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Abstract: Reactive oxygen species (ROS) play an important role as endogenous mediators in several
cellular signalling pathways. However, at high concentrations they can also exert deleterious effects
by reacting with many macromolecules including DNA, proteins and lipids. The precise balance
between ROS production and their removal via numerous enzymatic and nonenzymatic molecules
is of fundamental importance for cell survival. Accordingly, many neurodegenerative disorders,
including Parkinson’s disease (PD), are associated with excessive levels of ROS, which induce
oxidative damage. With the aim of coping with the progression of PD, antioxidant compounds are
currently receiving increasing attention as potential co-adjuvant molecules in the treatment of these
diseases, and many studies have been performed to evaluate the purported protective effects of
several antioxidant molecules. In the present review, we present and discuss the relevance of the
use of Drosophila melanogaster as an animal model with which to evaluate the therapeutic potential
of natural and synthetic antioxidants. The conservation of most of the PD-related genes between
humans and D. melanogaster, along with the animal’s rapid life cycle and the versatility of genetic tools,
makes fruit flies an ideal experimental system for rapid screening of antioxidant-based treatments.
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1. Introduction

Parkinson’s disease (PD) is a chronic and progressive movement disorder that affects approximately
1–2% of the population over the age of 65 years. Clinically, the pathology is mainly characterised
by resting tremor, rigidity, bradykinesia and postural instability. However, the symptomatology of
the disease is nowadays considered more complex, also including non-motor symptoms such as
depression, sleep disturbance and cognitive decline [1]. From a neuropathological point of view,
PD is characterised by a preferential loss of dopaminergic neurons within the substantia nigra pars
compacta, and by the deposition of intracellular inclusions, referred to as Lewy bodies (LBs), in the
surviving neurons [2]. Although the majority of PD cases are idiopathic, the identification of genetic
forms of the pathology has contributed to partially elucidating the cellular mechanisms behind the
syndrome. Familial manifestations account for ~10% of the disease and are classified into dominant
and recessive forms according to the pattern of inheritance [3]. Among the causative genes, SNCA and
LRRK2 are associated with dominant PD cases, while Parkin, PINK1 and DJ-1 contribute to recessive
forms of the disease [4]. α-Synuclein is the major component of LBs in sporadic PD forms, while
LRRK2 is a kinase implicated in different cellular functions, including vesicle trafficking, synaptic
morphogenesis and neurite outgrowth. Parkin, PINK1 and DJ-1 are all proteins differentially involved
in mitochondrial homeostasis. Parkin, an E3 ubiquitin ligase, and PINK1, a serine–threonine protein
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kinase, cooperate to maintain mitochondrial quality control, driving the disposal of damaged or
old mitochondria, while DJ-1 is a multitasking protein principally implicated in the activation of
antioxidant responses [4]. Although it is still unclear what triggers PD, growing bodies of evidence
have suggested that unbalanced redox homeostasis is a common feature underlying both sporadic and
idiopathic manifestations [5]. As previously discussed, multiple sources appear to contribute to the
redox alterations observed in the disease, including mitochondrial dysfunction, neuroinflammation
and dopamine metabolism [5]. Mitochondria have received special interest in PD etiopathology,
especially considering that numerous PD-related genes and neurotoxins, such as MPTP, rotenone
and paraquat (PQ), have been shown to affect mitochondrial functionality [6]. As mitochondria are
considered a primary source of reactive oxygen species (ROS), mitochondrial dysfunctions are believed
to abundantly participate in driving the state of oxidative stress observed in the disease [7]. Similarly,
through the chronic activation of microglia, neuroinflammation can be responsible for a conspicuous
production of ROS, which, if not detoxified, contributes to amplification of the state of oxidative
stress [8]. Additionally, dopaminergic neurons are particularly vulnerable to oxidative damage because
the metabolism of dopamine can itself act as a further source of ROS in the disease [9]. In light of
these considerations, antioxidants are currently receiving attention as co-adjuvant molecules in PD
treatment, and many studies in this frame have been published using different animal models of PD
(Figure 1). In the present review, we discuss the advantages of Drosophila melanogaster as a model
organism by focusing, in particular, on PD and its related redox alterations, and emphasising the
therapeutic potential of the antioxidant drugs.
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Figure 1. Beneficial effects of antioxidant treatment on the maintenance of redox homeostasis in
Parkinson’s disease (PD). PD pathology is associated with an unbalanced redox state, which is the result
of mitochondrial dysfunction, neuroinflammation and dopamine metabolism. Antioxidant therapies
can help to hinder excessive oxidative stress conditions by buffering reactive oxygen species (ROS)
production and limiting ROS-related damage. Antioxidant treatments encompass both natural (e.g.,
vitamins and plant extracts) and synthetic compounds (e.g., superoxide dismutase-mimetics), and can
promote the stimulation of the endogenous antioxidant defence system. Therefore, the antioxidant
treatment can act as a co-adjuvant to currently used PD therapies.
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2. Drosophila melanogaster as a Model Organism in Scientific Research

