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Abstract

There is a growing interest in precision medicine where individual heterogeneity is incorporated into

decision-making and treatments are tailored to individuals to provide better healthcare. One important

aspect of precision medicine is the estimation of the optimal individualized treatment rule (ITR) that

optimizes the expected outcome. Most methods developed for this purpose are restricted to the setting

with two treatments, while clinical studies with more than two treatments are common in practice. In this

work, we summarize methods to estimate the optimal ITR in the multi-arm setting and compare their

performance in large-scale clinical trials via simulation studies. We then illustrate their utilities with a case

study using the data from the INTERVAL trial, which randomly assigned over 20000 male blood donors

from England to one of the three inter-donation intervals (12-week, 10-week, and 8-week) over 2 years.

We estimate the optimal individualized donation strategies under three different objectives. Our findings

are fairly consistent across five different approaches that are applied: when we target the maximization

of the total units of blood collected, almost all donors are assigned to the 8-week inter-donation interval,

whereas if we aim at minimizing the low haemoglobin deferral rates, almost all donors are assigned to

donate every 12 weeks. However, when the goal is to maximize the utility score that “discounts” the total

units of blood collected by the incidences of low haemoglobin deferrals, we observe some heterogeneity

in the optimal inter-donation interval across donors and the optimal donor assignment strategy is highly

dependent on the trade-off parameter in the utility function.
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1 Introduction

Precision medicine is a rapidly expanding field in the new era of healthcare with major advancements having
been made in technologies for collecting patient-level data and better characterizing each individual patient.
The goal of precision medicine is to improve patient outcomes by tailoring treatment selection based on
observed patient characteristics, for example, demographic information, clinical and laboratory measurements,
medical history, and genetic data. In clinical practice, it is well-recognized that responses to treatments can
vary substantially due to patient heterogeneity. Therefore, the treatment that is regarded as the best for a patient
with one set of characteristics might not be the best for another, and the traditional “one-size-fits-all” approach
does not lead to optimal clinical outcomes in many cases. In light of this, individualized, evidence-based
clinical decision-making strategies that account for such heterogeneity are considered more desirable and are
gaining much popularity in medical research.

One important aspect of precision medicine is the estimation of the optimal individualized treatment rule
(ITR) by mapping patient information onto the set of treatment options. There has been a considerable amount
of literature focusing on this matter. We refer readers to Lipkovich et al.1 and Kosorok and Laber2 for a
comprehensive review of existing methods.

Clinical trials with multiple treatment arms are common in practice.3 However, most existing statistical
methods for estimating the optimal ITR were developed for binary treatment arm settings, and methods that
directly aggregate multiple pairwise comparison results such as one-versus-rest or one-versus-one can be
problematic: there are situations where the two-way preferences may be non-transitive and thus a consensus
on the final decision of the original multi-category comparison problem cannot be reached. In addition, this
may result in suboptimal decisions (simulated examples demonstrating the problem can be found in Lou et al.4

and Zhou et al.5). For example, in the context of multi-class classification, it has been shown that the optimal
solution obtained from the one-versus-rest approach can be different from the Bayes decision rule when there
is no dominating class.6 In this paper, we describe several methodological options that can be used to identify
the optimal ITR in clinical trials with more than two treatment arms and are computationally feasible for
large-scale trials, including l1-penalized least squares,7 adaptive contrast weighted learning,8 direct learning,9

and a Bayesian approach that is based on Bayesian additive regression trees.10 Our motivating example, the
INTERVAL trial,11,12 had more than 20000 observations on each gender, and we are in particular interested
in the performance of these methods on large datasets similar in size to the INTERVAL trial. However, to our
knowledge, there is a lack of studies evaluating their performance in datasets with sample sizes larger than
2000. To fill this gap, we compare the aforementioned multi-arm ITR estimation methods in large-scale trials
via simulation studies. We then conduct a case study, applying these methods to the data from the INTERVAL
trial to estimate the optimal inter-donation interval among three possible options (12-week, 10-week, and 8-
week) for male donors. We estimate the proportion of blood donors allocated to each inter-donation interval
and quantify the gain (or loss) in outcomes when assigning donors according to the optimal ITRs inferred
using these methods under three different targets: (1) maximizing the total units of whole blood collected by
the blood service, (2) minimizing the risk of deferral for low haemoglobin (Hb), and (3) maximizing a utility
score that seeks to balance the amount of blood collected against the number of deferrals for low Hb. We
note from the INTERVAL trial that only considering maximizing the blood collection (target 1) or minimizing
deferrals for low Hb (target 2) results in donor assignment strategies that are not particularly surprising and
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quite “polar” in nature.12 The purpose of investigating these two targets by applying precision medicine-
based approaches is to examine in extreme cases where the universal rule (i.e., non-personalized strategy)
should lead to nearly optimal outcomes, whether ITRs estimated using precision medicine-based methods are
“almost non-personalized” and assign almost all donors to the marginally best inter-donation interval option, or
instead “falsely” discover a fair amount of heterogeneity in the optimal inter-donation interval across different
donors.13 To our knowledge, this aspect has been rarely explored in the area of precision medicine as most
researchers begin by assuming that patient subgroups exist and different patients would benefit from different
treatment strategies. For male blood donors in the INTERVAL trial, results suggest that different statistical
methods to estimate the optimal ITR lead to fairly similar recommendations on the optimal donation strategies:
optimal ITRs estimated under the first two targets are very close to “one-size-fits-all” strategies, while optimal
ITRs estimated under the third target suggest some heterogeneity in different blood donors’ optimal inter-
donation intervals. In addition, the optimal ITR is highly dependent on how the utility score is constructed,
i.e., the trade-off between the blood collection and the deferrals for low Hb.

The rest of the paper is organized as follows. In Section 2, we introduce the INTERVAL trial. In Section 3,
we discuss the statistical framework and methods for estimating the optimal ITR when the treatment is binary.
In Section 4, we review a selection of methods for estimating the optimal ITR when more than two treatment
options are available. In Section 5, we conduct simulation studies to evaluate the performance of the multi-arm
ITR estimation methods described in Section 4 under different scenarios. Section 6 presents results for an
application of these methods to the INTERVAL trial dataset. We conclude with the discussion in Section 7.

2 Motivating example: The INTERVAL trial

Limits on the frequency of whole blood donation exist primarily to safeguard donor health. However, there
is substantial variation across blood services in the maximum frequency of donations allowed. The National
Health Service Blood and Transplant (NHSBT) in England currently allows a minimum inter-donation interval
of 12 weeks for males and 16 weeks for females, with shorter inter-donation intervals used in other countries
(e.g. the USA and France).14–16 INTERVAL was the first randomized trial to evaluate the efficiency and safety
of varying the frequency of whole blood donation. It randomly assigned over 45000 blood donors recruited
across England to different inter-donation intervals (8, 10, and 12 weeks for men, and 12, 14, and 16 weeks
for women) over a period of 2 years. During that time, there was a substantial increase in the amount of blood
collected by reducing the inter-donation intervals without any detectable effects on overall quality of life,
physical activity, or cognitive function.11,12,17 However, increased donation frequency resulted in a greater
number of deferrals (temporary suspension of donors from giving blood) due to low Hb, lower average Hb and
ferritin concentrations, and more self-reported symptoms.

INTERVAL trial participants were well-characterized at baseline,17 providing an opportunity to further
explore personalized donation strategies whereby the amount of blood collected is optimized while controlling
for the number of deferrals for low Hb. We expect differential relationships between the amount of blood
collected and the number of deferrals for low Hb by donors’ individual characteristics. For example, young,
female donors with low body mass index may be less able to donate more frequently without a rise in the
number of deferrals for low Hb, whereas donors with a long, successful donation history may be able to
donate more frequently with no increase in the number of deferrals for low Hb.11 We compare the personalized
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donation strategies against assignments of the same inter-donation interval for all donors (current clinical
practice).

3 Preliminaries

3.1 Notations and statistical frameworks

We consider a clinical trial where n subjects are sampled from a population of interest. Let Y be the outcome
of interest, A ∈ A = {1, . . . ,K} denote the treatment assignment, and X ∈ X be a p-dimensional covariate
(feature) vector. Without loss of generality, we assume a larger value of Y is preferred. We observe the triplet
(Yi,Xi, Ai), for i = 1, . . . , n, which are independent and identically distributed across i. The individualized
treatment rule (ITR), denoted by D, is a map from the space of feature variables, X , to the domain of
treatment assignments, A. We assume the propensity score P (A = a|X) is bounded strictly away from 0,
i.e., P (A = a|X = x) > 0 for all pairs (x, a) ∈ X ×A. In clinical trials, the no unmeasured confounders
assumption is always satisfied (for the intention-to-treat analysis).18 Assuming that the consistency assumption
holds,19 the “value function” associated with the treatment rule D can be derived as:

V (D) = E

{
I(A = D(X))

P (A|X)
Y

}
, (1)

where E(.) is the expectation and I(.) is the indicator function.7 The value function V (D) is the expected
value of the outcome Y had the regime D been applied to the given population. Our goal is to find the optimal
ITR, D∗, that maximizes the value function under D, i.e.,

D∗ = arg max
D

V (D) = arg max
D

E

{
I(A = D(X))

P (A|X)
Y

}
. (2)

3.2 Estimation of the optimal ITR when K = 2

Many statistical methods have been proposed to estimate the optimal ITR in the case with two treatments
(K = 2), including indirect and direct methods.

