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AbstractAbstractAbstractAbstract    27 

Electrodialysis is an important chemical process that separates pollutants from wastewater pools to 28 

produce clean water for consumption and irrigation. Initial wastewater concentration of chemical 29 

elements always differs. Chemical components are strongly dependent on the efflux origin and treatment. 30 

To optimize an electrodialysis process is congruent to improved key water quality characteristics. To 31 

predict optimal electrodialysis performance there will always be a need to conduct a small number of 32 

structured experiments. This is because wastewater conditions are usually different in each situation 33 

thus requiring reliable evidence-based design decisions to be delivered timely and low-cost. We study a 34 

real example from crucial dessert wastewater operations that aim to supply clean water for irrigation. 35 

Several issues are scrutinized that are often overlooked when carrying out multi-response multi-factorial 36 

statistical optimization in environmental screening. Programming fast-cycle trials with Taguchi-type 37 

factorial recipes reaps quick information for new development and improvement projects. But it also 38 

introduces phenomena such as saturation, unreplication and non-linearity that could undermine the 39 

optimization effort. The showcased paradigm uses popular Taguchi methods to organize a rapid and short 40 

round of trials in order to investigate the behavior of four electrodialysis controlling factors: 1) the dilute 41 

flow, 2) the cathode flow, 3) the anode flow and 4) the voltage. The three monitored water quality indices 42 

are: 1) the percentage of removed sodium cations, 2) the sodium adsorption ratio and 3) the sodium ratio. 43 

We discuss the intricacies that emerge from the synthetic type of the electrodialysis data: non-normality, 44 

non-linearity and messiness. We propose a robust and agile method to conduct the multi-response multi-45 

factorial optimization for electrodialysis of polluted wastewater. It is based on super-ranking and 46 

distribution-free profiling. Comparison with other profiling methods is provided and main advantages are 47 

commented from a chemical engineering perspective.      48 

Keywords:Keywords:Keywords:Keywords: Wastewater, electrodialysis, multi-response optimization, robust multi-factorial process 49 

profiling, non-linear non-normal data, data messiness. 50 
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1.1.1.1. IntroductioIntroductioIntroductioIntroductionnnn    53 

Water is the ultimate commodity on this planet since life without water cannot exist. It is oxymoron that 54 

while water covers 70% of the earth’s surface, a scarce portion of less than 1% is only available for human 55 

consumption. This minimal amount is forecasted not to be sustainable to quench the household and 56 

farming requirements for a rapidly growing human population in the near future [1, 2]. Population 57 

migration trends away from arid areas would exacerbate the problem as the planet eco-system warms-up. 58 

However, sprouting water-treatment technologies seem to promise opportunities for broader accessibility 59 

to potable water [3, 4]. Brackish and saline sea water sources are considered for immediate exploitation 60 

but wastewater supplies are also not to be overlooked. Desalination and water recycling are at the 61 

forefront of treatment options for both purposes: 1) to store drinkable water and 2) to irrigate farms [5, 6]. 62 

Roughly three quarters of the distributed water is directed to farming. It is foreseeable then that large-63 

scale irrigation operations should draw more engineering attention. There are quite a few engineering 64 

options that might be attuned to supply enough water to agricultural land [7]. Highest priority projects to 65 

water accessibility are those that align toward reaching ‘Goal 6’ of the United Nations Sustainable 66 

Development [48] congruent to disadvantaged human ecosystems. Automatically, in an upward chain-67 

reaction fashion, accomplishing ‘Goal 6’ directly aids in attaining ‘Goal 2’ (zero hunger) [49] by also 68 

offering opportunities to cultivate arid land and consequently inching closer to ‘Goal 1’ (Poverty 69 

termination) [50]. Engineering solutions based on membrane separation technology – forward or reverse 70 

osmosis – seem to be more frequent but their high cost of ownership has not established them as a 71 

universal cure-all [8]. In particular, when the feed source is wastewater, issues of biofouling and chemical 72 

element adjustment need to be addressed, making reverse osmosis rather an expensive alternative and 73 

suitable only for high added-value cultivations. Recently, electrodialysis has been studied as a potentially 74 

useful option to treat drainage wastewater and other polluted water bodies for large-scale planting [7]. 75 

Developing farming conditions in semi-arid or arid areas around the planet is indispensable. 76 

Electrodialysis could aid in this direction by toning down sodium content while balancing soil minerals - 77 

calcium, potassium and magnesium - to favorable concentrations for plant growth. For arable crops, 78 
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readily available soil potassium correlates positively with yield [9]. Moreover, electrodialysis (ED) of 79 

wastewater could control outflow water potassium content such that to facilitate the compensation of 80 

leached sandy soils, especially when such soils are comprised of little clay and organic matter. A recent 81 

study by Abou-Shady [7] brought up the idea of upscaling the ED-tuning of wastewater reserves to right-82 

balancing irrigation water constituents. It was demonstrated how to manipulate four specific ED-process 83 

factors in order to promote optimal salinity in complex futuristic large-scale irrigation projects. At the 84 

core of that research stands out a key recommendation for the effective use of water qualimetrics 85 

(‘aquametrics’) [10] that utilize Taguchi-type screening techniques [11].  86 

Taguchi-type design of experiments (DOE) methods is useful for quick-and-economical, 87 

environmentally-friendly, evidence-based screening as well as optimization studies [12-14]. In its 88 

backbone, it is the ‘lean-and-agile’ philosophy that has been applied successfully in designing and 89 

improving intricate manufacturing processes. It is ‘lean’ because minimizes wasted materials, energy, 90 

equipment-availability and man-hours that are required for large-scale industrial trials. It is ‘agile’ 91 

because it adapts quickly to the operational demands where Taguchi-methods need to be deployed, thus 92 

exploiting any opportunity for rapid discovery. Hidden ‘lean-and-agile’ benefits are also to be reaped 93 

indirectly by halving the total experimental effort and duration of the two typical and sequential trial 94 

phases; factor screening and parameter design are to be conducted in a single concurrent step [11]. 95 

Screening experiments are characterization experiments that require two distinct sequential steps: 1) 96 

factor profiling and 2) identification of the strong factors. In the profiling step, the screening dataset is 97 

processed in order to quantify - in statistical terms - all factorial influences against one or more 98 

characteristics. Once the treatment effects have been quantified, then, the strong influences are selected 99 

based on a statistical rule. A statistical processor is used to determine those effects that are greater than 100 

a critical value; the one-sided cut-off value corresponds to a preset significance level, α. The identification 101 

process is an optimization step because it involves a uni-directional search to locate and select out the 102 

strong effect(s), i.e. those effects that perform below a minimum statistical significance constraint. 103 