The history of Drosophila melanogaster as a model organism in science began a little over
100 years ago, when Thomas Hunt Morgan and his school demonstrated the theory of chromosomal
inheritance of Mendelian factors [10]. Over the years, D. melanogaster has become a model in modern
genetics and is used for the study of several fundamental physiological and behavioural processes,
most of which are conserved in higher eukaryotes, including mammals. In addition, D. melanogaster
is considered a valuable model with which to investigate different aspects of human pathologies in
translational studies.

Several factors have contributed to make D. melanogaster an informative model. Some are linked
to the intrinsic characteristics of the organism, such as its short life cycle (about 10 days at 25 ◦C),
high fecundity (females lay more than 800 eggs during their lifetime), high number of progeny per
generation, and the absence of meiotic recombination in males. Furthermore, fruit flies are easy to grow
and manipulate in the laboratory, and the generation of fly mutant strains has become relatively easy
(see below). All these aspects have facilitated genetic studies, including those requiring the generation
of specific fly lines or high numbers of individuals for powerful statistical analyses.

Importantly, the D. melanogaster genome has been extensively studied, and it was completely
sequenced in 2000 [11,12]. It encompasses ~143 Mbp, organised into four pairs of chromosomes—two
X/Y sex chromosomes and three autosomes. The genome contains ~16,000 genes, of which ~13,000
code for proteins. Among the protein-coding genes, more than 60% have an orthologous counterpart
in humans, representing promising candidates for translational studies [13]. In addition, for some
cases in which human genes do not show an obvious fly homologue, fly–human conservation might
still occur at the level of the pathway in which these factors are involved, making Drosophila-based
studies again informative [13]. In the next section, we briefly describe the most common genetic tools
used in fly studies.

2.1. Generation and Maintenance of Mutant Fly Lines

Both forward and reverse genetic studies are based on the availability of mutant gene variants.
Over the last century, several strategies and tools have been developed to obtain multiple collections
of lines in D. melanogaster, characterised by different types of mutations. Mutant alleles are initially
obtained using chemical (e.g., ethyl methanesulfonate, EMS) or radiation (X-ray) mutagenesis. The
advent of the P-element-mediated transformation developed in flies by Rubin and Sprandling [14,15]
raised the possibility of introducing any DNA sequence into the Drosophila genome, generating
transgenic lines stably inheriting the inserted sequence. Methodologies based on fly transgenesis and
random insertion of transposon vectors created large-scale collections of fly lines carrying mutant
insertional alleles, including amorphic and hypomorphic variants [16,17]. Additional strategies
exploiting homologous recombination (HR) [18] or the induction of double-strand breaks followed by
HR, or error-prone nonhomologous end-joining such as TALENs and ZNFs [19,20], were established to
target and modify specific genes. The possibility to mutate specific genes into the fly genome has been
improved with the introduction of the CRISPR/Cas9 (clustered regularly interspaced short palindromic
repeats/ CRISPR-associated nuclease) technology in D. melanogaster. Several groups contributed to the
development of this methodology [21–24], making available to the fly community protocols and tools for
using this strategy to generate mutant flies [25] (https://flycrispr.org/; https://www.crisprflydesign.org/).
Recent advancements in CRISPR/Cas9 technology have allowed tissue-specific mutagenesis, which
will permit fine dissection of the roles of specific genes in complex biological processes [26].

Independently of the strategy employed to obtain mutations, the availability of balancer
chromosomes, peculiar chromosomes carrying multiple inversions, thereby inhibiting homologous
recombination [27], allows the production of stock lines in which recessive lethal or sterile alleles can be
stably maintained in heterozygosity. The use of balancer chromosomes also facilitates the production
of fly lines carrying mutations at the level of multiple genes.

https://flycrispr.org/
https://www.crisprflydesign.org/
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2.2. The GAL4/UAS System