Q-learning and A-learning are two main examples of indirect estimation methods, where the estimation
of the optimal regime relies on modelling conditional mean outcomes (Q-learning) or modelling treatment
contrasts (A-learning). The optimal ITR is then inferred (indirectly) based on the predicted means from the
posited model. In the Q-learning paradigm, a model including treatment-covariate interactions is postulated for
E(Y |X, A = a). It can be shown from (2) thatD∗(x) = arg maxaE(Y |X = x, A = a), and thus the decision
follows naturally by maximizing the outcome from the fitted model, i.e., D̂∗(x) = arg maxa Ê(Y |X =

x, A = a).20 Alternatively, A-learning methods posit a model on the contrast function C(x) between two
treatment options, and the final decision is based on the sign of the estimated contrast Ĉ(x).21 Compared to
Q-learning, A-learning avoids the modelling of marginal covariate effects. Other indirect methods include G-
estimation,22 regret regression,23 and weighted ordinary least squares.24 Those indirect approaches focus on
building a prediction model for either the conditional mean outcome or the treatment contrast and they target
prediction accuracy instead of the direct maximization of the value function. We also note that methods such
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as G-estimation and weighted ordinary least squares are doubly-robust. In randomized trials, the treatment
assignment model is known by design, and thus these methods can be preferable to Q-learning as they offer
protection against the misspecification of the outcome model.24,25

Alternatively, Zhao et al.26 proposed a direct approach, the outcome weighted learning (OWL), to estimate
the optimal ITR (directly) by maximizing the value function V (D) rather than (indirectly) by inverting
estimates from prediction models. Since (2) indicates that D∗ = arg minD E

{
I(A 6= D(X))Y/P (A|X)

}
,

Zhao et al.26 reformulated the problem of maximizing the value function into a weighted classification
problem (with the aim of minimizing the weighted misclassification error), where they classified A based
on X and weighted the misclassification by Y/P (A|X). This could then be solved using support vector
machines (SVM). To further improve the performance of OWL, Zhou et al.27 and Liu et al.28 introduced
residual weighted learning (RWL) and augmented outcome weighted learning (AOL) respectively by using
different weights in the objective function.

Most of the aforementioned methods, except for Q-learning, were developed for the case of two treatments.
A direct extension to the multi-arm setting by combining pairwise decision rules using methods such as one-
versus-rest or one-versus-one may lead to suboptimal results.5,6

4 Review of a selection of methods for K > 2

Recently, some new methods have been proposed to deal with the case of more than two treatments. In
this section, we review (in publication order) a selection of approaches that can be used to estimate the
optimal ITR in multi-arm trials and scale well for large datasets similar in size to the INTERVAL trial,
including l1-penalized least squares,7 adaptive contrast weighted learning,8 direct learning,9 and a Bayesian
approach that is based on Bayesian additive regression trees.10 We note that there are other recently-proposed
methods for learning the optimal ITR with multiple treatment options that we do not discuss in detail in this
paper, for example, the multi-treatment outcome weighted learning,29 and the sequential outcome weighted
multicategory learning,5 since they involve solving weighted support vector machine problems, which can
impose high computational costs when applied to large datasets.30

4.1 l1-penalized least squares (indirect method)

Qian and Murphy7 proposed the two-stage model-based l1-penalized least squares (l1-PLS) method. The
conditional mean response was first estimated using l1-PLS with a rich linear model to guard against
over-fitting and then the estimated means under different treatments were used to derive the optimal ITR.
Specifically, we fit the model for E(Y |X, A) using the basis function (1,X, A,XA), in which we use K − 1

dummy variables to replaceA. The decision can be derived as D̂∗(x) = arg maxa∈{1,...,K} Ê(Y |X = x, A =

a).

X in the INTERVAL trial dataset contains several nominal categorical covariates. In order to avoid the over-
selection of variables with many categories and ensure that all dummy variables encoding the same categorical
covariate are either included or excluded from the model simultaneously, we use group LASSO (GL) which
encourages sparsity at the factor level for variable selection.31,32

Another variable selection approach that is of interest in this context is hierarchical group LASSO (HGL).
HGL was designed for learning pairwise interactions in regression models that satisfy strong hierarchy, i.e.,
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if the coefficient associated with the interaction term is estimated to be non-zero, then its two associated
main effects also have non-zero estimated coefficients. The assumption underlying HGL is that covariates that
predict treatment effect heterogeneity (included as interactions) are also prognostic (included in main effects).

As has been pointed out by Gunter et al.,32 maintaining hierarchy in variable selection avoids finding
spurious interactions that may appear due to the exclusion of important main effect terms. The HGL method
proposed by Lim and Hastie33 picks out only main effects if the truth has no interactions, but when interactions
truly exist, it allows the discovery of important interaction terms despite their weak effects by regularizing
coefficients of main effects using the “glinternet” penalty. We can embed HGL in the first step of l1-PLS to
identify important treatment-covariate interactions. For ease of interpretation, we restrict the search space to
be all possible two-way interactions between treatment A and covariates X.

As an aside, there are two types of interactions: quantitative interactions and qualitative interactions.1 A
quantitative interaction between A and X refers to the situation where the magnitude of the effect of A on the
outcome Y depends on X but the direction of this effect is consistent for all possible values of X, whereas
a qualitative interaction between A and X indicates that both the direction and the magnitude of A’s effect
on the outcome Y can depend on X (Supplementary Figure 1 in the online supplemental materials Appendix
A). GL and HGL interaction selection procedures are not able to automatically distinguish between qualitative
and quantitative interactions. Therefore, further assessment of interactions (e.g. using the Gail-Simon test34) is
required to determine whether the selected interactions are useful for achieving specific aims (e.g. the aim can
either be to detect a qualitative difference in treatment effects, i.e., crossover treatment effect heterogeneity, or
to detect a quantitative difference in treatment effects that informs the identification of subgroups with elevated
response to a given treatment, i.e., non-crossover treatment effect heterogeneity) in the context of precision
medicine.

One limitation of l1-PLS is that the correct inference on the optimal ITR depends on a correctly specified
outcome model, while the postulated outcome model is prone to misspecification (especially when X is high-
dimensional) and thus may result in suboptimal ITR. Unlike tree-based methods, which can capture more
general forms of interactions, l1-PLS is restricted to searching for additive-type interactions. However, the true
relationship between covariates, treatment assignment, and the outcome is usually complicated in practice,
and the underlying interaction structures can be much more flexible than additive. Another issue with this
approach is the interference between main effects and treatment-covariate interactions, which may impair the
search for the optimal ITR. In most cases, the variability in the outcome is predominantly explained by main
effects rather than interactions. Therefore, interaction effects can be overlooked due to their small predictive
ability when the method focuses on prediction.35–37

4.2 Adaptive contrast weighted learning (direct method)

Adaptive contrast weighted learning (ACWL) was proposed by Tao and Wang8 to estimate the optimal ITR in
the multi-arm setting. They constructed doubly robust semi-parametric regression-based contrasts38 with the
adaptation of treatment effect orderings, and the adaptive contrasts simplified the optimization problem with
multiple treatment comparisons into a weighted classification problem.

Let µa(X) denote the conditional mean E(Y |X, A = a). Tao and Wang,8 following Zhang et al.,38

employed the doubly robust augmented inverse probability weighted estimator (AIPWE) for µa(X). Let
µ(1)(X) ≤ . . . ≤ µ(K)(X) be the order statistics of µ1(X), . . . , µK(X), and la be the treatment effect order
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with µ(a)(X) = µla(X). It follows that

D∗(X) = arg max
D

K∑
a=1

E
[
µ(a)(X)I{D(X) = la(X)}

]
= arg min

D

K−1∑
a=1

E
[
{µ(K)(X)− µ(a)(X)}I{D(X) = la(X)}

]
.