Identification follows the general optimization process that given a set AAAA of k effects ai (1≤i≤k) ∀ ai ∈ℜ, 104 
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and a function ƒ: AAAA→pppp with statistical significance pi ∈ pppp ∀ pi ∈ℜ, we seek a subset xxxxoooo ⊆ AAAA such that f(xxxx0) ≤  105 

f(xxxx) for all xxxx ∈ A subject to the constraint pi < α. Thus, the screening phase leads to a reduction of the 106 

initial group of factors. Strong effects are considered for the next phase, which is the parameter 107 

optimization. Screening may reduce significantly the amount of experimental work that is to be 108 

forwarded to the parameter design phase. But chemical screening is a cost driver that intelligent 109 

discovery systems seek to minimize by emphasizing rapid cycle times [15]. Parameter design refines the 110 

strong factors that precipitated from the screening phase such that to optimally predict one or more 111 

product or process response(s) [16]. Obviously, this tactic of ‘two-in-one’ in Taguchi’s strategy shortens the 112 

overall optimization study cycle while lowering materials and energy consumption [12]. There are two 113 

economic gains then, one from curtailing trial-related costs and another from making an optimal product 114 

that generates less waste while completed in reduced cycle times.  115 

Deeper environmental awareness is to be envisaged in chemical processes. Taguchi methods have 116 

been implemented to optimize wastewater treatment with reverse osmosis and to recover heavy metals 117 

for quite some time [17, 18]. They have been employed to investigate even difficult wastewater treatment 118 

cases where there was a need for improving the conditions of a coagulation-flocculation process [19]. 119 

Ramping-up processing efficiencies with characterized flocs may also be achieved with Taguchi DOE 120 

techniques targeting harsh agro-industrial wastewater treatments [20]. Desalination filtering operations 121 

are amenable to Taguchi-type screening and optimization when using modern carbon nanotube 122 

membranes [21]. When complex datasets are collected to optimize a forward osmosis process, a 123 

combination of Taguchi-type tools and neural networks have proved to be effective [22]. The Taguchi 124 

toolbox has been applied successfully in upscaled Fenton-SBR industrial operations that produced 125 

wastewater from bamboo treatment [23]. In chemometrics, the classical Taguchi method has been 126 

entrusted in optimizing measurement accuracy of UPLC isocyanate [24], optimal mixture settings for 127 

enhancing concrete properties [25], Diazinon cloud point extraction [26], and optimized multianalyte 128 

determination with biosensors [27].  129 
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Technically, Taguchi’s DOE methodology in aquametrics is achieved on two ends. At the frontend, 130 

Taguchi methods demand small but structured trials. For this to happen, the DOE framework needs to 131 

obey a few predetermined factorial recipes. The experimental recipes rely on the combinatorial rules of 132 

fractional factorial designs (FFDs) [28]. The particular Taguchi-type FFD plans belong to the family of 133 

orthogonal arrays (OAs) [11]. At the backend, Taguchi methods institute two utilities: 1) the use of the 134 

signal-to-noise ratio (SNR) concept in order to compress the collected dataset streaks and 2) the standard 135 

deployment of the analysis of variance (ANOVA) to relay statistical significance to the strength of the 136 

examined effects. Maximum utilization of the frontend capabilities occurs when a selected OA trial-plan is 137 

saturated with tested controlling factors [28]. Saturation locks the requirement for minimum number of 138 

experimental runs with respect to the number of the investigated effects. Saturation maximizes the 139 

number of effects that are allowed to deliver information given a data-collection OA-plan. To illustrate the 140 

importance and ramifications of these aquametrics concepts in screening and optimizing wastewater 141 

treatment, in this work, we will take up the interesting four-factor three-response ED-process 142 

optimization paradigm of Abou-Shady [7]. We contemplate that it is a unique case as we will explain 143 

along because of the nature and the relationships among the selected water characteristics. We will not 144 

work out one ‘response-at-a-time’ as it is common in most wastewater treatment studies that employed 145 

Taguchi optimization. Instead, it might be useful to generalize the feasibility of the study to a more 146 

pragmatic rationale by attempting a concurrent multi-response optimization. The suggested frontend 147 

design (L9(34) Taguchi-type OA) in Abou-Shady’s experiments was saturated [7]. It was selected such that 148 

to simultaneously screen, optimize and track down the potential influence of non-linearity for each of the 149 

tested effects. At saturation point, the constraint for the minimum number of required experiments is 150 

n=(2•m)+1; n is the number of trials and m is the number of the examined effects. Furthermore, the 151 

experimental design by Abou-Shady [7] featured still another property conducive to rapid, economical and 152 

lean-and-green data-generation; experimental recipes were not replicated. By undertaking an 153 

unreplicated [29] and saturated OA-scheme, the collected data was ensured to be delivered in low cost, 154 

fast turnaround time and minimum material/energy losses [30]. Unfortunately, when designing processes 155 
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or products by exploiting synchronously the profitable conditions of saturation and unreplication, 156 

frontend and backend synchronicity is bound to break down in Taguchi methods. This is because the 157 

simultaneous presence of the two conditions eliminates the chance to obtain an estimate for the residual 158 

error in ANOVA, since no degrees of freedom for the error are left over [31]. Hence, no statistical 159 

inference is possible with ordinary means and no objective sizing of the effects is feasible in such an 160 

occurrence. Generally speaking, the “unreplication” condition is inherent to Taguchi methods. The 161 

prescribed SNR transformation step will always convert even replicated data to an “unreplicated 162 

response” vector form [11, 32, 33]. Undisputedly, it was recognized that the analysis of the unreplicated 163 

factorial experiments was instrumental in discovering in short time those effects that were to play a role 164 

behind an intricate landscape in industrial operations [51]. The accompanying comparative study of as 165 

many as twenty-four methods attested to such need while concluding to no single ‘all-purpose’ front-166 

runner approach [51]. It definitely encouraged the development of new techniques. Recently, an 167 

important study tested leading unreplicated factorial solvers - part of modules of several mainstream 168 

software packages [52]; it indicated that benchmarked predictions varied significantly among packages. 169 

This justifies the impetus for proposing new unreplicated factorial solvers with robust capabilities. It is a 170 

main motivation point for our study. It is the “saturation” condition that may be construed as optional but 171 

encouraged from an engineering perspective due to optimal data utilization. As perplexing as it sounds, 172 

statistical profiling of an unreplicated-saturated OA-dataset may still be accomplished with specialized 173 

handling and data manipulation. Irrespective of the setbacks that may be lurking in interpreting regular 174 