The possibility to manipulate gene expression and activity in a spatially and/or temporally
controlled manner is one of the main strengths of the fly model. Common tools used for these analyses
are based on the GAL4/UAS system originally developed by Brand and Perrimon [28]. In principle, this
system relies on the generation of two different types of parental transgenic lines. The first parental line
carries a construct in which a specific fly cis-regulatory sequence (enhancer and/or promoter region)
promotes the expression of the coding region of the yeast transcription factor GAL4 (GAL4-driver). The
second line carries a transgene in which DNA of interest is cloned under the control of the upstream
activating sequences (UAS) specifically recognised by GAL4. In the progeny derived from the cross
between the two parental lines, the UAS-controlled DNA sequence will be actively transcribed only
in those tissues where GAL4 is expressed, allowing the analysis of its effect in a spatially-controlled
way [28]. Moreover, GAL4 expression can be temporally regulated by adding to the system a third
transgene specifying a temperature-sensitive transcription factor, GAL80ts. Indeed, GAL80ts can
bind to GAL4, repressing its transcriptional activity at the permissive temperature of 18 ◦C, while
its inhibitory function is removed at higher temperatures, allowing GAL4 binding to UAS [29]. A
recent refinement of the technique includes the split GAL4, which improves the temporal control of
gene expression. In this system, the transcriptional activation domain of GAL4 and its DNA-binding
domain are cloned in separated promoters. Hence, only when the two domains bind to each other is
GAL4 reconstituted and functional [30].

The number of GAL4 and GAL80ts lines has increased over time, allowing multiple and versatile
combinations. Similarly, many transgenic UAS lines have been produced. Depending on the nature
of the UAS construct, these lines can be used to study the effects of ectopic expression of a specific
gene product, including those not present in the fly genome, or to explore the consequence of a gene’s
downregulation via RNA interference.

Other GAL4/UAS-based tools available for Drosophila are the EP lines. Each of these lines carries
a randomly inserted EP element, a P transposon containing UAS sites. When activated using a
GAL4-driver, the EP-element can induce mis-expression of endogenous genes located at the site of
insertion. Such mis-expression can have phenotypic consequences, the characterisation of which
allows the identification of novel genes or for new roles to be ascribed known genes. Thousands of EP
lines have been produced and are available for screening studies [17,31–33].

2.3. Other Tools to Monitor Gene Expression in D. melanogaster

Different tools have been also developed to perform expression studies of fly proteins without
the need for specific antibodies, which are often challenging to obtain for Drosophila. An early tool
was based on the generation of transgenic lines carrying a randomly inserted green fluorescent
protein (GFP)-coding artificial exon [34]. Subsequently, other methodologies, such as “MiMIC”
(Minos-mediated integration cassette) [35] and “CRIMIC” (CRISPR mediated integration cassette) [36],
based on the use of exchangeable φ-C3 integrase cassettes, were developed. In addition, strategies
relying on the production of genomic P[acman] BACs or fosmids modified to tag protein-coding regions
are also available [37–39]. These approaches allow characterisation of the expression of endogenous
proteins at the tissue, cellular and subcellular levels as well as immunoprecipitation and live-imaging
experiments, as reviewed in Reference [33]. Importantly, several lines for protein tagging studies are
now available from public repositories.

3. D. melanogaster as a Model to Investigate PD Pathology

The fly central nervous system is a bilaterally symmetrical brain composed of both neurons
and glial cells. Notwithstanding its simplicity, the Drosophila brain coordinates complex behaviours
such as circadian rhythms, sleep, memory, locomotion and learning. Moreover, D. melanogaster has
been found to respond to drugs acting on the central nervous system similarly to mammals [40–42].
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The fruit fly brain includes a well-characterised set of dopaminergic (DA) cells. DA neurons are
subdivided into multiple clusters, which are symmetrically distributed and easily recognisable in the
fly brain [43,44]. Similarly to mammals, the DA system is involved in the control of locomotion and
other complex behaviours, including olfaction, memory, learning and sleep [45]. This remarkable
degree of conservation, combined with the possibility of exposing flies to PD-linked toxins, has led
to the investigation of PD-related phenotypes including DA neurodegeneration and dysfunctional
locomotion. DA neuronal loss is normally evaluated by counting the number of neurons positive
to tyrosine hydroxylase (TH) immunostaining, the rate-limiting enzyme in dopamine synthesis [44].
Locomotor alterations are usually evaluated by measuring startle-induced negative geotaxis, a typical
Drosophila behaviour, also known as climbing. Once inside the experimental tubes, flies display the
spontaneous tendency to climb following a slight stimulus [46]. Besides the availability of these tools,
one great advantage of using D. melanogaster in the study of PD derives from the conservation of
many PD-related genes. In fact, parkin, Pink1, LRRK2 and dj-1 mutant strains have been generated
to investigate the mechanisms leading to the disease. Interestingly, parkin and Pink1 mutants are
characterised by reduced lifespan, mitochondrial pathology, apoptotic muscle degeneration and DA
neuron degeneration [47,48]. Differently, dj-1 loss of function confers milder phenotypes [49,50], which
emerges particularly under oxidative treatments. Regarding dominant loci, LRRK2-null animals have
been shown to present inconsistent phenotypes. Indeed, according to some reports, deficient flies show
DA cell loss and locomotor deficits [51], while other studies did not find evidence of degeneration [52].
Interestingly, the expression of human LRRK2 or the Drosophila homologue confers age-dependent
DA cell death and locomotor alterations [53–55]. In contrast to the other PD genes, the fly genome
does not bear an α-synuclein encoding gene. Hence, α-synuclein fly models are uniquely based on the
ectopic expression of the human gene, both in mutated and wild-type form. Interestingly, transgenic
flies overexpressing the protein develop LB-like inclusions, DA neuron degeneration and locomotor
defects [56]. Furthermore, Drosophila shares high homology with the mammalian innate immune
response of the brain, allowing the investigation of the PD-related neuroinflammatory mechanisms [57].
Therefore, considering these findings, the fruit fly represents a valuable system to model PD-linked
genes and to dissect the related mechanisms of neurodegeneration.