(3)

The optimal ITR derived from (3) can be interpreted as the rule that minimizes the expected loss in the outcome
due to suboptimal treatments in the entire population of interest, i.e., the ITR classifies as many subjects
as possible to their corresponding optimal treatment lK and puts more “penalties” on subjects with larger
contrasts. In practice, it can be challenging to utilize all K − 1 contrasts as weights to classify treatment. Tao
and Wang8 addressed this by constructing the lower and upper bounds of the expected loss in the outcome due
to suboptimal treatments as follows:

K−1∑
a=1

E
[
{µ(K)(X)− µ(a)(X)}I{D(X) = la(X)}

]
≥

K−1∑
a=1

E
[
{µ(K)(X)− µ(K−1)(X)}I{D(X) = la(X)}

]
= E

[
C1(X)I{D(X) 6= lK(X)︸ ︷︷ ︸

optimal

}
]
,

(4)
and

K−1∑
a=1

E
[
{µ(K)(X)− µ(a)(X)}I{D(X) = la(X)}

]
≤

K−1∑
a=1

E
[
{µ(K)(X)− µ(1)(X)}I{D(X) = la(X)}

]
= E

[
C2(X)I{D(X) 6= lK(X)︸ ︷︷ ︸

optimal

}
]
,

(5)
where C1(X) = µ(K)(X)− µ(K−1)(X) and C2(X) = µ(K)(X)− µ(1)(X). In the least conservative case
where suboptimal treatments only lead to the minimal expected loss in the outcome,

D∗(X) = arg min
D

E
[
C1(X)I{D(X) 6= lK(X)}

]
, (6)

while in the most conservative case where suboptimal treatments lead to the maximal expected loss in the
outcome,

D∗(X) = arg min
D

E
[
C2(X)I{D(X) 6= lK(X)}

]
. (7)

The optimal ITR estimated using (6) or (7) minimizes the lower or upper bounds of the expected loss in the
outcome due to suboptimal treatments over the entire population, respectively. By optimizing these bounds, the
optimization problem with multiple treatment comparisons is simplified to a weighted classification problem,
which can be solved by classification techniques, such as classification and regression trees (CART).
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ACWL is flexible and robust. However, additional uncertainties may be induced through the introduction
of the “ordering labels”. Therefore, using adaptive contrasts may not be the most efficient way to avoid the
multiple treatment comparison issue.

4.3 Direct learning (direct method)

Qi and Liu9 developed the direct learning (D-learning) approach that uses regression methods to directly
estimate the optimal ITR. The advantage of D-learning over Q-learning is that D-learning directly targets the
maximization of the value function, thus avoiding the need to model main effects.

In the binary arm case (treatment A is encoded as −1 or 1),

D∗(X) = arg max
D

V (D)

= sign[E(Y |X, A = 1)− E(Y |X, A = −1)]

= sign
[
E

{
Y A

P (A|X)

∣∣∣∣X}]
:= sign{f∗(X)},

(8)

where f∗(X) is the optimal decision function.9 According to (8), f∗(X) can be estimated using the fact that
f∗(X) = E

{
Y A

P (A|X)

∣∣∣X} and Qi and Liu9 showed that f∗(X) ∈ arg minf E
[
{2Y A− f(X)}2/P (A|X)

]
.

We can estimate f∗(X) using regression methods for either linear or nonlinear decision rules. For example,
suppose the decision function is linear and f(X) = XTβ. Then β can be estimated using the ordinary
weighted least squares (or LASSO in the high-dimensional case). The estimated optimal linear decision
function is f̂∗(X) = XT β̂, and the estimated optimal ITR D̂∗(X) is the sign of f̂∗(X).

D-learning was extended to the case with more than two treatments. Qi and Liu9 showed that the optimal
ITR in the multi-arm setting can be written as

D∗(X) = arg max
a∈{1,...,K}

K∑
i 6=a

E

{
Y Aai

P (Aai|X)

∣∣∣∣X, A = a or i
}

:= arg max
a∈{1,...,K}

K∑
i 6=a

f∗ai(X),

(9)

where Aai ∈ {−1, 1} denotes a binary treatment indicator for whether a patient is on treatment i (Aai = −1)
or on treatment a (Aai = 1) for i 6= a, and f∗ai(X) denotes the optimal decision function between treatment a
and i. Each pairwise decision function f∗ai(X), for a, i = 1, . . . ,K, i 6= a, can be estimated using regression
methods as in the binary setting.

We note that even though multi-category D-learning builds on multiple pairwise comparisons, it is different
from the one-versus-one approach39 in that one-versus-one aggregates multiple pairwise decisions based on
the majority voting rule, whereas multi-category D-learning measures the effect of each treatment based on
the sum of pairwise contrasts and then picks the treatment with the largest effect measure.
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4.4 Bayesian additive regression trees (indirect method)

Bayesian additive regression trees (BART) is a flexible nonparametric prediction model that was first
introduced by Chipman et al.40 and has gained much popularity with numerous applications in recent
years.41,42 The BART model is an additive ensemble of many single regression trees with each tree explaining
a small portion of the outcome, and it can accommodate nonlinear main effects as well as complex interaction
effects without the need to specify their functional forms. We refer readers to Tan and Roy41 and Hill et al.42

for a walk-through of the details on BART.

Logan et al.10 incorporated the idea of BART into the estimation of the optimal ITR by using BART to model
the dependency structure of the response and covariates. In the first stage, a BART model for E(Y |X, A) was
built using the treatment and all covariates as input variables. In the second stage, the optimal arm was chosen
as the one that maximizes E(Y |X = x, A = a), which can be approximated by the average over posterior
draws. Under this framework, the posterior distribution of the value function of an ITR can be obtained using
posterior samples straightforwardly, and uncertainties about the value of an ITR can be captured by posterior
samples from the prediction model directly.

One potential issue of this method is that the prediction model constructed with BART is “black-box”, which
impairs the interpretability of the model and the decision rules. In the two-arm setting, Logan et al.10 proposed
a way to facilitate the interpretation by fitting the posterior mean differences into a tree structure. However,
the extension to the multi-arm case is not straightforward given that there are multiple pairwise contrasts when
more than two treatment options are available. In addition, BART is more computationally demanding than
the aforementioned non-Bayesian approaches due to its reliance on Markov chain Monte Carlo (MCMC).

5 Simulation studies

To our knowledge, there is a lack of studies comparing and reporting the performance of different multi-arm
ITR estimation methods under scenarios where the training sample size is larger than 2000. It is reasonable
to expect that the relative performance of different methods may vary with the training sample size, and
thus findings in previous works may not apply to the INTERVAL trial, where the number of male/female
participants is more than 20000. In addition, the BART ITR estimation method10 discussed in Section 4.4 has
not been compared with other methods in multi-arm trial settings before. In this section, we conduct simulation
studies to compare the performance of the following five methods in large samples:

(i) l1-PLS-HGL: l1-penalized least squares with hierarchical group LASSO variable selection using the
basis function (1,X, A,XA).7,33

(ii) l1-PLS-GL: l1-penalized least squares with group LASSO variable selection using the basis function
(1,X, A,XA).7,31

(iii) ACWL: Adaptive contrast weighted learning using (7), where suboptimal inter-donation intervals lead to
maximal expected loss in the outcome (i.e., ACWL-C2).8 We only present the results from ACWL-C2,
since we observe that adaptive contrast weighted learning using (6) (i.e., ACWL-C1) gives very similar
results in simulation studies, as has also been noted in the original publication.8

(iv) D-learning: Direct learning with linear decision functions.9
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(v) BART: Bayesian additive regression trees with default prior parameters as specified in the R package
BART.10,40

We consider the training sample size being n = 20000 (similar in size to the number of male/female
donors in the INTERVAL trial). We simulate data under 6 settings with different types of covariates
and forms of treatment-covariate interaction effects. In each simulation setting, we generate 5 covariates
X1, . . . , X5 independently. Treatment A is sampled uniformly from {1, 2, 3}. We assume the outcome
Y is normally distributed with mean m(X) + ∆(X, A) and variance σ2 = 1, where m(X) is the main
effect of covariates on the outcome and ∆(X, A) denotes the treatment-covariate interaction effect. We
consider m(X) = 1 + 0.5X4 + 0.3X5 and ∆(X, A) = 0.5{I(A = 1)∆1(X) + I(A = 2)∆2(X) + I(A =

3)∆3(X)}, with ∆1(X), ∆2(X), and ∆3(X) taking on different functional forms. Details on distributions
of X1, . . . , X5 (we use U{a, b} to denote the continuous uniform distribution that takes values in the range
[a, b], and Bern(p) to denote the Bernoulli distribution with the success probability being p) and expressions
for ∆1(X), ∆2(X), and ∆3(X) in settings 1-6 are provided in Table 1. Settings 1 and 2 consider tree-type
and linear interaction effects, respectively. True underlying decision boundaries are nonlinear in settings 3
and 4, with setting 3 including a between-covariate interaction. Settings 5 contains discrete covariates (one
categorical covariate and one binary covariate). We examine the scenario where the true optimal treatment
is the same for all individuals in settings 6 (this scenario mimics the situation in the INTERVAL trial when
we target two outcomes separately, i.e., objectives (1) and (2) described in Section 1: in this case, we would
expect the donor assignment strategy to be quite “polar” and the non-personalized rule to yield nearly optimal
outcomes based on the primary analysis results presented in Di Angelantonio et al.12). We consider additional
simulation settings with correlated (Appendix B.1) and higher-dimensional (Appendix B.2) covariates in the
online supplement.

