisms, specific 39 

adsorption on cell membrane for Cd and unspecific extracellular precipitation for Pb. 40 

This work lends new insights into the mechanisms of PTE-biosorption via IR 41 

spectrochemical tools, which provide more comprehensive clues for biosorption 42 



behaviour with a nondestructive and high-throughput manner solving the traditional 43 

technical barrier regarding the real-world scenarios. 44 

Keywords: cadmium, lead, biosorption, phytoremediation, carbon sources, 45 

ATR-FTIR spectrosocpy 46 

  47 



1. Introduction 48 

With the increasing development of many metal-related industries, e.g., metal mining, 49 

matal surface treating, energy production and fertilizer manufacturing, some metals 50 

(mercury, chromium, etc.) or non-metals (arsenic, selenium, etc.) possessing potential 51 

toxicities to human health are named as potential toxic elements (PTEs) and have 52 

become one of the most critical sources of environmental contamination (Dong et al., 53 

2010). Industrial residues containing PTEs are continuously discharged into the 54 

environment, posing vital threats to human life and ecosystems (Dong et al., 2010; 55 

Liu et al., 2013). PTE-induced toxicity has been recognized to last for an extended 56 

time in nature and accumulate in the food chain. The presence of PTEs even in traces 57 

is harmful to both flora and fauna, cadmium (Cd) exposure for instance, which may 58 

cause irreversible tubular damage in kidney (Järup, 2003; Leonard et al., 2004). 59 

Numerous PTE-contaminated sites have been identified and require remediation 60 

(Huang et al., 2019; Jiang et al., 2019). 61 

To remediate PTE-contaminated soils and reduce the exposure possibility, several 62 

approaches are developed and applied, including solidification (Tantawy et al., 2012), 63 

elution (Rui et al., 2019), phytoremediation (Jiang et al., 2018; Jin et al., 2019). 64 

Stabilization aims to adsorb or reduce PTEs, transferring unstable PTEs into stable 65 

phases with less availability, e.g., hydroxides and minerals (Wang and Vipulanandan, 66 

2001; Yuan et al., 2018). Stabilizers include natural minerals (Gheju et al., 2016), 67 

modified minerals (Ou et al., 2018; Sha et al., 2018; Singh et al., 2017), synthetic 68 

materials (Liu et al., 2014; Sarkar et al., 2010), and reductive reagents (Geelhoed et al., 69 

2003; Patterson et al., 1997). However, the long-term stability of stabilization strategy 70 

remains doubtful. Elution uses solvents to form PTE-chelates and enhance PTE 71 

mobility (Khan et al., 2010), but suffers from the poor efficiency in clay-rich soils 72 



owing to the relatively smaller osmotic coefficient which significantly abates PTE 73 

mobility (Bolan et al., 2014; Rui et al., 2019). Biosorption which uses biomaterials 74 

(bacteria, fungi, yeasts and plants) is highlighted as an alternative remediation 75 

approach for PTEs (Wang and Chen, 2006). Comparing to other approaches, 76 

biosorption is relatively cost-efficient, particularly for soils with low PTE levels (Yan 77 

and Viraraghavan, 2003) or co-contaminated with other organic compounds (Deng et 78 

al., 2018b). Phytoremediation is environmentally friendly to clean PTE-contaminated 79 

soils and remain soil functions (Wiszniewska et al., 2016). Plants generally handle the 80 

contaminants without damaging soil properties via an enormous ability to uptake and 81 

detoxify PTEs by various mechanisms, such as uptake by roots, translocation to aerial 82 

tissues and PTE- complexion with organic substances (Ali et al., 2013; Liu et al., 83 

2019). 84 

In the soil ecosystem, the major soil biomass and biodiversity are formed by 85 

microorganisms (Jin et al., 2019). Their presence in the rhizosphere plays important 86 

roles in PTE phytoremediation (Jin et al., 2019; Khan, 2005). Cr phytoremediation, 87 

for instance, is only effective for exchangeable or available Cr in soils (Shaheen et al., 88 

2019). Most phytoremediation practices use soil microbes or leaching reagents to 89 

enhance PTE removal performance since their availability is strongly linked with soil 90 

microbial activities (Deng et al., 2018a; Yin et al., 2015). Fungi, as one critical group 91 

of microorganisms, have been applied as metal biosorbents in phytoremediation in 92 

prior studies (Say et al., 2001). PTE biosorption capability of Saccharomyces 93 

Cerevisiae ranges from 10 to 300 mg/g dry-cell-weight (DCW) for lead (Pb) and 10 to 94 

