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ABSTRACT Colletotrichum fructicola is a causal agent of strawberry anthracnose and
a major economic pathogen of horticultural and ornamental crops worldwide. Here,
we present an annotated draft genome sequence for a C. fructicola isolate previously
used for transcriptomic analysis. The assembly totals 58.0 Mb in 477 contigs with
18,143 predicted genes.

Colletotrichum fructicola (phylum Ascomycota, class Sordariomycetes) is a fungal
pathogen of a wide range of horticultural crops, including strawberry, avocado, apple,

Asian pear, yam, cacao, coffee, and ornamentals such as statice (1). The fungus is the
causative agent of anthracnose on cultivated strawberry in Asia, which leads to severe
economic losses (2–4). The hemibiotrophic nature of the fungus has led to recent investi-
gation into gene expression at spore germination, biotrophic and necrotrophic infection (5),
and response of the host to infection (6). We provide expansion of the genomic resources
available for the anthracnose pathogen C. fructicola through assembly and annotation of
the same strain used for published transcriptomic work (5).

C. fructicola isolate CGMCC3.17371 was isolated in 2007 from an infected strawberry
plant displaying strawberry anthracnose symptoms in Feng Xian District, Shanghai.
Freeze-dried mycelium, grown in potato dextrose broth (Fluka, Sigma-Aldrich), was
used for genomic DNA (gDNA) extraction with a Macherey-Nagel NucleoSpin plant II kit
(catalog number 11912262, Fisher). Paired-end PCR-free genomic libraries were pre-
pared for Illumina sequencing using New England Biolabs Next End Repair (catalog number
E6050S), dA-tailing (catalog number E6053S), and Blunt T/A ligase (catalog number
M0367S) module reagents. For MinION sequencing, library preparation was performed
using a 1D genomic DNA ligation sequencing kit (catalog number SQK-LSK108; Oxford
Nanopore Technologies), with shearing performed using a g-TUBE (Covaris) and size
selection on a BluePippin system (�4 kbp). Genomic libraries were sequenced using
Illumina MiSeq v.3 2 � 300-bp paired-end (PE) reads (catalog number MS-102-3003) and
MinION FLO-MIN106 R9.4 flow cells, generating 75.49-fold (7,426,411 reads) and 13.57-fold
(155,413 reads) coverage of sequence data, respectively.

Illumina reads were trimmed and adapters removed using fastq-mcf v.1.04.676 (7),
while MinION reads were trimmed using Porechop v.0.2.0 (https://github.com/rrwick/
Porechop). Genome assembly was performed with SPAdes v.3.5.0 (hybridSPAdes) (8),
generating a 58-Mb assembly in 447 contigs, with 308 contigs larger than 1,000 bp
(Table 1). A total of 2.11 Mb of the genome was repeat masked using RepeatMasker
v.4.0.3 (http://www.repeatmasker.org) and TransposonPSI (http://transposonpsi.source-
forge.net; 2013-03-05 release). Genome completeness was assessed using BUSCO v.3
(9), identifying 3,685 of 3,725 (98.9%) genes from the Sodariomycota_odb9 data set as
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both present and complete in the assembly. Published RNAseq data from different
stages of plant infection (GenBank accession numbers SRR5194993, SRR5194994, and
SRR5194995) (5) were aligned to the genome using STAR v.2.5.3a (10). These align-
ments were used to train prediction of gene models using BRAKER1 v.2.0 using the
fungal option and CodingQuarry v.2.0 run in pathogen mode (11, 12). A total of 18,143
genes were predicted, encoding 18,447 proteins, with 16,459 of these proteins pre-
dicted from BRAKER1 and supplemented with a further 1,684 genes predicted by
CodingQuarry that were located in intergenic regions of BRAKER1 gene models.
Functional annotation was performed using InterProScan v.5.18-57.0 (13) and with
BLASTp (E � 1 � 10�100) searches against the March 2018 release of the SWISS-PROT
database (14, 15).

Genes that play a putative role in pathogenicity were identified from predicted gene
models. SignalP v.4.1 and TMHMM v.2 were used to predict genes encoding secreted
proteins (16, 17), from which carbohydrate-active enzymes were predicted using
dbCAN and the CAZy database classification system (18, 19). Furthermore, proteins with
an effector-like structure were predicted using EffectorP v.1.0 (20) (Table 1). Default
parameters were used for software unless otherwise noted.

Data availability. This whole-genome shotgun project has been deposited at
DDBJ/ENA/GenBank under the accession number SSNE00000000 (BioProject number
PRJNA532407). This version of the project has the accession number SSNE01000000 and
consists of sequences deposited under the GenBank accession numbers SSNE01000001 to
SSNE01000447. The raw reads are available on the NCBI SRA database under accession
number PRJNA532407.
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