We evaluate the performance of different methods on a large independent testing dataset of size 10000
using two criteria: (a) the misclassification rate of the estimated optimal ITR compared to the true optimal
ITR, and (b) the value function under the estimated ITR, which can be calculated according to (1). Smaller
misclassification rates and larger value functions indicate better performance. Each simulation is repeated 100
times and all tuning parameters are selected via 5-fold cross-validation. We report both the mean and the
standard deviation of misclassification rates and value functions across 100 replicates. We note that the BART
ITR estimation method is different from the other four non-Bayesian methods by nature, and the uncertainty
of the value function can be directly quantified under the Bayesian framework (based on posterior samples),
as has been discussed in Section 4.4. However, to make different methods comparable, the standard deviation
estimates of value functions associated with the BART ITR are calculated as the standard deviation across 100
runs rather than the posterior standard deviation.

Simulation results are presented in Table 1. As expected, when the true underlying decision boundaries are
tree-type (setting 1), ACWL that builds on decision trees performs better than l1-PLS-HGL, l1-PLS-GL, and
D-learning. BART leads to slightly smaller misclassification rate than ACWL in this setting. In contrast, when
decision boundaries are linear (setting 2), l1-PLS-HGL, l1-PLS-GL, and D-learning perform similarly well
and much better than ACWL. BART is superior to ACWL but slightly worse than the other three methods
in this case, possibly due to its “over-parameterization” for linear effects. None of these methods manage to
capture the nonlinear structures in settings 3 and 4 properly, and misclassification rates are not as low as in
other settings for all methods despite the large training sample size. However, BART outperforms the rest of
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the methods to a large extent. This is not surprising given the flexibility of BART. All methods achieve good
performance when some covariates are discrete (setting 5). Results for setting 6 implies that when the true
optimal treatment is the same for all subjects (“trivial” decision rule that assigns all to the marginally best
treatment), all methods perform perfectly with no misclassification. We also conduct simulations for some
variations of setting 6 (e.g. increased noise) and find similar results (online supplement Appendix B.3).

Overall, our simulation studies suggest that unless we have a priori information on the type of underlying
interaction effects (e.g. linear additive or tree-type), the BART multi-arm ITR estimation method should be
a good choice in general since it is robust and performs better than or comparable to the other competing
methods regardless of the functional form of interaction terms. We note that BART takes longer to run than
other non-Bayesian methods, especially in the large sample size case that we examine in this paper (on a
Windows-based computing system with 1 core, 3.40 GHz Intel processor, BART takes about 200 seconds per
run while other methods take less than 20 seconds per run on our simulated datasets with 20000 observations).
Parallel processing with multi-threading can be used to speed up the computation of BART.43 We also
note that in settings with nonlinear decision boundaries, the performance of l1-PLS and D-learning may be
improved if we use polynomials of higher degrees as basis functions. For D-learning, we would also expect the
nonlinear version which estimates the optimal decision function using the component selection and smoothing
operator (COSSO) to perform better than the linear version considered in this paper if the underlying decision
boundaries are nonlinear. However, our numerical experiments suggest that nonlinear D-learning with COSSO
is much more computationally demanding and performs less well than BART when n = 20000.

R codes to implement these methods on a simulated example dataset are provided at https://github.com/
yux139/ITR multiarm casestudy.

6 Application to the INTERVAL trial

To illustrate the use of multi-arm ITR estimation methods on large-scale clinical trials, we apply the five
methods compared in Section 5 to the data from male donors in the INTERVAL trial and estimate each blood
donor’s optimal inter-donation interval. We also compare the personalized donation strategies with “one-size-
fits-all” donor assignment rules that recommend the same inter-donation intervals of 8, 10 or 12 weeks for
all male donors. After data processing (exclude donors who had zero attendance over the 2-year trial period),
20574 male blood donors are included in the analysis following the intention-to-treat principle according to
donors’ randomized groups. We show in the online supplemental material (Appendix C) that the data cleaning
process does not distort the balance of baseline covariates across randomized groups.

6.1 Outcomes of interest

We consider two outcomes, namely, the total units of blood collected by the blood service per donor over a
2-year period (the standard practice is to donate 1 unit of blood per session, with a full donation unit containing
470 ml of whole blood44), denoted by G, and the rate of low Hb deferrals per donor attendances during the
same period (calculated as the total number of “at session” deferrals for low Hb divided by the total number
of attendances in the 2-year trial period), denoted by R. We note that these two outcomes are not independent:
assigning a donor to a more frequent inter-donation interval in principle will lead to an increase in the total units
of blood collected. However, this increased frequency may have the opposite effect through increased risks of

https://github.com/yux139/ITR_multiarm_casestudy
https://github.com/yux139/ITR_multiarm_casestudy
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Table 1. Description of simulation settings 1-6 and simulation results for n = 20000 based on 100 replicates:
mean (sd) of misclassification rates and value functions. Methods under comparison include the l1-penalized least
squares with hierarchical group LASSO variable selection (l1-PLS-HGL), l1-penalized least squares with group
LASSO variable selection (l1-PLS-GL), adaptive contrast weighted learning (ACWL), direct learning (D-learning),
and Bayesian additive regression trees (BART). The smallest misclassification rates and the largest value functions
for each setting are in bold.

Setting Functional form of interaction True optimal treatment Covariates type Method Misclassification Value

1

tree
∆1(X) = 4× I(X1 > 0.5)− 2

∆2(X) = 2× I(X2 ≥ 0.5)I(X3 < 0.25)− 1

∆3(X) = 0

1 or 2 or 3
continuous

X1, . . . , X5 ∼ U{−1, 1}

l1-PLS-HGL 0.101 (0.016) 1.226 (0.010)
l1-PLS-GL 0.094 (0.015) 1.229 (0.010)
ACWL 0.028 (0.040) 1.276 (0.023)
D-learning 0.100 (0.020) 1.226 (0.013)
BART 0.010 (0.004) 1.286 (0.003)

2

linear
∆1(X) = 3X1 − 2X2

∆2(X) = 5X3 −X4 +X5 − 1

∆3(X) = 0

1 or 2 or 3
continuous

X1, . . . , X5 ∼ U{−1, 1}

l1-PLS-HGL 0.015 (0.004) 1.736 (0.003)
l1-PLS-GL 0.013 (0.004) 1.737 (0.003)
ACWL 0.171 (0.020) 1.662 (0.016)
D-learning 0.018 (0.005) 1.737 (0.004)
BART 0.056 (0.004) 1.730 (0.006)

3

nonlinear
∆1(X) = 3X2

1 − exp(X2)

∆2(X) = X3X4

∆3(X) = 0

1 or 2 or 3
continuous

X1, . . . , X5 ∼ U{−1, 1}

l1-PLS-HGL 0.566 (0.012) 1.089 (0.008)
l1-PLS-GL 0.565 (0.014) 1.088 (0.011)
ACWL 0.561 (0.016) 1.089 (0.009)
D-learning 0.572 (0.013) 1.087 (0.008)
BART 0.192 (0.038) 1.209 (0.010)

4

nonlinear
∆1(X) = 3X2

1 − exp(X2)

∆2(X) = X3
3

∆3(X) = 0

1 or 2 or 3
continuous

X1, . . . , X5 ∼ U{−1, 1}

l1-PLS-HGL 0.350 (0.011) 1.129 (0.004)
l1-PLS-GL 0.352 (0.010) 1.128 (0.004)
ACWL 0.362 (0.011) 1.118 (0.004)
D-learning 0.359 (0.016) 1.129 (0.004)
BART 0.163 (0.045) 1.220 (0.012)

5

nonlinear
∆1(X) = 2{I(X1 = 1) + I(X1 = 2)}X2 − 1

∆2(X) = 5I(X1 = 5)X3 − 2

∆3(X) = 0

1 or 2 or 3

continuous + binary + categorical

X1 ∼ discrete uniform{1, 5}
X2 ∼ Bern(0.5)

X3, X4, X5 ∼ U{−1, 1}

l1-PLS-HGL 0.077 (0.019) 1.101 (0.012)
l1-PLS-GL 0.078 (0.018) 1.101 (0.011)
ACWL 0.029 (0.028) 1.129 (0.016)
D-learning 0.090 (0.032) 1.094 (0.019)
BART 0.007 (0.005) 1.142 (0.002)