100 mg/g DCW for Cd (Wang and Chen, 2006). Penicillium sp. MRF-1 has a strong 95 

Cd biosorption capacity (0.13-9.39 mg/g DCW) (Velmurugan et al., 2010) and the 96 

maximum biosorption capacity of Exiguobacterium sp. is 15.6 mg/g DCW for Cd 97 



(Park and Chon, 2016). The mechanisms of fungal PTE biosorption are complicated 98 

and mainly consist of two key stages: direct adsorption on fungal membrane and 99 

penetration through cell wall. The first stage is a passive biosorption process 100 

independant on fungal metabolism, and the key influential factor is the functional 101 

groups on cell membrane which affect the interactions between fungal cells and PTE 102 

ions (Leonard et al., 2004). In the second stage, PTE ions penetrate the cell membrane 103 

and enter cells via active biosorption, and it is dependent on fungal metabolism and 104 

related to the transportation and deposition of PTEs (Leonard et al., 2004). 105 

Accordingly, from the eventual allocation of PTEs within cells, biosorption can be 106 

classified as extracellular accumulation or precipitation, cell surface sorption or 107 

precipitation, and intracellular accumulation (Veglio and Beolchini, 1997). However, 108 

most previous studies address fungal PTE biosorption in rich or defined media with 109 

limited carbon sources, not able to represent their phenotypic features and biosorption 110 

performance in real-world scenarios, where the biosorption process is influenced by 111 

many environmental variables, such as PTE availability, carbon sources and growth 112 

conditions (Hamdy, 2000; He and Chen, 2014; Wang and Chen, 2014). It is of great 113 

importance to inspect microbial phenotypic features and PTE biosorption capabilities 114 

across a wide range of environmental conditions representing real-world scenarios, 115 

and a reliable and high-throughput analytical method is urgently required. 116 

Biospectroscopy as a group of interdisciplinary tools has many advantages in 117 

microbiological study owing to their measurement attributes with a high-throughput, 118 

nonintrusive and nondestructive manner (Heys et al., 2014; Jin et al., 2020; Jin et al., 119 

2017a; Li et al., 2017; Martin et al., 2010). Infrared (IR) spectroscopy, for instance, 120 

relies on the principle that the energy from the infrared radiation is absorbed by the 121 

bending, stretching and twisting of bonds (C-H, O-H, N-H, C=O, C-C, etc.) within the 122 



sample, resulting in characteristic transmittance and reflectance patterns (Martin et al., 123 

2010; Naumann et al., 2005). Previous spectroscopic studies have successfully 124 

detected the presence of fungal cells, characterized fungal species, and diagnosed 125 

fungi-induced diseases (Gordon et al., 1999; Kos et al., 2002; Naumann et al., 2005). 126 

Recently, biospectroscopic approaches are expanded to determine microbial 127 

interactions with environmental stimuli, e.g., antibiotic resistance (Jin et al., 2017a; 128 

Jin et al., 2017b), showing great potentials in studying PTE-biosorption processes and 129 

bringing new insights into the relevant mechanisms. Yet, no such attempt is reported. 130 

The present study applied attenuated total reflection Fourier-transform infrared 131 

(ATR-FTIR) spectroscopy coupled with phenotype microarrays to characterize the 132 

biosorption of Cd and Pb by a fungal strain Simplicillium chinense QD10 cultivated 133 

with 48 different carbon sources. This is the first study using spectrochemical tool to 134 

analyse fungal PTE-biosorption process and investigate the impacts of carbon sources 135 

in a high-throughput and nondestructive manner. Our results aimed to provide a 136 

valuable spectroscopic database to look deeper into the biosorption mechanism from a 137 

novel perspective and offer new clues to enhance fungi-associated phytoremediation 138 

by altering the metabolic activities and biosorption performance of fungal cells in 139 

real-world scenarios. 140 

2. Materials and Methods 141 

2.1 Strains and cultivation condition 142 

The fungal strain Simplicillium chinense used in this study was isolated in soils from 143 

Zhalong Wetland (47°32'30''N, 124°37'50''E, Qiqihar City, China) in October 2015. It 144 

was named as S. chinense QD10 and had a satisfactory biosorption performance for 145 

Cd and Pb (Jin et al., 2019). This strain was cultivated in potato dextrose medium 146 



(200 g of potato, 20 g of glucose and 20 g of agarose dissolved in 1,000 mL of 147 

deionized water and autoclaved) at 28°C for 5 days. Subsequently, the cells were 148 

washed and resuspended in deionized water as stock solution for further treatment. Cd 149 

and Pb stock solutions were prepared by dissolving Pb(NO3)2 and CdSO4 in deionized 150 

water, respectively. The final concentration of Cd and Pb in stock solution was 1.0 151 

g/L. 152 

PM1 plate (BIOLOG, Hayward, CA, USA) was used to examine the carbon metabolic 153 

features of S. chinense QD10. Fifteen microliters of the cell stock solution were 154 

resuspended in 135 µL of minimal medium (Zhang et al., 2011) and then added into 155 

each well of a PM1 plate. Each well was then supplemented with 1.5 µL of Redox 156 