4. Drosophila as a Model to Evaluate In Vivo Redox Alterations

Besides the conservation of several PD genes and the availability of behavioural tools, the
potentiality of Drosophila as a PD model is further supported by the possibility of investigating in vivo
the role played by oxidative stress in the neurodegenerative process. To date, several transgenic
flies carrying redox-sensitive probes have been generated [58,59]. The existing sensors rely on
redox-sensitive green fluorescent protein constructs (roGFP), which enable the exploration of cellular
changes in the redox state mainly by exploiting glutathione oxidation (roGFP-Grx1, where roGFP is
fused to glutaredoxin 1) or H2O2 concentration (roGFP-Orp1, where roGFP is linked to the H2O2-specific
peroxidase Orp1) as readout [60]. Moreover, thank to further refinements, these probes can now be
specifically expressed in different subcellular compartments, such as the cytosol or mitochondria,
markedly improving the spatial resolution [59,61]. Transgenic fly lines harbouring these advanced
sensors have been already used to explore the in vivo redox changes occurring in normal physiology
and in pathological states [59,61]. For example, the use of the mitochondrially targeted H2O2-sensitive
probes has shown that this ROS species is increased in both Pink1 and parkin mutants, supporting the
existence of a dysregulated redox homeostasis in these PD models [62]. Therefore, the availability of
fly lines carrying redox-sensitive probes could significantly contribute to elucidation of the complex
role played by the redox homeostasis in such pathological conditions.

In addition to these useful tools, fruit flies have also been exploited to screen antioxidant compounds
with therapeutic potential in neurodegenerative diseases. These molecules can be easily administered
through the flies’ food and their effects evaluated over time through behavioural and biochemical
analysis [63]. Ingestion can be actively monitored by adding inert coloured compounds to the standard
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fly food in which the molecule of interest is dissolved, or, alternatively, the compound solution can
be directly injected into the fly abdomen to ensure complete absorption [63]. In this way, Drosophila
can substitute for in vitro approaches, overcoming the limitations associated with cell-culture-based
high-throughput screenings, which cannot mimic the whole-tissue response. Indeed, despite the
introduction of 3D cultures, the results obtained with in vitro approaches cannot be generalised
in vivo [64]. Drosophila represents a suitable in vivo model with which to perform preliminary drug
screening studies to identify new candidate compounds [65,66], while also allowing the investigation
of potential side effects, for instance by evaluating the mortality rate, embryonic development, adult
morphology and behavioural traits [67,68]. Nonetheless, as drug response profiles can differ between
fruit flies and humans due to the evolutionary distance, Drosophila should be considered as a preliminary
drug discovery platform, the results of which should be further validated in higher model organisms
to clarify their translational relevance. The major advantages of D. melanogaster as a model to study PD
are summarised in Figure 2.
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Figure 2. Advantages of Drosophila melanogaster as a model organism to investigate PD. D. melanogaster
offers numerous advantages as a model organism for the study of PD-related features. (A) Fruit flies
share many of the human genes involved in PD, allowing the generation of PD-mutant organisms which
can then be investigated through different approaches; (B) longevity; (C) evaluation of dopaminergic
(DA) cell loss; (D) locomotor defects, e.g., evaluated by climbing; (E) response to PD-toxins and
therapeutic compounds and (F) ROS levels. The picture in (C) was produced in our laboratory by
generating flies that overexpress GFP in DA neurons via TH-GAL4 driver. The picture in (F) was
adapted from Reference [62].