Taguchi-type optimization studies [34, 35], successful wastewater research has been published as 175 

discussed previously, and clearly attesting to that this subject is in demand. One of the purposes of this 176 

work is to explore complications on the way to achieving optimal ED-process performance through multi-177 

response multi-factorial non-linear screening/optimization aquametrics [36-38]. Hopefully, some aspects 178 

that will be discussed may lay ground for robust and agile ED-process predictions [39, 40]. We show how 179 

to upgrade the Taguchi analysis for unreplicated-saturated OA ED-trials such that to transcend from the 180 

subjective limitations of descriptive statistics to meaningful inferences.  181 
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The motivation for the selection of the exploratory desert development project [7] to be re-182 

examined in this work becomes more transparent now. Its principal outlook aligns in accord toward to the 183 

general ‘Goal 6’ of the United Nations Sustainable Development [48]. The study by Abou-Shady [7] is 184 

unique because it seeks to optimize three different characteristics that all pertain to the behavior of 185 

suspended sodium in the feed wastewater. The concurrent screening/optimization of sodium content in 186 

three different chemometrical landscapes has not been undertaken before. One characteristic is the 187 

percentage of removed sodium cations (ReNa). It characterizes the electrodialysis process itself in a given 188 

time interval. It is dependent on the initial sodium cation concentration. It is a process quality index that 189 

tracks ED cell performance. The larger the value of the percentage of removed sodium the higher the 190 

effectiveness of the ED unit. Being a percentage-based response requires non-conventional handling. Data 191 

types in percentage form are distinct for their inherent poor additivity properties in practical situations 192 

[41]. This is because intermediate arithmetical operations with percentages are not permitted to exceed 193 

the two realistic bounds (0% and 100%). In this specific situation, the SNR transformation [42] is not an 194 

appropriate data compressor to be used as in the small and dense dataset of Abou-Shady [7]. Instead, the 195 

omega (Ω) conversion method is usually recommended which replaces the quadratic loss in the SNR with 196 

the odds ratio in Ω [41]. The formula for Ω then becomes: 197 

( ) 1<p<0  with  )p-1/(plog10=)db(Ω   (1)  198 

Nevertheless, it is known that the omega function is conditionally applicable. This is because the Ω 199 

value tends to infinity if measurements approach either of the two bounds. Another noteworthy issue is 200 

that for classical SNR transformations (Taguchi-type) to be meaningful, the original (raw) dataset must: 201 

1) be in replicated form and 2) obey normality. For each executed experimental OA-recipe, at least two 202 

replicates are necessary to recover a signal (average estimation) and a noise (variability estimation). 203 

These two critical conditions are absent in the experimental design of Abou-Shady [7]. It is a main 204 

motivation of this work to show how one might circumvent this quandary by proposing an alternative 205 

approach which relies on distribution-free statistics.  The proposed approach offers simplicity, 206 
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transparency, robustness and agility in the optimization cycle. Thus, the aim is to aid in deciphering 207 

complex, small and dense DOE datasets in ED-optimization studies. In turn, analysis results are pivotal 208 

to reliable decision-making for large-scale chemical operations.    209 

The second characteristic is the sodium adsorption ratio (SAR). SAR is a water quality trait that 210 

quantifies the water suitability which is intended for crop irrigation. Even though it is a single index, 211 

SAR delivers complex and crucial information. SAR monitors the soil flocculation status by measuring the 212 

balancing act of the soil conditioners. Both, flocculation inhibitors (sodium cations) and promoters 213 

(calcium and magnesium ions) tweak soil permeability and hence the water infiltration rate. 214 

Furthermore, SAR tracks the aqueous colloid suspension stability status. It is also a standard reliability 215 

measure since it diagnoses the sodicity hazard for a farmland. Irrigation water quality is optimal when 216 

SAR is minimized and there is a critical value for flocculation. 217 

                                                  

( )
(2)                                         

+2+2

+

Mg+Ca
2
1

Na
=SAR

      218 

SAR is a ratio quantity. Thus, the discussion regarding the appropriateness of Ω over SNR in ReNa 219 

response data above is also pertinent here. It is remarked that SAR is a product (outflow water) 220 

characteristic as opposed to ReNa. Also, SAR and ReNa follow opposite response directions in an 221 

optimization exercise; the former is minimized the latter maximized.  222 

The salinity status of the electrodialyzed outflow water may also be expanded to account for all 223 

four key (monovalent and divalent) cations. The competing potassium content is thus added in 224 

determining the sodium ratio (Na+ ratio): 225 

                                  

( ) (3)                           ratio +2+2++

+
+

Mg+Ca+K+Na

Na
=Na

 226 
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The Na+ ratio (NaRa) is also a percentage-based quantity that is sought to be minimized just as the SAR. 227 

The previous arguments about recommending the Ω-conversion over the SNR-transformation are 228 

maintained for this index, too. Similar to the SAR applicability, NaRa reflects water product quality. In 229 

the original optimization scheme [7], the ‘smaller-is-better’ expression for the Taguchi-defined SNR data 230 

conversion was used for all three examined characteristics (ReNa, SAR, NaRa): 231 

                                           SNR = −10	
��
 ��� �
���

�

���
� /��                                        (4) 232 

However, ReNa is a ‘larger-is-better’ characteristic and thus the proper Taguchi-defined 233 

expression for the SNR data conversion would have been instead: 234 

                                          SNR = −10	
��
��� ���
�
���  /�!                                             (5) 235 

This article is structured as follows. A methodology is proposed to formulate the concurrent multi-236 

response screening/optimization aquametrics for a wastewater ED-process. The methodology also extends 237 

the potential for “two-in-one” combo-solution which is inspired by Taguchi’s main DOE planning strategy 238 

but which is restricted to a single response case. This means that it is pursued besides a concurrent 239 

multi-response multi-factorial screening-and-optimization solution, the possibility of the influence of non-240 

linearity in the examined effects. On this endeavor, we directly deal with conditions of data “messiness” 241 

[43] that Taguchi methods are not tuned to handle. Abou-Shady’s [7] experimental work demonstrated 242 

the natural emergence of messiness in the Taguchi-DOE ED-trials. We show the implications of 243 

messiness in the Results section where we use modern data fusion techniques for unreplicated-saturated 244 

Taguchi-type OA datasets. Messiness brings out the realistic demands in predictions where the 245 

phenomena may not really be canned in some parametric modelling [44]. Therefore, we demonstrate the 246 

robust, lean and agile screening prediction of ED performance based on ReNA, SAR and NaRa indicators 247 

against the four relevant controlling factors [45]. The justification for this new proposal, when compared 248 

to the other available published techniques on the subject of the unreplicated factorial analysis [51], relies 249 

on accumulating several tangible traits that are not found in the previous approaches. Key features are: 250 
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the new technique converts constant-free (non-subjectively) and distribution-free (robustly) unreplicated 251 

dataset predictions even at the limiting condition of saturation. The former feature is an advantage over 252 

the Lenth test [53] and the latter over the half-normal test [47]; they are the two premier tests with great 253 

representation in most commercial statistical software packages. But the primary advantage of the new 254 

method is that it also delivers distribution-free statistical significance for multi-response unreplicated-255 

saturated OA-datasets. This is in contrast to the leading alternative method, the desirability analysis 256 