6

tree
∆1(X) = I(X1 > 0.5) + 2

∆2(X) = 2× I(X2 ≥ 0.5)I(X3 < 0.25)− 3

∆3(X) = 0

1 for everyone
continuous

X1, . . . , X5 ∼ U{−1, 1}

l1-PLS-HGL 0.000 (0.000) 2.093 (0.000)
l1-PLS-GL 0.000 (0.000) 2.093 (0.000)
ACWL 0.000 (0.000) 2.093 (0.000)
D-learning 0.000 (0.000) 2.093 (0.000)
BART 0.000 (0.000) 2.093 (0.000)

deferrals for low Hb, which may consequently cause existing donors to come back less often and even to leave
the donor register permanently.11,12,45 Potential loss of donors may have a cost impact.45,46 The current donor
loss rate following a deferral for low Hb is 40-50%, and this would incur substantial costs (approximately
£2.3 million in the worst-case scenario) for the blood service to recruit sufficient new donors and stabilize the
donor base.47,48 Therefore, when recommending the optimal inter-donation interval to a blood donor, there
is a trade-off between the benefit and the risk: neither the optimal ITR solely based on the benefit nor that
solely based on the risk may be acceptable, and it is generally not possible to find a strategy that optimizes
both (maximizes benefit and minimizes risk) simultaneously. The goal of maximizing the total units of blood
collected needs to be considered in conjunction with controlling for the low Hb deferrals. This motivates us
to construct a single scalar “utility” outcome which discounts the units of blood collected by the increased
incidences of low Hb deferrals as follows:

U = G− b× R̃, (10)

where G is the gain/benefit (total units of blood collected in the 2-year trial period), R̃ is the risk (number of
deferrals for low Hb in the 2-year trial period: R̃ = R × total number of attendances over 2 years), and b is
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the “trade-off” parameter reflecting the equivalent benefit loss for one unit increase in the risk. In the context
of the INTERVAL trial, b is interpreted as “the equivalent loss in total units of blood collected by the blood
service per donor over 2 years for one extra deferral for low Hb per donor attendances during the same period”.
We examine different values for b within a range considered to be reasonable by NHSBT and vary b from 1 to
5 at an increment of 1 to see how results change with this parameter. A range of b from 1 to 5 covers the range
of the extra costs of deferrals for low Hb considering reduced efficiency of collection, reduced donor retention
and increase in recruitment of the many new donors to replace a regular donor who retires from donation.

We assume a larger outcome to be more desirable when we introduce the statistical framework in Section
3.1. This holds for the benefit and the utility outcome, but is not the case for the low Hb deferral rates. We
address this issue by considering the maximization of “1−low Hb deferral rates” instead, which is equivalent
to the minimization of the low Hb deferral rates. In addition, the low Hb deferral rates is a proportion and so we
use the arcsine square root transformation for variance stabilization.49 This transformation is monotonically
increasing, and thus rank-preserving.

6.2 Baseline covariates

Based on findings in the primary trial paper,12 we include the following 19 variables measured at each donor’s
baseline visit:

• Continuous: age, body mass index, Short Form Health Survey version 2 (SF-36v2) physical component
score and mental component score, units of whole blood donations in the 2 years before enrollment into the
trial, haemoglobin level, white blood cell count, red blood cell count, mean corpuscular haemoglobin, mean
corpuscular volume, and platelet count.

• Categorical: ethnicity (Asian, Black, Mixed, White, Other, Unknown), blood group (A+, A−, AB+, AB−,
B+, B−, O+, O−), iron prescription (Yes, No, Unknown), smoke ever (Yes, No, Unknown), smoke
currently (Yes, No, Unknown), alcohol ever (Yes, No, Unknown), alcohol currently (Yes, No, Unknown),
and new or returning donor status (New donor, Returning donor).

6.3 Evaluation criteria

We calculate proportions of donors assigned to each of the three inter-donation intervals according to the
optimal ITR estimated using different methods. We are also interested in the quantity “ITR effect” or “benefit
function”.50,51 The ITR effect, δ, associated with the rule D(X) is defined as:

δ(D(X)) = E{Y |X, A = D(X)} − E{Y |X, A 6= D(X)}. (11)

In the INTERVAL trial, the ITR effect can be empirically estimated as the difference in the average outcome
between donors whose assigned inter-donation intervals in the trial are the same as D(X) (i.e., average across
all donors whose a = D(x)) and those whose assigned inter-donation intervals are different from D(X) (i.e.,
average across all donors whose a 6= D(x)).

When two outcomes are analyzed separately, in addition to ITR effects of the estimated optimal assignment
rule D̂∗(X) on the outcome that we aim to optimize, we also calculate the effect of assigning donors according
to D̂∗(X) on the other outcome that we do not take into consideration when estimating D∗(X).
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Table 2. Applications of the l1-penalized least squares with hierarchical group LASSO variable selection (l1-PLS-
HGL), l1-penalized least squares with group LASSO variable selection (l1-PLS-GL), adaptive contrast weighted
learning (ACWL), and direct learning (D-learning) to data from male donors in the INTERVAL trial. Means and
standard deviations (in parenthesis) of assignment proportions in % and empirical ITR effects on donation and
deferral outcomes across 100 repetitions of 5-fold cross-validation are reported. ITR effects measure the difference
in the average outcome between donors whose assigned inter-donation intervals in the trial are optimal (with respect
to the method used to estimate the ITR) and those whose assigned inter-donation intervals are non-optimal. A larger
ITR effect on donation and a smaller ITR effect on deferral are more desirable. The first four and last four rows
correspond to the target being maximizing total units of blood collected by the blood service, and minimizing the low
Hb deferral rates, respectively.

Assignment Percentages ITR Effects
Target Outcome Method 12 weeks 10 weeks 8 weeks Donation Deferral

Donation

l1-PLS-HGL 0.1 (0.0) 0.3 (0.0) 99.6 (0.0) 1.308 (0.004) 0.026 (0.000)
l1-PLS-GL 0.0 (0.0) 0.3 (0.3) 99.7 (0.3) 1.311 (0.005) 0.027 (0.000)

ACWL 0.0 (0.0) 0.0 (0.0) 100.0 (0.0) 1.315 (0.000) 0.027 (0.000)
D-learning 0.3 (0.1) 0.3 (0.2) 99.4 (0.2) 1.307 (0.006) 0.027 (0.000)

Deferral

l1-PLS-HGL 94.4 (0.6) 5.5 (0.6) 0.0 (0.0) -1.188 (0.010) -0.024 (0.000)
l1-PLS-GL 99.7 (0.6) 0.2 (0.5) 0.0 (0.1) -1.246 (0.006) -0.024 (0.000)

ACWL 99.7 (0.6) 0.3 (0.6) 0.0 (0.0) -1.244 (0.007) -0.025 (0.000)
D-learning 95.7 (0.5) 4.1 (0.5) 0.2 (0.1) -1.200 (0.011) -0.024 (0.000)

When we consider the combined outcome and aim at maximizing the utility score, ITR effects on the units
of blood collected, G, the low Hb deferral rates, R, and the utility outcome U are computed by replacing Y in
(11) with G, R, and U , respectively. A larger ITR effect on donation and utility, and a smaller ITR effect on
deferral are more desirable.

6.4 Non-Bayesian approaches: l1-PLS, ACWL, and D-learning

We first apply the l1-PLS with HGL/GL variable selection, ACWL, and D-learning to data from male donors in
the INTERVAL trial. In each of the analyses, we randomly split the data into a training and a validation set with
a 4:1 ratio and repeat the procedure 100 times. All tuning parameters are selected via 5-fold cross-validation.
For each method, we report the means and the standard deviations of empirical assignment proportions and
ITR effects evaluated on the validation data across 100 splits. Note that the standard deviation estimates based
on cross-validation capture the randomness of data-splitting (“repeatability”) rather than the uncertainty of the
observed data. We provide bootstrap-based standard deviation estimates that reflect the “biological variation”
in the online supplemental materials (Appendix D).

6.4.1 Target two outcomes separately Table 2 presents the results for analyzing the donation and deferral
outcomes separately. As expected from the simulation results, we observe a consistent pattern across different
methods in these extreme cases where true optimal decisions should be “almost trivial” and the non-
personalized strategy that assigns everyone to the marginally best “treatment” should lead to almost optimal
outcomes. As suggested by the “assignment percentages” columns in Table 2, almost all donors (ranging from
99.4% to 100.0%) are assigned to the shortest inter-donation interval (8-week) if the goal is to maximize the
total units of blood collected by the blood service, and ITRs estimated using these precision medicine-based
methods are indeed very close to “one-size-fits-all” rules. In contrast, if our aim is to minimize the low Hb
deferral rates, then the longest inter-donation interval (12-week) should be recommended for most donors
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(ranging from 94.4% to 99.7%). These findings are consistent with results from the primary analysis of the
INTERVAL trial data.12