5. Drosophila as a Model to Probe Antioxidant Therapies in PD: Insights from α-synuclein,
parkin/Pink1 and dj-1 PD Models

In this section, we describe the use of Drosophila PD models that have mainly contributed to
investigation of potential antioxidant drugs in the disease. Among the genetic models available, the
ones that are mainly utilised are based on the heterologous expression of human α-synuclein or on the
loss of function or downregulation of the fly homologues of Parkin, PINK1 and DJ-1. Indeed, these
fly lines are characterised by altered redox homeostasis, thus representing an appropriate model to
evaluate antioxidant compounds. As summarised in Table 1, for each gene, we have provided a brief
introduction followed by a description of its characterisation in D. melanogaster and the associated
antioxidant-based studies.
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Table 1. Antioxidant treatments positively evaluated in Drosophila genetic PD models.

Fly PD Model Associated PD Phenotypes Antioxidant Molecules/Pathways Tested

α-synuclein
(overexpression of the
human homologue)

LB-like inclusions, DA
degeneration, climbing
defects [56], lipid
peroxidation and protein
carbonylation [69,70]

• GstS1 upregulation [71] and
overexpression of bovine MSRA [72] or
human SOD1 [73]

• S-methyl-l-cysteine [72], curcumin [74],
epicatechin gallate [75], grape extract
[76], Decalepis hamiltonii [70], Eucalyptus
citriodora [77] and Centella asiatica [69]

parkin
(Loss of function)

DA degeneration [78–81],
climbing defects [79,81,82],
mitochondrial dysfunctions
[79,80,83] and sensitivity to
oxidative treatments [83]

• GstS1 upregulation [81] and
overexpression of fly Sod1 and Sod2 [62]

• polyphenols (propyl gallate and
epigallocatechin gallate) [84]

• M40403 (SOD-mimetic) [62]

pink1
(Loss of function)

DA degeneration [47,79],
climbing defects [47,79],
mitochondrial dysfunctions
[47,79,85] and sensitivity to
oxidative treatments [85]

• overexpression of human SOD1 [86] and
of fly Sod1 and Sod2 [62]

• M40403 (SOD-mimetic) [62]

dj-1α and dj-1β
(Loss of function, single and
double mutants)

Sensitivity to oxidative
treatments [49,50], lipid
peroxidation and protein
carbonylation [87,88]

• minocycline and celastrol [89]
• vitamin C and vitamin E [87,88],

Spirulina [90], epigallocatechin-3-gallate
[91], pterostilbene, methylene blue,
dalfampridine, sodium phenylbutyrate
and dexrazoxane [65]

DA: dopaminergic neurons; GstS1: glutathione-S-transferase S1; LBs: Lewy bodies; MSRA: methionine sulfoxide
reductase A; SOD1: superoxide dismutase 1.

5.1. α-synuclein Models

α-Synuclein is a small protein (14 kDa) particularly enriched at presynaptic terminals [92].
The protein is normally found in a dynamic equilibrium between a soluble cytosolic state and a
membrane-bound state [92]. While in the former, the protein is unstructured, in the latter state,
α-synuclein assumes an α-helix conformation. In its membrane-bound form, it seems to participate in
neurotransmitter release and vesicle recycling, although the physiological function is still elusive [92].
Even though fruit flies lack a homologous gene, α-synuclein-overexpressing lines have been produced
to investigate the physiopathological function of the protein. However, while the absence of a fly
homologue allows specific investigation of the role of α-synuclein without any interference from an
endogenous counterpart, in particular when pathological mutations are inserted in its sequence, the
observed phenotypes could, on the other hand, represent a nonspecific consequence of foreign protein
expression that cannot be properly managed by the organism. The overexpression of humanα-synuclein
and its A30P or A53T mutants does not affect the development of neuronal and non-neuronal tissues,
nor does aging produce any gross, widespread degenerative changes [56]. However, flies expressing
wild-type and mutant forms of the protein are characterised by a specific loss of dopaminergic neurons
and by the appearance of α-synuclein aggregates that strongly resemble cortical LBs from patients
with diffuse LB disease [56]. Together with these pathological phenotypes, the locomotion behaviour
of α-synuclein transgenic flies has been demonstrated to decline more rapidly during aging than control
flies, with a time course of climbing dysfunction that parallels the degeneration of dopaminergic
neurons and the appearance of α-synuclein inclusions [56]. More recently, increased levels of ROS and
cellular markers of oxidative damage such as lipid peroxidation and protein carbonylation have been
measured in α-synuclein-expressing flies [69,70].
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The presence of PD-related phenotypes in the α-synuclein-overexpressing flies has been used as a
readout to test the protective effects mediated by endogenous detoxification pathways or by exogenous
molecules. For instance, an impairment in glutathione metabolism has been shown to enhance
the loss of dopaminergic neurons, whereas the overexpression of factors involved in glutathione
biosynthesis and conjugation has been observed to suppress α-synuclein toxicity [71]. Interestingly,
similar protective effects were also observed when feeding flies with sulphorafane and allyl disulfide,
which have been demonstrated to significantly increase glutathione abundance [71]. In light of
the known role of glutathione in protecting from oxidative stress, these data associate α-synuclein
toxicity with oxidative damage. Accordingly, the overexpression of the enzyme methionine sulfoxide
reductase A, which has been postulated to function as a catalytic antioxidant mechanism [72], has
been demonstrated to markedly slow down the climbing deficits induced by wild-type or A30P
α-synuclein and to preserve dopaminergic neurons from age-related degeneration [72]. In addition,
statistically significant protection was observed when flies were fed with the non-toxic methionine
analogue S-methyl-l-cysteine, which is a substrate of methionine sulfoxide reductase A [72]. Further
experimental evidence on the involvement of oxidative damage in α-synuclein toxicity has arisen
from a third study, in which both locomotion impairment and neuronal degeneration were reduced by
the overexpression of superoxide dismutase 1 (SOD1), an antioxidant enzyme that participates in the
removal of superoxide radicals [73]. In addition to the aforementioned studies aimed at evaluating how
the activation of endogenous antioxidant pathways could be protective in the α-synuclein-based fly
model of PD, more recent analyses have focused on the effects exerted by different natural antioxidant
molecules, such as curcumin, epicatechin gallate, grape extracts, Decalepis hamiltonii root extracts and
Eucalyptus citriodora and Centella asiatica leaf extracts [69,70,74–77]. Notably, every antioxidant molecule
tested showed protective effects.