[54], which instead provides a score estimation in lieu of a significance measure, which would be based on 257 

a statistical reference law. Furthermore, in comparison to the desirability analysis, the new method 258 

eliminates the (manual) trial-and-error search – a subjective step – which the desirability optimizer 259 

depends upon to generate a solution. This would mean discovering an appropriate set of weights to 260 

parametrize each of the partaking response functions before succeeding to compute their composite 261 

desirability score. 262 

The new method does not involve regression coefficients, hence it is computationally simpler. 263 

Therefore, it produces no residuals. Moreover, residuals are extremely sensitive to outliers. If appearing 264 

in small datasets, outliers become particularly risky. Still, residual analysis requires inspecting for 265 

independence of errors (autocorrelation effect) which is a non-relative condition in the proposed method. 266 

Since regression methods implicate mean estimators during the data fitting process, the characteristic 0% 267 

breakdown point of the method is ominously present. On the other hand, our method uses rank-sums 268 

(median estimator), which protects the data reduction process to a breakdown point of 50% [55]; it 269 

provides the maximum possible protection as a clear technique advantage. Summarizing, our technique is 270 

simpler and more robust from other alternative profilers/optimizers; this might be a desirable 271 

amelioration according to the Occam’s Razor principle. 272 

 273 

 274 

 275 
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2.2.2.2. MethodologyMethodologyMethodologyMethodology    276 

2.1 A brief description of the wastewater electrodialysis experiments 277 

Abou-Shady’s design selection is a saturated (three-level) non-linear Taguchi-type (L9(34)) orthogonal 278 

array [7]. The unreplicated-saturated L9(34) OA has been featured as a preferred trial planner in non-279 

linear screening/optimization in diverse areas of studies that involve complex chemometrics [56-70]. 280 

Parenthetically, the methodology is construed to be extended for non-linear effects also tested in four or 281 

higher settings [71-74]. Selecting a four-setting or higher OA design usually attempts to ensure that 282 

curvature tendencies will be probed more intensely by inquiring information from one or more additional 283 

observations properly located between the two operating end-points.   284 

Due to realistic constraints on time and resources, the design was reasonably decided to be carried 285 

out once for each setup recipe. In its saturated and unreplicated form, the design prescribed the 286 

maximization of resource utilization, the minimization of trial costs and thus overall accelerated the 287 

experimental process. The experimental plan engaged four controlling factors: 1) dilute flow (DF), 2) 288 

cathode flow (CF), 3) anode flow (AF) and 4) Voltage (V). The completed L9(34) OA rubric with the 289 

associated factor-setting loadings are tabulated in Tables 3 and 4 in ref. [7]. They are assorted with the 290 

three-way synchronous response data for ReNa, SAR and NaRa. The three response vectors contain 291 

information about the non-linearity and normality of the four effects. At this stage, the analysis by Abou-292 

Shady [7] proceeded by considering the inner workings for one characteristic at a time. The fact that the 293 

design was saturated could not permit a formal application of ANOVA. Therefore, the results were 294 

unavoidably discussed in an exploratory manner. However, to instill vigor in the analysis, the three 295 

characteristics will need to be processed concurrently in one-pass simultaneously to gage factor strength, 296 

non-linearity and optimal effect adjustment. 297 

2.2 Preliminary data analysis 298 

A preliminary data analysis is required to test potential correlations among the three responses. If there 299 

is a correlation in some of the responses then it is plausible that they could be eliminated from further 300 
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consideration. Since OAs generate small data, the best tactic is to pick and correlate two responses at a 301 

time using linear regression analysis. It is important to provide 95% confidence intervals of the line 302 

fittings such that a spread uniformity of the data-points could be inspected. We test this using the linear 303 

regression module of MINITAB 17.1. 304 

Equally important is to have a view of how the location and dispersion interplay simultaneously 305 

fare for each group of data per factor setting. To obtain a ‘location-and-dispersion’ screening for the 306 

various effects, the best way is to pin up all individual factor-setting boxplots on a “clothesline”. Box plots 307 

with median confidence intervals should also be drawn for each response separately such that to gauge 308 

the overall behavior of their central tendency and spread around the median. In both situations, the plots 309 

are easily constructed using the graph module for boxplots in MINITAB 17.1. 310 

2.3 Setting up the saturated-unreplicated OA for distribution-free super-ranking 311 

We consider the minimum-size non-linear (three-level) Taguchi-type Ln(3m) OA [11] with the imposed 312 

condition for unreplication and saturation such that n=2m+1; n is the number of experimental recipes and 313 

m is the number of the examined effects which are labeled as: X1, X2,…,Xm. Then, their respective 314 

predetermined settings on an (i,j) OA arrangement may be written as x1i, x2i ,…, xmi (i=1, 2…n). The 315 

output from executing the n recipes is a group of a total of r (unreplicated) responses: R1, R2,…,Rr. The 316 

vector elements for each response may be symbolized as: r1j, r2j...rrj (j=1,2,…,n). A comprehensive depiction 317 

of the relevant input/output OA arrangement where the factor settings (input) and the response vector 318 

group (output) are positioned on the left- (input) and right-hand side of the design, respectively, follows 319 

as: 320 
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The new approach does not require to omega-transform datasets that pertain to characteristics which are 323 

collected in terms of percentages. The elements for each characteristic are rank-ordered according to the 324 

optimal direction that has been prescribed for each response independently. The most desirable value on 325 

a response column gets a rank of ‘1’ and the counting continues until the least desirable entry gets a rank 326 

of ‘n’. Ties are permitted in this formulation. Generally speaking, a measured characteristic is optimized 327 

in one of the three possible directions: 1) “smaller-is-better” (minimization), 2) “larger-is-better” 328 

(maximization) or 3) “nominal-is-best” (minimization towards a target value). In the ED-case that we will 329 

analyze in the next section, it is the first and second kind that will become pertinent. 330 

In its generic form, a rank-ordering converts the response vector elements to ordered response 331 

vectors O1, O2,…,Or and hence it becomes: 332 
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      with o1j, o2j...orj (j=1,2,…,n)                      (7)  333 

Using the simple super-ranking process [14, 32], we compound the homogenized behavior of all of the 334 

responses in a single vector, the sum of the squared ranks, SSR:SSR:SSR:SSR: {SSRi | ∀ 1 ≤ i ≤ n}: 335 
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 The final input-output arrangement is depicted as: 337 
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Based on the generic structure of the relationship between the OA and the generated “super-rank 339 

response” SSR in equation 9, we tabulate next the corresponding arrangement specifically for the L9(34) 340 

OA that we will manipulate on the next section: 341 
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                                             343 