For comparison, we also calculate the ITR effects on donation and deferral of three non-personalized rules
where the same inter-donation interval is recommended for all donors. ITR effects of non-personalized (fixed)
rules measure the difference in the average outcome between donors whose assigned inter-donation intervals in
the trial are the same as the one specified in the fixed rule and those whose assigned inter-donation intervals are
different from that specified in the fixed rule. We still use (11) to calculate empirical ITR effects of fixed rules
except that D(X) is replaced with fixed rules that do not depend on X. ITR effects on donation are -1.248,
-0.077, and 1.315 for assigning all donors to the 12-, 10-, and 8-week inter-donation interval, respectively;
and ITR effects on deferral are -0.025, -0.002, and 0.027 for assigning all donors to the 12-, 10-, and 8-week
inter-donation interval, respectively. This suggests that if the sole interest is in collecting more blood, the non-
personalized rule that recommends all donors to donate every 8 weeks leads to the largest increase in the units
of blood collected compared to personalized rules estimated using different methods. On the other hand, if
we are only concerned with minimizing deferrals for low Hb, then the non-personalized rule that recommends
all donors to the 12-week inter-donation interval yields the largest reduction in the rate of low Hb deferrals
compared to personalized rules. However, we also observe from Table 2 that by following the optimal rule for
maximizing the total units of blood collected by the blood service, the average increase in blood donations is
about 1.31 units (616 ml) per donor over 2 years, but at the same time, there is also an increasing number of
deferrals for low Hb at about 2.7 per 100 donor attendances on average. This is consistent with our intuition: an
“optimal” rule that maximizes clinical benefits also leads to safety concerns (high risks of adverse events), and
vice versa. Therefore, it is necessary to strike a balance between the two “competing” outcomes by maximizing
the utility score which incorporates the trade-off between the benefit and the risk.

6.4.2 Target the utility outcome Table 3 summarizes allocation proportions and ITR effects associated with
D̂∗(X) for different values of the trade-off parameter b in the utility function, and Figure 1 (a)-(c) plot the
relationships between estimated ITR effects (on donation, deferral and utility outcomes, respectively) and
b when the target is to maximize the utility score. Again, we observe very similar results using different
methods (“similar” in terms of clinical meaningfulness), especially when the value of b is small. As b increases,
assignment proportions shift from the more frequent to less frequent inter-donation intervals: less donors are
allocated to the shortest inter-donation interval, and more donors are allocated to the longest one. Consequently,
both the increase in the total units of blood collected (i.e., benefit) and the increase in the low Hb deferral rates
(i.e., risk) become smaller. When b takes the value from 1 to 4, both benefit and risk increase if the target is
to maximize corresponding utilities, while in the extreme case where b = 5, there is an increase in the benefit
and a decrease in the risk. As a reference, we also calculate the ITR effects of three non-personalized rules
on the utility outcome when the trade-off parameter b varies from 1 to 5 (Table 4) and compare with those
of personalized rules presented in Table 3. Unlike the case when we analyze two outcomes separately where
the “one-size-fits-all” rule seems to be sufficient for achieving a desirable outcome, when we target the utility
outcome, personalized rules that tailor to each donor’s capacity to donate lead to a higher gain in utility scores
compared to non-personalized rules, and the advantage over non-personalized rules becomes more pronounced
as b increases. For example, when b = 5, ITR effects on the utility score of the best non-personalized rule
(assign all donors to the 10-week inter-donation interval) is 0.183, while ITR effects of personalized rules
range from 0.485 to 0.648, depending on which method is used to estimate the optimal ITR.
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Table 3. Applications of the l1-penalized least squares with hierarchical group LASSO variable selection (l1-PLS-
HGL), l1-penalized least squares with group LASSO variable selection (l1-PLS-GL), adaptive contrast weighted
learning (ACWL), and direct learning (D-learning) to data from male donors in the INTERVAL trial assuming the
target is to maximize the utility. The trade-off parameter b in the utility function varies from 1 to 5 at an increment of 1.
Means and standard deviations (in parenthesis) of assignment proportions in % and empirical ITR effects on donation,
deferral, and utility across 100 repetitions of 5-fold cross-validation are reported. ITR effects measure the difference
in the average outcome between donors whose assigned inter-donation intervals in the trial are optimal (with respect
to the method used to estimate the ITR) and those whose assigned inter-donation intervals are non-optimal. A larger
ITR effect on donation/utility and a smaller ITR effect on deferral are more desirable.

Assignment Percentages ITR Effects
Trade-off Parameter Method 12 weeks 10 weeks 8 weeks Donation Deferral Utility

b = 1

l1-PLS-HGL 0.9 (0.1) 1.2 (0.1) 97.9 (0.1) 1.309 (0.008) 0.024 (0.001) 1.064 (0.009)
l1-PLS-GL 0.3 (0.1) 2.4 (0.8) 97.2 (1.0) 1.289 (0.014) 0.025 (0.001) 1.040 (0.014)

ACWL 0.0 (0.0) 0.0 (0.1) 100.0 (0.1) 1.314 (0.003) 0.027 (0.000) 1.055 (0.002)
D-learning 0.7 (0.2) 1.2 (0.5) 98.1 (0.5) 1.309 (0.012) 0.025 (0.001) 1.058 (0.013)

b = 2

l1-PLS-HGL 3.4 (0.1) 4.2 (0.3) 92.4 (0.4) 1.242 (0.016) 0.021 (0.001) 0.809 (0.020)
l1-PLS-GL 1.7 (0.4) 7.2 (1.6) 91.1 (2.0) 1.217 (0.027) 0.022 (0.002) 0.774 (0.024)

ACWL 2.7 (0.8) 3.4 (1.7) 93.9 (1.3) 1.266 (0.019) 0.022 (0.001) 0.814 (0.016)
D-learning 1.5 (0.4) 5.8 (1.1) 92.7 (1.0) 1.260 (0.022) 0.022 (0.001) 0.816 (0.023)

b = 3

l1-PLS-HGL 8.6 (0.3) 11.9 (0.5) 79.5 (0.6) 1.091 (0.022) 0.011 (0.001) 0.689 (0.028)
l1-PLS-GL 4.8 (1.1) 15.0 (3.3) 80.2 (4.4) 1.069 (0.056) 0.017 (0.003) 0.569 (0.041)

ACWL 9.3 (1.4) 8.2 (2.7) 82.5 (2.2) 1.100 (0.034) 0.014 (0.001) 0.627 (0.032)
D-learning 3.8 (0.8) 17.5 (1.6) 78.6 (1.3) 1.067 (0.027) 0.016 (0.001) 0.607 (0.027)

b = 4

l1-PLS-HGL 17.0 (0.4) 23.3 (0.5) 59.7 (0.5) 0.745 (0.023) 0.001 (0.001) 0.623 (0.030)
l1-PLS-GL 10.5 (2.3) 27.9 (3.2) 61.6 (5.2) 0.782 (0.070) 0.008 (0.004) 0.468 (0.081)

ACWL 16.8 (1.9) 16.2 (3.5) 67.0 (3.1) 0.793 (0.055) 0.007 (0.002) 0.475 (0.033)
D-learning 9.9 (1.6) 30.0 (1.7) 60.2 (0.7) 0.783 (0.027) 0.006 (0.001) 0.543 (0.039)

b = 5

l1-PLS-HGL 26.4 (0.4) 33.4 (0.5) 40.3 (0.3) 0.410 (0.022) -0.007 (0.001) 0.648 (0.031)
l1-PLS-GL 18.2 (3.2) 48.4 (6.2) 33.4 (3.4) 0.324 (0.059) -0.004 (0.002) 0.485 (0.084)

ACWL 30.1 (2.5) 22.6 (4.2) 47.3 (3.2) 0.422 (0.053) -0.005 (0.002) 0.541 (0.046)
D-learning 19.3 (1.6) 37.4 (1.3) 43.3 (0.7) 0.505 (0.031) -0.004 (0.001) 0.622 (0.045)

(a) ITR effects on donation (b) ITR effects on deferral (c) ITR effects on utility

Figure 1. Plots of the mean and 95% confidence intervals for ITR effects of the optimal ITR estimated using various
methods as the trade-off parameter b in the utility function varies from 1 to 5 at an increment of 1. Optimal ITRs are
estimated using data from male donors in the INTERVAL trial assuming the target is to maximize the utility. Methods
to estimate the optimal ITR include l1-penalized least squares with hierarchical group LASSO variable selection (l1-
PLS-HGL), l1-penalized least squares with group LASSO variable selection (l1-PLS-GL), adaptive contrast weighted
learning (ACWL), and direct learning (D-learning). ITR effects on the (a) donation, (b) deferral, and (c) utility outcomes
are presented. A larger ITR effect on donation/utility and a smaller ITR effect on deferral are more desirable.
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Table 4. ITR effects of three non-personalized rules on the utility outcome. The trade-off parameter b in the utility
function varies from 1 to 5 at an increment of 1. ITR effects measure the difference in the average outcome between
donors whose assigned inter-donation intervals in the trial are the same as the one specified in the non-personalized
rule and those whose assigned inter-donation intervals are different from that specified in the non-personalized rule.
A larger ITR effect on utility is more desirable.