5.2. parkin and Pink1 Models

As previously mentioned, Parkin and PINK1 collaborate to drive the disposal of old or damaged
mitochondria through a process called mitophagy [93]. Interestingly, studies carried out in Drosophila
models first emphasised the role of both proteins in mitochondrial homeostasis [47,82,85]. When
mitochondria are damaged, Pink1 is stabilised on the mitochondrial outer membrane, where it
recruits and phosphorylates parkin, inducing its E3 ligase activity, which labels mitochondria for
degradation [93]. The phenotypes associated with the deletion of these genes have been largely
characterised in Drosophila models, and most of them recapitulate the phenotypes observed in
PD patients. Specifically, parkin-null mutants show a reduced life span and impaired locomotion
activities [78,80,82,83]. Moreover, the degeneration of dopaminergic neurons has also been described,
as well as mitochondrial defects [78,81]. The phenotypes associated with Pink1 deficiency are almost
identical to those observed in parkin Drosophila mutants [47,79,85]. Besides mitochondria alterations,
Pink1- or parkin-null mutants have also been described to be associated with increased susceptibility to
oxidative conditions. More specifically, Pink1-deficient flies show increased sensitivity to oxidative
insults [85], while parkin mutant flies are characterised by an alteration in oxidative stress response [94]
and enhanced sensitivity to oxygen radical injury [83]. More recently, through the use of redox-sensitive
probes that specifically accumulate either at the cytosolic or mitochondrial level, we observed increased
mitochondrial ROS in parkin- and Pink1-null mutants, while no significant changes in cytosolic ROS
were detected [62].

The enhanced susceptibility to oxidative conditions has been the rationale for the analysis of the
potential protective effects mediated by antioxidant molecules in Pink1 and parkin Drosophila models of
PD. First, as in the case of theα-synuclein model, alterations in glutathione metabolism have been shown
to increase the neurodegenerative phenotypes of parkin mutants, while the overexpression of glutathione
S-transferase S1 prevented dopaminergic neuron degeneration [81]. In another study performed in a
knockdown parkin model, the pre-incubation of flies with a low concentration of paraquat (PQ) (0.1 mM)
was shown to be able to prolong life-span and improve locomotion activity [84]. As PQ is a pesticide
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known to increase the production of superoxide radicals [95], these protective effects observed have
been suggested to derive from an adaptive stress response referred to as “hormesis” [96]. In the same
experimental model, when polyphenols such as propyl gallate or epigallocatechin gallate were added
to low concentrations of PQ, a synergistic protective effect was observed. The antioxidant activity of
those polyphenols was, however, unable to protect flies in the presence of higher PQ concentrations
(>0.25 mM) [84]. In another study performed on a Pink1 knockdown model, the expression of the
human antioxidant enzyme SOD1 was shown to prevent the degeneration of dopaminergic neurons,
confirming that the loss of Pink1 is associated with increased oxidative conditions that can eventually
lead to neuronal degeneration [86]. In light of the mitochondrial localisation of Pink1, and considering
that mitochondria are the main endogenous source of ROS, PD-associated Pink1 mutations might
disrupt mitochondrial homeostasis, resulting in the production of radical species.