Dye Mix A (100×, BIOLOG, Hayward, CA, USA) to monitor fungal growth. The 157 

plate was incubated at 30ºC for 5 days, and the colour development was measured 158 

every 4 hours for the absorbance at 590 nm wavelength (respiratory unit, RU) by a 159 

multimode microplate reader (FLUOstar Omega, BMG Labtech, UK). To avoid the 160 

influence of Redox Dye on fungal biospectra, another treatment was prepared 161 

following the same protocol except for the addition of Redox Dye Mix A, and used 162 

for biospectral analysis. All the treatments were carried out in triplicates. 163 

2.2 Cd/Pb biosorption treatment and chemical analysis 164 

After 5-day cultivation, each well of PM1 plate was subjected with 20 µL of Pb or Cd 165 

stock solution and kept shaking for 2 hours (final Pb or Cd concentration of 100 166 

mg/L). Subsequently, the supernatant was collected after 3,000-rpm centrifugation for 167 

20 min. The cell pellets were further washed with 5 mL deionized water and 168 

centrifuged again (3,000 rpm) for another 20 min. The supernatants from two-step 169 

centrifugation were combined, spiked with 20 μL of internal standards (103Rh, 45Sc, 170 



209Bi), and diluted with deionized water to a final volume of 50 mL for metal analysis. 171 

Cd and Pb were analyzed by inductively coupled plasma mass spectrometry (ICP-MS, 172 

X-series 2, Thermo Scientific, USA), and the detection wavelength was 228.8 and 173 

283.3 nm, respectively. The standard calibration solution contained a mixture of Cd 174 

and Pb in HNO3 (0.1 M), ranging from 0 to 100 μg/L.  175 

2.3 Infrared spectra measurement 176 

Cell pellets after biosorption were further washed three times with sterile deionized 177 

water to remove the residues of growth media and resuspended in 70% ethanol for 178 

fixation. The washed cell pellets (minimal amount >5 µL) were applied onto Low-E 179 

slides for interrogation by ATR-FTIR spectroscopy. A TENSOR 27 FTIR 180 

spectrometer (Bruker Optics Ltd., UK) equipped with a Helios ATR attachment 181 

(containing a diamond internal IRE; incidence angle of the IR beam: 45°) was used 182 

and the instrument parameters were set as 32 scans and spatial resolution of 8 cm-1. 183 

Before the measurement of a new sample, the crystal was cleaned with deionized 184 

water, and the background readings were retaken. A total of 20 spectra were acquired 185 

for each treatment. 186 

2.4 Data analysis 187 

The RU of fungal cells was analysed by MARS software (BMG Labtech, UK). The 188 

relative RU for fungal growth with each carbon source was calculated as the mean of 189 

all RUs measured on day 5. The growth index (GI) of fungal cells cultivated with 190 

different carbon source was calculated in Equation (1). 191 

GI� =
[���	
��� ��]�

[���	
��� ��]��
− 1.0      (2) 192 

Here, GI�  refers to the GI in nth well. [Relative RU]�  and [Relative RU]�  193 



represent the relative RU in nth well and well A1 (no carbon source, negative control), 194 

respectively. 195 

Fungal biomass was obtained by drying the cell pellets and measuring the weight with 196 

the unit of dry cell weight (DCW). The linear regression between the GI and biomass 197 

was obtained by serially diluted fungal suspension with the known GI and biomass, 198 

following Equation (2). 199 

Biomass = 0.196 × GI + 0.168      (2) 200 

The initial spectral data generated from ATR-FTIR spectroscopy were analyzed 201 

within MATLAB R2011a software (TheMathsWorks, Natick, MA, USA), coupled 202 

with IrootLab toolbox (http://irootlab.googlecode.com) (Trevisan et al., 2013). Unless 203 

otherwise stated, the acquired spectra were truncated to the biochemical-cell 204 

fingerprint region (1800-900 cm-1), rubberband baseline corrected and normalized to 205 

Amide I (1650 cm-1) (Baker et al., 2014; Martin et al., 2010). Second order 206 

differentiation baseline correction and vector normalization were also performed as an 207 

alternative mean to process the data. Cross-calculation principal component analysis 208 

followed by linear discriminant analysis (PCA-LDA) was subsequently applied to the 209 

preprocessed data to reduce the number of spectra to 10 uncorrelated principal 210 

components (PCs), which account for >99% of the total variance; LDA is a 211 

supervised technique coupled with PCA in order to maximize inter-class and 212 

minimize intra-class variance (Martin et al., 2010). To identify the specific IR bands 213 

associated with fungal growth and biosorption efficiency of Pb or Cd, cluster vector 214 

approach was conducted and visualized the discriminating difference (Butler et al., 215 