2.4 The distribution-free analysis of a saturated-unreplicated OA for messy datasets  344 

Since saturated-unreplicated datasets do not allow any degrees of freedom to peruse uncertainty, they 345 

become messy because the unexplainable error remains inestimable. Messiness also ensues because 346 

response distributions may vary even within each of the m factor-setting combinations [43, 44]. Messiness 347 

is a complication that requires a more sophisticated treatment. We consider the general distribution-free 348 

analysis of a super-ranked quantity that fuses information from r water-quality responses. To detect 349 

potential non-linearity, two endpoint settings are needed to frame the experimental boundary - the 350 

operating range. A third setting is placed in between the two endpoints to snoop on non-linearity. A single 351 

execution of a minimal non-linear OA requires gathering observations from n (=2m+1) predefined recipes. 352 

The resulting super-ranked quantity is symbolized as { }
miiiSSR ,...,, 21

 where each ij (j =1, 2,…,m) identifies the 353 

setting status of the jth influence. Thus, planning with a three-setting OA, there are only three admissible 354 

states appointed to each ij. Each ij may be coded by assigning to it the generic ordinal values: ‘1’, ‘2’ and 355 

‘3’. By default, we let ‘1’ and ‘3’ to represent the two operating endpoints. We propose a non-linear effects 356 

model as [31]:	 357 
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mm iii

m

j jiii DMSSR ,,,1,,, 2121 LL
ε++= ∑ =

     (11) 358 

The error term, 
miii ,,, 21 L

ε , is not bound to any particular distribution. Simply, it should be checked for 359 

statistical symmetry across the three settings, for each examined factor individually, before attempting to 360 

explain the results of the effect contrasting. The overall (grand) median, M  in equation 11, for all n SSSSSSSSRRRR 361 

entries is defined as: 362 

     { }( )  Med ,,, 21 miiiSSRM
L

=     (12) 363 

The median values of the SSRSSRSSRSSR    response at their three respective factor settings are:
1
jM ,

2
jM and

3
jM with 364 

1 ≤ $ ≤ m. The setting measure, jM , represents a median estimation of a group of observations that share 365 

the same factor setting ij (1 ≤ $ ≤ m): 366 
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From equation 11, the indexed quantity Dj is the difference between jM and M which quantifies the ijth 368 

partial (relative) effect due to the jth factor with respect to the grand median:  369 
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D                                           (14) 370 

After fitting equation 11, we unstack the partial effect terms to create a new simpler response that packs 371 

information for only a specific effect and is denoted as 
miiiRSS ,,, 21

' 
L . Thus, the reconstructed response is 372 

sub-divided as: 1) the grand median, M, 2) the partial effect, Dj, and 3) the corresponding error 373 

contribution, ,......, jiε for all ij or: 374 
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mjiDMRSS jiji jj
≤≤++= 1 and  allfor   ' ,......,,....., ε                        (15)    375 

For each effect separately, we rank-order 
miiiRRS ,,, 21

' 
L to transform it to the rank response, 

miiir ,,, 21 L : 376 

mjirRRS ji
jij

≤≤→ 1 and  allfor   ' 
,.....,,.....,                        (16)    377 

We next form the mean rank sums for all three settings of the jth effect, 
1
jR , 

2
jR and

3
jR :              378 
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               (17) 379 

The Kruskal-Wallis test statistic [46], jH  (1 ≤ $ ≤ m), is appropriate for testing the one-way fluctuation 380 

of ranks across the three settings for each effect: 381 

( ) )1(3)3/(
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jj    (18) 382 

Prior to delivering a screening prediction is imperative to ensure the uniformity and stability of the de-383 

fractionated residual error in the preceding ordering operations. For this purpose, an effect-free vector is 384 

generated to carry the discrepancies. The uncertainty vector is 
miiiSSR ,,, 21

'' 
L such that: 385 

mjiMSSR jii jj
≤≤+= 1 and   allfor   '' ,......,,......, ε                (19) 386 

Proceeding to rank-order the ,......,'' 
jiRSS will yield the transformed response, 

miiir ,,, 21
'

L : 387 

mjirRSS jii jj
≤≤→ 1  and  allfor   ''' ,......,,......,                  (20)    388 
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Forming the mean rank sums of the 
miiir ,,, 21

'
L for all three settings of the jth effect,

k
jRe , with k = 1, 2 or 3, 389 

we obtain: 390 
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                                                                                                                            (21) 392 

The Kruskal-Wallis test statistic for the uncertainty is similarly defined as: jHe , (1 ≤ $ ≤ n): 393 
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jj         (22) 394 

The quantity jHe tracks underlying intrusions in the dataset that could destabilize the validity for each 395 

observation. Intense sporadic fluctuations of the uncertainty could blemish the significance of the 396 

screening results (equation 18). If the n calculated contrasts (equation 22) show that there is no statistical 397 

significant relationship between the m controlling factors and the experimental uncertainty, then, we 398 

may proceed to proposing any strong effects from the statistical profiling (equation 18). The exact 399 

Kruskal-Wallis test significances are computed with the statistical software package STATISTICA 9 400 

(StatSoft). 401 

 402 

 403 

 404 
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3.3.3.3. ResultsResultsResultsResults    405 

3.1 Preliminary data analysis 406 

The three water characteristics generate parallel and probably overlapping information in tracking the 407 

wastewater treatment performance. Therefore, the ED-process efficiency (ReNa) and the two water 408 

quality indices (SAR and NaRa) should be tested for possible correlations between them. If they found to 409 

significantly correlate with each other, then, some of them should be eliminated from further modelling 410 

consideration. They would merely provide redundant information. The three possible correlation 411 

comparisons among the three responses are fitted and shown in Figure 1. The linear regression fittings do 412 

not reveal any relationship that could be established from any of the two-way response contrasting. This 413 

is owing to the fact that in all three cases there are in total 9 plotted data points and no data point is 414 

expected to be situated outside the 95%-CI. On the contrary, we observe at least one point to always hang 415 

out of the CI bands and several other points to populate near to their respective CI boundaries. This is 416 

true even in the case of regression analysis of NaRa versus SAR where it appears that the coefficient of 417 

determination (R2) covers adequately the goodness-of-fit criterion; R2 is calculated to be 95.3%. With 418 

regards to inspecting for a NaRa versus SAR correlation, we also notice that there are two points out of 419 

the total nine out of the 95%-confidence-interval band, i.e. 22% of the count, when less than 5% was to be 420 

expected. Summarizing this overall behavior, we simply conclude that the three pairs of correlations 421 

cannot be assessed at all leaving us clueless. We witness that there are no tendencies between them, 422 

irrespective of the evaluations of the slope and the goodness of fit. This exercise aids to realize one source 423 

of inherent messiness in the dataset. No conclusive judgement maybe drawn with ordinary analysis 424 

means. Ostensibly, all three responses should be maintained in the analysis. Their concurrent processing 425 

is the proper step for proceeding with sizing the effects. A preliminary “clothesline” boxplot screening for 426 

each participating factor setting, with respect to each individual chemometrical response, reveals a great 427 

range of skewness variation to include various forms of symmetrical and unsymmetrical tendencies (Part 428 