5.3. dj-1 Models

DJ-1 has been described as a multitasking protein principally localised in the cytoplasm [97].
Although its physiological function remains partially elusive, the protein has been suggested to
participate in maintenance of the cellular redox state by regulation of the antioxidant defence [98].
Multiple pieces of evidence have shown that the absence of DJ-1 results in impaired redox homeostasis,
characterised by high levels of ROS [99]. Differently from humans, the Drosophila genome encodes two
DJ-1 homologues, referred to as dj-1α and dj-1β. While the expression of the protein dj-1α is restricted
to the male testes, with a minor expression in the brain, dj-1β is ubiquitously distributed, similarly to
the human protein. Double knockout flies are viable and fertile, though showing a higher sensitivity
to oxidative insults [49,50]. Both factors have been shown to exert a protective function; however,
dj-1β has been demonstrated to be primarily involved in the antioxidant protection due to its higher
expression level and its ubiquitous pattern, which resembles the human protein [49]. In agreement with
the proposed antioxidant role of dj-1, higher levels of ROS and oxidative stress markers, such as protein
carbonylation and lipid peroxidation, have been frequently observed in dj-1-deficient flies [87,88,100].

The sensitivity to oxidative stimuli of dj-1-deficient flies has been widely exploited in many
studies, mostly utilising dj-1β null individuals as a platform for screening numerous antioxidants of
both synthetic and natural origin. Among the natural molecules, the micronutrients vitamin C and
vitamin E have been frequently used as antioxidants for their ability to buffer ROS and attenuate lipid
peroxidation [101,102]. In this regard, a study conducted in dj-1β fly mutants demonstrated that the
chronic administration of either vitamin C or vitamin E reduced protein carbonylation [88]. The same
molecules were also assessed by another study for their ability to improve the longevity of dj-1β-null
flies as compared to controls [87]. Interestingly, while vitamin C showed positive effects on both
genotypes, vitamin E showed a pro-longevity effect only on the mutant line [87]. As dj-1β-null flies
displayed higher levels of lipid peroxidation, the authors suggested that a vitamin-E-supplemented diet
might be protective for the maintenance of membrane integrity in the absence of dj-1β [87]. Among the
natural compounds, food supplementation with the cyanobacteria Spirulina, known for its antioxidant
properties [103,104], has been shown to improve locomotion and survival rate of dj-1β-null flies under
PQ exposure [90]. Moreover, epigallocatechin-3-gallate, a polyhydroxyphenol extracted from green
tea [105], has been recently reported to positively affect the locomotor ability and survival rate of dj-1β
knockout flies exposed to PQ [91]. Another natural molecule called Celastrol, derived from the root of a
Chinese plant [89,106], has been described to rescue the dopaminergic neuronal loss and the dopamine
content in flies silenced for the dj-1α homologue [89]. The same authors reported a similar protective
activity for the semisynthetic tetracycline-derived antibiotic minocycline [89], which is emerging for its
antioxidant and anti-inflammatory properties [107].

More recently, in an attempt to identify new drugs for PD treatment, Sanz and co-workers
conducted a broad-spectrum drug screening study in dj-1β-null flies. Promising compounds were
been selected according to the positive effect shown on climbing ability and on the levels of ROS
and protein carbonylation of the mutant flies [65]. Besides the previously mentioned molecules,
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including minocycline and vitamin E, the authors also examined other candidate compounds,
including pterostilbene, an extract of blueberries [108], methylene blue, a mitochondrial targeting
antioxidant [109], dalfampridine, a potassium channel blocker used in multiple sclerosis treatment [110],
sodium phenylbutyrate, a histone deacetylase inhibitor with multiple medical applications [111] and
dexrazoxane, a cardioprotective drug [112]. Interestingly, all the aforementioned compounds have
been shown to have antioxidative and protective properties [65]. As most of them have already been
used in different medical applications, they appear to be promising candidates for further validation in
antioxidant PD therapy.

6. Superoxide Radical Dismutation as a New Therapeutic Strategy in PD

As strongly emphasised in the previous sections, the notion that oxidative damage contributes
to the neuronal degeneration observed in PD is commonly accepted today. However, in spite of the
positive results obtained in many animal models of the disease, clinical trials aimed at evaluating
the therapeutic potential of antioxidant drugs have been rather disappointing with mixed results, as
extensively reviewed elsewhere [113]. Several reasons could account for the modest clinical outcomes,
and a central issue seems related to the real nature of the radical species underlying the neuronal
damage [5]. In other words, most of the tested antioxidant molecules targeted not the primary cause
of the oxidative damage, but rather the downstream effects. Considering that mitochondria are the
principal source of ROS and that superoxide anions are the primary radical species produced during
the mitochondrial oxidative phosphorylation, it follows that a treatment strategy for oxidative stress
that targets superoxide radicals could be more effective. Based on this rationale, we recently assessed
the beneficial effects of antioxidant molecules capable of removing superoxide radicals in both sporadic
and genetic fly models of PD [62,114].