2015; Martin et al., 2010). The relationships between each IR band intensity and GI, 216 

Pb biosorption efficiency or Cd biosorption efficiency across media supplemented 217 



with 48 carbon sources were analysed by Pearson correlation analysis (p<0.05). All 218 

the statistical analyses were carried out in GraphPad Prism 6 unless specific 219 

statement. 220 

3. Results 221 

3.1 S. chinense QD10 growth profiles cultivated with 48 carbon sources 222 

The growth curves of S. chinense QD10 obtained from the RU measurement 223 

illustrated significant differences across media supplemented with 48 carbon sources 224 

(Figure 1A). In all treatments, an obvious lag phase lasted for about 8 hours, followed 225 

by a dramatical increasing RU for some carbon sources. After the logarithmic growth 226 

phase, S. chinense QD10 entered the stationary phase at 72 hours. These results 227 

demonstrated that S. chinense QD10 could effectively utilize some carbon sources and 228 

achieve satisfactory growth for 3 days. Figure 1B illustrated that the four carbon 229 

sources possessing significantly higher GI (>1.0) were L-glutamine, Tween 80, 230 

glycolic acid and methylpyruvate. Fourteen carbon sources moderately supporting the 231 

growth of S. chinense QD10 (0.5<GI<1.0) included α-hydroxyglutaric acid-g-lactone, 232 

α-hydroxybutyric acid, adenosine, Gly-Asp, fumaric acid, bromosuccinic acid, 233 

glyoxylic acid, D-cellobiose, inosine, Gly-Glu, tricarballylic acid, p-hydroxyphenyl 234 

acetic acid, m-hydroxyphenyl acetic acid, and 2-aminoethanol. Other carbons sources 235 

were barely useable by S. chinense QD10 as the GI was <0.5. Based on the molecular 236 

structure and functional groups, 48 carbon sources were categorized into five groups 237 

as nucleic acids, carbohydrates, carboxylic acids, amino acids and others. There was 238 

no significant difference in fungal growth between the five groups of carbon sources 239 

(p>0.05). 240 



3.2 Cd and Pb biosorption by S. chinense QD10 cultivated with 48 different 241 

carbon sources 242 

Both Cd and Pb were efficiently adsorbed by S. chinense QD10 cultivated in minimal 243 

medium with 48 different carbon sources, and the biosorption efficiency achieved >90% 244 

for all treatments (Table S1 in Electronic Supporting Information, ESI). Two 245 

adsorption equilibrium models (Langmuir and Freundlich) were applied to understand 246 

Cd and Pb biosorption mechanisms by S. chinense QD10. The Langmuir isotherm 247 

model represents the monolayer adsorption mechanism with a restriction of no 248 

stacking of adsorbed molecules, as described in Equation (3). The Freundlich 249 

isotherm model represents both monolayer and multilayer adsorptions by considering 250 

the heterogeneous surfaces possessing different sorption energy sites, as described in 251 

Equation (4). 252 

*+ =  *,-.
/012

 3 /012
         (3) 253 

*+ =  456+
 /�

          (4) 254 

Here, *+ (mg/g DCW) refers to the total Cd/Pb biosorption capacity, and 6+ (g/L) 255 

represents the equilibrium Cd/Pb concentration in the liquid phase. *,-.  (mg/g 256 

DCW) is the maximum Cd/Pb biosorption capacity for monolayer adsorption in 257 

Langmuir isotherm model, and 48 (L/mg) is the Langmuir constant associated with 258 

adsorption energy. 45 (mg/g DCW) represents Cd/Pb biosorption capacity in both 259 

monolayer and multilayer mechanism in Freundlich isotherm model, and 1/?? is the 260 

heterogeneous sorption sites. Either Langmuir or Freundlich isotherm model can be 261 

expressed in a linear form as shown in Equations (5) and (6), respectively. 262 

12

:2
=  

 

:;<=·/0
+  

12

:;<=
       (5) 263 



log*+ = log45 +
 

�
× log6+       (6) 264 

Figure 2A illustrates that Cd biosorption fits better with Langmuir isotherm 265 

(R2=0.7324) than Freundlich isotherm (R2=0.0653). The maximum Langmuir 266 

biosorption capacity (*,-. ) is 1.81 (mg/g DCW) and the Langmuir constant 267 

associated with adsorption energy (KL) is 1.75 L/mg. In contrast, Pb biosorption fits 268 

better with Freundlich isotherm (R2=0.9458) than Langmuir isotherm (R2=0.1121, 269 