ITR Effects on Utility
Non-personalized Rule b = 1 b = 2 b = 3 b = 4 b = 5

Recommend all male donors to donate every 12 weeks -1.308 -0.828 -0.618 -0.408 -0.199
Recommend all male donors to donate every 10 weeks -0.025 0.027 0.079 0.131 0.183
Recommend all male donors to donate every 8 weeks 1.055 0.795 0.535 0.275 0.015

6.4.3 Variable selection by l1-PLS-HGL and l1-PLS-GL In addition to estimating the optimal ITR, l1-
PLS with group LASSO (GL) or hierarchical group LASSO (HGL) variable selection also picks important
treatment-covariate interactions when building the prediction model for E(Y |X, A). Despite the mismatch
issue discussed in Section 4.1, we are interested in investigating which treatment-covariate interactions are
estimated as non-zero and regarded as important in the prediction model. For demonstration, we focus on the
situation where maximizing the total units of blood collected by the blood service is our primary goal. Table
5 summarizes selection percentages (across 100 repetitions of 5-fold cross-validation) of different treatment-
covariate interactions in the prediction model for donation when group LASSO that does not impose strong
hierarchy between main effects and interactions, or hierarchical group LASSO that enforces such hierarchy is
used for variable selection.

We observe that some interactions between the randomized group (inter-donation interval) and baseline
characteristics are selected almost all the time by both variable selection methods, such as blood donations
in the 2 years before trial enrollment, baseline haemoglobin level, blood group, etc. We also notice that
for some baseline covariates, selection percentages of their interaction with the randomized group differ
substantially between the two variable selection approaches, even though the donor assignment proportions and
ITR effects estimated using l1-PLS-HGL and l1-PLS-GL (Table 2) are very similar. A possible explanation for
an interaction being selected much more often by HGL than by GL (the case for most continuous covariates)
is that the effect of the interaction itself is not strong enough and may be dominated by the main effect, but as
has been noted in Lim and Hastie,33 their proposed HGL method can still discover important interaction terms
in this case due to the use of the “glinternet” penalty.

It is worth noting that the high selection rates of interactions between randomized groups and baseline
covariates do not imply different recommendations on the inter-donation interval for different donors, and the
finding that almost all male donors should donate every 8 weeks to maximize the total units of blood collected
(Table 2) does not contradict the observation that many interaction effects are estimated to be non-zero (Table
5). This is because variable selection methods that we use to identify important interactions do not distinguish
between quantitative and qualitative interactions, whereas only qualitative interactions can lead to different
inter-donation interval recommendations for different subpopulations. In this dataset, it might be the case that
even though interactions exist, they are mostly quantitative, as has also been observed in the pre-specified
subgroup analysis in the INTERVAL trial.12
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Table 5. Selection percentages of treatment-covariate interactions in the prediction model for the donation outcome
across 100 repetitions of 5-fold cross-validation when l1-PLS is used to estimate the optimal ITR. Hierarchical group
LASSO (HGL) enforces strong hierarchy between main effects and interactions, and group LASSO (GL) does not
impose strong hierarchy between main effects and interactions.

Variable Selection
Baseline Variables Variable Type HGL GL
Age continuous 63 21
Body mass index continuous 33 38
SF-36v2 physical component score continuous 47 11
SF-36v2 mental component score continuous 100 20
Blood donations in the 2 years before trial enrollment continuous 100 100
Haemoglobin level continuous 100 100
White blood cell count continuous 100 46
Red blood cell count continuous 0 11
Mean corpuscular haemoglobin continuous 100 96
Mean corpuscular volume continuous 62 11
Platelet count continuous 100 12
Ethnicity categorical 47 97
Blood group categorical 99 99
Iron prescription categorical 1 74
Smoke ever categorical 13 39
Smoke currently categorical 98 99
Alcohol ever categorical 85 32
Alcohol currently categorical 100 100
New or returning donor status categorical 100 32

6.5 The Bayesian approach: BART

Following Logan et al.,10 we first build the conditional mean outcome model using BART, and then we identify
the optimal ITR based on posterior predictive distributions of the conditional mean under each randomized
group (the resulting optimal ITR is referred to as the “BART ITR”). According to Section 4.4, the BART ITR
is the one in which the recommended arm for each individual is given by maximizing the subject-specific
MCMC estimate (e.g. posterior mean) of the posterior predictive distribution of E(Y |X = x, A = a). In
the INTERVAL trial, the BART ITR is the rule that assigns each donor to the inter-donation interval that
leads to the largest posterior mean of utilities/total units of blood collected, or the inter-donation interval that
corresponds to the smallest posterior mean of low Hb deferral rates.

6.5.1 Target two outcomes separately Consistent with our findings using frequentist approaches, when we
fit the BART model to the INTERVAL data with the target of maximizing the total units of blood collected
by the blood service, the BART ITR, D̂∗BART(X), assigns all male donors to the most frequent inter-donation
interval (8-week) with the posterior mean of the ITR effects on donation being 1.313 (95% credible interval:
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[1.237,1.392]). On the other hand, when the aim is to minimize low Hb deferral rates, D̂∗BART(X) recommends
91.6% of male donors to donate every 12 weeks, leading to an ITR effect of -0.024 (posterior mean) on the
deferral outcome with the 95% credible interval being [-0.027,-0.022].

6.5.2 Target the utility outcome We also fit the BART model to the INTERVAL data with the utility score
being the target outcome and obtain the posterior predictive distribution of the utility score under each inter-
donation interval option. We vary the trade-off parameter b in the utility function from 1 to 5 at an increment
of 1 to see how D̂∗BART(X) changes with this parameter. For each b, we compare five donor assignment rules:

(i) All donors donate every 8 weeks;

(ii) All donors donate every 10 weeks;

(iii) All donors donate every 12 weeks;

(iv) Donors donate according to the BART ITR (each donor is assigned to the inter-donation interval
associated with the maximum posterior mean of the utility score);

(v) Donors donate according to the optimized ITR based on the BART estimation (an idealized scenario in
which for each MCMC draw from the posterior distribution, each donor is assigned to the inter-donation
interval associated with the maximum value of the utility score. This is non-achievable in practice, but
we use this rule as a reference for the best-case scenario).

Posterior distributions of the ITR effects associated with those five donor assignment rules corresponding
to five different trade-off parameters are plotted in Figure 2. In Table 6, we summarize donor allocation
proportions based on the BART ITR, and we also report the posterior mean and the 95% equal tail credible
interval of the ITR effect for each donor assignment strategy (we note that standard deviation estimates
reported in Table 3 for non-Bayesian methods are calculated across 100 repetitions of 5-fold cross-validation,
while in Table 6, we quantify the uncertainty of the estimates directly based on posterior samples from BART).

We observe that when b is small (e.g. b=1 or 2), the best “one-size-fits-all” strategy is to recommend all
donors to donate every 8 weeks. In these cases, both the BART ITR and the optimized ITR are close to the
“all 8 weeks” rule in that the ITR effect distribution of the BART ITR and the optimized ITR almost overlaps
with that of the “all 8 weeks” rule. When b takes values from 3 to 5, the BART ITR is better than the best non-
personalized assignment rule (“all 8 weeks” for b = 3, 4, and “all 10 weeks” for b = 5) with a high probability,
and the advantage of the BART ITR over non-personalized rules becomes more pronounced as b gets larger.
Even though the BART ITR is slightly inferior to the optimized ITR (which is generally not achievable in
practice) as expected, the differences are minimal.

6.6 Measure of agreement between methods

Results presented in Section 6.4 and 6.5 suggest that donor assignment proportions and empirical ITR effects
are fairly similar (at the population level) across different methods for each target outcome. We are also
interested in investigating for a given male donor, to what extent the five methods (l1-PLS-HGL, l1-PLS-GL,
ACWL, D-learning, and BART) “agree” on his optimal inter-donation interval (at the individual level). Given
the differences in the decision boundary types assumed by each method, we expect that the form of estimated
regimes based on different methods may be very different and the set of baseline characteristics included in the
optimal decision rule may also vary across methods. However, the optimal inter-donation interval estimated
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(a) b = 1 (b) b = 2

(c) b = 3

(d) b = 4 (e) b = 5

Figure 2. Density plots of ITR effects on utility for five donor assignment rules: recommend all male donors to (i)
donate every 8 weeks, (ii) donate every 10 weeks, (iii) donate every 12 weeks, (iv) donate according to the BART
ITR, and (v) donate according to the optimized ITR (non-achievable in practice). The trade-off parameter b in the
utility function varies from 1 to 5 at an increment of 1. ITR effects measure the difference in the average outcome
between donors whose assigned inter-donation intervals in the trial are optimal (with respect to the method used to
estimate the ITR) and those whose assigned inter-donation intervals are non-optimal. A larger ITR effect on utility is
more desirable.
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Table 6. Applications of Bayesian additive regression trees (BART) to data from male donors in the INTERVAL trial
assuming the target is to maximize the utility score. The trade-off parameter b in the utility function varies from 1
to 5 at an increment of 1. Assignment proportions of the BART ITR in % and the posterior mean [95% equal tail
credible interval] of the ITR effect on the utility outcome for five donor assignment rules are reported. Assignment
rules include: recommend all male donors to (i) donate every 8 weeks, (ii) donate every 10 weeks, (iii) donate every
12 weeks, (iv) donate according to the BART ITR, and (v) donate according to the optimized ITR (non-achievable in
practice). ITR effects measure the difference in the average outcome between donors whose assigned inter-donation
intervals in the trial are optimal (with respect to the method used to estimate the ITR) and those whose assigned
inter-donation intervals are non-optimal. A larger ITR effect on utility is more desirable.