As a proof of concept, we first tested the action of the endogenous superoxide dismutase enzymes
SOD1 and SOD2 in flies treated with PQ or lacking either Pink1 or parkin proteins. Both SOD1
and SOD2 were protective in our models, although with different effectiveness. More specifically,
SOD1 exerted an elevated protective action in the presence of chronic PQ treatment, even when the
protein was specifically overexpressed in dopaminergic neurons, but was ineffective with higher
(acute) concentrations of PQ. In contrast, the protective effects of SOD2 were more evident in the
presence of acute treatment [114]. The overexpression of SOD2, and to a lesser extent SOD1, was also
able to ameliorate locomotion defects in Pink1- and parkin-null mutants [62]. Given the protective
effects observed with both SOD1 and SOD2, in an important extension to the genetic manipulation of
superoxide dismutation, we then explored the beneficial activity of the SOD-mimetic drug M40403.
The choice of this molecule arose from its physicochemical properties and from the fact that it has
already been evaluated in phase I and II clinical trials for the treatment of pain, which have indicated
that it is safe and well-tolerated [115]. M40403 is a stable Mn(II) complex which is excreted intact
with no detectable dissociation when intravenously injected in rats [116]. Moreover, the molecule is
water-soluble and it is able to cross the blood–brain barrier, a mandatory property for a drug to be
effective in PD [116]. Another important feature of M40403 is its ability to dismutate superoxide anions
in a catalytic way, with a catalytic rate comparable to that of native SOD2 enzymatic activity or an
order of magnitude lower, depending on the pH of the solution [116]. When tested in our PQ-based
Drosophila models, M40403 was able to rescue the lethality induced by elevated concentrations of PQ
and improve the locomotion behaviours of flies treated with sub-lethal concentrations of PQ [114].
Beneficial effects were also observed from the systemic administration of M40403 in both Pink1- and
parkin-null mutants, even though the dose–response effects were slightly different between the two
fly models [62]. Overall, our results indicate that the selective removal of superoxide anions could
represent a new and more effective approach to cope with the enhanced oxidative conditions associated
with PD, and support the further exploration of exogenous SOD-related molecules as a therapeutic
strategy against PD.
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7. Conclusions

PD is a complex disorder in which genetic susceptibilities and environmental factors participate in
the pathogenesis of the disease. The multifactorial origin and the numerous cellular pathways affected
by the disorder make it difficult to define a therapeutic strategy able to hamper its progression, and the
current pharmacological approach is mostly aimed at replacing the action of dopamine at the striatal
level. The pathogenesis of PD has been largely studied in the last years and, even though it is still
partially elusive, many factors have been clarified. Among them, the roles of mitochondrial dysfunction
and oxidative damage have been clearly demonstrated and are commonly accepted. This aspect has
supported testing of the protective actions of numerous natural or synthetic antioxidant molecules in
different animal models of the disease. While every single model presents some of the phenotypes
associated with the disease, none is able to reproduce every clinical and pathological feature of PD.
This is most likely one of the reasons why the results observed in animal models are almost never
reproduced in clinical trials. Among the different animal models available to test the protective action
of antioxidant molecules, D. melanogaster presents several advantages. The rapid reproductive cycle,
short lifespan, powerful genetic tools and exemption from restrictive animal monitoring regulations
allow for the rapid exploration of the proposed hypotheses in vivo on a statistically powerful number
of individuals. Moreover, the genome encodes homologues for most of the currently identified PD
genes [117], making it possible to easily evaluate a purported drug in different models of the disorder.
One of the key aspects to be considered in the definition of successful antioxidant-based therapies is the
nature of the oxidative species involved in the pathology. Given that the accumulation of dysfunctional
mitochondria, which inevitably produce high levels of superoxide anions, is a key pathological factor
associated with PD, it follows that molecules specifically directed against this radical species should be
more effective in comparison to compounds that target the downstream effects of superoxide radical
accumulation. While further work is required for a better understanding of the detrimental effects
induced by the accumulation of superoxide radicals on the neuronal viability, the exploration of
exogenous SOD-mimetic molecules as a therapeutic strategy against PD appears rather promising.
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