Figure 2B). The empirical parameter related to heterogeneous sorption site (1/n) is 270 

0.84 and the biosorption capacity (KF) is 0.77 (mg/g DCW) in Freundlich isotherm. 271 

3.3 Infrared spectra of S. chinense QD10 cultivated with 48 different carbon 272 

sources 273 

In general, S. chinense QD10 shared similar infrared spectra across 48 different 274 

carbon sources regarding the cellular structures (Figure 3A), including lipid (~ 1750 275 

cm-1), Amide I (~ 1650 cm-1), Amide II (~ 1550 cm-1), Amide III (~ 1260 cm-1), 276 

carbohydrate (~ 1155 cm-1) and symmetric phosphate stretching vibrations (~ 1080 277 

cm-1). The 1D score plot of PCA-LDA (Figure 3B) indicated the variations between 278 

each category of carbon source, and one-way ANOVA test coupled with Turkey’s 279 

multiple comparisons demonstrated that the biospectra in the five groups of carbon 280 

sources were significantly differentiated (p<0.05), except for the variation between 281 

the groups of amino acids and others (p>0.05). 282 

The cluster vector analysis reveals more information regarding the biomolecular 283 

difference (Figure 4), which includes five primary peaks derived from original spectra 284 

as relevant biomarkers for each group of carbon sources. More precisely, the 285 

biomarkers of S. chinense QD10 cultivated with amino acids are (~1134 cm-1), PO2
- 286 

asymmetric (~ 1265 cm-1), Amide III (~ 1185 cm-1), Amide II (~ 1517 cm-1) and C=O 287 



(~ 1728 cm-1). Besides the peak of PO2
- asymmetric (~ 1265 cm-1), other significant 288 

peaks of carbohydrate-cultivated S. chinense QD10 cells are RNA (~ 1117 cm-1), CH 289 

in-plane bend (~ 1510 cm-1), Amide I (~ 1659 cm-1) and C=O, lipids (~ 1740 cm-1). In 290 

nucleic acid group, the characteristic peaks are v(CO), v(CC) (~ 1018 cm-1), 291 

deoxyribose (~ 1188 cm-1), (~ 1269 cm-1), Amide II (~ 1540 cm-1) and lipids (~ 1740 292 

cm-1). For carboxylic acid group, the characteristic peaks include stretching vibrations 293 

of hydrogen-bonding, C-OH groups (~ 1153 cm-1), N-H thymine (~ 1276 cm-1), C=C, 294 

deformation C-H (~ 1496 cm-1), Ring base (~ 1555 cm-1), base carbonyl stretching 295 

and ring breathing mode (~ 1620 cm-1). Characteristic peaks for other carbon sources 296 

include stretching C-O deoxyribose (~ 1056 cm-1), C-O stretching vibration (~ 1150 297 

cm-1), PO2
- asymmetric (~ 1256 cm-1), ring base (~ 1555 cm-1) and lipids (~ 1740 298 

cm-1). 299 

3.4 Mechanisms of Cd and Pb biosorption via spectral analysis 300 

As fungal PTE-biosorption consists of two key stages as direct adsorption on fungal 301 

membrane and penetration through cell wall, they might be distinguished by 302 

analyzing the functional groups of cellular components or extracellular polymeric 303 

substance (EPS). Although PCA-LDA is applied to assess the ‘fingerprint region’ to 304 

characterize the relationships between the whole biospectra and fungal growth or 305 

biosorption efficiency, it is very challenging because the enormous spectral alterations 306 

across 48 different carbon sources (Figure 5A). We therefore attempted to identify 307 

discriminating alterations by introducing Pearson correlations to determine the 308 

relationships between microbial activities (e.g., biomass, Pb biosorption, Cd 309 

biosorption) and spectral variations based on cluster vector analysis. The results 310 

indicated that several discriminating alterations positively correlated with fungal 311 

biomass (Figure 5A), including 1340 cm-1 (collagen, p<0.05), 1136 cm-1 (collagen, 312 



p<0.05) and 966 cm-1 (C-C DNA, p<0.05). These peaks could be viewed as 313 

biomarkers for fungal growth (Figure 5B-5D). The significant peaks associated with 314 

Cd biosorption included 1745 cm-1 (phospholipids, p<0.05), 1620 cm-1 (nucleic acid, 315 

p<0.05), 1456 cm-1 (lipids and proteins, p<0.05), 1396 cm-1 (proteins, p<0.05) and 316 

1057 cm-1 (stretching C-O deoxyribose, p<0.05), as illustrated in Figure 5E-5I. 317 