C - Supplementary Material). Additionally, their boxplot spreads exhibit a broad variability.  429 

 430 
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A)  431 

B)  432 

                  C)  433 

                  FigureFigureFigureFigure 1: Fitted line plots for: A) ReNa vs SAR, B) NaRa vs SAR, C) NaRa vs ReNa. 434 
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It would necessitate a rather robust and agile solver to delve into the obscure statistical relationships 435 

between factors and responses. Thus, the motive for this work is now justified.  436 

 437 

3.2 Distribution-free analysis of the saturated-unreplicated wastewater dataset 438 

In Table 1, we listed the rank-ordered response elements for vectors ReNa, SAR, and NaRa. It is also 439 

tabulated the corresponding sum of squared ranks (SSR). A “clothesline” box-plot screening of the SSR 440 

against the four controlling factors is shown in Figure 2, for each factor setting separately. The anisotropy 441 

in data location and dispersion persists in the fused SSR vector elements. It exacerbates the tendency for 442 

extreme skewness. Only in two out of the twelve (17%) box-plots exhibit symmetric behavior (DF2 and 443 

V80). Similarly, only two out of the twelve (17%) box-plots post a decent (contained) variation (DF2 and 444 

DF5). Even so, the 95% confidence interval of the medians coincide with the box length exposing a large 445 

variability in the compounded SSR quantity. The grand (concurrent) median of the SSR vector is 446 

computed to be 74 (Table 2). We observe that the DF-factor causes the greatest disturbance to the SSR. 447 

Its endpoints traverse from a low 44 to a high 170.3. In Table 3, we provide the detailed analysis for the 448 

reconstructed error and factor vectors which are described by the models in equations 15 and 19, SSR′′ 449 

and SSR′, respectively. Utilizing the equations 18 and 22, we calculate the Kruskal-Wallis estimators (H 450 

and He) for the factor and reconstructed error vectors along with their statistical significance which is 451 

expressed in terms of p-values in Table 4. At a level of significance of 0.05, we observe that the errors 452 

across all factor settings contribute symmetrically to the effects. At a level of significance of 0.05, it is the 453 

DF-factor that barely misses to make the cut. Therefore, at this stage it is not conclusive that any factor 454 

could optimally adjust all three characteristics to their best performance. This essentially means that any 455 

factor-setting may be picked for operating the ED cell within the tested ranges. Based on that data alone, 456 

the final decision merely rests on economic and practical constraints that have not been included in the 457 

published model [7].  458 

    459 



22 

 

                                                                        Table 1Table 1Table 1Table 1:::: The three rank ordered responses and their sum of squared ranks (SSR). 460 

Run #Run #Run #Run #    RReNaRReNaRReNaRReNa    RSARRSARRSARRSAR    RNaRaRNaRaRNaRaRNaRa    SSRSSRSSRSSR    
1111    6 2 2 44 
2222    7 4 3 74 
3333    2 1 1 6 
4444    3 6 6 81 
5555    1 3 4 26 
6666    4 5 5 66 
7777    8.5 9 9 234.25 
8888    5 8 8 153 
9999    8.5 7 7 170.25 

 461 

 462 

    463 

FigureFigureFigureFigure 2: Box-plots for all-effect screening of SSR. 464 

    465 

                                                                                                        466 

    467 

    468 

    469 

    470 

    471 
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Table 2Table 2Table 2Table 2:::: Median (concurrent) SSR estimations and relative effects for all factor settings. 472 

 473 

 474 

 475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 

Table 3Table 3Table 3Table 3:::: Reconstructed error (SSR′′) and factor-specific (SSR′) vectors. 483 

Run #Run #Run #Run #    SSR' (DF)SSR' (DF)SSR' (DF)SSR' (DF)    SSR' (CF)SSR' (CF)SSR' (CF)SSR' (CF)    SSR' (AF)SSR' (AF)SSR' (AF)SSR' (AF)    SSR' (V)SSR' (V)SSR' (V)SSR' (V)    SSR''SSR''SSR''SSR''    
1 75.0 112.0 97.0 75.0 105.0 
2 67.0 97.0 104.0 97.0 97.0 
3 55.0 77.0 37.0 92.0 85.0 

4 60.0 75.0 75.0 75.0 68.0 
5 104.0 112.0 64.0 82.0 112.0 
6 82.0 82.0 82.0 90.0 90.0 
7 275.3 186.0 131.0 179.0 179.0 
8 154.0 57.7 49.7 64.7 57.7 
9 201.3 97.0 112.0 75.0 105.0 

    484 

                                                                    Table 4Table 4Table 4Table 4:::: Effect symmetry and strength significance for SSR using the Kruskal-Wallis test. 485 

Error Symmetry Effect Strength 

Factor He-estimator p-value H-estimator p-value 

DF 0.09 0.957 5.96 0.051 

CF 0.62 0.733 0.96 0.618 

AF 1.69 0.43 1.07 0.587 

V 5.6 0.061 4.32 0.115 
 486 

 487 

 488 

    LevelLevelLevelLevel    MedianMedianMedianMedian    Relative EffectRelative EffectRelative EffectRelative Effect    
DFDFDFDF    2 44 -30 

    5 66 -8 
    10 170.3 96.3 

CFCFCFCF    1 81 7 
    2 74 0 
    3 66 -8 

AFAFAFAF    1 66 -8 
    2 81 7 
    3 26 -48 

VVVV    45 44 -30 
    65 74 0 
    80 81 7 

GRAND GRAND GRAND GRAND 
MEDIANMEDIANMEDIANMEDIAN    

74747474     
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4.4.4.4. DiscussionDiscussionDiscussionDiscussion    489 

The concurrent optimization of the wastewater ED-process may be assessed by reviewing the individual 490 

behaviors against the respective (ordinary) main effects plots (Part D - Supplementary Material). Briefly, 491 

the DF-effect plays the predominant role in all three screenings. Since NaRa and SAR are ought to be 492 

both minimized, we see that this could be conveniently achieved because their behavior appears to be 493 

linear. The suggested optimal dilute flow is located in the lower endpoint, at the value of 2 L/h. However, 494 

the ReNa response should be maximized and the experimental evidence shows that the suggested optimal 495 

dilute flow should move to an adjustment of 5 L/h. ReNa produces non-linear profiles for all four factors. 496 

This justifies the selected non-linear framework to deal with the experimental design of the wastewater 497 

trials. Finding the maximum ReNa performance is less clear if it is to consider all four effects. This 498 

implies that a realistic search for an optimum recipe would be derived only from a concurrent profiling. 499 