Trade-off Parameter
Criteria Assignment Rule b = 1 b = 2 b = 3 b = 4 b = 5

BART ITR
Assignment Percentages

12 weeks 0.0 3.6 10.7 17.5 26.7
10 weeks 3.2 9.4 18.8 25.5 28.4
8 weeks 96.8 87.1 70.5 57.0 44.9

ITR Effects on Utility
Posterior Mean

[95% Credible Interval]

All 12 weeks -1.037 -0.827 -0.618 -0.408 -0.199
[-1.118,-0.956] [-0.915,-0.739] [-0.712,-0.524] [-0.511,-0.305] [-0.317,-0.082]

All 10 weeks -0.025 0.027 0.079 0.131 0.183
[-0.106,0.055] [-0.060,0.114] [-0.017,0.174] [0.027,0.232] [0.068,0.297]

All 8 weeks 1.054 0.794 0.535 0.275 0.016
[0.973,1.134] [0.708,0.883] [0.437,0.628] [0.169,0.379] [-0.101,0.135]

BART ITR 1.064 0.876 0.750 0.671 0.732
[0.983,1.144] [0.793,0.959] [0.643,0.843] [0.553,0.780] [0.548,0.852]

Optimized ITR 1.082 0.898 0.802 0.770 0.823
[1.000,1.159] [0.814,0.981] [0.701,0.893] [0.671,0.870] [0.710,0.928]

by different approaches for a given donor can still “overlap” despite the possible heterogeneity in the form of
estimated regimes.37

To evaluate the degree of agreement between different methods in terms of the recommended optimal
inter-donation interval for each male donor in the INTERVAL trial, we present two inter-method agreement
measures (overall and pairwise). Details and results can be found in the supplemental materials (Appendix E).
We conclude that in most cases, the level of agreement is “substantial” or “almost perfect” based on the values
of the pairwise B statistics52 and the guidelines for assessing agreement by Munoz and Bangdiwala.53

7 Discussion

7.1 Concluding remarks

Most statistical methods for estimating the optimal individualized treatment rule (ITR) are restricted to binary
treatment comparisons. However, clinical studies with more than two treatment arms are common in practice.
In this paper, we review several recent approaches that can be used to estimate the optimal ITR in large-scale
clinical studies with more than two treatment options. Methods considered include: the l1-penalized least
squares with hierarchical group LASSO or group LASSO variable selection, the adaptive contrast weighted
learning method, the direct learning method, and a Bayesian approach that builds on Bayesian additive
regression trees.

We conduct simulation studies to evaluate the performance of these methods in large-scale clinical trials. Our
simulation results suggest that the BART multi-arm ITR estimation method has better or similar performance
compared to other methods across different settings (with different types of interaction terms). In addition,
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when the sample size is large (as in the INTERVAL trial), all methods perform equally well under scenarios
where baseline characteristics interact with treatment arms only quantitatively (and thus the true optimal
treatment is the same for all subjects) in the sense that they all accurately identify the true universal decision
rules (assign all to the marginally best one).

We further illustrate the use of these methods by applying them to the data collected from male donors in the
INTERVAL trial. Results are fairly consistent across different approaches in terms of clinical meaningfulness.
When the target is to maximize the total units of blood collected by the blood service, or to minimize the low
Hb deferral rates (i.e., the benefit outcome and the risk outcome are not considered in conjunction with each
other), all methods detect almost no qualitative heterogeneity of the “inter-donation interval” effects. More
specifically, if we focus on maximizing the total units of blood collected, then the optimal ITR tends to choose
shorter inter-donation intervals that are associated with increased benefits at the cost of higher risks of deferrals
for low Hb and almost all donors are assigned to the highest frequency of donation. On the other hand, if our
aim is to minimize the low Hb deferral rates, then the optimal ITR picks longer inter-donation intervals and
almost everyone is assigned to the lowest frequency of donation. These results are not surprising and support
the trial’s primary findings that interactions between baseline characteristics and the inter-donation interval are
not qualitative, but rather quantitative, and almost all donors are able to give blood more frequently than the
current standard practice.12 Maximizing the benefit and minimizing the risk are two competing goals. While
the optimal decision for each goal is obvious, the two decisions may be very different. To deal with this, we
create a utility score that balances two outcomes and derive the optimal ITR with the goal of maximizing the
utility score. Investigation of the utility outcome suggests some heterogeneity in the optimal inter-donation
interval across donors with different baseline characteristics, and such heterogeneity becomes larger as the
trade-off parameter b in the utility function (the equivalent benefit loss for one unit increase in risk) gets larger.

7.2 Generalizability of estimated ITRs

One issue that warrants highlighting is the generalizability of estimated ITRs to a broader population. In
general, the entry criteria for clinical trials are restrictive, and trial participants may not be representative of the
more general population. Therefore, failure to detect qualitative interactions between baseline characteristics
and the treatment assignment among trial participants does not preclude the existence of such qualitative
interactions over the entire eligible population, and we should be cautious about generalizing ITRs estimated
using trial data to a broader population.32,54 However, this may not be a major problem for the INTERVAL trial.
As suggested by Moore et al.,17 participants in the INTERVAL trial were broadly representative of the national
donor population of England, and it is likely that estimated ITRs based on INTERVAL data are generalizable
to the general donor population.

We note that the INTERVAL data cannot be used to validate the estimated optimal donation strategies. A
confirmatory follow-up trial comparing estimated rules with the current clinical practice should be conducted
before applying estimated rules to future donors.

We also comment that the generalizability and validation issues discussed in this section regarding the
estimated optimal ITRs are relevant not only to the INTERVAL trial but also more generally to other trials, as
have been discussed in literatures.27,32,54,55
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7.3 Model extensions and future work

We can extend this work in several directions. We treat the inter-donation interval as a nominal variable with
3 categories. However, there is a natural ordering of the 12-, 10-, and 8-week inter-donation interval and these
three options can be considered as three levels of an ordinal “treatment”. We would expect to have some
information loss by treating an ordinal variable as nominal. Thus, it would be of great interest to explore ways
to efficiently incorporate information on the ordinality into decision-making and investigate how much we
gain by doing this.

We note that the optimal donor assignment strategy is highly dependent on b. We examine different values
for b within a reasonable range and estimate the optimal ITR under each b. Ideally, b should be specified
based on clinicians’ domain knowledge. However, there is a lack of accurate information on b in most cases
because the right balance between the benefit and the risk is usually not obvious and can be different for
different subgroups.56 Kosorok and Laber2 summarized other recent work on addressing multiple outcomes
in precision medicine. For example, an alternative approach to handle the trade-off between the risk and the
benefit is through the constrained optimization framework, i.e., consider maximizing the benefit under the
constraint of controlling the average risk under a pre-specified and clinically meaningful threshold.57 Similar
to the utility-based approach, the choice of the threshold value is important for making the right decision.

When deriving the optimal ITR, we only use baseline measurements that are routinely collected at the
regular donation session. In the future, we may include additional blood-based biomarkers (e.g. those related
to iron stores such as ferritin and transferrin) to estimate the optimal donation strategy. Extra costs would be
incurred collecting such data, and failure to account for such additional costs can lead to suboptimal decisions
from the cost-effectiveness perspective. We will investigate how much additional information on biomarkers
adds to the reinforcement of decision-making (compared to the donation strategy estimated solely based on
routinely collected data).

Dynamic treatment regimes (DTR) refer to sequential decision rules that adapt over time to the changing
status of each subject to maximize the expected long-term target outcomes.21,58–60 In the INTERVAL trial,
donors were only randomized once at the baseline visit (and then fixed at the initial randomized group),
unlike in the sequential multiple assignment randomized trial (SMART) where “treatment assignments”
at later decision points are based on the response to the previous randomization and updated individual
characteristics.61 In addition, we do not have the data on each donor’s Hb levels and iron stores at subsequent
donation sessions, even though they may affect the optimal gap time before the next donation. Therefore, based
on the data currently available from the INTERVAL trial, we only consider the estimation of single-stage ITRs
using baseline measurements in this paper. It would be useful to incorporate dynamic donor stratification
and estimate the optimal personalized donation strategy that reflects both heterogeneity across donors and
heterogeneity over time within each donor when other data sources become available.
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