However, there was no biomarker correlated with Pb biosorption, further confirming 318 

the different biosorption mechanisms between Cd and Pb as suggested by the results 319 

of biosorption isotherms. 320 

4. Discussion 321 

4.1 Biosorption capability of S. chinense QD10 on Cd and Pb 322 

Previous studies investigating microbes as biosorbents have demonstrated strong 323 

capacities of microbial cells to absorb and remove PTEs, such as marine algae and 324 

yeasts (Goyal et al., 2003; Özer and Özer, 2003; Volesky and Holan, 1995; Wang and 325 

Chen, 2006). Ascophyllum and Sargassum, which can accumulate PTEs more than 30% 326 

of dry weight biomass (Volesky and Holan, 1995). Saccharomyces Cerevisiae is a 327 

species belonging to yeast, whose PTE biosorption capability ranges from 10 to 300 328 

mg/g DCW for Pb and 10 to 100 mg/g DCW for Cd from the equilibrium biosorption 329 

processes (Wang and Chen, 2006). PTE biosorption by fungi has also been 330 

investigated, such as Penicillium sp. MRF-1 which has a strong biosorption capacity 331 

of Cd (0.13-9.39 mg/g DCW) (Velmurugan et al., 2010) and Exiguobacterium sp. 332 

with a maximum biosorption capacity of 15.6 mg/g DCW for Cd in Langmuir 333 

isotherm (Park and Chon, 2016). In the present study, the biosorption capacity of S. 334 

chinense QD10 was 0.77 mg/g DCW for Pb and 1.81 mg/g DCW for Cd, much lower 335 

than a previous report on the same strain in rich medium (24.6 mg/g DCW for Cd and 336 



31.2 mg/g DCW for Pb) (Jin et al., 2019). It might be attributing to the defined 337 

medium used in this study, which is nutrient deficient and cannot support the best 338 

fungal growth. Accordingly, fungal cells might not achieve optimal activities, 339 

resultsing in limited active binding sites on fungal cell membrane and lower Cd/Pb 340 

biosorption capacity by S. chinense QD10. However, defined medium fits better with 341 

the real scenarios in natural habitats, where microbes survive under nutrient depletion 342 

conditions (Jin et al., 2017a; Jin et al., 2018a). Our result provides a high-throughput 343 

and more comprehensive database to evaluate the PTE-biosorption performance of S. 344 

chinense QD10 regarding phytoremediation practices. 345 

4.2 Biospectral fingerprints of S. chinense QD10 346 

Biospectroscopy has a long history of studying biological cells. IR spectroscopy can 347 

be traced back to 1950s (Jin et al., 2017b) and has been extensively applied as a 348 

sensitive and rapid screening tool for characterizing microbes (Jin et al., 2017b; 349 

Picorel et al., 1991). Over the past 20 years, IR spectroscopy is successfully 350 

developed for examining biological molecules at cell or tissue level, including 351 

bacteria, yeast and mammalian cells (Baker et al., 2014; Martin et al., 2010; 352 

Movasaghi et al., 2008). However, only limited works focus on fungi, and there is 353 

lack of well-established database for fungal spectral biomarkers. In the present study, 354 

our results illustrated similar biospectra with several key biomarkers of fungi 355 

comparing to those of bacterial cells based on past literatures, including lipid (~ 1750 356 

cm-1), Amide I (~ 1650 cm-1), Amide II (~ 1550 cm-1), carbohydrate (~ 1155 cm-1) and 357 

symmetric phosphate stretching vibrations (~ 1080 cm-1) (Baker et al., 2014; 358 

Maquelin et al., 2003; Martin et al., 2010). It might be attributed to the similar cell 359 

wall components, such as lipids, proteins and carbohydrate, even though fungi are 360 

protected by a true cell wall (Sağ, 2001). 361 



4.3 Spectral biomarkers for S. chinense QD10 growth across carbon source 362 

groups 363 

Although the GI of S. chinense QD10 cultivated with different carbon source groups 364 

showed no significant difference, the cluster vector analysis raises more biochemical 365 

information by locating the discriminating biomarkers across carbon source categories. 366 

These biomarkers reveal the metabolic features of S. chinense QD10 responsive to 367 

carbon sources. Cultivated with carbohydrate, for instance, biospectra of S. chinense 368 

QD10 have specific biomarkers including PO2
- asymmetric (~ 1265 cm-1), RNA (~ 369 

1117 cm-1), CH in-plane bend (~ 1510 cm-1), Amide I (~ 1659 cm-1) and C=O, lipids 370 

(~ 1740 cm-1), indicating the occurrence of complex carbohydrate metabolic 371 

processes during fungal growth (Figure 4). These biomarkers are significantly 372 

different from those linked with bacterial growth except for Amide I (~ 1659 cm-1) 373 