However, the statistical significance of their magnitudes cannot be obtained with ordinary means. The 500 

classical approach of using ANOVA treatment does not lead to an inference (Part A - Supplementary 501 

Material). This is because F-test comparisons cannot be executed for the saturated designs. In all three 502 

ANOVA screenings, the DF-factor appears to precede the other three effects. This observation is in 503 

agreement for both regular approaches, i.e. either using: 1) the relative magnitudes of the general linear 504 

model (GLM) coefficients or alternatively 2) the adjusted mean squares in ANOVA. Of course, this is a 505 

subjective opinion because as we saw in the previous section the three responses tend to strongly depart 506 

from normality although both comparison tests take normality as a key assumption. Thus, we do not 507 

know actually how reliable these ANOVA or GLM estimations are because no significance can be 508 

extracted from them. Similarly, the disturbances caused by effects CF, AF and V on the SAR and NaRa 509 

responses individually are clearly weak when sized against the influence of DF (Part D - Supplementary 510 

Material). It is hard to discriminate how really strong is the presence of DF since it only causes a decrease 511 

of 22% and 13% on SAR and NaRa values, respectively, in spite of stretching the ReNa range by 456%. At 512 

this point, the initial decision to doubt a potential correlation between the two responses SAR and NaRa 513 

becomes more evident. For SAR and NaRa, the optimum occurs at DF-settings 2 L/h (minimum) and 10 514 
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L/h (maximum). For SAR, the sample mean (m) and its standard error (se) are: 1) at setting 2 L/h, m= 515 

5.43 and se = 0.18, and 2) at setting 10 L/h, m= 6.91 and se = 0.18. For tn-1,α = t2,0.025 = 4.3, we observe that 516 

the 95% confidence intervals of the two limiting settings overlap potential signaling that there is no 517 

detected effect. Similarly, for NaRa, the sample mean (m) and its standard error (se) are: 1) at setting 2 518 

L/h, m= 61.68% and se = 1.04%, and 2) at setting 10 L/h, m= 70.34% and se = 0.98%. We observe then 519 

that their 95% confidence intervals are barely overlapping, and hence it is hinted a possibly ‘no-effect’ 520 

status. Therefore, the two responses SAR and NaRa indeed might not correlate also from this standpoint.      521 

    Table 5Table 5Table 5Table 5:::: Median ReNa response and relative effect for all factor settings. 522 

    LevelLevelLevelLevel    MedianMedianMedianMedian    Relative EffectRelative EffectRelative EffectRelative Effect    
DFDFDFDF    2 4.42 -0.66 

    5 7.17 2.09 
    10 0.08 -5 

CFCFCFCF    1 4.42 -0.66 
    2 5.08 0 
    3 7.08 2 

AFAFAFAF    1 5.08 0 
    2 4.25 -0.83 
    3 11 5.92 

VVVV    45 4.42 -0.66 
    65 4.25 -0.83 
    80 7.17 2.09 

GRAND GRAND GRAND GRAND MEDIANMEDIANMEDIANMEDIAN    5.085.085.085.08        
 523 

                                                                                                                            Table 6Table 6Table 6Table 6:::: Reconstructed error (ReNa′′) and factor-specific (ReNa′) vectors. 524 

Run #Run #Run #Run #    ReNa'(DF)ReNa'(DF)ReNa'(DF)ReNa'(DF)    ReNa'(CF)ReNa'(CF)ReNa'(CF)ReNa'(CF)    ReNa'(AF)ReNa'(AF)ReNa'(AF)ReNa'(AF)    ReNA'(V)ReNA'(V)ReNA'(V)ReNA'(V)    ReNa''ReNa''ReNa''ReNa''    
1111    5.7 5.7 6.4 5.7 6.4 
2222    5.9 6.6 5.7 5.7 6.6 
3333    1.0 3.7 7.6 3.7 1.7 
4444    6.6 3.8 3.7 6.6 4.5 
5555    10.6 8.5 14.4 7.8 8.5 
6666    5.9 5.8 3.8 3.0 3.8 
7777    -4.4 0.0 6.6 -0.2 0.7 
8888    3.0 8.0 8.0 10.1 8.0 
9999    -0.4 6.6 3.7 3.9 4.6 

    525 

    526 
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Table Table Table Table 7777:::: Effect symmetry and strength significance for ReNa response using Kruskal-Wallis test. 527 

Error Symmetry Effect Strength 

Factor He-estimator p-value H-estimator p-value 

DF 0.09 0.957 6.12 0.047 

CF 5.42 0.067 5.54 0.063 

AF 0.62 0.733 5.07 0.079 

V 1.87 0.393 2.89 0.236 
 528 

 529 

It is tenable to repeat the same distribution-free screening that was conducted for SSR this time only on 530 

the ReNa response. Working with a single response maintains the intricacy of dealing with saturated-531 

unreplicated designs. Subsequently, in Table 5, we tabulate the median response and the relative effect 532 

for all four factors on ReNa. The grand median is 5.08%. DF and AF appear to contribute the most in 533 

tweaking the ReNa reaction. To run significance diagnostics, first the reconstructed error (ReNa′′) and the 534 

factor-specific (ReNa′) vectors are prepared (Table 6). Subsequently, the Kruskal-Wallis estimator is 535 

evaluated and the statistical significance for error symmetry and effect strength is obtained (Table 7). We 536 

observe that the error symmetry is well-balanced across all factors at a level of significance of 0.05. We 537 

notice that for a single ReNa response screening, the DF-effect makes the only strong influence at a level 538 

of significance of 0.05. The response graph for main effects of SSR (Figure 3) portrays in a descriptive 539 

fashion a situation where the DF-effect stands out as a component that cannot be comparable to any of 540 

the other factors. 541 

However, the data noise is as severe as we saw in the previous section that the protracted, nearly 542 

linear, inclination of the SSR vs DF fitting cannot be taken advantage of to satisfy ED-designing 543 

objectives. To verify this result, we also use the classical half-normal plot [47] to test from a different 544 

angle our findings. In Figure 4, we graph linear and quadratic effects of SSR for all four factors using the 545 

half-normal plot. This means that there must be eight points on the graph to make the distinction 546 

between the two curvature types. We discern that the linear part of the DF-effect tends to deviate from 547 

the string of points (rest of the effects) to the right. However, the slope of the line formed by the string of 548 
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the rest of the effect-points also bends away from zero. Thus, it is hard to document the strength of the 549 

DF effect. The fact that the linear DF contribution scores below the 95% limit also may uphold this 550 

perspective.  551 

Finally, to be consistent with the discussion on the tendencies of the individual screenings, three 552 

normal plots are prepared for each response (Fig. 5). There is no evidence of substantial divergence of any 553 

factor from the rest of the group in the ReNa half-normal plot. This comes in contrast to our result in 554 