(Jin et al., 2018a; Jin et al., 2018b), suggesting distinct metabolite profiles between 374 

fungal and bacterial growth. Carbohydrates are reported to associate with fungal 375 

metabolism, not only providing energy for the synthesis of trehalose, polyols, 376 

glycogen, fatty acids and other cellular components, but also supplying carbon 377 

skeleton for other metabolic processes, such as hyphal growth and amino acid 378 

biosynthesis (Bago et al., 2003; Deveau et al., 2008; Rasmussen et al., 2008). As the 379 

fungal metabolisms vary across intra- and inter-groups of different carbon sources 380 

throughout the growth period, there is no clear relationship between growth and 381 

carbon source categories. 382 

We further applied Pearson correlation analysis based on cluster vector analysis to 383 

link the spectral variations with fungal biomass and identify some key biomarkers for 384 

fungal growth. The IR bands significantly correlated with GI include 1340 cm-1 385 

(collagen), 1136 cm-1 (collagen) and 966 cm-1 (C-C DNA, Figure 5B-5D), implying 386 



strong associations of these cellular components with fungal growth. Among them, 387 

the DNA-spectral biomarker represents DNA replication through cell reproduction 388 

process (Jin et al., 2018a; Jin et al., 2018b). Additionally, the collagen-associated 389 

spectral alterations are very likely linked to the formation of fungal fimbriae, which 390 

consist of collagen and are abundant on extracochlear surfaces (Celerin et al., 1996). 391 

Our results suggest that these spectral biomarkers can be used as fungal growth 392 

indicators in future studies. 393 

4.4 Derived biospectral biomarkers explaining different mechanisms of Cd and 394 

Pb biosorption 395 

Cultivated with different carbon sources, Cd and Pb biosorption by S. chinense QD10 396 

followed the Langmuir and Freundlich isotherm, respectively. It implied distinct 397 

mechanisms behind Pb and Cd biosorption, consistent with our previous report (Jin et 398 

al., 2019). As the Langmuir isotherm represents the monolayer adsorption mechanism 399 

and the Freundlich isotherm describes both monolayer and multilayer adsorptions by 400 

considering the heterogeneous surfaces possessing different sorption energy sites, 401 

spectrochemical analysis might provide deeper insights via diagnosing spectral 402 

alterations associated with PTE biosorption process. 403 

The results of spectral analysis indicate that phosphor-lipids and proteins (1745 cm-1, 404 

1456 cm-1, 1396 cm-1) are strongly correlated with Cd biosorption (Figure 5E-5I). It 405 

suggests that the cell wall components of S. chinense QD10 are the primary 406 

interactive targets for Cd biosorption, such as polysaccharides, proteins and lipids 407 

which offer abundant metal-binding functional groups, e.g., carboxylate hydroxyl, 408 

sulphate, phosphate and amino groups (Veglio and Beolchini, 1997). It is consistent 409 

with the fact that Cd biosorption isotherm follows the Langmuir isotherm and is more 410 



likely driven by the cell surface sorption that both proteins and carbohydrate fractions 411 

are involved in the binding of Cd ions (Jin et al., 2019). In contrast, no spectral 412 

biomarker is observed to significantly associate with Pb biosorption. This result is 413 

also evidenced by the Freundlich isotherm of Pb biosorption describing both 414 

monolayer and multilayer adsorptions by considering the heterogeneous surfaces. 415 

Thus, it suggests that extracellular precipitation explains the majority of Pb 416 

biosorption and EPS possess a substantial quantity of anion functional groups 417 

adsorbing Pb2+ ions (Wang and Chen, 2006). 418 

This discrimination may be derived from the two stages of PTE biosorption 419 

mechanisms by fungi: direct adsorption on fungal membrane and penetration through 420 

cell wall (Leonard et al., 2004). These two stages can occur independently, possibly 421 

resulting in disticnt biosorption behaviour across biosorbents (microbial species) or 422 

PTEs. For instance, exopolysaccharides (EPS) represent an interesting affinity for Pb, 423 

which is a metabolism-independent process driven by interactions between the cations 424 

and negative charges of acidic functional groups of EPS (Pérez et al., 2008). As EPS 425 

are a mixture of biomaterials, such as EPS, glucoprotein, lipopolysaccharide and 426 

soluble peptide (Jin et al., 2019), it is very challenging to distinguish and extract 427 

specfic spectral biomarkers associated with extracellular components responsible for 428 

PTE biosorption. Our results hint that discriminating peaks derived from IR spectra 429 

could satisfactorily uncover the behaviour and mechanisms of PTE biosorption by 430 

interrogating the distinct functional groups or cellular components (Martin et al., 431 