Table 7, which asserts that the DF is a vital effect and capable of influencing the ReNa response. On the 555 

other hand, the linear part of DF seems to strongly depart from the behavior of the rest of the effects in 556 

the SAR and NaRa half-normal plots. This is in agreement with the behavior on the corresponding main 557 

effects plots.  558 

 559 

 560 
    561 

FigureFigureFigureFigure 3: Main effects plots for SSR means. 562 

 563 
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    565 

FigureFigureFigureFigure 4444: Half-normal plot for SSR response. 566 

But again this result is not significant at a level of 0.05. It becomes clear from this screening/optimization 567 

effort that the settings that generate low SSR values are favored. This means that for the specific ranges 568 

that have been worked out in this paradigm the adjustments should be: DF=2 L/h, CF=3 L/h, AF=3 L/h 569 

and V=45V (Table 2). This predicts ReNa, SAR and NaRa values of 11.68%, 4.63, and 59%, respectively. 570 

Furthermore, using the Taguchi-defined Ω-transformation for percentages, we depict the ReNa and 571 

NaRA characteristics in terms of their main effects plot for means in Part B (Supplementary Material). 572 

Checking the effect tendencies with the Ω-transformation for ratios, it becomes imperative for the 573 

response observations of ReNa due to the fact that 44% (4 out of 9) of the total observations have been 574 

measured under 5% [26], while runs # 7 and 9 (22%) had produced ReNa magnitudes close to 0 (0.08%).  575 

By employing the Ω function, now, it becomes more obvious now that besides the influence of dilute flow 576 

on ReNa variable, there is also a trend on NaRa variable.  It is demonstrated that the dilute-flow low 577 

limit favors the maximization of the ReNa variable and the minimization of the NaRa variable.  578 
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   B.

Probability Plot; Var.:SAR; R-sqr=1.
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                             C.

Probability Plot; Var.:NaRa; R-sqr=1.
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                                                                                        FigureFigureFigureFigure 5555: Half-normal plots for ReNa (A), SAR(B) and NaRa(C). 584 

 585 
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The main effects of Ω in Part B (Supplementary Material) aid in understanding that there is not 586 

significant difference between dilute flows of 2 and 5 L/hr. Visual tendencies match to the effect strength 587 

of the dilute flow on the concurrent multi-response adjustment (Table 4). 588 

 589 

Finally, the initial optimization procedure by Abou-Shaby [7], that was also re-examined in this 590 

article, led to further modifications on the original design that as anticipated provided even greater 591 

efficiency for the ED cell after a second round of optimization.  The promising concept of using an ED 592 

process as it was described in Abou-Shaby [7] should be further tested to accommodate even larger scale 593 

demands for irrigating even wider areas of crops. As the ED tank size should substantially increase in 594 

size from its current specifications, new optimization effort should be attempted. In that case, it would be 595 

interesting to take in account the possibility of introducing in the study effects additional opportunities 596 

for ED-performance enhancement such as: various exchange membrane types, optimal electrode 597 

dimensions, cell stack configuration, compartment configuration, ion-exchange resin-bead transport 598 

bridging, the influence of the origin of the feedwater sources and its associated mixture optimality on the 599 

overall ED efficiency and so forth.      600 

    601 

5.5.5.5. ConclusionsConclusionsConclusionsConclusions    602 

    603 

Managing to extract water for household and irrigation needs from polluted wastewater pools is a major 604 

modern environmental challenge. Special engineering methods are needed to be adapted each time to the 605 

particular kind of local water demands in order to ensure adequate water supply. One of the most 606 

promising chemical processes to assist such plans is electrodialysis. For optimum feed recovery, 607 

sophisticated optimization methodologies are necessitated to deal with the complexity of the 608 

electrodialysis process at hand. Due to the intricate nature of environmental phenomena, robust 609 

aquametrics optimization techniques should be employed to assure that water quality indices are 610 

optimized. Design of experiments in a distribution-free framework may aid to surpass several cell design 611 

and process design sticking issues. Since experiments are needed to describe each time the type of 612 
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effluent to work with along with the cell conditions, it is only practical to make measurements in 613 

electrodialysis operations only in small samples as in Abou-Shady’s investigation. We showed in this work 614 

how to extract information on difficult multi-response multifactorial datasets from a real published 615 

wastewater study. The study was intriguing because it exposed various complications that will be 616 

confronted in chemometrics when trying to improve electrodialysis performance. Therefore, in this effort, 617 

we made an attempt to distinctly demonstrate the underlying complications that could undermine a 618 

robust decision in improving polluted wastewater operations.  619 

The aspects that the unique multi-response aquametrics affected the interpretation of Abou-620 

Shady’s electrodialysis trials and were elucidated in this work were:  621 

1) data smallness,  622 

2) data non-linearity,  623 

3) data non-normality,  624 

4) data messiness,  625 

5) effect saturation,  626 

6) trial unreplication,  627 

7) statistical multifactorial optimization,  628 

8) concurrent multiresponse optimization.  629 

Robust and agile tools were shown to be necessitated for such pragmatic situations in order to lead to fast 630 

and reliable inference. We proposed a method that encompasses:  631 

1) the superanking approach to fuse and handle multiple water-quality indices, 632 

2)  the robust screening from a non-linear multifactorial statistical profiler to overcome the many data 633 

prerequisites discussed above and were not covered by the basic assumptions in the classical Taguchi 634 

approach.  635 

It was found that: 636 

1)  A concurrent solution does not promote specific settings 637 

2)  Two out of the three responses were not affected substantially in the investigated ranges 638 
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3) Ω-transformation gives better resolution than the classical SNR transformation 639 

4) The problem could be reduced to a single response, not because of correlated response pairs 640 

5) The removed sodium was shown to be controlled by setting the diluted flow at 5 L/h which may be 641 

dropped to 2 L/h (potentially even lower) for the multiresponse screening case.  642 

6) The rest of the factors are not statistically significant.  643 

7) Inactive factors could be adjusted based on the multireponse screening solution or from practical 644 

and economic considerations.  645 

 646 

To recapitulate the findings, it is recommended that the lower operating end of dilute flow could be 647 

tweaked for magnitudes lower than 1 L/h. Conducting again the trials would provide even better 648 

resolution for the underlying separation phenomena. Future research could also include in the design 649 

different types of efflux, mixtures of effluxes from different sources, number of cell stacks, energy 650 

requirements, types of membranes (polymer structure) and so forth.     651 

 652 
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HIGHLIGHTS 

• Electrodialysis (ED) is an important chemo-process for polluted wastewater treatment 

• Taguchi methods are essential for quick planning of ED chemometric  trials 

• Robust and agile chemometric methods are important for multiresponse multifactorial ED 

screening/optimization. 

• We discuss several complications for robust decision-making on a real paradigm. 
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