2010). 432 

5. Conclusion and remarks 433 

Fungi-assisted phytoremediation is an environmentally-safe approach to remove PTEs 434 



from contaminated soils, and PTE biosorption by fungi is a critical step in 435 

phytoremediation. This study introduced ATR-FTIR spectroscopy coupled with 436 

Biolog PM plate as a non-destructive and high-throughput approach to investigate the 437 

performance and mechanisms of Cd and Pb biosorption by a fungal strain S. chinense 438 

QD10 cultivated with difference carbon sources. For the first time, we found several 439 

spectral biomarkers associated with the growth (1340 cm-1, 1136 cm-1, 966 cm-1) and 440 

Cd biosorption (1745 cm-1, 1620 cm-1, 1456 cm-1, 1396 cm-1, 1057 cm-1) of S. 441 

chinense QD10. Cd biosorption primarily followed the monolayer Langmuir isotherm 442 

and was mainly driven by the cell surface sorption, unravelled by the spectral 443 

alterations affiliated with proteins and carbohydrates (1745 cm-1, 1456 cm-1, 1396 444 

cm-1). For Pb biosorption, EPS possibely possessed a substantial quantity of anion 445 

functional groups adsorbing Pb2+ ions as extracellular precipitation, thus following 446 

multilayer Freundlich isotherm and representing no significant spectral biomarkers. 447 

Our results suggested biospectroscopy as a powerful tool in investigating the 448 

interactions between fungal cells and PTEs, distinguishing both functional groups and 449 

mechanisms associated with PTE biosorption process. This study lends new sights 450 

into fungal PTE biosorption and offers database of their behaviour across various 451 

carbon sources, revealing the tip of the iceberg regarding the interactions between 452 

microbes and PTEs in real-world scenario from spectroscopic perspective, which 453 

implies great potential for enhancing phytoremediation. 454 
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9. Figure Captions 664 

Figure 1. Growth profiles of S. chinense QD10 with 48 different carbon sources. (A) 665 

Growth curves during a 144-hour cultivation period. (B) Growth indices (GI) of S. 666 

chinense QD10 in comparison with the negative control (A1, no carbon source). 667 

Figure 2. Cd and Pb adsorption isotherms by S. chinense QD10 cultivated with 48 668 

different carbon sources. (A) Langmuir isotherm model representing the monolayer 669 

adsorption mechanism. (B) Freundlich isotherm model representing both monolayer 670 

and multilayer adsorptions by considering the heterogeneous surfaces possessing 671 

different sorption energy sites. Initial concentration of Cd and Pb was 100 mg/L and 672 

the adsorption time was 2 hours. 673 

Figure 3. (A) Mean spectra of all pre-processed data of S. chinense QD10 cultivated 674 

with 48 different carbon sources based on rubberband baseline correction and Amide I 675 

(1650 cm-1) normalization. (B) PCA-LDA categorizations of S. chinense QD10 676 

cultivated with five groups of carbon sources, including nucleic acid, carbohydrate, 677 

carboxylic acid, amino acid and others. Twenty infrared spectra were randomly 678 

obtained per treatment. Different small letters indicate significant difference 679 

(Duncan's test, p<0.05) among treatments. 680 

Figure 4. Cluster vector analysis of S. chinense QD10 cultivated with five groups of 681 

carbon sources. The unique spectral biomarkers for each carbon source group are 682 

labelled. Twenty infrared spectra were randomly obtained per treatment. 683 

Figure 5. (A) Cluster vector of S. chinense QD10 cultivated with 48 different carbon 684 

sources. Colour bars illustrate IR bands possessing significant correlations (p<0.05) 685 

with growth index (GI, green), Pb biosorption efficiency (blue) and Cd biosorption 686 

efficiency (red). IR bands significantly correlate with GI include: (B) 1340 cm-1 687 



(collagen), (C) 1136 cm-1 (collagen) and (D) 966 cm-1 (C-C DNA). IR bands 688 

significantly correlate with Cd biosorption efficiency include: (E) 1745 cm-1 689 

(phospholipids), (F) 1620 cm-1 (nucleic acid), (G) 1456 cm-1 (lipids and proteins), (H) 690 

1396 cm-1 (proteins) and (I) 1057 cm-1 (stretching C-O deoxyribose). 691 
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Highlights 

1) Cd/Pb biosorption performance by S. chinense QD10 across 48 carbon sources 

2) Langmuir model for Cd biosorption and Freundlich model for Pb biosorption 

3) First ATR-FTIR spectroscopic study on metal biosorption mechanisms 

4) Novel spectral biomarkers for fungal growth and Cd biosorption 
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